1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 atomic_t read_bytes_pending; 33 atomic_t write_bytes_pending; 34 spinlock_t state_lock; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static void ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 unsigned long flags; 68 69 spin_lock_irqsave(&ifs->state_lock, flags); 70 bitmap_set(ifs->state, first_blk, nr_blks); 71 if (ifs_is_fully_uptodate(folio, ifs)) 72 folio_mark_uptodate(folio); 73 spin_unlock_irqrestore(&ifs->state_lock, flags); 74 } 75 76 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 77 size_t len) 78 { 79 struct iomap_folio_state *ifs = folio->private; 80 81 if (ifs) 82 ifs_set_range_uptodate(folio, ifs, off, len); 83 else 84 folio_mark_uptodate(folio); 85 } 86 87 static inline bool ifs_block_is_dirty(struct folio *folio, 88 struct iomap_folio_state *ifs, int block) 89 { 90 struct inode *inode = folio->mapping->host; 91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 92 93 return test_bit(block + blks_per_folio, ifs->state); 94 } 95 96 static void ifs_clear_range_dirty(struct folio *folio, 97 struct iomap_folio_state *ifs, size_t off, size_t len) 98 { 99 struct inode *inode = folio->mapping->host; 100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 101 unsigned int first_blk = (off >> inode->i_blkbits); 102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 103 unsigned int nr_blks = last_blk - first_blk + 1; 104 unsigned long flags; 105 106 spin_lock_irqsave(&ifs->state_lock, flags); 107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 108 spin_unlock_irqrestore(&ifs->state_lock, flags); 109 } 110 111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 112 { 113 struct iomap_folio_state *ifs = folio->private; 114 115 if (ifs) 116 ifs_clear_range_dirty(folio, ifs, off, len); 117 } 118 119 static void ifs_set_range_dirty(struct folio *folio, 120 struct iomap_folio_state *ifs, size_t off, size_t len) 121 { 122 struct inode *inode = folio->mapping->host; 123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 124 unsigned int first_blk = (off >> inode->i_blkbits); 125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 126 unsigned int nr_blks = last_blk - first_blk + 1; 127 unsigned long flags; 128 129 spin_lock_irqsave(&ifs->state_lock, flags); 130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 131 spin_unlock_irqrestore(&ifs->state_lock, flags); 132 } 133 134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 135 { 136 struct iomap_folio_state *ifs = folio->private; 137 138 if (ifs) 139 ifs_set_range_dirty(folio, ifs, off, len); 140 } 141 142 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 143 struct folio *folio, unsigned int flags) 144 { 145 struct iomap_folio_state *ifs = folio->private; 146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 147 gfp_t gfp; 148 149 if (ifs || nr_blocks <= 1) 150 return ifs; 151 152 if (flags & IOMAP_NOWAIT) 153 gfp = GFP_NOWAIT; 154 else 155 gfp = GFP_NOFS | __GFP_NOFAIL; 156 157 /* 158 * ifs->state tracks two sets of state flags when the 159 * filesystem block size is smaller than the folio size. 160 * The first state tracks per-block uptodate and the 161 * second tracks per-block dirty state. 162 */ 163 ifs = kzalloc(struct_size(ifs, state, 164 BITS_TO_LONGS(2 * nr_blocks)), gfp); 165 if (!ifs) 166 return ifs; 167 168 spin_lock_init(&ifs->state_lock); 169 if (folio_test_uptodate(folio)) 170 bitmap_set(ifs->state, 0, nr_blocks); 171 if (folio_test_dirty(folio)) 172 bitmap_set(ifs->state, nr_blocks, nr_blocks); 173 folio_attach_private(folio, ifs); 174 175 return ifs; 176 } 177 178 static void ifs_free(struct folio *folio) 179 { 180 struct iomap_folio_state *ifs = folio_detach_private(folio); 181 182 if (!ifs) 183 return; 184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending)); 185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 187 folio_test_uptodate(folio)); 188 kfree(ifs); 189 } 190 191 /* 192 * Calculate the range inside the folio that we actually need to read. 193 */ 194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 196 { 197 struct iomap_folio_state *ifs = folio->private; 198 loff_t orig_pos = *pos; 199 loff_t isize = i_size_read(inode); 200 unsigned block_bits = inode->i_blkbits; 201 unsigned block_size = (1 << block_bits); 202 size_t poff = offset_in_folio(folio, *pos); 203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 204 unsigned first = poff >> block_bits; 205 unsigned last = (poff + plen - 1) >> block_bits; 206 207 /* 208 * If the block size is smaller than the page size, we need to check the 209 * per-block uptodate status and adjust the offset and length if needed 210 * to avoid reading in already uptodate ranges. 211 */ 212 if (ifs) { 213 unsigned int i; 214 215 /* move forward for each leading block marked uptodate */ 216 for (i = first; i <= last; i++) { 217 if (!ifs_block_is_uptodate(ifs, i)) 218 break; 219 *pos += block_size; 220 poff += block_size; 221 plen -= block_size; 222 first++; 223 } 224 225 /* truncate len if we find any trailing uptodate block(s) */ 226 for ( ; i <= last; i++) { 227 if (ifs_block_is_uptodate(ifs, i)) { 228 plen -= (last - i + 1) * block_size; 229 last = i - 1; 230 break; 231 } 232 } 233 } 234 235 /* 236 * If the extent spans the block that contains the i_size, we need to 237 * handle both halves separately so that we properly zero data in the 238 * page cache for blocks that are entirely outside of i_size. 239 */ 240 if (orig_pos <= isize && orig_pos + length > isize) { 241 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 242 243 if (first <= end && last > end) 244 plen -= (last - end) * block_size; 245 } 246 247 *offp = poff; 248 *lenp = plen; 249 } 250 251 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 252 size_t len, int error) 253 { 254 struct iomap_folio_state *ifs = folio->private; 255 256 if (unlikely(error)) { 257 folio_clear_uptodate(folio); 258 folio_set_error(folio); 259 } else { 260 iomap_set_range_uptodate(folio, offset, len); 261 } 262 263 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending)) 264 folio_unlock(folio); 265 } 266 267 static void iomap_read_end_io(struct bio *bio) 268 { 269 int error = blk_status_to_errno(bio->bi_status); 270 struct folio_iter fi; 271 272 bio_for_each_folio_all(fi, bio) 273 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 274 bio_put(bio); 275 } 276 277 struct iomap_readpage_ctx { 278 struct folio *cur_folio; 279 bool cur_folio_in_bio; 280 struct bio *bio; 281 struct readahead_control *rac; 282 }; 283 284 /** 285 * iomap_read_inline_data - copy inline data into the page cache 286 * @iter: iteration structure 287 * @folio: folio to copy to 288 * 289 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 290 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 291 * Returns zero for success to complete the read, or the usual negative errno. 292 */ 293 static int iomap_read_inline_data(const struct iomap_iter *iter, 294 struct folio *folio) 295 { 296 const struct iomap *iomap = iomap_iter_srcmap(iter); 297 size_t size = i_size_read(iter->inode) - iomap->offset; 298 size_t poff = offset_in_page(iomap->offset); 299 size_t offset = offset_in_folio(folio, iomap->offset); 300 void *addr; 301 302 if (folio_test_uptodate(folio)) 303 return 0; 304 305 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 306 return -EIO; 307 if (WARN_ON_ONCE(size > PAGE_SIZE - 308 offset_in_page(iomap->inline_data))) 309 return -EIO; 310 if (WARN_ON_ONCE(size > iomap->length)) 311 return -EIO; 312 if (offset > 0) 313 ifs_alloc(iter->inode, folio, iter->flags); 314 315 addr = kmap_local_folio(folio, offset); 316 memcpy(addr, iomap->inline_data, size); 317 memset(addr + size, 0, PAGE_SIZE - poff - size); 318 kunmap_local(addr); 319 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff); 320 return 0; 321 } 322 323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 324 loff_t pos) 325 { 326 const struct iomap *srcmap = iomap_iter_srcmap(iter); 327 328 return srcmap->type != IOMAP_MAPPED || 329 (srcmap->flags & IOMAP_F_NEW) || 330 pos >= i_size_read(iter->inode); 331 } 332 333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 334 struct iomap_readpage_ctx *ctx, loff_t offset) 335 { 336 const struct iomap *iomap = &iter->iomap; 337 loff_t pos = iter->pos + offset; 338 loff_t length = iomap_length(iter) - offset; 339 struct folio *folio = ctx->cur_folio; 340 struct iomap_folio_state *ifs; 341 loff_t orig_pos = pos; 342 size_t poff, plen; 343 sector_t sector; 344 345 if (iomap->type == IOMAP_INLINE) 346 return iomap_read_inline_data(iter, folio); 347 348 /* zero post-eof blocks as the page may be mapped */ 349 ifs = ifs_alloc(iter->inode, folio, iter->flags); 350 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 351 if (plen == 0) 352 goto done; 353 354 if (iomap_block_needs_zeroing(iter, pos)) { 355 folio_zero_range(folio, poff, plen); 356 iomap_set_range_uptodate(folio, poff, plen); 357 goto done; 358 } 359 360 ctx->cur_folio_in_bio = true; 361 if (ifs) 362 atomic_add(plen, &ifs->read_bytes_pending); 363 364 sector = iomap_sector(iomap, pos); 365 if (!ctx->bio || 366 bio_end_sector(ctx->bio) != sector || 367 !bio_add_folio(ctx->bio, folio, plen, poff)) { 368 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 369 gfp_t orig_gfp = gfp; 370 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 371 372 if (ctx->bio) 373 submit_bio(ctx->bio); 374 375 if (ctx->rac) /* same as readahead_gfp_mask */ 376 gfp |= __GFP_NORETRY | __GFP_NOWARN; 377 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 378 REQ_OP_READ, gfp); 379 /* 380 * If the bio_alloc fails, try it again for a single page to 381 * avoid having to deal with partial page reads. This emulates 382 * what do_mpage_read_folio does. 383 */ 384 if (!ctx->bio) { 385 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 386 orig_gfp); 387 } 388 if (ctx->rac) 389 ctx->bio->bi_opf |= REQ_RAHEAD; 390 ctx->bio->bi_iter.bi_sector = sector; 391 ctx->bio->bi_end_io = iomap_read_end_io; 392 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 393 } 394 395 done: 396 /* 397 * Move the caller beyond our range so that it keeps making progress. 398 * For that, we have to include any leading non-uptodate ranges, but 399 * we can skip trailing ones as they will be handled in the next 400 * iteration. 401 */ 402 return pos - orig_pos + plen; 403 } 404 405 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 406 { 407 struct iomap_iter iter = { 408 .inode = folio->mapping->host, 409 .pos = folio_pos(folio), 410 .len = folio_size(folio), 411 }; 412 struct iomap_readpage_ctx ctx = { 413 .cur_folio = folio, 414 }; 415 int ret; 416 417 trace_iomap_readpage(iter.inode, 1); 418 419 while ((ret = iomap_iter(&iter, ops)) > 0) 420 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 421 422 if (ret < 0) 423 folio_set_error(folio); 424 425 if (ctx.bio) { 426 submit_bio(ctx.bio); 427 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 428 } else { 429 WARN_ON_ONCE(ctx.cur_folio_in_bio); 430 folio_unlock(folio); 431 } 432 433 /* 434 * Just like mpage_readahead and block_read_full_folio, we always 435 * return 0 and just set the folio error flag on errors. This 436 * should be cleaned up throughout the stack eventually. 437 */ 438 return 0; 439 } 440 EXPORT_SYMBOL_GPL(iomap_read_folio); 441 442 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 443 struct iomap_readpage_ctx *ctx) 444 { 445 loff_t length = iomap_length(iter); 446 loff_t done, ret; 447 448 for (done = 0; done < length; done += ret) { 449 if (ctx->cur_folio && 450 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 451 if (!ctx->cur_folio_in_bio) 452 folio_unlock(ctx->cur_folio); 453 ctx->cur_folio = NULL; 454 } 455 if (!ctx->cur_folio) { 456 ctx->cur_folio = readahead_folio(ctx->rac); 457 ctx->cur_folio_in_bio = false; 458 } 459 ret = iomap_readpage_iter(iter, ctx, done); 460 if (ret <= 0) 461 return ret; 462 } 463 464 return done; 465 } 466 467 /** 468 * iomap_readahead - Attempt to read pages from a file. 469 * @rac: Describes the pages to be read. 470 * @ops: The operations vector for the filesystem. 471 * 472 * This function is for filesystems to call to implement their readahead 473 * address_space operation. 474 * 475 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 476 * blocks from disc), and may wait for it. The caller may be trying to 477 * access a different page, and so sleeping excessively should be avoided. 478 * It may allocate memory, but should avoid costly allocations. This 479 * function is called with memalloc_nofs set, so allocations will not cause 480 * the filesystem to be reentered. 481 */ 482 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 483 { 484 struct iomap_iter iter = { 485 .inode = rac->mapping->host, 486 .pos = readahead_pos(rac), 487 .len = readahead_length(rac), 488 }; 489 struct iomap_readpage_ctx ctx = { 490 .rac = rac, 491 }; 492 493 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 494 495 while (iomap_iter(&iter, ops) > 0) 496 iter.processed = iomap_readahead_iter(&iter, &ctx); 497 498 if (ctx.bio) 499 submit_bio(ctx.bio); 500 if (ctx.cur_folio) { 501 if (!ctx.cur_folio_in_bio) 502 folio_unlock(ctx.cur_folio); 503 } 504 } 505 EXPORT_SYMBOL_GPL(iomap_readahead); 506 507 /* 508 * iomap_is_partially_uptodate checks whether blocks within a folio are 509 * uptodate or not. 510 * 511 * Returns true if all blocks which correspond to the specified part 512 * of the folio are uptodate. 513 */ 514 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 515 { 516 struct iomap_folio_state *ifs = folio->private; 517 struct inode *inode = folio->mapping->host; 518 unsigned first, last, i; 519 520 if (!ifs) 521 return false; 522 523 /* Caller's range may extend past the end of this folio */ 524 count = min(folio_size(folio) - from, count); 525 526 /* First and last blocks in range within folio */ 527 first = from >> inode->i_blkbits; 528 last = (from + count - 1) >> inode->i_blkbits; 529 530 for (i = first; i <= last; i++) 531 if (!ifs_block_is_uptodate(ifs, i)) 532 return false; 533 return true; 534 } 535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 536 537 /** 538 * iomap_get_folio - get a folio reference for writing 539 * @iter: iteration structure 540 * @pos: start offset of write 541 * @len: Suggested size of folio to create. 542 * 543 * Returns a locked reference to the folio at @pos, or an error pointer if the 544 * folio could not be obtained. 545 */ 546 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 547 { 548 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 549 550 if (iter->flags & IOMAP_NOWAIT) 551 fgp |= FGP_NOWAIT; 552 fgp |= fgf_set_order(len); 553 554 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 555 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 556 } 557 EXPORT_SYMBOL_GPL(iomap_get_folio); 558 559 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 560 { 561 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 562 folio_size(folio)); 563 564 /* 565 * If the folio is dirty, we refuse to release our metadata because 566 * it may be partially dirty. Once we track per-block dirty state, 567 * we can release the metadata if every block is dirty. 568 */ 569 if (folio_test_dirty(folio)) 570 return false; 571 ifs_free(folio); 572 return true; 573 } 574 EXPORT_SYMBOL_GPL(iomap_release_folio); 575 576 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 577 { 578 trace_iomap_invalidate_folio(folio->mapping->host, 579 folio_pos(folio) + offset, len); 580 581 /* 582 * If we're invalidating the entire folio, clear the dirty state 583 * from it and release it to avoid unnecessary buildup of the LRU. 584 */ 585 if (offset == 0 && len == folio_size(folio)) { 586 WARN_ON_ONCE(folio_test_writeback(folio)); 587 folio_cancel_dirty(folio); 588 ifs_free(folio); 589 } 590 } 591 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 592 593 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 594 { 595 struct inode *inode = mapping->host; 596 size_t len = folio_size(folio); 597 598 ifs_alloc(inode, folio, 0); 599 iomap_set_range_dirty(folio, 0, len); 600 return filemap_dirty_folio(mapping, folio); 601 } 602 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 603 604 static void 605 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 606 { 607 loff_t i_size = i_size_read(inode); 608 609 /* 610 * Only truncate newly allocated pages beyoned EOF, even if the 611 * write started inside the existing inode size. 612 */ 613 if (pos + len > i_size) 614 truncate_pagecache_range(inode, max(pos, i_size), 615 pos + len - 1); 616 } 617 618 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 619 size_t poff, size_t plen, const struct iomap *iomap) 620 { 621 struct bio_vec bvec; 622 struct bio bio; 623 624 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 625 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 626 bio_add_folio_nofail(&bio, folio, plen, poff); 627 return submit_bio_wait(&bio); 628 } 629 630 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 631 size_t len, struct folio *folio) 632 { 633 const struct iomap *srcmap = iomap_iter_srcmap(iter); 634 struct iomap_folio_state *ifs; 635 loff_t block_size = i_blocksize(iter->inode); 636 loff_t block_start = round_down(pos, block_size); 637 loff_t block_end = round_up(pos + len, block_size); 638 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 639 size_t from = offset_in_folio(folio, pos), to = from + len; 640 size_t poff, plen; 641 642 /* 643 * If the write completely overlaps the current folio, then 644 * entire folio will be dirtied so there is no need for 645 * per-block state tracking structures to be attached to this folio. 646 */ 647 if (pos <= folio_pos(folio) && 648 pos + len >= folio_pos(folio) + folio_size(folio)) 649 return 0; 650 651 ifs = ifs_alloc(iter->inode, folio, iter->flags); 652 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 653 return -EAGAIN; 654 655 if (folio_test_uptodate(folio)) 656 return 0; 657 folio_clear_error(folio); 658 659 do { 660 iomap_adjust_read_range(iter->inode, folio, &block_start, 661 block_end - block_start, &poff, &plen); 662 if (plen == 0) 663 break; 664 665 if (!(iter->flags & IOMAP_UNSHARE) && 666 (from <= poff || from >= poff + plen) && 667 (to <= poff || to >= poff + plen)) 668 continue; 669 670 if (iomap_block_needs_zeroing(iter, block_start)) { 671 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 672 return -EIO; 673 folio_zero_segments(folio, poff, from, to, poff + plen); 674 } else { 675 int status; 676 677 if (iter->flags & IOMAP_NOWAIT) 678 return -EAGAIN; 679 680 status = iomap_read_folio_sync(block_start, folio, 681 poff, plen, srcmap); 682 if (status) 683 return status; 684 } 685 iomap_set_range_uptodate(folio, poff, plen); 686 } while ((block_start += plen) < block_end); 687 688 return 0; 689 } 690 691 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 692 size_t len) 693 { 694 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 695 696 if (folio_ops && folio_ops->get_folio) 697 return folio_ops->get_folio(iter, pos, len); 698 else 699 return iomap_get_folio(iter, pos, len); 700 } 701 702 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 703 struct folio *folio) 704 { 705 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 706 707 if (folio_ops && folio_ops->put_folio) { 708 folio_ops->put_folio(iter->inode, pos, ret, folio); 709 } else { 710 folio_unlock(folio); 711 folio_put(folio); 712 } 713 } 714 715 static int iomap_write_begin_inline(const struct iomap_iter *iter, 716 struct folio *folio) 717 { 718 /* needs more work for the tailpacking case; disable for now */ 719 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 720 return -EIO; 721 return iomap_read_inline_data(iter, folio); 722 } 723 724 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 725 size_t len, struct folio **foliop) 726 { 727 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 728 const struct iomap *srcmap = iomap_iter_srcmap(iter); 729 struct folio *folio; 730 int status = 0; 731 732 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 733 if (srcmap != &iter->iomap) 734 BUG_ON(pos + len > srcmap->offset + srcmap->length); 735 736 if (fatal_signal_pending(current)) 737 return -EINTR; 738 739 if (!mapping_large_folio_support(iter->inode->i_mapping)) 740 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 741 742 folio = __iomap_get_folio(iter, pos, len); 743 if (IS_ERR(folio)) 744 return PTR_ERR(folio); 745 746 /* 747 * Now we have a locked folio, before we do anything with it we need to 748 * check that the iomap we have cached is not stale. The inode extent 749 * mapping can change due to concurrent IO in flight (e.g. 750 * IOMAP_UNWRITTEN state can change and memory reclaim could have 751 * reclaimed a previously partially written page at this index after IO 752 * completion before this write reaches this file offset) and hence we 753 * could do the wrong thing here (zero a page range incorrectly or fail 754 * to zero) and corrupt data. 755 */ 756 if (folio_ops && folio_ops->iomap_valid) { 757 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 758 &iter->iomap); 759 if (!iomap_valid) { 760 iter->iomap.flags |= IOMAP_F_STALE; 761 status = 0; 762 goto out_unlock; 763 } 764 } 765 766 if (pos + len > folio_pos(folio) + folio_size(folio)) 767 len = folio_pos(folio) + folio_size(folio) - pos; 768 769 if (srcmap->type == IOMAP_INLINE) 770 status = iomap_write_begin_inline(iter, folio); 771 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 772 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 773 else 774 status = __iomap_write_begin(iter, pos, len, folio); 775 776 if (unlikely(status)) 777 goto out_unlock; 778 779 *foliop = folio; 780 return 0; 781 782 out_unlock: 783 __iomap_put_folio(iter, pos, 0, folio); 784 iomap_write_failed(iter->inode, pos, len); 785 786 return status; 787 } 788 789 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 790 size_t copied, struct folio *folio) 791 { 792 flush_dcache_folio(folio); 793 794 /* 795 * The blocks that were entirely written will now be uptodate, so we 796 * don't have to worry about a read_folio reading them and overwriting a 797 * partial write. However, if we've encountered a short write and only 798 * partially written into a block, it will not be marked uptodate, so a 799 * read_folio might come in and destroy our partial write. 800 * 801 * Do the simplest thing and just treat any short write to a 802 * non-uptodate page as a zero-length write, and force the caller to 803 * redo the whole thing. 804 */ 805 if (unlikely(copied < len && !folio_test_uptodate(folio))) 806 return 0; 807 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 808 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 809 filemap_dirty_folio(inode->i_mapping, folio); 810 return copied; 811 } 812 813 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 814 struct folio *folio, loff_t pos, size_t copied) 815 { 816 const struct iomap *iomap = &iter->iomap; 817 void *addr; 818 819 WARN_ON_ONCE(!folio_test_uptodate(folio)); 820 BUG_ON(!iomap_inline_data_valid(iomap)); 821 822 flush_dcache_folio(folio); 823 addr = kmap_local_folio(folio, pos); 824 memcpy(iomap_inline_data(iomap, pos), addr, copied); 825 kunmap_local(addr); 826 827 mark_inode_dirty(iter->inode); 828 return copied; 829 } 830 831 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 832 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 833 size_t copied, struct folio *folio) 834 { 835 const struct iomap *srcmap = iomap_iter_srcmap(iter); 836 loff_t old_size = iter->inode->i_size; 837 size_t ret; 838 839 if (srcmap->type == IOMAP_INLINE) { 840 ret = iomap_write_end_inline(iter, folio, pos, copied); 841 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 842 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 843 copied, &folio->page, NULL); 844 } else { 845 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 846 } 847 848 /* 849 * Update the in-memory inode size after copying the data into the page 850 * cache. It's up to the file system to write the updated size to disk, 851 * preferably after I/O completion so that no stale data is exposed. 852 */ 853 if (pos + ret > old_size) { 854 i_size_write(iter->inode, pos + ret); 855 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 856 } 857 __iomap_put_folio(iter, pos, ret, folio); 858 859 if (old_size < pos) 860 pagecache_isize_extended(iter->inode, old_size, pos); 861 if (ret < len) 862 iomap_write_failed(iter->inode, pos + ret, len - ret); 863 return ret; 864 } 865 866 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 867 { 868 loff_t length = iomap_length(iter); 869 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER; 870 loff_t pos = iter->pos; 871 ssize_t written = 0; 872 long status = 0; 873 struct address_space *mapping = iter->inode->i_mapping; 874 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 875 876 do { 877 struct folio *folio; 878 size_t offset; /* Offset into folio */ 879 size_t bytes; /* Bytes to write to folio */ 880 size_t copied; /* Bytes copied from user */ 881 882 offset = pos & (chunk - 1); 883 bytes = min(chunk - offset, iov_iter_count(i)); 884 status = balance_dirty_pages_ratelimited_flags(mapping, 885 bdp_flags); 886 if (unlikely(status)) 887 break; 888 889 if (bytes > length) 890 bytes = length; 891 892 /* 893 * Bring in the user page that we'll copy from _first_. 894 * Otherwise there's a nasty deadlock on copying from the 895 * same page as we're writing to, without it being marked 896 * up-to-date. 897 * 898 * For async buffered writes the assumption is that the user 899 * page has already been faulted in. This can be optimized by 900 * faulting the user page. 901 */ 902 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 903 status = -EFAULT; 904 break; 905 } 906 907 status = iomap_write_begin(iter, pos, bytes, &folio); 908 if (unlikely(status)) 909 break; 910 if (iter->iomap.flags & IOMAP_F_STALE) 911 break; 912 913 offset = offset_in_folio(folio, pos); 914 if (bytes > folio_size(folio) - offset) 915 bytes = folio_size(folio) - offset; 916 917 if (mapping_writably_mapped(mapping)) 918 flush_dcache_folio(folio); 919 920 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 921 status = iomap_write_end(iter, pos, bytes, copied, folio); 922 923 if (unlikely(copied != status)) 924 iov_iter_revert(i, copied - status); 925 926 cond_resched(); 927 if (unlikely(status == 0)) { 928 /* 929 * A short copy made iomap_write_end() reject the 930 * thing entirely. Might be memory poisoning 931 * halfway through, might be a race with munmap, 932 * might be severe memory pressure. 933 */ 934 if (copied) 935 bytes = copied; 936 if (chunk > PAGE_SIZE) 937 chunk /= 2; 938 } else { 939 pos += status; 940 written += status; 941 length -= status; 942 } 943 } while (iov_iter_count(i) && length); 944 945 if (status == -EAGAIN) { 946 iov_iter_revert(i, written); 947 return -EAGAIN; 948 } 949 return written ? written : status; 950 } 951 952 ssize_t 953 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 954 const struct iomap_ops *ops) 955 { 956 struct iomap_iter iter = { 957 .inode = iocb->ki_filp->f_mapping->host, 958 .pos = iocb->ki_pos, 959 .len = iov_iter_count(i), 960 .flags = IOMAP_WRITE, 961 }; 962 ssize_t ret; 963 964 if (iocb->ki_flags & IOCB_NOWAIT) 965 iter.flags |= IOMAP_NOWAIT; 966 967 while ((ret = iomap_iter(&iter, ops)) > 0) 968 iter.processed = iomap_write_iter(&iter, i); 969 970 if (unlikely(iter.pos == iocb->ki_pos)) 971 return ret; 972 ret = iter.pos - iocb->ki_pos; 973 iocb->ki_pos = iter.pos; 974 return ret; 975 } 976 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 977 978 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 979 struct folio *folio, loff_t start_byte, loff_t end_byte, 980 iomap_punch_t punch) 981 { 982 unsigned int first_blk, last_blk, i; 983 loff_t last_byte; 984 u8 blkbits = inode->i_blkbits; 985 struct iomap_folio_state *ifs; 986 int ret = 0; 987 988 /* 989 * When we have per-block dirty tracking, there can be 990 * blocks within a folio which are marked uptodate 991 * but not dirty. In that case it is necessary to punch 992 * out such blocks to avoid leaking any delalloc blocks. 993 */ 994 ifs = folio->private; 995 if (!ifs) 996 return ret; 997 998 last_byte = min_t(loff_t, end_byte - 1, 999 folio_pos(folio) + folio_size(folio) - 1); 1000 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1001 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1002 for (i = first_blk; i <= last_blk; i++) { 1003 if (!ifs_block_is_dirty(folio, ifs, i)) { 1004 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1005 1 << blkbits); 1006 if (ret) 1007 return ret; 1008 } 1009 } 1010 1011 return ret; 1012 } 1013 1014 1015 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1016 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1017 iomap_punch_t punch) 1018 { 1019 int ret = 0; 1020 1021 if (!folio_test_dirty(folio)) 1022 return ret; 1023 1024 /* if dirty, punch up to offset */ 1025 if (start_byte > *punch_start_byte) { 1026 ret = punch(inode, *punch_start_byte, 1027 start_byte - *punch_start_byte); 1028 if (ret) 1029 return ret; 1030 } 1031 1032 /* Punch non-dirty blocks within folio */ 1033 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1034 end_byte, punch); 1035 if (ret) 1036 return ret; 1037 1038 /* 1039 * Make sure the next punch start is correctly bound to 1040 * the end of this data range, not the end of the folio. 1041 */ 1042 *punch_start_byte = min_t(loff_t, end_byte, 1043 folio_pos(folio) + folio_size(folio)); 1044 1045 return ret; 1046 } 1047 1048 /* 1049 * Scan the data range passed to us for dirty page cache folios. If we find a 1050 * dirty folio, punch out the preceeding range and update the offset from which 1051 * the next punch will start from. 1052 * 1053 * We can punch out storage reservations under clean pages because they either 1054 * contain data that has been written back - in which case the delalloc punch 1055 * over that range is a no-op - or they have been read faults in which case they 1056 * contain zeroes and we can remove the delalloc backing range and any new 1057 * writes to those pages will do the normal hole filling operation... 1058 * 1059 * This makes the logic simple: we only need to keep the delalloc extents only 1060 * over the dirty ranges of the page cache. 1061 * 1062 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1063 * simplify range iterations. 1064 */ 1065 static int iomap_write_delalloc_scan(struct inode *inode, 1066 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1067 iomap_punch_t punch) 1068 { 1069 while (start_byte < end_byte) { 1070 struct folio *folio; 1071 int ret; 1072 1073 /* grab locked page */ 1074 folio = filemap_lock_folio(inode->i_mapping, 1075 start_byte >> PAGE_SHIFT); 1076 if (IS_ERR(folio)) { 1077 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1078 PAGE_SIZE; 1079 continue; 1080 } 1081 1082 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1083 start_byte, end_byte, punch); 1084 if (ret) { 1085 folio_unlock(folio); 1086 folio_put(folio); 1087 return ret; 1088 } 1089 1090 /* move offset to start of next folio in range */ 1091 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 } 1095 return 0; 1096 } 1097 1098 /* 1099 * Punch out all the delalloc blocks in the range given except for those that 1100 * have dirty data still pending in the page cache - those are going to be 1101 * written and so must still retain the delalloc backing for writeback. 1102 * 1103 * As we are scanning the page cache for data, we don't need to reimplement the 1104 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1105 * start and end of data ranges correctly even for sub-folio block sizes. This 1106 * byte range based iteration is especially convenient because it means we 1107 * don't have to care about variable size folios, nor where the start or end of 1108 * the data range lies within a folio, if they lie within the same folio or even 1109 * if there are multiple discontiguous data ranges within the folio. 1110 * 1111 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1112 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1113 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1114 * date. A write page fault can then mark it dirty. If we then fail a write() 1115 * beyond EOF into that up to date cached range, we allocate a delalloc block 1116 * beyond EOF and then have to punch it out. Because the range is up to date, 1117 * mapping_seek_hole_data() will return it, and we will skip the punch because 1118 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1119 * beyond EOF in this case as writeback will never write back and covert that 1120 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1121 * resulting in always punching out the range from the EOF to the end of the 1122 * range the iomap spans. 1123 * 1124 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1125 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1126 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1127 * returns the end of the data range (data_end). Using closed intervals would 1128 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1129 * the code to subtle off-by-one bugs.... 1130 */ 1131 static int iomap_write_delalloc_release(struct inode *inode, 1132 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1133 { 1134 loff_t punch_start_byte = start_byte; 1135 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1136 int error = 0; 1137 1138 /* 1139 * Lock the mapping to avoid races with page faults re-instantiating 1140 * folios and dirtying them via ->page_mkwrite whilst we walk the 1141 * cache and perform delalloc extent removal. Failing to do this can 1142 * leave dirty pages with no space reservation in the cache. 1143 */ 1144 filemap_invalidate_lock(inode->i_mapping); 1145 while (start_byte < scan_end_byte) { 1146 loff_t data_end; 1147 1148 start_byte = mapping_seek_hole_data(inode->i_mapping, 1149 start_byte, scan_end_byte, SEEK_DATA); 1150 /* 1151 * If there is no more data to scan, all that is left is to 1152 * punch out the remaining range. 1153 */ 1154 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1155 break; 1156 if (start_byte < 0) { 1157 error = start_byte; 1158 goto out_unlock; 1159 } 1160 WARN_ON_ONCE(start_byte < punch_start_byte); 1161 WARN_ON_ONCE(start_byte > scan_end_byte); 1162 1163 /* 1164 * We find the end of this contiguous cached data range by 1165 * seeking from start_byte to the beginning of the next hole. 1166 */ 1167 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1168 scan_end_byte, SEEK_HOLE); 1169 if (data_end < 0) { 1170 error = data_end; 1171 goto out_unlock; 1172 } 1173 WARN_ON_ONCE(data_end <= start_byte); 1174 WARN_ON_ONCE(data_end > scan_end_byte); 1175 1176 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1177 start_byte, data_end, punch); 1178 if (error) 1179 goto out_unlock; 1180 1181 /* The next data search starts at the end of this one. */ 1182 start_byte = data_end; 1183 } 1184 1185 if (punch_start_byte < end_byte) 1186 error = punch(inode, punch_start_byte, 1187 end_byte - punch_start_byte); 1188 out_unlock: 1189 filemap_invalidate_unlock(inode->i_mapping); 1190 return error; 1191 } 1192 1193 /* 1194 * When a short write occurs, the filesystem may need to remove reserved space 1195 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1196 * filesystems that use delayed allocation, we need to punch out delalloc 1197 * extents from the range that are not dirty in the page cache. As the write can 1198 * race with page faults, there can be dirty pages over the delalloc extent 1199 * outside the range of a short write but still within the delalloc extent 1200 * allocated for this iomap. 1201 * 1202 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1203 * simplify range iterations. 1204 * 1205 * The punch() callback *must* only punch delalloc extents in the range passed 1206 * to it. It must skip over all other types of extents in the range and leave 1207 * them completely unchanged. It must do this punch atomically with respect to 1208 * other extent modifications. 1209 * 1210 * The punch() callback may be called with a folio locked to prevent writeback 1211 * extent allocation racing at the edge of the range we are currently punching. 1212 * The locked folio may or may not cover the range being punched, so it is not 1213 * safe for the punch() callback to lock folios itself. 1214 * 1215 * Lock order is: 1216 * 1217 * inode->i_rwsem (shared or exclusive) 1218 * inode->i_mapping->invalidate_lock (exclusive) 1219 * folio_lock() 1220 * ->punch 1221 * internal filesystem allocation lock 1222 */ 1223 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1224 struct iomap *iomap, loff_t pos, loff_t length, 1225 ssize_t written, iomap_punch_t punch) 1226 { 1227 loff_t start_byte; 1228 loff_t end_byte; 1229 unsigned int blocksize = i_blocksize(inode); 1230 1231 if (iomap->type != IOMAP_DELALLOC) 1232 return 0; 1233 1234 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1235 if (!(iomap->flags & IOMAP_F_NEW)) 1236 return 0; 1237 1238 /* 1239 * start_byte refers to the first unused block after a short write. If 1240 * nothing was written, round offset down to point at the first block in 1241 * the range. 1242 */ 1243 if (unlikely(!written)) 1244 start_byte = round_down(pos, blocksize); 1245 else 1246 start_byte = round_up(pos + written, blocksize); 1247 end_byte = round_up(pos + length, blocksize); 1248 1249 /* Nothing to do if we've written the entire delalloc extent */ 1250 if (start_byte >= end_byte) 1251 return 0; 1252 1253 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1254 punch); 1255 } 1256 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1257 1258 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1259 { 1260 struct iomap *iomap = &iter->iomap; 1261 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1262 loff_t pos = iter->pos; 1263 loff_t length = iomap_length(iter); 1264 long status = 0; 1265 loff_t written = 0; 1266 1267 /* don't bother with blocks that are not shared to start with */ 1268 if (!(iomap->flags & IOMAP_F_SHARED)) 1269 return length; 1270 /* don't bother with holes or unwritten extents */ 1271 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1272 return length; 1273 1274 do { 1275 unsigned long offset = offset_in_page(pos); 1276 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 1277 struct folio *folio; 1278 1279 status = iomap_write_begin(iter, pos, bytes, &folio); 1280 if (unlikely(status)) 1281 return status; 1282 if (iter->iomap.flags & IOMAP_F_STALE) 1283 break; 1284 1285 status = iomap_write_end(iter, pos, bytes, bytes, folio); 1286 if (WARN_ON_ONCE(status == 0)) 1287 return -EIO; 1288 1289 cond_resched(); 1290 1291 pos += status; 1292 written += status; 1293 length -= status; 1294 1295 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1296 } while (length); 1297 1298 return written; 1299 } 1300 1301 int 1302 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1303 const struct iomap_ops *ops) 1304 { 1305 struct iomap_iter iter = { 1306 .inode = inode, 1307 .pos = pos, 1308 .len = len, 1309 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1310 }; 1311 int ret; 1312 1313 while ((ret = iomap_iter(&iter, ops)) > 0) 1314 iter.processed = iomap_unshare_iter(&iter); 1315 return ret; 1316 } 1317 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1318 1319 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1320 { 1321 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1322 loff_t pos = iter->pos; 1323 loff_t length = iomap_length(iter); 1324 loff_t written = 0; 1325 1326 /* already zeroed? we're done. */ 1327 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1328 return length; 1329 1330 do { 1331 struct folio *folio; 1332 int status; 1333 size_t offset; 1334 size_t bytes = min_t(u64, SIZE_MAX, length); 1335 1336 status = iomap_write_begin(iter, pos, bytes, &folio); 1337 if (status) 1338 return status; 1339 if (iter->iomap.flags & IOMAP_F_STALE) 1340 break; 1341 1342 offset = offset_in_folio(folio, pos); 1343 if (bytes > folio_size(folio) - offset) 1344 bytes = folio_size(folio) - offset; 1345 1346 folio_zero_range(folio, offset, bytes); 1347 folio_mark_accessed(folio); 1348 1349 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1350 if (WARN_ON_ONCE(bytes == 0)) 1351 return -EIO; 1352 1353 pos += bytes; 1354 length -= bytes; 1355 written += bytes; 1356 } while (length > 0); 1357 1358 if (did_zero) 1359 *did_zero = true; 1360 return written; 1361 } 1362 1363 int 1364 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1365 const struct iomap_ops *ops) 1366 { 1367 struct iomap_iter iter = { 1368 .inode = inode, 1369 .pos = pos, 1370 .len = len, 1371 .flags = IOMAP_ZERO, 1372 }; 1373 int ret; 1374 1375 while ((ret = iomap_iter(&iter, ops)) > 0) 1376 iter.processed = iomap_zero_iter(&iter, did_zero); 1377 return ret; 1378 } 1379 EXPORT_SYMBOL_GPL(iomap_zero_range); 1380 1381 int 1382 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1383 const struct iomap_ops *ops) 1384 { 1385 unsigned int blocksize = i_blocksize(inode); 1386 unsigned int off = pos & (blocksize - 1); 1387 1388 /* Block boundary? Nothing to do */ 1389 if (!off) 1390 return 0; 1391 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1392 } 1393 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1394 1395 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1396 struct folio *folio) 1397 { 1398 loff_t length = iomap_length(iter); 1399 int ret; 1400 1401 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1402 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1403 &iter->iomap); 1404 if (ret) 1405 return ret; 1406 block_commit_write(&folio->page, 0, length); 1407 } else { 1408 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1409 folio_mark_dirty(folio); 1410 } 1411 1412 return length; 1413 } 1414 1415 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1416 { 1417 struct iomap_iter iter = { 1418 .inode = file_inode(vmf->vma->vm_file), 1419 .flags = IOMAP_WRITE | IOMAP_FAULT, 1420 }; 1421 struct folio *folio = page_folio(vmf->page); 1422 ssize_t ret; 1423 1424 folio_lock(folio); 1425 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1426 if (ret < 0) 1427 goto out_unlock; 1428 iter.pos = folio_pos(folio); 1429 iter.len = ret; 1430 while ((ret = iomap_iter(&iter, ops)) > 0) 1431 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1432 1433 if (ret < 0) 1434 goto out_unlock; 1435 folio_wait_stable(folio); 1436 return VM_FAULT_LOCKED; 1437 out_unlock: 1438 folio_unlock(folio); 1439 return vmf_fs_error(ret); 1440 } 1441 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1442 1443 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1444 size_t len, int error) 1445 { 1446 struct iomap_folio_state *ifs = folio->private; 1447 1448 if (error) { 1449 folio_set_error(folio); 1450 mapping_set_error(inode->i_mapping, error); 1451 } 1452 1453 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1454 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1455 1456 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1457 folio_end_writeback(folio); 1458 } 1459 1460 /* 1461 * We're now finished for good with this ioend structure. Update the page 1462 * state, release holds on bios, and finally free up memory. Do not use the 1463 * ioend after this. 1464 */ 1465 static u32 1466 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1467 { 1468 struct inode *inode = ioend->io_inode; 1469 struct bio *bio = &ioend->io_inline_bio; 1470 struct bio *last = ioend->io_bio, *next; 1471 u64 start = bio->bi_iter.bi_sector; 1472 loff_t offset = ioend->io_offset; 1473 bool quiet = bio_flagged(bio, BIO_QUIET); 1474 u32 folio_count = 0; 1475 1476 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1477 struct folio_iter fi; 1478 1479 /* 1480 * For the last bio, bi_private points to the ioend, so we 1481 * need to explicitly end the iteration here. 1482 */ 1483 if (bio == last) 1484 next = NULL; 1485 else 1486 next = bio->bi_private; 1487 1488 /* walk all folios in bio, ending page IO on them */ 1489 bio_for_each_folio_all(fi, bio) { 1490 iomap_finish_folio_write(inode, fi.folio, fi.length, 1491 error); 1492 folio_count++; 1493 } 1494 bio_put(bio); 1495 } 1496 /* The ioend has been freed by bio_put() */ 1497 1498 if (unlikely(error && !quiet)) { 1499 printk_ratelimited(KERN_ERR 1500 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1501 inode->i_sb->s_id, inode->i_ino, offset, start); 1502 } 1503 return folio_count; 1504 } 1505 1506 /* 1507 * Ioend completion routine for merged bios. This can only be called from task 1508 * contexts as merged ioends can be of unbound length. Hence we have to break up 1509 * the writeback completions into manageable chunks to avoid long scheduler 1510 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1511 * good batch processing throughput without creating adverse scheduler latency 1512 * conditions. 1513 */ 1514 void 1515 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1516 { 1517 struct list_head tmp; 1518 u32 completions; 1519 1520 might_sleep(); 1521 1522 list_replace_init(&ioend->io_list, &tmp); 1523 completions = iomap_finish_ioend(ioend, error); 1524 1525 while (!list_empty(&tmp)) { 1526 if (completions > IOEND_BATCH_SIZE * 8) { 1527 cond_resched(); 1528 completions = 0; 1529 } 1530 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1531 list_del_init(&ioend->io_list); 1532 completions += iomap_finish_ioend(ioend, error); 1533 } 1534 } 1535 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1536 1537 /* 1538 * We can merge two adjacent ioends if they have the same set of work to do. 1539 */ 1540 static bool 1541 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1542 { 1543 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1544 return false; 1545 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1546 (next->io_flags & IOMAP_F_SHARED)) 1547 return false; 1548 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1549 (next->io_type == IOMAP_UNWRITTEN)) 1550 return false; 1551 if (ioend->io_offset + ioend->io_size != next->io_offset) 1552 return false; 1553 /* 1554 * Do not merge physically discontiguous ioends. The filesystem 1555 * completion functions will have to iterate the physical 1556 * discontiguities even if we merge the ioends at a logical level, so 1557 * we don't gain anything by merging physical discontiguities here. 1558 * 1559 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1560 * submission so does not point to the start sector of the bio at 1561 * completion. 1562 */ 1563 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1564 return false; 1565 return true; 1566 } 1567 1568 void 1569 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1570 { 1571 struct iomap_ioend *next; 1572 1573 INIT_LIST_HEAD(&ioend->io_list); 1574 1575 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1576 io_list))) { 1577 if (!iomap_ioend_can_merge(ioend, next)) 1578 break; 1579 list_move_tail(&next->io_list, &ioend->io_list); 1580 ioend->io_size += next->io_size; 1581 } 1582 } 1583 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1584 1585 static int 1586 iomap_ioend_compare(void *priv, const struct list_head *a, 1587 const struct list_head *b) 1588 { 1589 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1590 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1591 1592 if (ia->io_offset < ib->io_offset) 1593 return -1; 1594 if (ia->io_offset > ib->io_offset) 1595 return 1; 1596 return 0; 1597 } 1598 1599 void 1600 iomap_sort_ioends(struct list_head *ioend_list) 1601 { 1602 list_sort(NULL, ioend_list, iomap_ioend_compare); 1603 } 1604 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1605 1606 static void iomap_writepage_end_bio(struct bio *bio) 1607 { 1608 struct iomap_ioend *ioend = bio->bi_private; 1609 1610 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1611 } 1612 1613 /* 1614 * Submit the final bio for an ioend. 1615 * 1616 * If @error is non-zero, it means that we have a situation where some part of 1617 * the submission process has failed after we've marked pages for writeback 1618 * and unlocked them. In this situation, we need to fail the bio instead of 1619 * submitting it. This typically only happens on a filesystem shutdown. 1620 */ 1621 static int 1622 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1623 int error) 1624 { 1625 ioend->io_bio->bi_private = ioend; 1626 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1627 1628 if (wpc->ops->prepare_ioend) 1629 error = wpc->ops->prepare_ioend(ioend, error); 1630 if (error) { 1631 /* 1632 * If we're failing the IO now, just mark the ioend with an 1633 * error and finish it. This will run IO completion immediately 1634 * as there is only one reference to the ioend at this point in 1635 * time. 1636 */ 1637 ioend->io_bio->bi_status = errno_to_blk_status(error); 1638 bio_endio(ioend->io_bio); 1639 return error; 1640 } 1641 1642 submit_bio(ioend->io_bio); 1643 return 0; 1644 } 1645 1646 static struct iomap_ioend * 1647 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1648 loff_t offset, sector_t sector, struct writeback_control *wbc) 1649 { 1650 struct iomap_ioend *ioend; 1651 struct bio *bio; 1652 1653 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1654 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1655 GFP_NOFS, &iomap_ioend_bioset); 1656 bio->bi_iter.bi_sector = sector; 1657 wbc_init_bio(wbc, bio); 1658 1659 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1660 INIT_LIST_HEAD(&ioend->io_list); 1661 ioend->io_type = wpc->iomap.type; 1662 ioend->io_flags = wpc->iomap.flags; 1663 ioend->io_inode = inode; 1664 ioend->io_size = 0; 1665 ioend->io_folios = 0; 1666 ioend->io_offset = offset; 1667 ioend->io_bio = bio; 1668 ioend->io_sector = sector; 1669 return ioend; 1670 } 1671 1672 /* 1673 * Allocate a new bio, and chain the old bio to the new one. 1674 * 1675 * Note that we have to perform the chaining in this unintuitive order 1676 * so that the bi_private linkage is set up in the right direction for the 1677 * traversal in iomap_finish_ioend(). 1678 */ 1679 static struct bio * 1680 iomap_chain_bio(struct bio *prev) 1681 { 1682 struct bio *new; 1683 1684 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1685 bio_clone_blkg_association(new, prev); 1686 new->bi_iter.bi_sector = bio_end_sector(prev); 1687 1688 bio_chain(prev, new); 1689 bio_get(prev); /* for iomap_finish_ioend */ 1690 submit_bio(prev); 1691 return new; 1692 } 1693 1694 static bool 1695 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1696 sector_t sector) 1697 { 1698 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1699 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1700 return false; 1701 if (wpc->iomap.type != wpc->ioend->io_type) 1702 return false; 1703 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1704 return false; 1705 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1706 return false; 1707 /* 1708 * Limit ioend bio chain lengths to minimise IO completion latency. This 1709 * also prevents long tight loops ending page writeback on all the 1710 * folios in the ioend. 1711 */ 1712 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1713 return false; 1714 return true; 1715 } 1716 1717 /* 1718 * Test to see if we have an existing ioend structure that we could append to 1719 * first; otherwise finish off the current ioend and start another. 1720 */ 1721 static void 1722 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1723 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc, 1724 struct writeback_control *wbc, struct list_head *iolist) 1725 { 1726 sector_t sector = iomap_sector(&wpc->iomap, pos); 1727 unsigned len = i_blocksize(inode); 1728 size_t poff = offset_in_folio(folio, pos); 1729 1730 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1731 if (wpc->ioend) 1732 list_add(&wpc->ioend->io_list, iolist); 1733 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1734 } 1735 1736 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1737 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1738 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff); 1739 } 1740 1741 if (ifs) 1742 atomic_add(len, &ifs->write_bytes_pending); 1743 wpc->ioend->io_size += len; 1744 wbc_account_cgroup_owner(wbc, &folio->page, len); 1745 } 1746 1747 /* 1748 * We implement an immediate ioend submission policy here to avoid needing to 1749 * chain multiple ioends and hence nest mempool allocations which can violate 1750 * the forward progress guarantees we need to provide. The current ioend we're 1751 * adding blocks to is cached in the writepage context, and if the new block 1752 * doesn't append to the cached ioend, it will create a new ioend and cache that 1753 * instead. 1754 * 1755 * If a new ioend is created and cached, the old ioend is returned and queued 1756 * locally for submission once the entire page is processed or an error has been 1757 * detected. While ioends are submitted immediately after they are completed, 1758 * batching optimisations are provided by higher level block plugging. 1759 * 1760 * At the end of a writeback pass, there will be a cached ioend remaining on the 1761 * writepage context that the caller will need to submit. 1762 */ 1763 static int 1764 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1765 struct writeback_control *wbc, struct inode *inode, 1766 struct folio *folio, u64 end_pos) 1767 { 1768 struct iomap_folio_state *ifs = folio->private; 1769 struct iomap_ioend *ioend, *next; 1770 unsigned len = i_blocksize(inode); 1771 unsigned nblocks = i_blocks_per_folio(inode, folio); 1772 u64 pos = folio_pos(folio); 1773 int error = 0, count = 0, i; 1774 LIST_HEAD(submit_list); 1775 1776 WARN_ON_ONCE(end_pos <= pos); 1777 1778 if (!ifs && nblocks > 1) { 1779 ifs = ifs_alloc(inode, folio, 0); 1780 iomap_set_range_dirty(folio, 0, end_pos - pos); 1781 } 1782 1783 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0); 1784 1785 /* 1786 * Walk through the folio to find areas to write back. If we 1787 * run off the end of the current map or find the current map 1788 * invalid, grab a new one. 1789 */ 1790 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1791 if (ifs && !ifs_block_is_dirty(folio, ifs, i)) 1792 continue; 1793 1794 error = wpc->ops->map_blocks(wpc, inode, pos); 1795 if (error) 1796 break; 1797 trace_iomap_writepage_map(inode, &wpc->iomap); 1798 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1799 continue; 1800 if (wpc->iomap.type == IOMAP_HOLE) 1801 continue; 1802 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc, 1803 &submit_list); 1804 count++; 1805 } 1806 if (count) 1807 wpc->ioend->io_folios++; 1808 1809 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1810 WARN_ON_ONCE(!folio_test_locked(folio)); 1811 WARN_ON_ONCE(folio_test_writeback(folio)); 1812 WARN_ON_ONCE(folio_test_dirty(folio)); 1813 1814 /* 1815 * We cannot cancel the ioend directly here on error. We may have 1816 * already set other pages under writeback and hence we have to run I/O 1817 * completion to mark the error state of the pages under writeback 1818 * appropriately. 1819 */ 1820 if (unlikely(error)) { 1821 /* 1822 * Let the filesystem know what portion of the current page 1823 * failed to map. If the page hasn't been added to ioend, it 1824 * won't be affected by I/O completion and we must unlock it 1825 * now. 1826 */ 1827 if (wpc->ops->discard_folio) 1828 wpc->ops->discard_folio(folio, pos); 1829 if (!count) { 1830 folio_unlock(folio); 1831 goto done; 1832 } 1833 } 1834 1835 /* 1836 * We can have dirty bits set past end of file in page_mkwrite path 1837 * while mapping the last partial folio. Hence it's better to clear 1838 * all the dirty bits in the folio here. 1839 */ 1840 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1841 folio_start_writeback(folio); 1842 folio_unlock(folio); 1843 1844 /* 1845 * Preserve the original error if there was one; catch 1846 * submission errors here and propagate into subsequent ioend 1847 * submissions. 1848 */ 1849 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1850 int error2; 1851 1852 list_del_init(&ioend->io_list); 1853 error2 = iomap_submit_ioend(wpc, ioend, error); 1854 if (error2 && !error) 1855 error = error2; 1856 } 1857 1858 /* 1859 * We can end up here with no error and nothing to write only if we race 1860 * with a partial page truncate on a sub-page block sized filesystem. 1861 */ 1862 if (!count) 1863 folio_end_writeback(folio); 1864 done: 1865 mapping_set_error(inode->i_mapping, error); 1866 return error; 1867 } 1868 1869 /* 1870 * Write out a dirty page. 1871 * 1872 * For delalloc space on the page, we need to allocate space and flush it. 1873 * For unwritten space on the page, we need to start the conversion to 1874 * regular allocated space. 1875 */ 1876 static int iomap_do_writepage(struct folio *folio, 1877 struct writeback_control *wbc, void *data) 1878 { 1879 struct iomap_writepage_ctx *wpc = data; 1880 struct inode *inode = folio->mapping->host; 1881 u64 end_pos, isize; 1882 1883 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1884 1885 /* 1886 * Refuse to write the folio out if we're called from reclaim context. 1887 * 1888 * This avoids stack overflows when called from deeply used stacks in 1889 * random callers for direct reclaim or memcg reclaim. We explicitly 1890 * allow reclaim from kswapd as the stack usage there is relatively low. 1891 * 1892 * This should never happen except in the case of a VM regression so 1893 * warn about it. 1894 */ 1895 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1896 PF_MEMALLOC)) 1897 goto redirty; 1898 1899 /* 1900 * Is this folio beyond the end of the file? 1901 * 1902 * The folio index is less than the end_index, adjust the end_pos 1903 * to the highest offset that this folio should represent. 1904 * ----------------------------------------------------- 1905 * | file mapping | <EOF> | 1906 * ----------------------------------------------------- 1907 * | Page ... | Page N-2 | Page N-1 | Page N | | 1908 * ^--------------------------------^----------|-------- 1909 * | desired writeback range | see else | 1910 * ---------------------------------^------------------| 1911 */ 1912 isize = i_size_read(inode); 1913 end_pos = folio_pos(folio) + folio_size(folio); 1914 if (end_pos > isize) { 1915 /* 1916 * Check whether the page to write out is beyond or straddles 1917 * i_size or not. 1918 * ------------------------------------------------------- 1919 * | file mapping | <EOF> | 1920 * ------------------------------------------------------- 1921 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1922 * ^--------------------------------^-----------|--------- 1923 * | | Straddles | 1924 * ---------------------------------^-----------|--------| 1925 */ 1926 size_t poff = offset_in_folio(folio, isize); 1927 pgoff_t end_index = isize >> PAGE_SHIFT; 1928 1929 /* 1930 * Skip the page if it's fully outside i_size, e.g. 1931 * due to a truncate operation that's in progress. We've 1932 * cleaned this page and truncate will finish things off for 1933 * us. 1934 * 1935 * Note that the end_index is unsigned long. If the given 1936 * offset is greater than 16TB on a 32-bit system then if we 1937 * checked if the page is fully outside i_size with 1938 * "if (page->index >= end_index + 1)", "end_index + 1" would 1939 * overflow and evaluate to 0. Hence this page would be 1940 * redirtied and written out repeatedly, which would result in 1941 * an infinite loop; the user program performing this operation 1942 * would hang. Instead, we can detect this situation by 1943 * checking if the page is totally beyond i_size or if its 1944 * offset is just equal to the EOF. 1945 */ 1946 if (folio->index > end_index || 1947 (folio->index == end_index && poff == 0)) 1948 goto unlock; 1949 1950 /* 1951 * The page straddles i_size. It must be zeroed out on each 1952 * and every writepage invocation because it may be mmapped. 1953 * "A file is mapped in multiples of the page size. For a file 1954 * that is not a multiple of the page size, the remaining 1955 * memory is zeroed when mapped, and writes to that region are 1956 * not written out to the file." 1957 */ 1958 folio_zero_segment(folio, poff, folio_size(folio)); 1959 end_pos = isize; 1960 } 1961 1962 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1963 1964 redirty: 1965 folio_redirty_for_writepage(wbc, folio); 1966 unlock: 1967 folio_unlock(folio); 1968 return 0; 1969 } 1970 1971 int 1972 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1973 struct iomap_writepage_ctx *wpc, 1974 const struct iomap_writeback_ops *ops) 1975 { 1976 int ret; 1977 1978 wpc->ops = ops; 1979 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1980 if (!wpc->ioend) 1981 return ret; 1982 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1983 } 1984 EXPORT_SYMBOL_GPL(iomap_writepages); 1985 1986 static int __init iomap_init(void) 1987 { 1988 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1989 offsetof(struct iomap_ioend, io_inline_bio), 1990 BIOSET_NEED_BVECS); 1991 } 1992 fs_initcall(iomap_init); 1993