1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/fscrypt.h> 10 #include <linux/pagemap.h> 11 #include <linux/iomap.h> 12 #include <linux/backing-dev.h> 13 #include <linux/uio.h> 14 #include <linux/task_io_accounting_ops.h> 15 #include "trace.h" 16 17 #include "../internal.h" 18 19 /* 20 * Private flags for iomap_dio, must not overlap with the public ones in 21 * iomap.h: 22 */ 23 #define IOMAP_DIO_CALLER_COMP (1U << 26) 24 #define IOMAP_DIO_INLINE_COMP (1U << 27) 25 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 26 #define IOMAP_DIO_NEED_SYNC (1U << 29) 27 #define IOMAP_DIO_WRITE (1U << 30) 28 #define IOMAP_DIO_DIRTY (1U << 31) 29 30 /* 31 * Used for sub block zeroing in iomap_dio_zero() 32 */ 33 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) 34 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) 35 static struct page *zero_page; 36 37 struct iomap_dio { 38 struct kiocb *iocb; 39 const struct iomap_dio_ops *dops; 40 loff_t i_size; 41 loff_t size; 42 atomic_t ref; 43 unsigned flags; 44 int error; 45 size_t done_before; 46 bool wait_for_completion; 47 48 union { 49 /* used during submission and for synchronous completion: */ 50 struct { 51 struct iov_iter *iter; 52 struct task_struct *waiter; 53 } submit; 54 55 /* used for aio completion: */ 56 struct { 57 struct work_struct work; 58 } aio; 59 }; 60 }; 61 62 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 63 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 64 { 65 if (dio->dops && dio->dops->bio_set) 66 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 67 GFP_KERNEL, dio->dops->bio_set); 68 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 69 } 70 71 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 72 struct iomap_dio *dio, struct bio *bio, loff_t pos) 73 { 74 struct kiocb *iocb = dio->iocb; 75 76 atomic_inc(&dio->ref); 77 78 /* Sync dio can't be polled reliably */ 79 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 80 bio_set_polled(bio, iocb); 81 WRITE_ONCE(iocb->private, bio); 82 } 83 84 if (dio->dops && dio->dops->submit_io) 85 dio->dops->submit_io(iter, bio, pos); 86 else 87 submit_bio(bio); 88 } 89 90 ssize_t iomap_dio_complete(struct iomap_dio *dio) 91 { 92 const struct iomap_dio_ops *dops = dio->dops; 93 struct kiocb *iocb = dio->iocb; 94 loff_t offset = iocb->ki_pos; 95 ssize_t ret = dio->error; 96 97 if (dops && dops->end_io) 98 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 99 100 if (likely(!ret)) { 101 ret = dio->size; 102 /* check for short read */ 103 if (offset + ret > dio->i_size && 104 !(dio->flags & IOMAP_DIO_WRITE)) 105 ret = dio->i_size - offset; 106 } 107 108 /* 109 * Try again to invalidate clean pages which might have been cached by 110 * non-direct readahead, or faulted in by get_user_pages() if the source 111 * of the write was an mmap'ed region of the file we're writing. Either 112 * one is a pretty crazy thing to do, so we don't support it 100%. If 113 * this invalidation fails, tough, the write still worked... 114 * 115 * And this page cache invalidation has to be after ->end_io(), as some 116 * filesystems convert unwritten extents to real allocations in 117 * ->end_io() when necessary, otherwise a racing buffer read would cache 118 * zeros from unwritten extents. 119 */ 120 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) 121 kiocb_invalidate_post_direct_write(iocb, dio->size); 122 123 inode_dio_end(file_inode(iocb->ki_filp)); 124 125 if (ret > 0) { 126 iocb->ki_pos += ret; 127 128 /* 129 * If this is a DSYNC write, make sure we push it to stable 130 * storage now that we've written data. 131 */ 132 if (dio->flags & IOMAP_DIO_NEED_SYNC) 133 ret = generic_write_sync(iocb, ret); 134 if (ret > 0) 135 ret += dio->done_before; 136 } 137 trace_iomap_dio_complete(iocb, dio->error, ret); 138 kfree(dio); 139 return ret; 140 } 141 EXPORT_SYMBOL_GPL(iomap_dio_complete); 142 143 static ssize_t iomap_dio_deferred_complete(void *data) 144 { 145 return iomap_dio_complete(data); 146 } 147 148 static void iomap_dio_complete_work(struct work_struct *work) 149 { 150 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 151 struct kiocb *iocb = dio->iocb; 152 153 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 154 } 155 156 /* 157 * Set an error in the dio if none is set yet. We have to use cmpxchg 158 * as the submission context and the completion context(s) can race to 159 * update the error. 160 */ 161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 162 { 163 cmpxchg(&dio->error, 0, ret); 164 } 165 166 void iomap_dio_bio_end_io(struct bio *bio) 167 { 168 struct iomap_dio *dio = bio->bi_private; 169 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 170 struct kiocb *iocb = dio->iocb; 171 172 if (bio->bi_status) 173 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 174 if (!atomic_dec_and_test(&dio->ref)) 175 goto release_bio; 176 177 /* 178 * Synchronous dio, task itself will handle any completion work 179 * that needs after IO. All we need to do is wake the task. 180 */ 181 if (dio->wait_for_completion) { 182 struct task_struct *waiter = dio->submit.waiter; 183 184 WRITE_ONCE(dio->submit.waiter, NULL); 185 blk_wake_io_task(waiter); 186 goto release_bio; 187 } 188 189 /* 190 * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline 191 */ 192 if (dio->flags & IOMAP_DIO_INLINE_COMP) { 193 WRITE_ONCE(iocb->private, NULL); 194 iomap_dio_complete_work(&dio->aio.work); 195 goto release_bio; 196 } 197 198 /* 199 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule 200 * our completion that way to avoid an async punt to a workqueue. 201 */ 202 if (dio->flags & IOMAP_DIO_CALLER_COMP) { 203 /* only polled IO cares about private cleared */ 204 iocb->private = dio; 205 iocb->dio_complete = iomap_dio_deferred_complete; 206 207 /* 208 * Invoke ->ki_complete() directly. We've assigned our 209 * dio_complete callback handler, and since the issuer set 210 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will 211 * notice ->dio_complete being set and will defer calling that 212 * handler until it can be done from a safe task context. 213 * 214 * Note that the 'res' being passed in here is not important 215 * for this case. The actual completion value of the request 216 * will be gotten from dio_complete when that is run by the 217 * issuer. 218 */ 219 iocb->ki_complete(iocb, 0); 220 goto release_bio; 221 } 222 223 /* 224 * Async DIO completion that requires filesystem level completion work 225 * gets punted to a work queue to complete as the operation may require 226 * more IO to be issued to finalise filesystem metadata changes or 227 * guarantee data integrity. 228 */ 229 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 230 queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, 231 &dio->aio.work); 232 release_bio: 233 if (should_dirty) { 234 bio_check_pages_dirty(bio); 235 } else { 236 bio_release_pages(bio, false); 237 bio_put(bio); 238 } 239 } 240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 241 242 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 243 loff_t pos, unsigned len) 244 { 245 struct inode *inode = file_inode(dio->iocb->ki_filp); 246 struct bio *bio; 247 248 if (!len) 249 return 0; 250 /* 251 * Max block size supported is 64k 252 */ 253 if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) 254 return -EINVAL; 255 256 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 257 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 258 GFP_KERNEL); 259 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 260 bio->bi_private = dio; 261 bio->bi_end_io = iomap_dio_bio_end_io; 262 263 __bio_add_page(bio, zero_page, len, 0); 264 iomap_dio_submit_bio(iter, dio, bio, pos); 265 return 0; 266 } 267 268 /* 269 * Figure out the bio's operation flags from the dio request, the 270 * mapping, and whether or not we want FUA. Note that we can end up 271 * clearing the WRITE_THROUGH flag in the dio request. 272 */ 273 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, 274 const struct iomap *iomap, bool use_fua, bool atomic) 275 { 276 blk_opf_t opflags = REQ_SYNC | REQ_IDLE; 277 278 if (!(dio->flags & IOMAP_DIO_WRITE)) 279 return REQ_OP_READ; 280 281 opflags |= REQ_OP_WRITE; 282 if (use_fua) 283 opflags |= REQ_FUA; 284 else 285 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 286 if (atomic) 287 opflags |= REQ_ATOMIC; 288 289 return opflags; 290 } 291 292 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 293 struct iomap_dio *dio) 294 { 295 const struct iomap *iomap = &iter->iomap; 296 struct inode *inode = iter->inode; 297 unsigned int fs_block_size = i_blocksize(inode), pad; 298 const loff_t length = iomap_length(iter); 299 bool atomic = iter->flags & IOMAP_ATOMIC; 300 loff_t pos = iter->pos; 301 blk_opf_t bio_opf; 302 struct bio *bio; 303 bool need_zeroout = false; 304 bool use_fua = false; 305 int nr_pages, ret = 0; 306 size_t copied = 0; 307 size_t orig_count; 308 309 if (atomic && length != fs_block_size) 310 return -EINVAL; 311 312 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 313 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 314 return -EINVAL; 315 316 if (iomap->type == IOMAP_UNWRITTEN) { 317 dio->flags |= IOMAP_DIO_UNWRITTEN; 318 need_zeroout = true; 319 } 320 321 if (iomap->flags & IOMAP_F_SHARED) 322 dio->flags |= IOMAP_DIO_COW; 323 324 if (iomap->flags & IOMAP_F_NEW) { 325 need_zeroout = true; 326 } else if (iomap->type == IOMAP_MAPPED) { 327 /* 328 * Use a FUA write if we need datasync semantics, this is a pure 329 * data IO that doesn't require any metadata updates (including 330 * after IO completion such as unwritten extent conversion) and 331 * the underlying device either supports FUA or doesn't have 332 * a volatile write cache. This allows us to avoid cache flushes 333 * on IO completion. If we can't use writethrough and need to 334 * sync, disable in-task completions as dio completion will 335 * need to call generic_write_sync() which will do a blocking 336 * fsync / cache flush call. 337 */ 338 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 339 (dio->flags & IOMAP_DIO_WRITE_THROUGH) && 340 (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) 341 use_fua = true; 342 else if (dio->flags & IOMAP_DIO_NEED_SYNC) 343 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 344 } 345 346 /* 347 * Save the original count and trim the iter to just the extent we 348 * are operating on right now. The iter will be re-expanded once 349 * we are done. 350 */ 351 orig_count = iov_iter_count(dio->submit.iter); 352 iov_iter_truncate(dio->submit.iter, length); 353 354 if (!iov_iter_count(dio->submit.iter)) 355 goto out; 356 357 /* 358 * We can only do deferred completion for pure overwrites that 359 * don't require additional IO at completion. This rules out 360 * writes that need zeroing or extent conversion, extend 361 * the file size, or issue journal IO or cache flushes 362 * during completion processing. 363 */ 364 if (need_zeroout || 365 ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || 366 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 367 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 368 369 /* 370 * The rules for polled IO completions follow the guidelines as the 371 * ones we set for inline and deferred completions. If none of those 372 * are available for this IO, clear the polled flag. 373 */ 374 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) 375 dio->iocb->ki_flags &= ~IOCB_HIPRI; 376 377 if (need_zeroout) { 378 /* zero out from the start of the block to the write offset */ 379 pad = pos & (fs_block_size - 1); 380 381 ret = iomap_dio_zero(iter, dio, pos - pad, pad); 382 if (ret) 383 goto out; 384 } 385 386 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua, atomic); 387 388 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 389 do { 390 size_t n; 391 if (dio->error) { 392 iov_iter_revert(dio->submit.iter, copied); 393 copied = ret = 0; 394 goto out; 395 } 396 397 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 398 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 399 GFP_KERNEL); 400 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 401 bio->bi_write_hint = inode->i_write_hint; 402 bio->bi_ioprio = dio->iocb->ki_ioprio; 403 bio->bi_private = dio; 404 bio->bi_end_io = iomap_dio_bio_end_io; 405 406 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 407 if (unlikely(ret)) { 408 /* 409 * We have to stop part way through an IO. We must fall 410 * through to the sub-block tail zeroing here, otherwise 411 * this short IO may expose stale data in the tail of 412 * the block we haven't written data to. 413 */ 414 bio_put(bio); 415 goto zero_tail; 416 } 417 418 n = bio->bi_iter.bi_size; 419 if (WARN_ON_ONCE(atomic && n != length)) { 420 /* 421 * This bio should have covered the complete length, 422 * which it doesn't, so error. We may need to zero out 423 * the tail (complete FS block), similar to when 424 * bio_iov_iter_get_pages() returns an error, above. 425 */ 426 ret = -EINVAL; 427 bio_put(bio); 428 goto zero_tail; 429 } 430 if (dio->flags & IOMAP_DIO_WRITE) 431 task_io_account_write(n); 432 else if (dio->flags & IOMAP_DIO_DIRTY) 433 bio_set_pages_dirty(bio); 434 435 dio->size += n; 436 copied += n; 437 438 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 439 BIO_MAX_VECS); 440 /* 441 * We can only poll for single bio I/Os. 442 */ 443 if (nr_pages) 444 dio->iocb->ki_flags &= ~IOCB_HIPRI; 445 iomap_dio_submit_bio(iter, dio, bio, pos); 446 pos += n; 447 } while (nr_pages); 448 449 /* 450 * We need to zeroout the tail of a sub-block write if the extent type 451 * requires zeroing or the write extends beyond EOF. If we don't zero 452 * the block tail in the latter case, we can expose stale data via mmap 453 * reads of the EOF block. 454 */ 455 zero_tail: 456 if (need_zeroout || 457 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 458 /* zero out from the end of the write to the end of the block */ 459 pad = pos & (fs_block_size - 1); 460 if (pad) 461 ret = iomap_dio_zero(iter, dio, pos, 462 fs_block_size - pad); 463 } 464 out: 465 /* Undo iter limitation to current extent */ 466 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 467 if (copied) 468 return copied; 469 return ret; 470 } 471 472 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 473 struct iomap_dio *dio) 474 { 475 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 476 477 dio->size += length; 478 if (!length) 479 return -EFAULT; 480 return length; 481 } 482 483 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 484 struct iomap_dio *dio) 485 { 486 const struct iomap *iomap = &iomi->iomap; 487 struct iov_iter *iter = dio->submit.iter; 488 void *inline_data = iomap_inline_data(iomap, iomi->pos); 489 loff_t length = iomap_length(iomi); 490 loff_t pos = iomi->pos; 491 size_t copied; 492 493 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 494 return -EIO; 495 496 if (dio->flags & IOMAP_DIO_WRITE) { 497 loff_t size = iomi->inode->i_size; 498 499 if (pos > size) 500 memset(iomap_inline_data(iomap, size), 0, pos - size); 501 copied = copy_from_iter(inline_data, length, iter); 502 if (copied) { 503 if (pos + copied > size) 504 i_size_write(iomi->inode, pos + copied); 505 mark_inode_dirty(iomi->inode); 506 } 507 } else { 508 copied = copy_to_iter(inline_data, length, iter); 509 } 510 dio->size += copied; 511 if (!copied) 512 return -EFAULT; 513 return copied; 514 } 515 516 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 517 struct iomap_dio *dio) 518 { 519 switch (iter->iomap.type) { 520 case IOMAP_HOLE: 521 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 522 return -EIO; 523 return iomap_dio_hole_iter(iter, dio); 524 case IOMAP_UNWRITTEN: 525 if (!(dio->flags & IOMAP_DIO_WRITE)) 526 return iomap_dio_hole_iter(iter, dio); 527 return iomap_dio_bio_iter(iter, dio); 528 case IOMAP_MAPPED: 529 return iomap_dio_bio_iter(iter, dio); 530 case IOMAP_INLINE: 531 return iomap_dio_inline_iter(iter, dio); 532 case IOMAP_DELALLOC: 533 /* 534 * DIO is not serialised against mmap() access at all, and so 535 * if the page_mkwrite occurs between the writeback and the 536 * iomap_iter() call in the DIO path, then it will see the 537 * DELALLOC block that the page-mkwrite allocated. 538 */ 539 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 540 dio->iocb->ki_filp, current->comm); 541 return -EIO; 542 default: 543 WARN_ON_ONCE(1); 544 return -EIO; 545 } 546 } 547 548 /* 549 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 550 * is being issued as AIO or not. This allows us to optimise pure data writes 551 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 552 * REQ_FLUSH post write. This is slightly tricky because a single request here 553 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 554 * may be pure data writes. In that case, we still need to do a full data sync 555 * completion. 556 * 557 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 558 * __iomap_dio_rw can return a partial result if it encounters a non-resident 559 * page in @iter after preparing a transfer. In that case, the non-resident 560 * pages can be faulted in and the request resumed with @done_before set to the 561 * number of bytes previously transferred. The request will then complete with 562 * the correct total number of bytes transferred; this is essential for 563 * completing partial requests asynchronously. 564 * 565 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 566 * writes. The callers needs to fall back to buffered I/O in this case. 567 */ 568 struct iomap_dio * 569 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 570 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 571 unsigned int dio_flags, void *private, size_t done_before) 572 { 573 struct inode *inode = file_inode(iocb->ki_filp); 574 struct iomap_iter iomi = { 575 .inode = inode, 576 .pos = iocb->ki_pos, 577 .len = iov_iter_count(iter), 578 .flags = IOMAP_DIRECT, 579 .private = private, 580 }; 581 bool wait_for_completion = 582 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 583 struct blk_plug plug; 584 struct iomap_dio *dio; 585 loff_t ret = 0; 586 587 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 588 589 if (!iomi.len) 590 return NULL; 591 592 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 593 if (!dio) 594 return ERR_PTR(-ENOMEM); 595 596 dio->iocb = iocb; 597 atomic_set(&dio->ref, 1); 598 dio->size = 0; 599 dio->i_size = i_size_read(inode); 600 dio->dops = dops; 601 dio->error = 0; 602 dio->flags = 0; 603 dio->done_before = done_before; 604 605 dio->submit.iter = iter; 606 dio->submit.waiter = current; 607 608 if (iocb->ki_flags & IOCB_NOWAIT) 609 iomi.flags |= IOMAP_NOWAIT; 610 611 if (iocb->ki_flags & IOCB_ATOMIC) 612 iomi.flags |= IOMAP_ATOMIC; 613 614 if (iov_iter_rw(iter) == READ) { 615 /* reads can always complete inline */ 616 dio->flags |= IOMAP_DIO_INLINE_COMP; 617 618 if (iomi.pos >= dio->i_size) 619 goto out_free_dio; 620 621 if (user_backed_iter(iter)) 622 dio->flags |= IOMAP_DIO_DIRTY; 623 624 ret = kiocb_write_and_wait(iocb, iomi.len); 625 if (ret) 626 goto out_free_dio; 627 } else { 628 iomi.flags |= IOMAP_WRITE; 629 dio->flags |= IOMAP_DIO_WRITE; 630 631 /* 632 * Flag as supporting deferred completions, if the issuer 633 * groks it. This can avoid a workqueue punt for writes. 634 * We may later clear this flag if we need to do other IO 635 * as part of this IO completion. 636 */ 637 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) 638 dio->flags |= IOMAP_DIO_CALLER_COMP; 639 640 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 641 ret = -EAGAIN; 642 if (iomi.pos >= dio->i_size || 643 iomi.pos + iomi.len > dio->i_size) 644 goto out_free_dio; 645 iomi.flags |= IOMAP_OVERWRITE_ONLY; 646 } 647 648 /* for data sync or sync, we need sync completion processing */ 649 if (iocb_is_dsync(iocb)) { 650 dio->flags |= IOMAP_DIO_NEED_SYNC; 651 652 /* 653 * For datasync only writes, we optimistically try using 654 * WRITE_THROUGH for this IO. This flag requires either 655 * FUA writes through the device's write cache, or a 656 * normal write to a device without a volatile write 657 * cache. For the former, Any non-FUA write that occurs 658 * will clear this flag, hence we know before completion 659 * whether a cache flush is necessary. 660 */ 661 if (!(iocb->ki_flags & IOCB_SYNC)) 662 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 663 } 664 665 /* 666 * Try to invalidate cache pages for the range we are writing. 667 * If this invalidation fails, let the caller fall back to 668 * buffered I/O. 669 */ 670 ret = kiocb_invalidate_pages(iocb, iomi.len); 671 if (ret) { 672 if (ret != -EAGAIN) { 673 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 674 iomi.len); 675 if (iocb->ki_flags & IOCB_ATOMIC) { 676 /* 677 * folio invalidation failed, maybe 678 * this is transient, unlock and see if 679 * the caller tries again. 680 */ 681 ret = -EAGAIN; 682 } else { 683 /* fall back to buffered write */ 684 ret = -ENOTBLK; 685 } 686 } 687 goto out_free_dio; 688 } 689 690 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 691 ret = sb_init_dio_done_wq(inode->i_sb); 692 if (ret < 0) 693 goto out_free_dio; 694 } 695 } 696 697 inode_dio_begin(inode); 698 699 blk_start_plug(&plug); 700 while ((ret = iomap_iter(&iomi, ops)) > 0) { 701 iomi.processed = iomap_dio_iter(&iomi, dio); 702 703 /* 704 * We can only poll for single bio I/Os. 705 */ 706 iocb->ki_flags &= ~IOCB_HIPRI; 707 } 708 709 blk_finish_plug(&plug); 710 711 /* 712 * We only report that we've read data up to i_size. 713 * Revert iter to a state corresponding to that as some callers (such 714 * as the splice code) rely on it. 715 */ 716 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 717 iov_iter_revert(iter, iomi.pos - dio->i_size); 718 719 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 720 if (!(iocb->ki_flags & IOCB_NOWAIT)) 721 wait_for_completion = true; 722 ret = 0; 723 } 724 725 /* magic error code to fall back to buffered I/O */ 726 if (ret == -ENOTBLK) { 727 wait_for_completion = true; 728 ret = 0; 729 } 730 if (ret < 0) 731 iomap_dio_set_error(dio, ret); 732 733 /* 734 * If all the writes we issued were already written through to the 735 * media, we don't need to flush the cache on IO completion. Clear the 736 * sync flag for this case. 737 */ 738 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 739 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 740 741 /* 742 * We are about to drop our additional submission reference, which 743 * might be the last reference to the dio. There are three different 744 * ways we can progress here: 745 * 746 * (a) If this is the last reference we will always complete and free 747 * the dio ourselves. 748 * (b) If this is not the last reference, and we serve an asynchronous 749 * iocb, we must never touch the dio after the decrement, the 750 * I/O completion handler will complete and free it. 751 * (c) If this is not the last reference, but we serve a synchronous 752 * iocb, the I/O completion handler will wake us up on the drop 753 * of the final reference, and we will complete and free it here 754 * after we got woken by the I/O completion handler. 755 */ 756 dio->wait_for_completion = wait_for_completion; 757 if (!atomic_dec_and_test(&dio->ref)) { 758 if (!wait_for_completion) { 759 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 760 return ERR_PTR(-EIOCBQUEUED); 761 } 762 763 for (;;) { 764 set_current_state(TASK_UNINTERRUPTIBLE); 765 if (!READ_ONCE(dio->submit.waiter)) 766 break; 767 768 blk_io_schedule(); 769 } 770 __set_current_state(TASK_RUNNING); 771 } 772 773 return dio; 774 775 out_free_dio: 776 kfree(dio); 777 if (ret) 778 return ERR_PTR(ret); 779 return NULL; 780 } 781 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 782 783 ssize_t 784 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 785 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 786 unsigned int dio_flags, void *private, size_t done_before) 787 { 788 struct iomap_dio *dio; 789 790 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 791 done_before); 792 if (IS_ERR_OR_NULL(dio)) 793 return PTR_ERR_OR_ZERO(dio); 794 return iomap_dio_complete(dio); 795 } 796 EXPORT_SYMBOL_GPL(iomap_dio_rw); 797 798 static int __init iomap_dio_init(void) 799 { 800 zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 801 IOMAP_ZERO_PAGE_ORDER); 802 803 if (!zero_page) 804 return -ENOMEM; 805 806 return 0; 807 } 808 fs_initcall(iomap_dio_init); 809