xref: /linux/fs/iomap/direct-io.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/backing-dev.h>
11 #include <linux/uio.h>
12 #include <linux/task_io_accounting_ops.h>
13 
14 #include "../internal.h"
15 
16 /*
17  * Private flags for iomap_dio, must not overlap with the public ones in
18  * iomap.h:
19  */
20 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
21 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
22 #define IOMAP_DIO_WRITE		(1 << 30)
23 #define IOMAP_DIO_DIRTY		(1 << 31)
24 
25 struct iomap_dio {
26 	struct kiocb		*iocb;
27 	const struct iomap_dio_ops *dops;
28 	loff_t			i_size;
29 	loff_t			size;
30 	atomic_t		ref;
31 	unsigned		flags;
32 	int			error;
33 	bool			wait_for_completion;
34 
35 	union {
36 		/* used during submission and for synchronous completion: */
37 		struct {
38 			struct iov_iter		*iter;
39 			struct task_struct	*waiter;
40 			struct request_queue	*last_queue;
41 			blk_qc_t		cookie;
42 		} submit;
43 
44 		/* used for aio completion: */
45 		struct {
46 			struct work_struct	work;
47 		} aio;
48 	};
49 };
50 
51 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
52 {
53 	struct request_queue *q = READ_ONCE(kiocb->private);
54 
55 	if (!q)
56 		return 0;
57 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
58 }
59 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
60 
61 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
62 		struct bio *bio)
63 {
64 	atomic_inc(&dio->ref);
65 
66 	if (dio->iocb->ki_flags & IOCB_HIPRI)
67 		bio_set_polled(bio, dio->iocb);
68 
69 	dio->submit.last_queue = bdev_get_queue(iomap->bdev);
70 	dio->submit.cookie = submit_bio(bio);
71 }
72 
73 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
74 {
75 	const struct iomap_dio_ops *dops = dio->dops;
76 	struct kiocb *iocb = dio->iocb;
77 	struct inode *inode = file_inode(iocb->ki_filp);
78 	loff_t offset = iocb->ki_pos;
79 	ssize_t ret = dio->error;
80 
81 	if (dops && dops->end_io)
82 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
83 
84 	if (likely(!ret)) {
85 		ret = dio->size;
86 		/* check for short read */
87 		if (offset + ret > dio->i_size &&
88 		    !(dio->flags & IOMAP_DIO_WRITE))
89 			ret = dio->i_size - offset;
90 		iocb->ki_pos += ret;
91 	}
92 
93 	/*
94 	 * Try again to invalidate clean pages which might have been cached by
95 	 * non-direct readahead, or faulted in by get_user_pages() if the source
96 	 * of the write was an mmap'ed region of the file we're writing.  Either
97 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
98 	 * this invalidation fails, tough, the write still worked...
99 	 *
100 	 * And this page cache invalidation has to be after ->end_io(), as some
101 	 * filesystems convert unwritten extents to real allocations in
102 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
103 	 * zeros from unwritten extents.
104 	 */
105 	if (!dio->error &&
106 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
107 		int err;
108 		err = invalidate_inode_pages2_range(inode->i_mapping,
109 				offset >> PAGE_SHIFT,
110 				(offset + dio->size - 1) >> PAGE_SHIFT);
111 		if (err)
112 			dio_warn_stale_pagecache(iocb->ki_filp);
113 	}
114 
115 	/*
116 	 * If this is a DSYNC write, make sure we push it to stable storage now
117 	 * that we've written data.
118 	 */
119 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
120 		ret = generic_write_sync(iocb, ret);
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	kfree(dio);
124 
125 	return ret;
126 }
127 
128 static void iomap_dio_complete_work(struct work_struct *work)
129 {
130 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
131 	struct kiocb *iocb = dio->iocb;
132 
133 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
134 }
135 
136 /*
137  * Set an error in the dio if none is set yet.  We have to use cmpxchg
138  * as the submission context and the completion context(s) can race to
139  * update the error.
140  */
141 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
142 {
143 	cmpxchg(&dio->error, 0, ret);
144 }
145 
146 static void iomap_dio_bio_end_io(struct bio *bio)
147 {
148 	struct iomap_dio *dio = bio->bi_private;
149 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
150 
151 	if (bio->bi_status)
152 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
153 
154 	if (atomic_dec_and_test(&dio->ref)) {
155 		if (dio->wait_for_completion) {
156 			struct task_struct *waiter = dio->submit.waiter;
157 			WRITE_ONCE(dio->submit.waiter, NULL);
158 			blk_wake_io_task(waiter);
159 		} else if (dio->flags & IOMAP_DIO_WRITE) {
160 			struct inode *inode = file_inode(dio->iocb->ki_filp);
161 
162 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
163 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
164 		} else {
165 			iomap_dio_complete_work(&dio->aio.work);
166 		}
167 	}
168 
169 	if (should_dirty) {
170 		bio_check_pages_dirty(bio);
171 	} else {
172 		bio_release_pages(bio, false);
173 		bio_put(bio);
174 	}
175 }
176 
177 static void
178 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
179 		unsigned len)
180 {
181 	struct page *page = ZERO_PAGE(0);
182 	int flags = REQ_SYNC | REQ_IDLE;
183 	struct bio *bio;
184 
185 	bio = bio_alloc(GFP_KERNEL, 1);
186 	bio_set_dev(bio, iomap->bdev);
187 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
188 	bio->bi_private = dio;
189 	bio->bi_end_io = iomap_dio_bio_end_io;
190 
191 	get_page(page);
192 	__bio_add_page(bio, page, len, 0);
193 	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
194 	iomap_dio_submit_bio(dio, iomap, bio);
195 }
196 
197 static loff_t
198 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
199 		struct iomap_dio *dio, struct iomap *iomap)
200 {
201 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
202 	unsigned int fs_block_size = i_blocksize(inode), pad;
203 	unsigned int align = iov_iter_alignment(dio->submit.iter);
204 	struct iov_iter iter;
205 	struct bio *bio;
206 	bool need_zeroout = false;
207 	bool use_fua = false;
208 	int nr_pages, ret = 0;
209 	size_t copied = 0;
210 
211 	if ((pos | length | align) & ((1 << blkbits) - 1))
212 		return -EINVAL;
213 
214 	if (iomap->type == IOMAP_UNWRITTEN) {
215 		dio->flags |= IOMAP_DIO_UNWRITTEN;
216 		need_zeroout = true;
217 	}
218 
219 	if (iomap->flags & IOMAP_F_SHARED)
220 		dio->flags |= IOMAP_DIO_COW;
221 
222 	if (iomap->flags & IOMAP_F_NEW) {
223 		need_zeroout = true;
224 	} else if (iomap->type == IOMAP_MAPPED) {
225 		/*
226 		 * Use a FUA write if we need datasync semantics, this is a pure
227 		 * data IO that doesn't require any metadata updates (including
228 		 * after IO completion such as unwritten extent conversion) and
229 		 * the underlying device supports FUA. This allows us to avoid
230 		 * cache flushes on IO completion.
231 		 */
232 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
233 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
234 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
235 			use_fua = true;
236 	}
237 
238 	/*
239 	 * Operate on a partial iter trimmed to the extent we were called for.
240 	 * We'll update the iter in the dio once we're done with this extent.
241 	 */
242 	iter = *dio->submit.iter;
243 	iov_iter_truncate(&iter, length);
244 
245 	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
246 	if (nr_pages <= 0)
247 		return nr_pages;
248 
249 	if (need_zeroout) {
250 		/* zero out from the start of the block to the write offset */
251 		pad = pos & (fs_block_size - 1);
252 		if (pad)
253 			iomap_dio_zero(dio, iomap, pos - pad, pad);
254 	}
255 
256 	do {
257 		size_t n;
258 		if (dio->error) {
259 			iov_iter_revert(dio->submit.iter, copied);
260 			return 0;
261 		}
262 
263 		bio = bio_alloc(GFP_KERNEL, nr_pages);
264 		bio_set_dev(bio, iomap->bdev);
265 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
266 		bio->bi_write_hint = dio->iocb->ki_hint;
267 		bio->bi_ioprio = dio->iocb->ki_ioprio;
268 		bio->bi_private = dio;
269 		bio->bi_end_io = iomap_dio_bio_end_io;
270 
271 		ret = bio_iov_iter_get_pages(bio, &iter);
272 		if (unlikely(ret)) {
273 			/*
274 			 * We have to stop part way through an IO. We must fall
275 			 * through to the sub-block tail zeroing here, otherwise
276 			 * this short IO may expose stale data in the tail of
277 			 * the block we haven't written data to.
278 			 */
279 			bio_put(bio);
280 			goto zero_tail;
281 		}
282 
283 		n = bio->bi_iter.bi_size;
284 		if (dio->flags & IOMAP_DIO_WRITE) {
285 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
286 			if (use_fua)
287 				bio->bi_opf |= REQ_FUA;
288 			else
289 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
290 			task_io_account_write(n);
291 		} else {
292 			bio->bi_opf = REQ_OP_READ;
293 			if (dio->flags & IOMAP_DIO_DIRTY)
294 				bio_set_pages_dirty(bio);
295 		}
296 
297 		iov_iter_advance(dio->submit.iter, n);
298 
299 		dio->size += n;
300 		pos += n;
301 		copied += n;
302 
303 		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
304 		iomap_dio_submit_bio(dio, iomap, bio);
305 	} while (nr_pages);
306 
307 	/*
308 	 * We need to zeroout the tail of a sub-block write if the extent type
309 	 * requires zeroing or the write extends beyond EOF. If we don't zero
310 	 * the block tail in the latter case, we can expose stale data via mmap
311 	 * reads of the EOF block.
312 	 */
313 zero_tail:
314 	if (need_zeroout ||
315 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
316 		/* zero out from the end of the write to the end of the block */
317 		pad = pos & (fs_block_size - 1);
318 		if (pad)
319 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
320 	}
321 	if (copied)
322 		return copied;
323 	return ret;
324 }
325 
326 static loff_t
327 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
328 {
329 	length = iov_iter_zero(length, dio->submit.iter);
330 	dio->size += length;
331 	return length;
332 }
333 
334 static loff_t
335 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
336 		struct iomap_dio *dio, struct iomap *iomap)
337 {
338 	struct iov_iter *iter = dio->submit.iter;
339 	size_t copied;
340 
341 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
342 
343 	if (dio->flags & IOMAP_DIO_WRITE) {
344 		loff_t size = inode->i_size;
345 
346 		if (pos > size)
347 			memset(iomap->inline_data + size, 0, pos - size);
348 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
349 		if (copied) {
350 			if (pos + copied > size)
351 				i_size_write(inode, pos + copied);
352 			mark_inode_dirty(inode);
353 		}
354 	} else {
355 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
356 	}
357 	dio->size += copied;
358 	return copied;
359 }
360 
361 static loff_t
362 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
363 		void *data, struct iomap *iomap, struct iomap *srcmap)
364 {
365 	struct iomap_dio *dio = data;
366 
367 	switch (iomap->type) {
368 	case IOMAP_HOLE:
369 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
370 			return -EIO;
371 		return iomap_dio_hole_actor(length, dio);
372 	case IOMAP_UNWRITTEN:
373 		if (!(dio->flags & IOMAP_DIO_WRITE))
374 			return iomap_dio_hole_actor(length, dio);
375 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
376 	case IOMAP_MAPPED:
377 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
378 	case IOMAP_INLINE:
379 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
380 	default:
381 		WARN_ON_ONCE(1);
382 		return -EIO;
383 	}
384 }
385 
386 /*
387  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
388  * is being issued as AIO or not.  This allows us to optimise pure data writes
389  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
390  * REQ_FLUSH post write. This is slightly tricky because a single request here
391  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
392  * may be pure data writes. In that case, we still need to do a full data sync
393  * completion.
394  */
395 ssize_t
396 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
397 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
398 		bool wait_for_completion)
399 {
400 	struct address_space *mapping = iocb->ki_filp->f_mapping;
401 	struct inode *inode = file_inode(iocb->ki_filp);
402 	size_t count = iov_iter_count(iter);
403 	loff_t pos = iocb->ki_pos, start = pos;
404 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
405 	unsigned int flags = IOMAP_DIRECT;
406 	struct blk_plug plug;
407 	struct iomap_dio *dio;
408 
409 	lockdep_assert_held(&inode->i_rwsem);
410 
411 	if (!count)
412 		return 0;
413 
414 	if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
415 		return -EIO;
416 
417 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
418 	if (!dio)
419 		return -ENOMEM;
420 
421 	dio->iocb = iocb;
422 	atomic_set(&dio->ref, 1);
423 	dio->size = 0;
424 	dio->i_size = i_size_read(inode);
425 	dio->dops = dops;
426 	dio->error = 0;
427 	dio->flags = 0;
428 
429 	dio->submit.iter = iter;
430 	dio->submit.waiter = current;
431 	dio->submit.cookie = BLK_QC_T_NONE;
432 	dio->submit.last_queue = NULL;
433 
434 	if (iov_iter_rw(iter) == READ) {
435 		if (pos >= dio->i_size)
436 			goto out_free_dio;
437 
438 		if (iter_is_iovec(iter))
439 			dio->flags |= IOMAP_DIO_DIRTY;
440 	} else {
441 		flags |= IOMAP_WRITE;
442 		dio->flags |= IOMAP_DIO_WRITE;
443 
444 		/* for data sync or sync, we need sync completion processing */
445 		if (iocb->ki_flags & IOCB_DSYNC)
446 			dio->flags |= IOMAP_DIO_NEED_SYNC;
447 
448 		/*
449 		 * For datasync only writes, we optimistically try using FUA for
450 		 * this IO.  Any non-FUA write that occurs will clear this flag,
451 		 * hence we know before completion whether a cache flush is
452 		 * necessary.
453 		 */
454 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
455 			dio->flags |= IOMAP_DIO_WRITE_FUA;
456 	}
457 
458 	if (iocb->ki_flags & IOCB_NOWAIT) {
459 		if (filemap_range_has_page(mapping, start, end)) {
460 			ret = -EAGAIN;
461 			goto out_free_dio;
462 		}
463 		flags |= IOMAP_NOWAIT;
464 	}
465 
466 	ret = filemap_write_and_wait_range(mapping, start, end);
467 	if (ret)
468 		goto out_free_dio;
469 
470 	/*
471 	 * Try to invalidate cache pages for the range we're direct
472 	 * writing.  If this invalidation fails, tough, the write will
473 	 * still work, but racing two incompatible write paths is a
474 	 * pretty crazy thing to do, so we don't support it 100%.
475 	 */
476 	ret = invalidate_inode_pages2_range(mapping,
477 			start >> PAGE_SHIFT, end >> PAGE_SHIFT);
478 	if (ret)
479 		dio_warn_stale_pagecache(iocb->ki_filp);
480 	ret = 0;
481 
482 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
483 	    !inode->i_sb->s_dio_done_wq) {
484 		ret = sb_init_dio_done_wq(inode->i_sb);
485 		if (ret < 0)
486 			goto out_free_dio;
487 	}
488 
489 	inode_dio_begin(inode);
490 
491 	blk_start_plug(&plug);
492 	do {
493 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
494 				iomap_dio_actor);
495 		if (ret <= 0) {
496 			/* magic error code to fall back to buffered I/O */
497 			if (ret == -ENOTBLK) {
498 				wait_for_completion = true;
499 				ret = 0;
500 			}
501 			break;
502 		}
503 		pos += ret;
504 
505 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
506 			/*
507 			 * We only report that we've read data up to i_size.
508 			 * Revert iter to a state corresponding to that as
509 			 * some callers (such as splice code) rely on it.
510 			 */
511 			iov_iter_revert(iter, pos - dio->i_size);
512 			break;
513 		}
514 	} while ((count = iov_iter_count(iter)) > 0);
515 	blk_finish_plug(&plug);
516 
517 	if (ret < 0)
518 		iomap_dio_set_error(dio, ret);
519 
520 	/*
521 	 * If all the writes we issued were FUA, we don't need to flush the
522 	 * cache on IO completion. Clear the sync flag for this case.
523 	 */
524 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
525 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
526 
527 	WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
528 	WRITE_ONCE(iocb->private, dio->submit.last_queue);
529 
530 	/*
531 	 * We are about to drop our additional submission reference, which
532 	 * might be the last reference to the dio.  There are three three
533 	 * different ways we can progress here:
534 	 *
535 	 *  (a) If this is the last reference we will always complete and free
536 	 *	the dio ourselves.
537 	 *  (b) If this is not the last reference, and we serve an asynchronous
538 	 *	iocb, we must never touch the dio after the decrement, the
539 	 *	I/O completion handler will complete and free it.
540 	 *  (c) If this is not the last reference, but we serve a synchronous
541 	 *	iocb, the I/O completion handler will wake us up on the drop
542 	 *	of the final reference, and we will complete and free it here
543 	 *	after we got woken by the I/O completion handler.
544 	 */
545 	dio->wait_for_completion = wait_for_completion;
546 	if (!atomic_dec_and_test(&dio->ref)) {
547 		if (!wait_for_completion)
548 			return -EIOCBQUEUED;
549 
550 		for (;;) {
551 			set_current_state(TASK_UNINTERRUPTIBLE);
552 			if (!READ_ONCE(dio->submit.waiter))
553 				break;
554 
555 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
556 			    !dio->submit.last_queue ||
557 			    !blk_poll(dio->submit.last_queue,
558 					 dio->submit.cookie, true))
559 				io_schedule();
560 		}
561 		__set_current_state(TASK_RUNNING);
562 	}
563 
564 	return iomap_dio_complete(dio);
565 
566 out_free_dio:
567 	kfree(dio);
568 	return ret;
569 }
570 EXPORT_SYMBOL_GPL(iomap_dio_rw);
571