1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 */ 6 #include <linux/fscrypt.h> 7 #include <linux/pagemap.h> 8 #include <linux/iomap.h> 9 #include <linux/task_io_accounting_ops.h> 10 #include "internal.h" 11 #include "trace.h" 12 13 #include "../internal.h" 14 15 /* 16 * Private flags for iomap_dio, must not overlap with the public ones in 17 * iomap.h: 18 */ 19 #define IOMAP_DIO_NO_INVALIDATE (1U << 25) 20 #define IOMAP_DIO_CALLER_COMP (1U << 26) 21 #define IOMAP_DIO_INLINE_COMP (1U << 27) 22 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 23 #define IOMAP_DIO_NEED_SYNC (1U << 29) 24 #define IOMAP_DIO_WRITE (1U << 30) 25 #define IOMAP_DIO_DIRTY (1U << 31) 26 27 /* 28 * Used for sub block zeroing in iomap_dio_zero() 29 */ 30 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) 31 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) 32 static struct page *zero_page; 33 34 struct iomap_dio { 35 struct kiocb *iocb; 36 const struct iomap_dio_ops *dops; 37 loff_t i_size; 38 loff_t size; 39 atomic_t ref; 40 unsigned flags; 41 int error; 42 size_t done_before; 43 bool wait_for_completion; 44 45 union { 46 /* used during submission and for synchronous completion: */ 47 struct { 48 struct iov_iter *iter; 49 struct task_struct *waiter; 50 } submit; 51 52 /* used for aio completion: */ 53 struct { 54 struct work_struct work; 55 } aio; 56 }; 57 }; 58 59 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 60 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 61 { 62 if (dio->dops && dio->dops->bio_set) 63 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 64 GFP_KERNEL, dio->dops->bio_set); 65 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 66 } 67 68 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 69 struct iomap_dio *dio, struct bio *bio, loff_t pos) 70 { 71 struct kiocb *iocb = dio->iocb; 72 73 atomic_inc(&dio->ref); 74 75 /* Sync dio can't be polled reliably */ 76 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 77 bio_set_polled(bio, iocb); 78 WRITE_ONCE(iocb->private, bio); 79 } 80 81 if (dio->dops && dio->dops->submit_io) { 82 dio->dops->submit_io(iter, bio, pos); 83 } else { 84 WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_ANON_WRITE); 85 submit_bio(bio); 86 } 87 } 88 89 ssize_t iomap_dio_complete(struct iomap_dio *dio) 90 { 91 const struct iomap_dio_ops *dops = dio->dops; 92 struct kiocb *iocb = dio->iocb; 93 loff_t offset = iocb->ki_pos; 94 ssize_t ret = dio->error; 95 96 if (dops && dops->end_io) 97 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 98 99 if (likely(!ret)) { 100 ret = dio->size; 101 /* check for short read */ 102 if (offset + ret > dio->i_size && 103 !(dio->flags & IOMAP_DIO_WRITE)) 104 ret = dio->i_size - offset; 105 } 106 107 /* 108 * Try again to invalidate clean pages which might have been cached by 109 * non-direct readahead, or faulted in by get_user_pages() if the source 110 * of the write was an mmap'ed region of the file we're writing. Either 111 * one is a pretty crazy thing to do, so we don't support it 100%. If 112 * this invalidation fails, tough, the write still worked... 113 * 114 * And this page cache invalidation has to be after ->end_io(), as some 115 * filesystems convert unwritten extents to real allocations in 116 * ->end_io() when necessary, otherwise a racing buffer read would cache 117 * zeros from unwritten extents. 118 */ 119 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE) && 120 !(dio->flags & IOMAP_DIO_NO_INVALIDATE)) 121 kiocb_invalidate_post_direct_write(iocb, dio->size); 122 123 inode_dio_end(file_inode(iocb->ki_filp)); 124 125 if (ret > 0) { 126 iocb->ki_pos += ret; 127 128 /* 129 * If this is a DSYNC write, make sure we push it to stable 130 * storage now that we've written data. 131 */ 132 if (dio->flags & IOMAP_DIO_NEED_SYNC) 133 ret = generic_write_sync(iocb, ret); 134 if (ret > 0) 135 ret += dio->done_before; 136 } 137 trace_iomap_dio_complete(iocb, dio->error, ret); 138 kfree(dio); 139 return ret; 140 } 141 EXPORT_SYMBOL_GPL(iomap_dio_complete); 142 143 static ssize_t iomap_dio_deferred_complete(void *data) 144 { 145 return iomap_dio_complete(data); 146 } 147 148 static void iomap_dio_complete_work(struct work_struct *work) 149 { 150 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 151 struct kiocb *iocb = dio->iocb; 152 153 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 154 } 155 156 /* 157 * Set an error in the dio if none is set yet. We have to use cmpxchg 158 * as the submission context and the completion context(s) can race to 159 * update the error. 160 */ 161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 162 { 163 cmpxchg(&dio->error, 0, ret); 164 } 165 166 /* 167 * Called when dio->ref reaches zero from an I/O completion. 168 */ 169 static void iomap_dio_done(struct iomap_dio *dio) 170 { 171 struct kiocb *iocb = dio->iocb; 172 173 if (dio->wait_for_completion) { 174 /* 175 * Synchronous I/O, task itself will handle any completion work 176 * that needs after IO. All we need to do is wake the task. 177 */ 178 struct task_struct *waiter = dio->submit.waiter; 179 180 WRITE_ONCE(dio->submit.waiter, NULL); 181 blk_wake_io_task(waiter); 182 } else if (dio->flags & IOMAP_DIO_INLINE_COMP) { 183 WRITE_ONCE(iocb->private, NULL); 184 iomap_dio_complete_work(&dio->aio.work); 185 } else if (dio->flags & IOMAP_DIO_CALLER_COMP) { 186 /* 187 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then 188 * schedule our completion that way to avoid an async punt to a 189 * workqueue. 190 */ 191 /* only polled IO cares about private cleared */ 192 iocb->private = dio; 193 iocb->dio_complete = iomap_dio_deferred_complete; 194 195 /* 196 * Invoke ->ki_complete() directly. We've assigned our 197 * dio_complete callback handler, and since the issuer set 198 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will 199 * notice ->dio_complete being set and will defer calling that 200 * handler until it can be done from a safe task context. 201 * 202 * Note that the 'res' being passed in here is not important 203 * for this case. The actual completion value of the request 204 * will be gotten from dio_complete when that is run by the 205 * issuer. 206 */ 207 iocb->ki_complete(iocb, 0); 208 } else { 209 struct inode *inode = file_inode(iocb->ki_filp); 210 211 /* 212 * Async DIO completion that requires filesystem level 213 * completion work gets punted to a work queue to complete as 214 * the operation may require more IO to be issued to finalise 215 * filesystem metadata changes or guarantee data integrity. 216 */ 217 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 218 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 219 } 220 } 221 222 void iomap_dio_bio_end_io(struct bio *bio) 223 { 224 struct iomap_dio *dio = bio->bi_private; 225 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 226 227 if (bio->bi_status) 228 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 229 230 if (atomic_dec_and_test(&dio->ref)) 231 iomap_dio_done(dio); 232 233 if (should_dirty) { 234 bio_check_pages_dirty(bio); 235 } else { 236 bio_release_pages(bio, false); 237 bio_put(bio); 238 } 239 } 240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 241 242 u32 iomap_finish_ioend_direct(struct iomap_ioend *ioend) 243 { 244 struct iomap_dio *dio = ioend->io_bio.bi_private; 245 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 246 u32 vec_count = ioend->io_bio.bi_vcnt; 247 248 if (ioend->io_error) 249 iomap_dio_set_error(dio, ioend->io_error); 250 251 if (atomic_dec_and_test(&dio->ref)) { 252 /* 253 * Try to avoid another context switch for the completion given 254 * that we are already called from the ioend completion 255 * workqueue, but never invalidate pages from this thread to 256 * avoid deadlocks with buffered I/O completions. Tough luck if 257 * you hit the tiny race with someone dirtying the range now 258 * between this check and the actual completion. 259 */ 260 if (!dio->iocb->ki_filp->f_mapping->nrpages) { 261 dio->flags |= IOMAP_DIO_INLINE_COMP; 262 dio->flags |= IOMAP_DIO_NO_INVALIDATE; 263 } 264 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 265 iomap_dio_done(dio); 266 } 267 268 if (should_dirty) { 269 bio_check_pages_dirty(&ioend->io_bio); 270 } else { 271 bio_release_pages(&ioend->io_bio, false); 272 bio_put(&ioend->io_bio); 273 } 274 275 /* 276 * Return the number of bvecs completed as even direct I/O completions 277 * do significant per-folio work and we'll still want to give up the 278 * CPU after a lot of completions. 279 */ 280 return vec_count; 281 } 282 283 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 284 loff_t pos, unsigned len) 285 { 286 struct inode *inode = file_inode(dio->iocb->ki_filp); 287 struct bio *bio; 288 289 if (!len) 290 return 0; 291 /* 292 * Max block size supported is 64k 293 */ 294 if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) 295 return -EINVAL; 296 297 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 298 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 299 GFP_KERNEL); 300 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 301 bio->bi_private = dio; 302 bio->bi_end_io = iomap_dio_bio_end_io; 303 304 __bio_add_page(bio, zero_page, len, 0); 305 iomap_dio_submit_bio(iter, dio, bio, pos); 306 return 0; 307 } 308 309 /* 310 * Use a FUA write if we need datasync semantics and this is a pure data I/O 311 * that doesn't require any metadata updates (including after I/O completion 312 * such as unwritten extent conversion) and the underlying device either 313 * doesn't have a volatile write cache or supports FUA. 314 * This allows us to avoid cache flushes on I/O completion. 315 */ 316 static inline bool iomap_dio_can_use_fua(const struct iomap *iomap, 317 struct iomap_dio *dio) 318 { 319 if (iomap->flags & (IOMAP_F_SHARED | IOMAP_F_DIRTY)) 320 return false; 321 if (!(dio->flags & IOMAP_DIO_WRITE_THROUGH)) 322 return false; 323 return !bdev_write_cache(iomap->bdev) || bdev_fua(iomap->bdev); 324 } 325 326 static int iomap_dio_bio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 327 { 328 const struct iomap *iomap = &iter->iomap; 329 struct inode *inode = iter->inode; 330 unsigned int fs_block_size = i_blocksize(inode), pad; 331 const loff_t length = iomap_length(iter); 332 loff_t pos = iter->pos; 333 blk_opf_t bio_opf = REQ_SYNC | REQ_IDLE; 334 struct bio *bio; 335 bool need_zeroout = false; 336 int nr_pages, ret = 0; 337 u64 copied = 0; 338 size_t orig_count; 339 340 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1)) 341 return -EINVAL; 342 343 if (dio->flags & IOMAP_DIO_WRITE) { 344 bio_opf |= REQ_OP_WRITE; 345 346 if (iomap->flags & IOMAP_F_ATOMIC_BIO) { 347 /* 348 * Ensure that the mapping covers the full write 349 * length, otherwise it won't be submitted as a single 350 * bio, which is required to use hardware atomics. 351 */ 352 if (length != iter->len) 353 return -EINVAL; 354 bio_opf |= REQ_ATOMIC; 355 } 356 357 if (iomap->type == IOMAP_UNWRITTEN) { 358 dio->flags |= IOMAP_DIO_UNWRITTEN; 359 need_zeroout = true; 360 } 361 362 if (iomap->flags & IOMAP_F_SHARED) 363 dio->flags |= IOMAP_DIO_COW; 364 365 if (iomap->flags & IOMAP_F_NEW) 366 need_zeroout = true; 367 else if (iomap->type == IOMAP_MAPPED && 368 iomap_dio_can_use_fua(iomap, dio)) 369 bio_opf |= REQ_FUA; 370 371 if (!(bio_opf & REQ_FUA)) 372 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 373 374 /* 375 * We can only do deferred completion for pure overwrites that 376 * don't require additional I/O at completion time. 377 * 378 * This rules out writes that need zeroing or extent conversion, 379 * extend the file size, or issue metadata I/O or cache flushes 380 * during completion processing. 381 */ 382 if (need_zeroout || (pos >= i_size_read(inode)) || 383 ((dio->flags & IOMAP_DIO_NEED_SYNC) && 384 !(bio_opf & REQ_FUA))) 385 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 386 } else { 387 bio_opf |= REQ_OP_READ; 388 } 389 390 /* 391 * Save the original count and trim the iter to just the extent we 392 * are operating on right now. The iter will be re-expanded once 393 * we are done. 394 */ 395 orig_count = iov_iter_count(dio->submit.iter); 396 iov_iter_truncate(dio->submit.iter, length); 397 398 if (!iov_iter_count(dio->submit.iter)) 399 goto out; 400 401 /* 402 * The rules for polled IO completions follow the guidelines as the 403 * ones we set for inline and deferred completions. If none of those 404 * are available for this IO, clear the polled flag. 405 */ 406 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) 407 dio->iocb->ki_flags &= ~IOCB_HIPRI; 408 409 if (need_zeroout) { 410 /* zero out from the start of the block to the write offset */ 411 pad = pos & (fs_block_size - 1); 412 413 ret = iomap_dio_zero(iter, dio, pos - pad, pad); 414 if (ret) 415 goto out; 416 } 417 418 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 419 do { 420 size_t n; 421 if (dio->error) { 422 iov_iter_revert(dio->submit.iter, copied); 423 copied = ret = 0; 424 goto out; 425 } 426 427 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 428 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 429 GFP_KERNEL); 430 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 431 bio->bi_write_hint = inode->i_write_hint; 432 bio->bi_ioprio = dio->iocb->ki_ioprio; 433 bio->bi_private = dio; 434 bio->bi_end_io = iomap_dio_bio_end_io; 435 436 ret = bio_iov_iter_get_bdev_pages(bio, dio->submit.iter, iomap->bdev); 437 if (unlikely(ret)) { 438 /* 439 * We have to stop part way through an IO. We must fall 440 * through to the sub-block tail zeroing here, otherwise 441 * this short IO may expose stale data in the tail of 442 * the block we haven't written data to. 443 */ 444 bio_put(bio); 445 goto zero_tail; 446 } 447 448 n = bio->bi_iter.bi_size; 449 if (WARN_ON_ONCE((bio_opf & REQ_ATOMIC) && n != length)) { 450 /* 451 * An atomic write bio must cover the complete length, 452 * which it doesn't, so error. We may need to zero out 453 * the tail (complete FS block), similar to when 454 * bio_iov_iter_get_pages() returns an error, above. 455 */ 456 ret = -EINVAL; 457 bio_put(bio); 458 goto zero_tail; 459 } 460 if (dio->flags & IOMAP_DIO_WRITE) 461 task_io_account_write(n); 462 else if (dio->flags & IOMAP_DIO_DIRTY) 463 bio_set_pages_dirty(bio); 464 465 dio->size += n; 466 copied += n; 467 468 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 469 BIO_MAX_VECS); 470 /* 471 * We can only poll for single bio I/Os. 472 */ 473 if (nr_pages) 474 dio->iocb->ki_flags &= ~IOCB_HIPRI; 475 iomap_dio_submit_bio(iter, dio, bio, pos); 476 pos += n; 477 } while (nr_pages); 478 479 /* 480 * We need to zeroout the tail of a sub-block write if the extent type 481 * requires zeroing or the write extends beyond EOF. If we don't zero 482 * the block tail in the latter case, we can expose stale data via mmap 483 * reads of the EOF block. 484 */ 485 zero_tail: 486 if (need_zeroout || 487 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 488 /* zero out from the end of the write to the end of the block */ 489 pad = pos & (fs_block_size - 1); 490 if (pad) 491 ret = iomap_dio_zero(iter, dio, pos, 492 fs_block_size - pad); 493 } 494 out: 495 /* Undo iter limitation to current extent */ 496 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 497 if (copied) 498 return iomap_iter_advance(iter, &copied); 499 return ret; 500 } 501 502 static int iomap_dio_hole_iter(struct iomap_iter *iter, struct iomap_dio *dio) 503 { 504 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 505 506 dio->size += length; 507 if (!length) 508 return -EFAULT; 509 return iomap_iter_advance(iter, &length); 510 } 511 512 static int iomap_dio_inline_iter(struct iomap_iter *iomi, struct iomap_dio *dio) 513 { 514 const struct iomap *iomap = &iomi->iomap; 515 struct iov_iter *iter = dio->submit.iter; 516 void *inline_data = iomap_inline_data(iomap, iomi->pos); 517 loff_t length = iomap_length(iomi); 518 loff_t pos = iomi->pos; 519 u64 copied; 520 521 if (WARN_ON_ONCE(!inline_data)) 522 return -EIO; 523 524 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 525 return -EIO; 526 527 if (dio->flags & IOMAP_DIO_WRITE) { 528 loff_t size = iomi->inode->i_size; 529 530 if (pos > size) 531 memset(iomap_inline_data(iomap, size), 0, pos - size); 532 copied = copy_from_iter(inline_data, length, iter); 533 if (copied) { 534 if (pos + copied > size) 535 i_size_write(iomi->inode, pos + copied); 536 mark_inode_dirty(iomi->inode); 537 } 538 } else { 539 copied = copy_to_iter(inline_data, length, iter); 540 } 541 dio->size += copied; 542 if (!copied) 543 return -EFAULT; 544 return iomap_iter_advance(iomi, &copied); 545 } 546 547 static int iomap_dio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 548 { 549 switch (iter->iomap.type) { 550 case IOMAP_HOLE: 551 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 552 return -EIO; 553 return iomap_dio_hole_iter(iter, dio); 554 case IOMAP_UNWRITTEN: 555 if (!(dio->flags & IOMAP_DIO_WRITE)) 556 return iomap_dio_hole_iter(iter, dio); 557 return iomap_dio_bio_iter(iter, dio); 558 case IOMAP_MAPPED: 559 return iomap_dio_bio_iter(iter, dio); 560 case IOMAP_INLINE: 561 return iomap_dio_inline_iter(iter, dio); 562 case IOMAP_DELALLOC: 563 /* 564 * DIO is not serialised against mmap() access at all, and so 565 * if the page_mkwrite occurs between the writeback and the 566 * iomap_iter() call in the DIO path, then it will see the 567 * DELALLOC block that the page-mkwrite allocated. 568 */ 569 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 570 dio->iocb->ki_filp, current->comm); 571 return -EIO; 572 default: 573 WARN_ON_ONCE(1); 574 return -EIO; 575 } 576 } 577 578 /* 579 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 580 * is being issued as AIO or not. This allows us to optimise pure data writes 581 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 582 * REQ_FLUSH post write. This is slightly tricky because a single request here 583 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 584 * may be pure data writes. In that case, we still need to do a full data sync 585 * completion. 586 * 587 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 588 * __iomap_dio_rw can return a partial result if it encounters a non-resident 589 * page in @iter after preparing a transfer. In that case, the non-resident 590 * pages can be faulted in and the request resumed with @done_before set to the 591 * number of bytes previously transferred. The request will then complete with 592 * the correct total number of bytes transferred; this is essential for 593 * completing partial requests asynchronously. 594 * 595 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 596 * writes. The callers needs to fall back to buffered I/O in this case. 597 */ 598 struct iomap_dio * 599 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 600 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 601 unsigned int dio_flags, void *private, size_t done_before) 602 { 603 struct inode *inode = file_inode(iocb->ki_filp); 604 struct iomap_iter iomi = { 605 .inode = inode, 606 .pos = iocb->ki_pos, 607 .len = iov_iter_count(iter), 608 .flags = IOMAP_DIRECT, 609 .private = private, 610 }; 611 bool wait_for_completion = 612 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 613 struct blk_plug plug; 614 struct iomap_dio *dio; 615 loff_t ret = 0; 616 617 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 618 619 if (!iomi.len) 620 return NULL; 621 622 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 623 if (!dio) 624 return ERR_PTR(-ENOMEM); 625 626 dio->iocb = iocb; 627 atomic_set(&dio->ref, 1); 628 dio->size = 0; 629 dio->i_size = i_size_read(inode); 630 dio->dops = dops; 631 dio->error = 0; 632 dio->flags = 0; 633 dio->done_before = done_before; 634 635 dio->submit.iter = iter; 636 dio->submit.waiter = current; 637 638 if (iocb->ki_flags & IOCB_NOWAIT) 639 iomi.flags |= IOMAP_NOWAIT; 640 641 if (iov_iter_rw(iter) == READ) { 642 /* reads can always complete inline */ 643 dio->flags |= IOMAP_DIO_INLINE_COMP; 644 645 if (iomi.pos >= dio->i_size) 646 goto out_free_dio; 647 648 if (user_backed_iter(iter)) 649 dio->flags |= IOMAP_DIO_DIRTY; 650 651 ret = kiocb_write_and_wait(iocb, iomi.len); 652 if (ret) 653 goto out_free_dio; 654 } else { 655 iomi.flags |= IOMAP_WRITE; 656 dio->flags |= IOMAP_DIO_WRITE; 657 658 /* 659 * Flag as supporting deferred completions, if the issuer 660 * groks it. This can avoid a workqueue punt for writes. 661 * We may later clear this flag if we need to do other IO 662 * as part of this IO completion. 663 */ 664 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) 665 dio->flags |= IOMAP_DIO_CALLER_COMP; 666 667 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 668 ret = -EAGAIN; 669 if (iomi.pos >= dio->i_size || 670 iomi.pos + iomi.len > dio->i_size) 671 goto out_free_dio; 672 iomi.flags |= IOMAP_OVERWRITE_ONLY; 673 } 674 675 if (iocb->ki_flags & IOCB_ATOMIC) 676 iomi.flags |= IOMAP_ATOMIC; 677 678 /* for data sync or sync, we need sync completion processing */ 679 if (iocb_is_dsync(iocb)) { 680 dio->flags |= IOMAP_DIO_NEED_SYNC; 681 682 /* 683 * For datasync only writes, we optimistically try using 684 * WRITE_THROUGH for this IO. This flag requires either 685 * FUA writes through the device's write cache, or a 686 * normal write to a device without a volatile write 687 * cache. For the former, Any non-FUA write that occurs 688 * will clear this flag, hence we know before completion 689 * whether a cache flush is necessary. 690 */ 691 if (!(iocb->ki_flags & IOCB_SYNC)) 692 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 693 } 694 695 /* 696 * Try to invalidate cache pages for the range we are writing. 697 * If this invalidation fails, let the caller fall back to 698 * buffered I/O. 699 */ 700 ret = kiocb_invalidate_pages(iocb, iomi.len); 701 if (ret) { 702 if (ret != -EAGAIN) { 703 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 704 iomi.len); 705 if (iocb->ki_flags & IOCB_ATOMIC) { 706 /* 707 * folio invalidation failed, maybe 708 * this is transient, unlock and see if 709 * the caller tries again. 710 */ 711 ret = -EAGAIN; 712 } else { 713 /* fall back to buffered write */ 714 ret = -ENOTBLK; 715 } 716 } 717 goto out_free_dio; 718 } 719 720 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 721 ret = sb_init_dio_done_wq(inode->i_sb); 722 if (ret < 0) 723 goto out_free_dio; 724 } 725 } 726 727 inode_dio_begin(inode); 728 729 blk_start_plug(&plug); 730 while ((ret = iomap_iter(&iomi, ops)) > 0) { 731 iomi.status = iomap_dio_iter(&iomi, dio); 732 733 /* 734 * We can only poll for single bio I/Os. 735 */ 736 iocb->ki_flags &= ~IOCB_HIPRI; 737 } 738 739 blk_finish_plug(&plug); 740 741 /* 742 * We only report that we've read data up to i_size. 743 * Revert iter to a state corresponding to that as some callers (such 744 * as the splice code) rely on it. 745 */ 746 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 747 iov_iter_revert(iter, iomi.pos - dio->i_size); 748 749 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 750 if (!(iocb->ki_flags & IOCB_NOWAIT)) 751 wait_for_completion = true; 752 ret = 0; 753 } 754 755 /* magic error code to fall back to buffered I/O */ 756 if (ret == -ENOTBLK) { 757 wait_for_completion = true; 758 ret = 0; 759 } 760 if (ret < 0) 761 iomap_dio_set_error(dio, ret); 762 763 /* 764 * If all the writes we issued were already written through to the 765 * media, we don't need to flush the cache on IO completion. Clear the 766 * sync flag for this case. 767 */ 768 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 769 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 770 771 /* 772 * We are about to drop our additional submission reference, which 773 * might be the last reference to the dio. There are three different 774 * ways we can progress here: 775 * 776 * (a) If this is the last reference we will always complete and free 777 * the dio ourselves. 778 * (b) If this is not the last reference, and we serve an asynchronous 779 * iocb, we must never touch the dio after the decrement, the 780 * I/O completion handler will complete and free it. 781 * (c) If this is not the last reference, but we serve a synchronous 782 * iocb, the I/O completion handler will wake us up on the drop 783 * of the final reference, and we will complete and free it here 784 * after we got woken by the I/O completion handler. 785 */ 786 dio->wait_for_completion = wait_for_completion; 787 if (!atomic_dec_and_test(&dio->ref)) { 788 if (!wait_for_completion) { 789 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 790 return ERR_PTR(-EIOCBQUEUED); 791 } 792 793 for (;;) { 794 set_current_state(TASK_UNINTERRUPTIBLE); 795 if (!READ_ONCE(dio->submit.waiter)) 796 break; 797 798 blk_io_schedule(); 799 } 800 __set_current_state(TASK_RUNNING); 801 } 802 803 return dio; 804 805 out_free_dio: 806 kfree(dio); 807 if (ret) 808 return ERR_PTR(ret); 809 return NULL; 810 } 811 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 812 813 ssize_t 814 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 815 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 816 unsigned int dio_flags, void *private, size_t done_before) 817 { 818 struct iomap_dio *dio; 819 820 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 821 done_before); 822 if (IS_ERR_OR_NULL(dio)) 823 return PTR_ERR_OR_ZERO(dio); 824 return iomap_dio_complete(dio); 825 } 826 EXPORT_SYMBOL_GPL(iomap_dio_rw); 827 828 static int __init iomap_dio_init(void) 829 { 830 zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 831 IOMAP_ZERO_PAGE_ORDER); 832 833 if (!zero_page) 834 return -ENOMEM; 835 836 return 0; 837 } 838 fs_initcall(iomap_dio_init); 839