xref: /linux/fs/iomap/buffered-io.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 /*
27  * Structure allocated for each folio when block size < folio size
28  * to track sub-folio uptodate status and I/O completions.
29  */
30 struct iomap_page {
31 	atomic_t		read_bytes_pending;
32 	atomic_t		write_bytes_pending;
33 	spinlock_t		uptodate_lock;
34 	unsigned long		uptodate[];
35 };
36 
37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 	if (folio_test_private(folio))
40 		return folio_get_private(folio);
41 	return NULL;
42 }
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static struct iomap_page *
47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags)
48 {
49 	struct iomap_page *iop = to_iomap_page(folio);
50 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 	gfp_t gfp;
52 
53 	if (iop || nr_blocks <= 1)
54 		return iop;
55 
56 	if (flags & IOMAP_NOWAIT)
57 		gfp = GFP_NOWAIT;
58 	else
59 		gfp = GFP_NOFS | __GFP_NOFAIL;
60 
61 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
62 		      gfp);
63 	if (iop) {
64 		spin_lock_init(&iop->uptodate_lock);
65 		if (folio_test_uptodate(folio))
66 			bitmap_fill(iop->uptodate, nr_blocks);
67 		folio_attach_private(folio, iop);
68 	}
69 	return iop;
70 }
71 
72 static void iomap_page_release(struct folio *folio)
73 {
74 	struct iomap_page *iop = folio_detach_private(folio);
75 	struct inode *inode = folio->mapping->host;
76 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
77 
78 	if (!iop)
79 		return;
80 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
81 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
82 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
83 			folio_test_uptodate(folio));
84 	kfree(iop);
85 }
86 
87 /*
88  * Calculate the range inside the folio that we actually need to read.
89  */
90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
91 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
92 {
93 	struct iomap_page *iop = to_iomap_page(folio);
94 	loff_t orig_pos = *pos;
95 	loff_t isize = i_size_read(inode);
96 	unsigned block_bits = inode->i_blkbits;
97 	unsigned block_size = (1 << block_bits);
98 	size_t poff = offset_in_folio(folio, *pos);
99 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
100 	unsigned first = poff >> block_bits;
101 	unsigned last = (poff + plen - 1) >> block_bits;
102 
103 	/*
104 	 * If the block size is smaller than the page size, we need to check the
105 	 * per-block uptodate status and adjust the offset and length if needed
106 	 * to avoid reading in already uptodate ranges.
107 	 */
108 	if (iop) {
109 		unsigned int i;
110 
111 		/* move forward for each leading block marked uptodate */
112 		for (i = first; i <= last; i++) {
113 			if (!test_bit(i, iop->uptodate))
114 				break;
115 			*pos += block_size;
116 			poff += block_size;
117 			plen -= block_size;
118 			first++;
119 		}
120 
121 		/* truncate len if we find any trailing uptodate block(s) */
122 		for ( ; i <= last; i++) {
123 			if (test_bit(i, iop->uptodate)) {
124 				plen -= (last - i + 1) * block_size;
125 				last = i - 1;
126 				break;
127 			}
128 		}
129 	}
130 
131 	/*
132 	 * If the extent spans the block that contains the i_size, we need to
133 	 * handle both halves separately so that we properly zero data in the
134 	 * page cache for blocks that are entirely outside of i_size.
135 	 */
136 	if (orig_pos <= isize && orig_pos + length > isize) {
137 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
138 
139 		if (first <= end && last > end)
140 			plen -= (last - end) * block_size;
141 	}
142 
143 	*offp = poff;
144 	*lenp = plen;
145 }
146 
147 static void iomap_iop_set_range_uptodate(struct folio *folio,
148 		struct iomap_page *iop, size_t off, size_t len)
149 {
150 	struct inode *inode = folio->mapping->host;
151 	unsigned first = off >> inode->i_blkbits;
152 	unsigned last = (off + len - 1) >> inode->i_blkbits;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&iop->uptodate_lock, flags);
156 	bitmap_set(iop->uptodate, first, last - first + 1);
157 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
158 		folio_mark_uptodate(folio);
159 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
160 }
161 
162 static void iomap_set_range_uptodate(struct folio *folio,
163 		struct iomap_page *iop, size_t off, size_t len)
164 {
165 	if (iop)
166 		iomap_iop_set_range_uptodate(folio, iop, off, len);
167 	else
168 		folio_mark_uptodate(folio);
169 }
170 
171 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
172 		size_t len, int error)
173 {
174 	struct iomap_page *iop = to_iomap_page(folio);
175 
176 	if (unlikely(error)) {
177 		folio_clear_uptodate(folio);
178 		folio_set_error(folio);
179 	} else {
180 		iomap_set_range_uptodate(folio, iop, offset, len);
181 	}
182 
183 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
184 		folio_unlock(folio);
185 }
186 
187 static void iomap_read_end_io(struct bio *bio)
188 {
189 	int error = blk_status_to_errno(bio->bi_status);
190 	struct folio_iter fi;
191 
192 	bio_for_each_folio_all(fi, bio)
193 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
194 	bio_put(bio);
195 }
196 
197 struct iomap_readpage_ctx {
198 	struct folio		*cur_folio;
199 	bool			cur_folio_in_bio;
200 	struct bio		*bio;
201 	struct readahead_control *rac;
202 };
203 
204 /**
205  * iomap_read_inline_data - copy inline data into the page cache
206  * @iter: iteration structure
207  * @folio: folio to copy to
208  *
209  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
210  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
211  * Returns zero for success to complete the read, or the usual negative errno.
212  */
213 static int iomap_read_inline_data(const struct iomap_iter *iter,
214 		struct folio *folio)
215 {
216 	struct iomap_page *iop;
217 	const struct iomap *iomap = iomap_iter_srcmap(iter);
218 	size_t size = i_size_read(iter->inode) - iomap->offset;
219 	size_t poff = offset_in_page(iomap->offset);
220 	size_t offset = offset_in_folio(folio, iomap->offset);
221 	void *addr;
222 
223 	if (folio_test_uptodate(folio))
224 		return 0;
225 
226 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
227 		return -EIO;
228 	if (WARN_ON_ONCE(size > PAGE_SIZE -
229 			 offset_in_page(iomap->inline_data)))
230 		return -EIO;
231 	if (WARN_ON_ONCE(size > iomap->length))
232 		return -EIO;
233 	if (offset > 0)
234 		iop = iomap_page_create(iter->inode, folio, iter->flags);
235 	else
236 		iop = to_iomap_page(folio);
237 
238 	addr = kmap_local_folio(folio, offset);
239 	memcpy(addr, iomap->inline_data, size);
240 	memset(addr + size, 0, PAGE_SIZE - poff - size);
241 	kunmap_local(addr);
242 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
243 	return 0;
244 }
245 
246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
247 		loff_t pos)
248 {
249 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
250 
251 	return srcmap->type != IOMAP_MAPPED ||
252 		(srcmap->flags & IOMAP_F_NEW) ||
253 		pos >= i_size_read(iter->inode);
254 }
255 
256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
257 		struct iomap_readpage_ctx *ctx, loff_t offset)
258 {
259 	const struct iomap *iomap = &iter->iomap;
260 	loff_t pos = iter->pos + offset;
261 	loff_t length = iomap_length(iter) - offset;
262 	struct folio *folio = ctx->cur_folio;
263 	struct iomap_page *iop;
264 	loff_t orig_pos = pos;
265 	size_t poff, plen;
266 	sector_t sector;
267 
268 	if (iomap->type == IOMAP_INLINE)
269 		return iomap_read_inline_data(iter, folio);
270 
271 	/* zero post-eof blocks as the page may be mapped */
272 	iop = iomap_page_create(iter->inode, folio, iter->flags);
273 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
274 	if (plen == 0)
275 		goto done;
276 
277 	if (iomap_block_needs_zeroing(iter, pos)) {
278 		folio_zero_range(folio, poff, plen);
279 		iomap_set_range_uptodate(folio, iop, poff, plen);
280 		goto done;
281 	}
282 
283 	ctx->cur_folio_in_bio = true;
284 	if (iop)
285 		atomic_add(plen, &iop->read_bytes_pending);
286 
287 	sector = iomap_sector(iomap, pos);
288 	if (!ctx->bio ||
289 	    bio_end_sector(ctx->bio) != sector ||
290 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
291 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
292 		gfp_t orig_gfp = gfp;
293 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
294 
295 		if (ctx->bio)
296 			submit_bio(ctx->bio);
297 
298 		if (ctx->rac) /* same as readahead_gfp_mask */
299 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
300 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
301 				     REQ_OP_READ, gfp);
302 		/*
303 		 * If the bio_alloc fails, try it again for a single page to
304 		 * avoid having to deal with partial page reads.  This emulates
305 		 * what do_mpage_read_folio does.
306 		 */
307 		if (!ctx->bio) {
308 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
309 					     orig_gfp);
310 		}
311 		if (ctx->rac)
312 			ctx->bio->bi_opf |= REQ_RAHEAD;
313 		ctx->bio->bi_iter.bi_sector = sector;
314 		ctx->bio->bi_end_io = iomap_read_end_io;
315 		bio_add_folio(ctx->bio, folio, plen, poff);
316 	}
317 
318 done:
319 	/*
320 	 * Move the caller beyond our range so that it keeps making progress.
321 	 * For that, we have to include any leading non-uptodate ranges, but
322 	 * we can skip trailing ones as they will be handled in the next
323 	 * iteration.
324 	 */
325 	return pos - orig_pos + plen;
326 }
327 
328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
329 {
330 	struct iomap_iter iter = {
331 		.inode		= folio->mapping->host,
332 		.pos		= folio_pos(folio),
333 		.len		= folio_size(folio),
334 	};
335 	struct iomap_readpage_ctx ctx = {
336 		.cur_folio	= folio,
337 	};
338 	int ret;
339 
340 	trace_iomap_readpage(iter.inode, 1);
341 
342 	while ((ret = iomap_iter(&iter, ops)) > 0)
343 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
344 
345 	if (ret < 0)
346 		folio_set_error(folio);
347 
348 	if (ctx.bio) {
349 		submit_bio(ctx.bio);
350 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
351 	} else {
352 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
353 		folio_unlock(folio);
354 	}
355 
356 	/*
357 	 * Just like mpage_readahead and block_read_full_folio, we always
358 	 * return 0 and just set the folio error flag on errors.  This
359 	 * should be cleaned up throughout the stack eventually.
360 	 */
361 	return 0;
362 }
363 EXPORT_SYMBOL_GPL(iomap_read_folio);
364 
365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
366 		struct iomap_readpage_ctx *ctx)
367 {
368 	loff_t length = iomap_length(iter);
369 	loff_t done, ret;
370 
371 	for (done = 0; done < length; done += ret) {
372 		if (ctx->cur_folio &&
373 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
374 			if (!ctx->cur_folio_in_bio)
375 				folio_unlock(ctx->cur_folio);
376 			ctx->cur_folio = NULL;
377 		}
378 		if (!ctx->cur_folio) {
379 			ctx->cur_folio = readahead_folio(ctx->rac);
380 			ctx->cur_folio_in_bio = false;
381 		}
382 		ret = iomap_readpage_iter(iter, ctx, done);
383 		if (ret <= 0)
384 			return ret;
385 	}
386 
387 	return done;
388 }
389 
390 /**
391  * iomap_readahead - Attempt to read pages from a file.
392  * @rac: Describes the pages to be read.
393  * @ops: The operations vector for the filesystem.
394  *
395  * This function is for filesystems to call to implement their readahead
396  * address_space operation.
397  *
398  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
399  * blocks from disc), and may wait for it.  The caller may be trying to
400  * access a different page, and so sleeping excessively should be avoided.
401  * It may allocate memory, but should avoid costly allocations.  This
402  * function is called with memalloc_nofs set, so allocations will not cause
403  * the filesystem to be reentered.
404  */
405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
406 {
407 	struct iomap_iter iter = {
408 		.inode	= rac->mapping->host,
409 		.pos	= readahead_pos(rac),
410 		.len	= readahead_length(rac),
411 	};
412 	struct iomap_readpage_ctx ctx = {
413 		.rac	= rac,
414 	};
415 
416 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
417 
418 	while (iomap_iter(&iter, ops) > 0)
419 		iter.processed = iomap_readahead_iter(&iter, &ctx);
420 
421 	if (ctx.bio)
422 		submit_bio(ctx.bio);
423 	if (ctx.cur_folio) {
424 		if (!ctx.cur_folio_in_bio)
425 			folio_unlock(ctx.cur_folio);
426 	}
427 }
428 EXPORT_SYMBOL_GPL(iomap_readahead);
429 
430 /*
431  * iomap_is_partially_uptodate checks whether blocks within a folio are
432  * uptodate or not.
433  *
434  * Returns true if all blocks which correspond to the specified part
435  * of the folio are uptodate.
436  */
437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
438 {
439 	struct iomap_page *iop = to_iomap_page(folio);
440 	struct inode *inode = folio->mapping->host;
441 	unsigned first, last, i;
442 
443 	if (!iop)
444 		return false;
445 
446 	/* Caller's range may extend past the end of this folio */
447 	count = min(folio_size(folio) - from, count);
448 
449 	/* First and last blocks in range within folio */
450 	first = from >> inode->i_blkbits;
451 	last = (from + count - 1) >> inode->i_blkbits;
452 
453 	for (i = first; i <= last; i++)
454 		if (!test_bit(i, iop->uptodate))
455 			return false;
456 	return true;
457 }
458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
459 
460 /**
461  * iomap_get_folio - get a folio reference for writing
462  * @iter: iteration structure
463  * @pos: start offset of write
464  *
465  * Returns a locked reference to the folio at @pos, or an error pointer if the
466  * folio could not be obtained.
467  */
468 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos)
469 {
470 	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
471 	struct folio *folio;
472 
473 	if (iter->flags & IOMAP_NOWAIT)
474 		fgp |= FGP_NOWAIT;
475 
476 	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
477 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
478 	if (folio)
479 		return folio;
480 
481 	if (iter->flags & IOMAP_NOWAIT)
482 		return ERR_PTR(-EAGAIN);
483 	return ERR_PTR(-ENOMEM);
484 }
485 EXPORT_SYMBOL_GPL(iomap_get_folio);
486 
487 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
488 {
489 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
490 			folio_size(folio));
491 
492 	/*
493 	 * mm accommodates an old ext3 case where clean folios might
494 	 * not have had the dirty bit cleared.  Thus, it can send actual
495 	 * dirty folios to ->release_folio() via shrink_active_list();
496 	 * skip those here.
497 	 */
498 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
499 		return false;
500 	iomap_page_release(folio);
501 	return true;
502 }
503 EXPORT_SYMBOL_GPL(iomap_release_folio);
504 
505 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
506 {
507 	trace_iomap_invalidate_folio(folio->mapping->host,
508 					folio_pos(folio) + offset, len);
509 
510 	/*
511 	 * If we're invalidating the entire folio, clear the dirty state
512 	 * from it and release it to avoid unnecessary buildup of the LRU.
513 	 */
514 	if (offset == 0 && len == folio_size(folio)) {
515 		WARN_ON_ONCE(folio_test_writeback(folio));
516 		folio_cancel_dirty(folio);
517 		iomap_page_release(folio);
518 	} else if (folio_test_large(folio)) {
519 		/* Must release the iop so the page can be split */
520 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
521 			     folio_test_dirty(folio));
522 		iomap_page_release(folio);
523 	}
524 }
525 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
526 
527 static void
528 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
529 {
530 	loff_t i_size = i_size_read(inode);
531 
532 	/*
533 	 * Only truncate newly allocated pages beyoned EOF, even if the
534 	 * write started inside the existing inode size.
535 	 */
536 	if (pos + len > i_size)
537 		truncate_pagecache_range(inode, max(pos, i_size),
538 					 pos + len - 1);
539 }
540 
541 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
542 		size_t poff, size_t plen, const struct iomap *iomap)
543 {
544 	struct bio_vec bvec;
545 	struct bio bio;
546 
547 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
548 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
549 	bio_add_folio(&bio, folio, plen, poff);
550 	return submit_bio_wait(&bio);
551 }
552 
553 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
554 		size_t len, struct folio *folio)
555 {
556 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
557 	struct iomap_page *iop;
558 	loff_t block_size = i_blocksize(iter->inode);
559 	loff_t block_start = round_down(pos, block_size);
560 	loff_t block_end = round_up(pos + len, block_size);
561 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
562 	size_t from = offset_in_folio(folio, pos), to = from + len;
563 	size_t poff, plen;
564 
565 	if (folio_test_uptodate(folio))
566 		return 0;
567 	folio_clear_error(folio);
568 
569 	iop = iomap_page_create(iter->inode, folio, iter->flags);
570 	if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1)
571 		return -EAGAIN;
572 
573 	do {
574 		iomap_adjust_read_range(iter->inode, folio, &block_start,
575 				block_end - block_start, &poff, &plen);
576 		if (plen == 0)
577 			break;
578 
579 		if (!(iter->flags & IOMAP_UNSHARE) &&
580 		    (from <= poff || from >= poff + plen) &&
581 		    (to <= poff || to >= poff + plen))
582 			continue;
583 
584 		if (iomap_block_needs_zeroing(iter, block_start)) {
585 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
586 				return -EIO;
587 			folio_zero_segments(folio, poff, from, to, poff + plen);
588 		} else {
589 			int status;
590 
591 			if (iter->flags & IOMAP_NOWAIT)
592 				return -EAGAIN;
593 
594 			status = iomap_read_folio_sync(block_start, folio,
595 					poff, plen, srcmap);
596 			if (status)
597 				return status;
598 		}
599 		iomap_set_range_uptodate(folio, iop, poff, plen);
600 	} while ((block_start += plen) < block_end);
601 
602 	return 0;
603 }
604 
605 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
606 		size_t len)
607 {
608 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
609 
610 	if (folio_ops && folio_ops->get_folio)
611 		return folio_ops->get_folio(iter, pos, len);
612 	else
613 		return iomap_get_folio(iter, pos);
614 }
615 
616 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
617 		struct folio *folio)
618 {
619 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
620 
621 	if (folio_ops && folio_ops->put_folio) {
622 		folio_ops->put_folio(iter->inode, pos, ret, folio);
623 	} else {
624 		folio_unlock(folio);
625 		folio_put(folio);
626 	}
627 }
628 
629 static int iomap_write_begin_inline(const struct iomap_iter *iter,
630 		struct folio *folio)
631 {
632 	/* needs more work for the tailpacking case; disable for now */
633 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
634 		return -EIO;
635 	return iomap_read_inline_data(iter, folio);
636 }
637 
638 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
639 		size_t len, struct folio **foliop)
640 {
641 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
642 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
643 	struct folio *folio;
644 	int status = 0;
645 
646 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
647 	if (srcmap != &iter->iomap)
648 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
649 
650 	if (fatal_signal_pending(current))
651 		return -EINTR;
652 
653 	if (!mapping_large_folio_support(iter->inode->i_mapping))
654 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
655 
656 	folio = __iomap_get_folio(iter, pos, len);
657 	if (IS_ERR(folio))
658 		return PTR_ERR(folio);
659 
660 	/*
661 	 * Now we have a locked folio, before we do anything with it we need to
662 	 * check that the iomap we have cached is not stale. The inode extent
663 	 * mapping can change due to concurrent IO in flight (e.g.
664 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
665 	 * reclaimed a previously partially written page at this index after IO
666 	 * completion before this write reaches this file offset) and hence we
667 	 * could do the wrong thing here (zero a page range incorrectly or fail
668 	 * to zero) and corrupt data.
669 	 */
670 	if (folio_ops && folio_ops->iomap_valid) {
671 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
672 							 &iter->iomap);
673 		if (!iomap_valid) {
674 			iter->iomap.flags |= IOMAP_F_STALE;
675 			status = 0;
676 			goto out_unlock;
677 		}
678 	}
679 
680 	if (pos + len > folio_pos(folio) + folio_size(folio))
681 		len = folio_pos(folio) + folio_size(folio) - pos;
682 
683 	if (srcmap->type == IOMAP_INLINE)
684 		status = iomap_write_begin_inline(iter, folio);
685 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
686 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
687 	else
688 		status = __iomap_write_begin(iter, pos, len, folio);
689 
690 	if (unlikely(status))
691 		goto out_unlock;
692 
693 	*foliop = folio;
694 	return 0;
695 
696 out_unlock:
697 	__iomap_put_folio(iter, pos, 0, folio);
698 	iomap_write_failed(iter->inode, pos, len);
699 
700 	return status;
701 }
702 
703 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
704 		size_t copied, struct folio *folio)
705 {
706 	struct iomap_page *iop = to_iomap_page(folio);
707 	flush_dcache_folio(folio);
708 
709 	/*
710 	 * The blocks that were entirely written will now be uptodate, so we
711 	 * don't have to worry about a read_folio reading them and overwriting a
712 	 * partial write.  However, if we've encountered a short write and only
713 	 * partially written into a block, it will not be marked uptodate, so a
714 	 * read_folio might come in and destroy our partial write.
715 	 *
716 	 * Do the simplest thing and just treat any short write to a
717 	 * non-uptodate page as a zero-length write, and force the caller to
718 	 * redo the whole thing.
719 	 */
720 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
721 		return 0;
722 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
723 	filemap_dirty_folio(inode->i_mapping, folio);
724 	return copied;
725 }
726 
727 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
728 		struct folio *folio, loff_t pos, size_t copied)
729 {
730 	const struct iomap *iomap = &iter->iomap;
731 	void *addr;
732 
733 	WARN_ON_ONCE(!folio_test_uptodate(folio));
734 	BUG_ON(!iomap_inline_data_valid(iomap));
735 
736 	flush_dcache_folio(folio);
737 	addr = kmap_local_folio(folio, pos);
738 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
739 	kunmap_local(addr);
740 
741 	mark_inode_dirty(iter->inode);
742 	return copied;
743 }
744 
745 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
746 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
747 		size_t copied, struct folio *folio)
748 {
749 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
750 	loff_t old_size = iter->inode->i_size;
751 	size_t ret;
752 
753 	if (srcmap->type == IOMAP_INLINE) {
754 		ret = iomap_write_end_inline(iter, folio, pos, copied);
755 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
756 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
757 				copied, &folio->page, NULL);
758 	} else {
759 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
760 	}
761 
762 	/*
763 	 * Update the in-memory inode size after copying the data into the page
764 	 * cache.  It's up to the file system to write the updated size to disk,
765 	 * preferably after I/O completion so that no stale data is exposed.
766 	 */
767 	if (pos + ret > old_size) {
768 		i_size_write(iter->inode, pos + ret);
769 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
770 	}
771 	__iomap_put_folio(iter, pos, ret, folio);
772 
773 	if (old_size < pos)
774 		pagecache_isize_extended(iter->inode, old_size, pos);
775 	if (ret < len)
776 		iomap_write_failed(iter->inode, pos + ret, len - ret);
777 	return ret;
778 }
779 
780 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
781 {
782 	loff_t length = iomap_length(iter);
783 	loff_t pos = iter->pos;
784 	ssize_t written = 0;
785 	long status = 0;
786 	struct address_space *mapping = iter->inode->i_mapping;
787 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
788 
789 	do {
790 		struct folio *folio;
791 		struct page *page;
792 		unsigned long offset;	/* Offset into pagecache page */
793 		unsigned long bytes;	/* Bytes to write to page */
794 		size_t copied;		/* Bytes copied from user */
795 
796 		offset = offset_in_page(pos);
797 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
798 						iov_iter_count(i));
799 again:
800 		status = balance_dirty_pages_ratelimited_flags(mapping,
801 							       bdp_flags);
802 		if (unlikely(status))
803 			break;
804 
805 		if (bytes > length)
806 			bytes = length;
807 
808 		/*
809 		 * Bring in the user page that we'll copy from _first_.
810 		 * Otherwise there's a nasty deadlock on copying from the
811 		 * same page as we're writing to, without it being marked
812 		 * up-to-date.
813 		 *
814 		 * For async buffered writes the assumption is that the user
815 		 * page has already been faulted in. This can be optimized by
816 		 * faulting the user page.
817 		 */
818 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
819 			status = -EFAULT;
820 			break;
821 		}
822 
823 		status = iomap_write_begin(iter, pos, bytes, &folio);
824 		if (unlikely(status))
825 			break;
826 		if (iter->iomap.flags & IOMAP_F_STALE)
827 			break;
828 
829 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
830 		if (mapping_writably_mapped(mapping))
831 			flush_dcache_page(page);
832 
833 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
834 
835 		status = iomap_write_end(iter, pos, bytes, copied, folio);
836 
837 		if (unlikely(copied != status))
838 			iov_iter_revert(i, copied - status);
839 
840 		cond_resched();
841 		if (unlikely(status == 0)) {
842 			/*
843 			 * A short copy made iomap_write_end() reject the
844 			 * thing entirely.  Might be memory poisoning
845 			 * halfway through, might be a race with munmap,
846 			 * might be severe memory pressure.
847 			 */
848 			if (copied)
849 				bytes = copied;
850 			goto again;
851 		}
852 		pos += status;
853 		written += status;
854 		length -= status;
855 	} while (iov_iter_count(i) && length);
856 
857 	if (status == -EAGAIN) {
858 		iov_iter_revert(i, written);
859 		return -EAGAIN;
860 	}
861 	return written ? written : status;
862 }
863 
864 ssize_t
865 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
866 		const struct iomap_ops *ops)
867 {
868 	struct iomap_iter iter = {
869 		.inode		= iocb->ki_filp->f_mapping->host,
870 		.pos		= iocb->ki_pos,
871 		.len		= iov_iter_count(i),
872 		.flags		= IOMAP_WRITE,
873 	};
874 	int ret;
875 
876 	if (iocb->ki_flags & IOCB_NOWAIT)
877 		iter.flags |= IOMAP_NOWAIT;
878 
879 	while ((ret = iomap_iter(&iter, ops)) > 0)
880 		iter.processed = iomap_write_iter(&iter, i);
881 	if (iter.pos == iocb->ki_pos)
882 		return ret;
883 	return iter.pos - iocb->ki_pos;
884 }
885 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
886 
887 /*
888  * Scan the data range passed to us for dirty page cache folios. If we find a
889  * dirty folio, punch out the preceeding range and update the offset from which
890  * the next punch will start from.
891  *
892  * We can punch out storage reservations under clean pages because they either
893  * contain data that has been written back - in which case the delalloc punch
894  * over that range is a no-op - or they have been read faults in which case they
895  * contain zeroes and we can remove the delalloc backing range and any new
896  * writes to those pages will do the normal hole filling operation...
897  *
898  * This makes the logic simple: we only need to keep the delalloc extents only
899  * over the dirty ranges of the page cache.
900  *
901  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
902  * simplify range iterations.
903  */
904 static int iomap_write_delalloc_scan(struct inode *inode,
905 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
906 		int (*punch)(struct inode *inode, loff_t offset, loff_t length))
907 {
908 	while (start_byte < end_byte) {
909 		struct folio	*folio;
910 
911 		/* grab locked page */
912 		folio = filemap_lock_folio(inode->i_mapping,
913 				start_byte >> PAGE_SHIFT);
914 		if (!folio) {
915 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
916 					PAGE_SIZE;
917 			continue;
918 		}
919 
920 		/* if dirty, punch up to offset */
921 		if (folio_test_dirty(folio)) {
922 			if (start_byte > *punch_start_byte) {
923 				int	error;
924 
925 				error = punch(inode, *punch_start_byte,
926 						start_byte - *punch_start_byte);
927 				if (error) {
928 					folio_unlock(folio);
929 					folio_put(folio);
930 					return error;
931 				}
932 			}
933 
934 			/*
935 			 * Make sure the next punch start is correctly bound to
936 			 * the end of this data range, not the end of the folio.
937 			 */
938 			*punch_start_byte = min_t(loff_t, end_byte,
939 					folio_next_index(folio) << PAGE_SHIFT);
940 		}
941 
942 		/* move offset to start of next folio in range */
943 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
944 		folio_unlock(folio);
945 		folio_put(folio);
946 	}
947 	return 0;
948 }
949 
950 /*
951  * Punch out all the delalloc blocks in the range given except for those that
952  * have dirty data still pending in the page cache - those are going to be
953  * written and so must still retain the delalloc backing for writeback.
954  *
955  * As we are scanning the page cache for data, we don't need to reimplement the
956  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
957  * start and end of data ranges correctly even for sub-folio block sizes. This
958  * byte range based iteration is especially convenient because it means we
959  * don't have to care about variable size folios, nor where the start or end of
960  * the data range lies within a folio, if they lie within the same folio or even
961  * if there are multiple discontiguous data ranges within the folio.
962  *
963  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
964  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
965  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
966  * date. A write page fault can then mark it dirty. If we then fail a write()
967  * beyond EOF into that up to date cached range, we allocate a delalloc block
968  * beyond EOF and then have to punch it out. Because the range is up to date,
969  * mapping_seek_hole_data() will return it, and we will skip the punch because
970  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
971  * beyond EOF in this case as writeback will never write back and covert that
972  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
973  * resulting in always punching out the range from the EOF to the end of the
974  * range the iomap spans.
975  *
976  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
977  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
978  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
979  * returns the end of the data range (data_end). Using closed intervals would
980  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
981  * the code to subtle off-by-one bugs....
982  */
983 static int iomap_write_delalloc_release(struct inode *inode,
984 		loff_t start_byte, loff_t end_byte,
985 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
986 {
987 	loff_t punch_start_byte = start_byte;
988 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
989 	int error = 0;
990 
991 	/*
992 	 * Lock the mapping to avoid races with page faults re-instantiating
993 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
994 	 * cache and perform delalloc extent removal. Failing to do this can
995 	 * leave dirty pages with no space reservation in the cache.
996 	 */
997 	filemap_invalidate_lock(inode->i_mapping);
998 	while (start_byte < scan_end_byte) {
999 		loff_t		data_end;
1000 
1001 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1002 				start_byte, scan_end_byte, SEEK_DATA);
1003 		/*
1004 		 * If there is no more data to scan, all that is left is to
1005 		 * punch out the remaining range.
1006 		 */
1007 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1008 			break;
1009 		if (start_byte < 0) {
1010 			error = start_byte;
1011 			goto out_unlock;
1012 		}
1013 		WARN_ON_ONCE(start_byte < punch_start_byte);
1014 		WARN_ON_ONCE(start_byte > scan_end_byte);
1015 
1016 		/*
1017 		 * We find the end of this contiguous cached data range by
1018 		 * seeking from start_byte to the beginning of the next hole.
1019 		 */
1020 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1021 				scan_end_byte, SEEK_HOLE);
1022 		if (data_end < 0) {
1023 			error = data_end;
1024 			goto out_unlock;
1025 		}
1026 		WARN_ON_ONCE(data_end <= start_byte);
1027 		WARN_ON_ONCE(data_end > scan_end_byte);
1028 
1029 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1030 				start_byte, data_end, punch);
1031 		if (error)
1032 			goto out_unlock;
1033 
1034 		/* The next data search starts at the end of this one. */
1035 		start_byte = data_end;
1036 	}
1037 
1038 	if (punch_start_byte < end_byte)
1039 		error = punch(inode, punch_start_byte,
1040 				end_byte - punch_start_byte);
1041 out_unlock:
1042 	filemap_invalidate_unlock(inode->i_mapping);
1043 	return error;
1044 }
1045 
1046 /*
1047  * When a short write occurs, the filesystem may need to remove reserved space
1048  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1049  * filesystems that use delayed allocation, we need to punch out delalloc
1050  * extents from the range that are not dirty in the page cache. As the write can
1051  * race with page faults, there can be dirty pages over the delalloc extent
1052  * outside the range of a short write but still within the delalloc extent
1053  * allocated for this iomap.
1054  *
1055  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1056  * simplify range iterations.
1057  *
1058  * The punch() callback *must* only punch delalloc extents in the range passed
1059  * to it. It must skip over all other types of extents in the range and leave
1060  * them completely unchanged. It must do this punch atomically with respect to
1061  * other extent modifications.
1062  *
1063  * The punch() callback may be called with a folio locked to prevent writeback
1064  * extent allocation racing at the edge of the range we are currently punching.
1065  * The locked folio may or may not cover the range being punched, so it is not
1066  * safe for the punch() callback to lock folios itself.
1067  *
1068  * Lock order is:
1069  *
1070  * inode->i_rwsem (shared or exclusive)
1071  *   inode->i_mapping->invalidate_lock (exclusive)
1072  *     folio_lock()
1073  *       ->punch
1074  *         internal filesystem allocation lock
1075  */
1076 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1077 		struct iomap *iomap, loff_t pos, loff_t length,
1078 		ssize_t written,
1079 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
1080 {
1081 	loff_t			start_byte;
1082 	loff_t			end_byte;
1083 	int			blocksize = i_blocksize(inode);
1084 
1085 	if (iomap->type != IOMAP_DELALLOC)
1086 		return 0;
1087 
1088 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1089 	if (!(iomap->flags & IOMAP_F_NEW))
1090 		return 0;
1091 
1092 	/*
1093 	 * start_byte refers to the first unused block after a short write. If
1094 	 * nothing was written, round offset down to point at the first block in
1095 	 * the range.
1096 	 */
1097 	if (unlikely(!written))
1098 		start_byte = round_down(pos, blocksize);
1099 	else
1100 		start_byte = round_up(pos + written, blocksize);
1101 	end_byte = round_up(pos + length, blocksize);
1102 
1103 	/* Nothing to do if we've written the entire delalloc extent */
1104 	if (start_byte >= end_byte)
1105 		return 0;
1106 
1107 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1108 					punch);
1109 }
1110 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1111 
1112 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1113 {
1114 	struct iomap *iomap = &iter->iomap;
1115 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1116 	loff_t pos = iter->pos;
1117 	loff_t length = iomap_length(iter);
1118 	long status = 0;
1119 	loff_t written = 0;
1120 
1121 	/* don't bother with blocks that are not shared to start with */
1122 	if (!(iomap->flags & IOMAP_F_SHARED))
1123 		return length;
1124 	/* don't bother with holes or unwritten extents */
1125 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1126 		return length;
1127 
1128 	do {
1129 		unsigned long offset = offset_in_page(pos);
1130 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
1131 		struct folio *folio;
1132 
1133 		status = iomap_write_begin(iter, pos, bytes, &folio);
1134 		if (unlikely(status))
1135 			return status;
1136 		if (iter->iomap.flags & IOMAP_F_STALE)
1137 			break;
1138 
1139 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
1140 		if (WARN_ON_ONCE(status == 0))
1141 			return -EIO;
1142 
1143 		cond_resched();
1144 
1145 		pos += status;
1146 		written += status;
1147 		length -= status;
1148 
1149 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1150 	} while (length);
1151 
1152 	return written;
1153 }
1154 
1155 int
1156 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1157 		const struct iomap_ops *ops)
1158 {
1159 	struct iomap_iter iter = {
1160 		.inode		= inode,
1161 		.pos		= pos,
1162 		.len		= len,
1163 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1164 	};
1165 	int ret;
1166 
1167 	while ((ret = iomap_iter(&iter, ops)) > 0)
1168 		iter.processed = iomap_unshare_iter(&iter);
1169 	return ret;
1170 }
1171 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1172 
1173 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1174 {
1175 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1176 	loff_t pos = iter->pos;
1177 	loff_t length = iomap_length(iter);
1178 	loff_t written = 0;
1179 
1180 	/* already zeroed?  we're done. */
1181 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1182 		return length;
1183 
1184 	do {
1185 		struct folio *folio;
1186 		int status;
1187 		size_t offset;
1188 		size_t bytes = min_t(u64, SIZE_MAX, length);
1189 
1190 		status = iomap_write_begin(iter, pos, bytes, &folio);
1191 		if (status)
1192 			return status;
1193 		if (iter->iomap.flags & IOMAP_F_STALE)
1194 			break;
1195 
1196 		offset = offset_in_folio(folio, pos);
1197 		if (bytes > folio_size(folio) - offset)
1198 			bytes = folio_size(folio) - offset;
1199 
1200 		folio_zero_range(folio, offset, bytes);
1201 		folio_mark_accessed(folio);
1202 
1203 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1204 		if (WARN_ON_ONCE(bytes == 0))
1205 			return -EIO;
1206 
1207 		pos += bytes;
1208 		length -= bytes;
1209 		written += bytes;
1210 	} while (length > 0);
1211 
1212 	if (did_zero)
1213 		*did_zero = true;
1214 	return written;
1215 }
1216 
1217 int
1218 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1219 		const struct iomap_ops *ops)
1220 {
1221 	struct iomap_iter iter = {
1222 		.inode		= inode,
1223 		.pos		= pos,
1224 		.len		= len,
1225 		.flags		= IOMAP_ZERO,
1226 	};
1227 	int ret;
1228 
1229 	while ((ret = iomap_iter(&iter, ops)) > 0)
1230 		iter.processed = iomap_zero_iter(&iter, did_zero);
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(iomap_zero_range);
1234 
1235 int
1236 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1237 		const struct iomap_ops *ops)
1238 {
1239 	unsigned int blocksize = i_blocksize(inode);
1240 	unsigned int off = pos & (blocksize - 1);
1241 
1242 	/* Block boundary? Nothing to do */
1243 	if (!off)
1244 		return 0;
1245 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1246 }
1247 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1248 
1249 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1250 		struct folio *folio)
1251 {
1252 	loff_t length = iomap_length(iter);
1253 	int ret;
1254 
1255 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1256 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1257 					      &iter->iomap);
1258 		if (ret)
1259 			return ret;
1260 		block_commit_write(&folio->page, 0, length);
1261 	} else {
1262 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1263 		folio_mark_dirty(folio);
1264 	}
1265 
1266 	return length;
1267 }
1268 
1269 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1270 {
1271 	struct iomap_iter iter = {
1272 		.inode		= file_inode(vmf->vma->vm_file),
1273 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1274 	};
1275 	struct folio *folio = page_folio(vmf->page);
1276 	ssize_t ret;
1277 
1278 	folio_lock(folio);
1279 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1280 	if (ret < 0)
1281 		goto out_unlock;
1282 	iter.pos = folio_pos(folio);
1283 	iter.len = ret;
1284 	while ((ret = iomap_iter(&iter, ops)) > 0)
1285 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1286 
1287 	if (ret < 0)
1288 		goto out_unlock;
1289 	folio_wait_stable(folio);
1290 	return VM_FAULT_LOCKED;
1291 out_unlock:
1292 	folio_unlock(folio);
1293 	return block_page_mkwrite_return(ret);
1294 }
1295 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1296 
1297 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1298 		size_t len, int error)
1299 {
1300 	struct iomap_page *iop = to_iomap_page(folio);
1301 
1302 	if (error) {
1303 		folio_set_error(folio);
1304 		mapping_set_error(inode->i_mapping, error);
1305 	}
1306 
1307 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1308 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1309 
1310 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1311 		folio_end_writeback(folio);
1312 }
1313 
1314 /*
1315  * We're now finished for good with this ioend structure.  Update the page
1316  * state, release holds on bios, and finally free up memory.  Do not use the
1317  * ioend after this.
1318  */
1319 static u32
1320 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1321 {
1322 	struct inode *inode = ioend->io_inode;
1323 	struct bio *bio = &ioend->io_inline_bio;
1324 	struct bio *last = ioend->io_bio, *next;
1325 	u64 start = bio->bi_iter.bi_sector;
1326 	loff_t offset = ioend->io_offset;
1327 	bool quiet = bio_flagged(bio, BIO_QUIET);
1328 	u32 folio_count = 0;
1329 
1330 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1331 		struct folio_iter fi;
1332 
1333 		/*
1334 		 * For the last bio, bi_private points to the ioend, so we
1335 		 * need to explicitly end the iteration here.
1336 		 */
1337 		if (bio == last)
1338 			next = NULL;
1339 		else
1340 			next = bio->bi_private;
1341 
1342 		/* walk all folios in bio, ending page IO on them */
1343 		bio_for_each_folio_all(fi, bio) {
1344 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1345 					error);
1346 			folio_count++;
1347 		}
1348 		bio_put(bio);
1349 	}
1350 	/* The ioend has been freed by bio_put() */
1351 
1352 	if (unlikely(error && !quiet)) {
1353 		printk_ratelimited(KERN_ERR
1354 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1355 			inode->i_sb->s_id, inode->i_ino, offset, start);
1356 	}
1357 	return folio_count;
1358 }
1359 
1360 /*
1361  * Ioend completion routine for merged bios. This can only be called from task
1362  * contexts as merged ioends can be of unbound length. Hence we have to break up
1363  * the writeback completions into manageable chunks to avoid long scheduler
1364  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1365  * good batch processing throughput without creating adverse scheduler latency
1366  * conditions.
1367  */
1368 void
1369 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1370 {
1371 	struct list_head tmp;
1372 	u32 completions;
1373 
1374 	might_sleep();
1375 
1376 	list_replace_init(&ioend->io_list, &tmp);
1377 	completions = iomap_finish_ioend(ioend, error);
1378 
1379 	while (!list_empty(&tmp)) {
1380 		if (completions > IOEND_BATCH_SIZE * 8) {
1381 			cond_resched();
1382 			completions = 0;
1383 		}
1384 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1385 		list_del_init(&ioend->io_list);
1386 		completions += iomap_finish_ioend(ioend, error);
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1390 
1391 /*
1392  * We can merge two adjacent ioends if they have the same set of work to do.
1393  */
1394 static bool
1395 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1396 {
1397 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1398 		return false;
1399 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1400 	    (next->io_flags & IOMAP_F_SHARED))
1401 		return false;
1402 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1403 	    (next->io_type == IOMAP_UNWRITTEN))
1404 		return false;
1405 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1406 		return false;
1407 	/*
1408 	 * Do not merge physically discontiguous ioends. The filesystem
1409 	 * completion functions will have to iterate the physical
1410 	 * discontiguities even if we merge the ioends at a logical level, so
1411 	 * we don't gain anything by merging physical discontiguities here.
1412 	 *
1413 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1414 	 * submission so does not point to the start sector of the bio at
1415 	 * completion.
1416 	 */
1417 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1418 		return false;
1419 	return true;
1420 }
1421 
1422 void
1423 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1424 {
1425 	struct iomap_ioend *next;
1426 
1427 	INIT_LIST_HEAD(&ioend->io_list);
1428 
1429 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1430 			io_list))) {
1431 		if (!iomap_ioend_can_merge(ioend, next))
1432 			break;
1433 		list_move_tail(&next->io_list, &ioend->io_list);
1434 		ioend->io_size += next->io_size;
1435 	}
1436 }
1437 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1438 
1439 static int
1440 iomap_ioend_compare(void *priv, const struct list_head *a,
1441 		const struct list_head *b)
1442 {
1443 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1444 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1445 
1446 	if (ia->io_offset < ib->io_offset)
1447 		return -1;
1448 	if (ia->io_offset > ib->io_offset)
1449 		return 1;
1450 	return 0;
1451 }
1452 
1453 void
1454 iomap_sort_ioends(struct list_head *ioend_list)
1455 {
1456 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1457 }
1458 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1459 
1460 static void iomap_writepage_end_bio(struct bio *bio)
1461 {
1462 	struct iomap_ioend *ioend = bio->bi_private;
1463 
1464 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1465 }
1466 
1467 /*
1468  * Submit the final bio for an ioend.
1469  *
1470  * If @error is non-zero, it means that we have a situation where some part of
1471  * the submission process has failed after we've marked pages for writeback
1472  * and unlocked them.  In this situation, we need to fail the bio instead of
1473  * submitting it.  This typically only happens on a filesystem shutdown.
1474  */
1475 static int
1476 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1477 		int error)
1478 {
1479 	ioend->io_bio->bi_private = ioend;
1480 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1481 
1482 	if (wpc->ops->prepare_ioend)
1483 		error = wpc->ops->prepare_ioend(ioend, error);
1484 	if (error) {
1485 		/*
1486 		 * If we're failing the IO now, just mark the ioend with an
1487 		 * error and finish it.  This will run IO completion immediately
1488 		 * as there is only one reference to the ioend at this point in
1489 		 * time.
1490 		 */
1491 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1492 		bio_endio(ioend->io_bio);
1493 		return error;
1494 	}
1495 
1496 	submit_bio(ioend->io_bio);
1497 	return 0;
1498 }
1499 
1500 static struct iomap_ioend *
1501 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1502 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1503 {
1504 	struct iomap_ioend *ioend;
1505 	struct bio *bio;
1506 
1507 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1508 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1509 			       GFP_NOFS, &iomap_ioend_bioset);
1510 	bio->bi_iter.bi_sector = sector;
1511 	wbc_init_bio(wbc, bio);
1512 
1513 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1514 	INIT_LIST_HEAD(&ioend->io_list);
1515 	ioend->io_type = wpc->iomap.type;
1516 	ioend->io_flags = wpc->iomap.flags;
1517 	ioend->io_inode = inode;
1518 	ioend->io_size = 0;
1519 	ioend->io_folios = 0;
1520 	ioend->io_offset = offset;
1521 	ioend->io_bio = bio;
1522 	ioend->io_sector = sector;
1523 	return ioend;
1524 }
1525 
1526 /*
1527  * Allocate a new bio, and chain the old bio to the new one.
1528  *
1529  * Note that we have to perform the chaining in this unintuitive order
1530  * so that the bi_private linkage is set up in the right direction for the
1531  * traversal in iomap_finish_ioend().
1532  */
1533 static struct bio *
1534 iomap_chain_bio(struct bio *prev)
1535 {
1536 	struct bio *new;
1537 
1538 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1539 	bio_clone_blkg_association(new, prev);
1540 	new->bi_iter.bi_sector = bio_end_sector(prev);
1541 
1542 	bio_chain(prev, new);
1543 	bio_get(prev);		/* for iomap_finish_ioend */
1544 	submit_bio(prev);
1545 	return new;
1546 }
1547 
1548 static bool
1549 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1550 		sector_t sector)
1551 {
1552 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1553 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1554 		return false;
1555 	if (wpc->iomap.type != wpc->ioend->io_type)
1556 		return false;
1557 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1558 		return false;
1559 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1560 		return false;
1561 	/*
1562 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1563 	 * also prevents long tight loops ending page writeback on all the
1564 	 * folios in the ioend.
1565 	 */
1566 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1567 		return false;
1568 	return true;
1569 }
1570 
1571 /*
1572  * Test to see if we have an existing ioend structure that we could append to
1573  * first; otherwise finish off the current ioend and start another.
1574  */
1575 static void
1576 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1577 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1578 		struct writeback_control *wbc, struct list_head *iolist)
1579 {
1580 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1581 	unsigned len = i_blocksize(inode);
1582 	size_t poff = offset_in_folio(folio, pos);
1583 
1584 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1585 		if (wpc->ioend)
1586 			list_add(&wpc->ioend->io_list, iolist);
1587 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1588 	}
1589 
1590 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1591 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1592 		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1593 	}
1594 
1595 	if (iop)
1596 		atomic_add(len, &iop->write_bytes_pending);
1597 	wpc->ioend->io_size += len;
1598 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1599 }
1600 
1601 /*
1602  * We implement an immediate ioend submission policy here to avoid needing to
1603  * chain multiple ioends and hence nest mempool allocations which can violate
1604  * the forward progress guarantees we need to provide. The current ioend we're
1605  * adding blocks to is cached in the writepage context, and if the new block
1606  * doesn't append to the cached ioend, it will create a new ioend and cache that
1607  * instead.
1608  *
1609  * If a new ioend is created and cached, the old ioend is returned and queued
1610  * locally for submission once the entire page is processed or an error has been
1611  * detected.  While ioends are submitted immediately after they are completed,
1612  * batching optimisations are provided by higher level block plugging.
1613  *
1614  * At the end of a writeback pass, there will be a cached ioend remaining on the
1615  * writepage context that the caller will need to submit.
1616  */
1617 static int
1618 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1619 		struct writeback_control *wbc, struct inode *inode,
1620 		struct folio *folio, u64 end_pos)
1621 {
1622 	struct iomap_page *iop = iomap_page_create(inode, folio, 0);
1623 	struct iomap_ioend *ioend, *next;
1624 	unsigned len = i_blocksize(inode);
1625 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1626 	u64 pos = folio_pos(folio);
1627 	int error = 0, count = 0, i;
1628 	LIST_HEAD(submit_list);
1629 
1630 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1631 
1632 	/*
1633 	 * Walk through the folio to find areas to write back. If we
1634 	 * run off the end of the current map or find the current map
1635 	 * invalid, grab a new one.
1636 	 */
1637 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1638 		if (iop && !test_bit(i, iop->uptodate))
1639 			continue;
1640 
1641 		error = wpc->ops->map_blocks(wpc, inode, pos);
1642 		if (error)
1643 			break;
1644 		trace_iomap_writepage_map(inode, &wpc->iomap);
1645 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1646 			continue;
1647 		if (wpc->iomap.type == IOMAP_HOLE)
1648 			continue;
1649 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1650 				 &submit_list);
1651 		count++;
1652 	}
1653 	if (count)
1654 		wpc->ioend->io_folios++;
1655 
1656 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1657 	WARN_ON_ONCE(!folio_test_locked(folio));
1658 	WARN_ON_ONCE(folio_test_writeback(folio));
1659 	WARN_ON_ONCE(folio_test_dirty(folio));
1660 
1661 	/*
1662 	 * We cannot cancel the ioend directly here on error.  We may have
1663 	 * already set other pages under writeback and hence we have to run I/O
1664 	 * completion to mark the error state of the pages under writeback
1665 	 * appropriately.
1666 	 */
1667 	if (unlikely(error)) {
1668 		/*
1669 		 * Let the filesystem know what portion of the current page
1670 		 * failed to map. If the page hasn't been added to ioend, it
1671 		 * won't be affected by I/O completion and we must unlock it
1672 		 * now.
1673 		 */
1674 		if (wpc->ops->discard_folio)
1675 			wpc->ops->discard_folio(folio, pos);
1676 		if (!count) {
1677 			folio_unlock(folio);
1678 			goto done;
1679 		}
1680 	}
1681 
1682 	folio_start_writeback(folio);
1683 	folio_unlock(folio);
1684 
1685 	/*
1686 	 * Preserve the original error if there was one; catch
1687 	 * submission errors here and propagate into subsequent ioend
1688 	 * submissions.
1689 	 */
1690 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1691 		int error2;
1692 
1693 		list_del_init(&ioend->io_list);
1694 		error2 = iomap_submit_ioend(wpc, ioend, error);
1695 		if (error2 && !error)
1696 			error = error2;
1697 	}
1698 
1699 	/*
1700 	 * We can end up here with no error and nothing to write only if we race
1701 	 * with a partial page truncate on a sub-page block sized filesystem.
1702 	 */
1703 	if (!count)
1704 		folio_end_writeback(folio);
1705 done:
1706 	mapping_set_error(inode->i_mapping, error);
1707 	return error;
1708 }
1709 
1710 /*
1711  * Write out a dirty page.
1712  *
1713  * For delalloc space on the page, we need to allocate space and flush it.
1714  * For unwritten space on the page, we need to start the conversion to
1715  * regular allocated space.
1716  */
1717 static int
1718 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1719 {
1720 	struct folio *folio = page_folio(page);
1721 	struct iomap_writepage_ctx *wpc = data;
1722 	struct inode *inode = folio->mapping->host;
1723 	u64 end_pos, isize;
1724 
1725 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1726 
1727 	/*
1728 	 * Refuse to write the folio out if we're called from reclaim context.
1729 	 *
1730 	 * This avoids stack overflows when called from deeply used stacks in
1731 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1732 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1733 	 *
1734 	 * This should never happen except in the case of a VM regression so
1735 	 * warn about it.
1736 	 */
1737 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1738 			PF_MEMALLOC))
1739 		goto redirty;
1740 
1741 	/*
1742 	 * Is this folio beyond the end of the file?
1743 	 *
1744 	 * The folio index is less than the end_index, adjust the end_pos
1745 	 * to the highest offset that this folio should represent.
1746 	 * -----------------------------------------------------
1747 	 * |			file mapping	       | <EOF> |
1748 	 * -----------------------------------------------------
1749 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1750 	 * ^--------------------------------^----------|--------
1751 	 * |     desired writeback range    |      see else    |
1752 	 * ---------------------------------^------------------|
1753 	 */
1754 	isize = i_size_read(inode);
1755 	end_pos = folio_pos(folio) + folio_size(folio);
1756 	if (end_pos > isize) {
1757 		/*
1758 		 * Check whether the page to write out is beyond or straddles
1759 		 * i_size or not.
1760 		 * -------------------------------------------------------
1761 		 * |		file mapping		        | <EOF>  |
1762 		 * -------------------------------------------------------
1763 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1764 		 * ^--------------------------------^-----------|---------
1765 		 * |				    |      Straddles     |
1766 		 * ---------------------------------^-----------|--------|
1767 		 */
1768 		size_t poff = offset_in_folio(folio, isize);
1769 		pgoff_t end_index = isize >> PAGE_SHIFT;
1770 
1771 		/*
1772 		 * Skip the page if it's fully outside i_size, e.g.
1773 		 * due to a truncate operation that's in progress.  We've
1774 		 * cleaned this page and truncate will finish things off for
1775 		 * us.
1776 		 *
1777 		 * Note that the end_index is unsigned long.  If the given
1778 		 * offset is greater than 16TB on a 32-bit system then if we
1779 		 * checked if the page is fully outside i_size with
1780 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1781 		 * overflow and evaluate to 0.  Hence this page would be
1782 		 * redirtied and written out repeatedly, which would result in
1783 		 * an infinite loop; the user program performing this operation
1784 		 * would hang.  Instead, we can detect this situation by
1785 		 * checking if the page is totally beyond i_size or if its
1786 		 * offset is just equal to the EOF.
1787 		 */
1788 		if (folio->index > end_index ||
1789 		    (folio->index == end_index && poff == 0))
1790 			goto unlock;
1791 
1792 		/*
1793 		 * The page straddles i_size.  It must be zeroed out on each
1794 		 * and every writepage invocation because it may be mmapped.
1795 		 * "A file is mapped in multiples of the page size.  For a file
1796 		 * that is not a multiple of the page size, the remaining
1797 		 * memory is zeroed when mapped, and writes to that region are
1798 		 * not written out to the file."
1799 		 */
1800 		folio_zero_segment(folio, poff, folio_size(folio));
1801 		end_pos = isize;
1802 	}
1803 
1804 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1805 
1806 redirty:
1807 	folio_redirty_for_writepage(wbc, folio);
1808 unlock:
1809 	folio_unlock(folio);
1810 	return 0;
1811 }
1812 
1813 int
1814 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1815 		struct iomap_writepage_ctx *wpc,
1816 		const struct iomap_writeback_ops *ops)
1817 {
1818 	int			ret;
1819 
1820 	wpc->ops = ops;
1821 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1822 	if (!wpc->ioend)
1823 		return ret;
1824 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1825 }
1826 EXPORT_SYMBOL_GPL(iomap_writepages);
1827 
1828 static int __init iomap_init(void)
1829 {
1830 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1831 			   offsetof(struct iomap_ioend, io_inline_bio),
1832 			   BIOSET_NEED_BVECS);
1833 }
1834 fs_initcall(iomap_init);
1835