1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio to track per-block uptodate, dirty state 28 * and I/O completions. 29 */ 30 struct iomap_folio_state { 31 spinlock_t state_lock; 32 unsigned int read_bytes_pending; 33 atomic_t write_bytes_pending; 34 35 /* 36 * Each block has two bits in this bitmap: 37 * Bits [0..blocks_per_folio) has the uptodate status. 38 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 39 */ 40 unsigned long state[]; 41 }; 42 43 static struct bio_set iomap_ioend_bioset; 44 45 static inline bool ifs_is_fully_uptodate(struct folio *folio, 46 struct iomap_folio_state *ifs) 47 { 48 struct inode *inode = folio->mapping->host; 49 50 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 51 } 52 53 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 54 unsigned int block) 55 { 56 return test_bit(block, ifs->state); 57 } 58 59 static bool ifs_set_range_uptodate(struct folio *folio, 60 struct iomap_folio_state *ifs, size_t off, size_t len) 61 { 62 struct inode *inode = folio->mapping->host; 63 unsigned int first_blk = off >> inode->i_blkbits; 64 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 65 unsigned int nr_blks = last_blk - first_blk + 1; 66 67 bitmap_set(ifs->state, first_blk, nr_blks); 68 return ifs_is_fully_uptodate(folio, ifs); 69 } 70 71 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 72 size_t len) 73 { 74 struct iomap_folio_state *ifs = folio->private; 75 unsigned long flags; 76 bool uptodate = true; 77 78 if (ifs) { 79 spin_lock_irqsave(&ifs->state_lock, flags); 80 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 81 spin_unlock_irqrestore(&ifs->state_lock, flags); 82 } 83 84 if (uptodate) 85 folio_mark_uptodate(folio); 86 } 87 88 static inline bool ifs_block_is_dirty(struct folio *folio, 89 struct iomap_folio_state *ifs, int block) 90 { 91 struct inode *inode = folio->mapping->host; 92 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 93 94 return test_bit(block + blks_per_folio, ifs->state); 95 } 96 97 static unsigned ifs_find_dirty_range(struct folio *folio, 98 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 99 { 100 struct inode *inode = folio->mapping->host; 101 unsigned start_blk = 102 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 103 unsigned end_blk = min_not_zero( 104 offset_in_folio(folio, range_end) >> inode->i_blkbits, 105 i_blocks_per_folio(inode, folio)); 106 unsigned nblks = 1; 107 108 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 109 if (++start_blk == end_blk) 110 return 0; 111 112 while (start_blk + nblks < end_blk) { 113 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 114 break; 115 nblks++; 116 } 117 118 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 119 return nblks << inode->i_blkbits; 120 } 121 122 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 123 u64 range_end) 124 { 125 struct iomap_folio_state *ifs = folio->private; 126 127 if (*range_start >= range_end) 128 return 0; 129 130 if (ifs) 131 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 132 return range_end - *range_start; 133 } 134 135 static void ifs_clear_range_dirty(struct folio *folio, 136 struct iomap_folio_state *ifs, size_t off, size_t len) 137 { 138 struct inode *inode = folio->mapping->host; 139 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 140 unsigned int first_blk = (off >> inode->i_blkbits); 141 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 142 unsigned int nr_blks = last_blk - first_blk + 1; 143 unsigned long flags; 144 145 spin_lock_irqsave(&ifs->state_lock, flags); 146 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 147 spin_unlock_irqrestore(&ifs->state_lock, flags); 148 } 149 150 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 151 { 152 struct iomap_folio_state *ifs = folio->private; 153 154 if (ifs) 155 ifs_clear_range_dirty(folio, ifs, off, len); 156 } 157 158 static void ifs_set_range_dirty(struct folio *folio, 159 struct iomap_folio_state *ifs, size_t off, size_t len) 160 { 161 struct inode *inode = folio->mapping->host; 162 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 163 unsigned int first_blk = (off >> inode->i_blkbits); 164 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 165 unsigned int nr_blks = last_blk - first_blk + 1; 166 unsigned long flags; 167 168 spin_lock_irqsave(&ifs->state_lock, flags); 169 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 170 spin_unlock_irqrestore(&ifs->state_lock, flags); 171 } 172 173 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 174 { 175 struct iomap_folio_state *ifs = folio->private; 176 177 if (ifs) 178 ifs_set_range_dirty(folio, ifs, off, len); 179 } 180 181 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 182 struct folio *folio, unsigned int flags) 183 { 184 struct iomap_folio_state *ifs = folio->private; 185 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 186 gfp_t gfp; 187 188 if (ifs || nr_blocks <= 1) 189 return ifs; 190 191 if (flags & IOMAP_NOWAIT) 192 gfp = GFP_NOWAIT; 193 else 194 gfp = GFP_NOFS | __GFP_NOFAIL; 195 196 /* 197 * ifs->state tracks two sets of state flags when the 198 * filesystem block size is smaller than the folio size. 199 * The first state tracks per-block uptodate and the 200 * second tracks per-block dirty state. 201 */ 202 ifs = kzalloc(struct_size(ifs, state, 203 BITS_TO_LONGS(2 * nr_blocks)), gfp); 204 if (!ifs) 205 return ifs; 206 207 spin_lock_init(&ifs->state_lock); 208 if (folio_test_uptodate(folio)) 209 bitmap_set(ifs->state, 0, nr_blocks); 210 if (folio_test_dirty(folio)) 211 bitmap_set(ifs->state, nr_blocks, nr_blocks); 212 folio_attach_private(folio, ifs); 213 214 return ifs; 215 } 216 217 static void ifs_free(struct folio *folio) 218 { 219 struct iomap_folio_state *ifs = folio_detach_private(folio); 220 221 if (!ifs) 222 return; 223 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 224 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 225 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 226 folio_test_uptodate(folio)); 227 kfree(ifs); 228 } 229 230 /* 231 * Calculate the range inside the folio that we actually need to read. 232 */ 233 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 234 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 235 { 236 struct iomap_folio_state *ifs = folio->private; 237 loff_t orig_pos = *pos; 238 loff_t isize = i_size_read(inode); 239 unsigned block_bits = inode->i_blkbits; 240 unsigned block_size = (1 << block_bits); 241 size_t poff = offset_in_folio(folio, *pos); 242 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 243 size_t orig_plen = plen; 244 unsigned first = poff >> block_bits; 245 unsigned last = (poff + plen - 1) >> block_bits; 246 247 /* 248 * If the block size is smaller than the page size, we need to check the 249 * per-block uptodate status and adjust the offset and length if needed 250 * to avoid reading in already uptodate ranges. 251 */ 252 if (ifs) { 253 unsigned int i; 254 255 /* move forward for each leading block marked uptodate */ 256 for (i = first; i <= last; i++) { 257 if (!ifs_block_is_uptodate(ifs, i)) 258 break; 259 *pos += block_size; 260 poff += block_size; 261 plen -= block_size; 262 first++; 263 } 264 265 /* truncate len if we find any trailing uptodate block(s) */ 266 for ( ; i <= last; i++) { 267 if (ifs_block_is_uptodate(ifs, i)) { 268 plen -= (last - i + 1) * block_size; 269 last = i - 1; 270 break; 271 } 272 } 273 } 274 275 /* 276 * If the extent spans the block that contains the i_size, we need to 277 * handle both halves separately so that we properly zero data in the 278 * page cache for blocks that are entirely outside of i_size. 279 */ 280 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 281 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 282 283 if (first <= end && last > end) 284 plen -= (last - end) * block_size; 285 } 286 287 *offp = poff; 288 *lenp = plen; 289 } 290 291 static void iomap_finish_folio_read(struct folio *folio, size_t off, 292 size_t len, int error) 293 { 294 struct iomap_folio_state *ifs = folio->private; 295 bool uptodate = !error; 296 bool finished = true; 297 298 if (ifs) { 299 unsigned long flags; 300 301 spin_lock_irqsave(&ifs->state_lock, flags); 302 if (!error) 303 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 304 ifs->read_bytes_pending -= len; 305 finished = !ifs->read_bytes_pending; 306 spin_unlock_irqrestore(&ifs->state_lock, flags); 307 } 308 309 if (finished) 310 folio_end_read(folio, uptodate); 311 } 312 313 static void iomap_read_end_io(struct bio *bio) 314 { 315 int error = blk_status_to_errno(bio->bi_status); 316 struct folio_iter fi; 317 318 bio_for_each_folio_all(fi, bio) 319 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 320 bio_put(bio); 321 } 322 323 struct iomap_readpage_ctx { 324 struct folio *cur_folio; 325 bool cur_folio_in_bio; 326 struct bio *bio; 327 struct readahead_control *rac; 328 }; 329 330 /** 331 * iomap_read_inline_data - copy inline data into the page cache 332 * @iter: iteration structure 333 * @folio: folio to copy to 334 * 335 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 336 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 337 * Returns zero for success to complete the read, or the usual negative errno. 338 */ 339 static int iomap_read_inline_data(const struct iomap_iter *iter, 340 struct folio *folio) 341 { 342 const struct iomap *iomap = iomap_iter_srcmap(iter); 343 size_t size = i_size_read(iter->inode) - iomap->offset; 344 size_t offset = offset_in_folio(folio, iomap->offset); 345 346 if (folio_test_uptodate(folio)) 347 return 0; 348 349 if (WARN_ON_ONCE(size > iomap->length)) 350 return -EIO; 351 if (offset > 0) 352 ifs_alloc(iter->inode, folio, iter->flags); 353 354 folio_fill_tail(folio, offset, iomap->inline_data, size); 355 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 356 return 0; 357 } 358 359 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 360 loff_t pos) 361 { 362 const struct iomap *srcmap = iomap_iter_srcmap(iter); 363 364 return srcmap->type != IOMAP_MAPPED || 365 (srcmap->flags & IOMAP_F_NEW) || 366 pos >= i_size_read(iter->inode); 367 } 368 369 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 370 struct iomap_readpage_ctx *ctx, loff_t offset) 371 { 372 const struct iomap *iomap = &iter->iomap; 373 loff_t pos = iter->pos + offset; 374 loff_t length = iomap_length(iter) - offset; 375 struct folio *folio = ctx->cur_folio; 376 struct iomap_folio_state *ifs; 377 loff_t orig_pos = pos; 378 size_t poff, plen; 379 sector_t sector; 380 381 if (iomap->type == IOMAP_INLINE) 382 return iomap_read_inline_data(iter, folio); 383 384 /* zero post-eof blocks as the page may be mapped */ 385 ifs = ifs_alloc(iter->inode, folio, iter->flags); 386 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 387 if (plen == 0) 388 goto done; 389 390 if (iomap_block_needs_zeroing(iter, pos)) { 391 folio_zero_range(folio, poff, plen); 392 iomap_set_range_uptodate(folio, poff, plen); 393 goto done; 394 } 395 396 ctx->cur_folio_in_bio = true; 397 if (ifs) { 398 spin_lock_irq(&ifs->state_lock); 399 ifs->read_bytes_pending += plen; 400 spin_unlock_irq(&ifs->state_lock); 401 } 402 403 sector = iomap_sector(iomap, pos); 404 if (!ctx->bio || 405 bio_end_sector(ctx->bio) != sector || 406 !bio_add_folio(ctx->bio, folio, plen, poff)) { 407 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 408 gfp_t orig_gfp = gfp; 409 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 410 411 if (ctx->bio) 412 submit_bio(ctx->bio); 413 414 if (ctx->rac) /* same as readahead_gfp_mask */ 415 gfp |= __GFP_NORETRY | __GFP_NOWARN; 416 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 417 REQ_OP_READ, gfp); 418 /* 419 * If the bio_alloc fails, try it again for a single page to 420 * avoid having to deal with partial page reads. This emulates 421 * what do_mpage_read_folio does. 422 */ 423 if (!ctx->bio) { 424 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 425 orig_gfp); 426 } 427 if (ctx->rac) 428 ctx->bio->bi_opf |= REQ_RAHEAD; 429 ctx->bio->bi_iter.bi_sector = sector; 430 ctx->bio->bi_end_io = iomap_read_end_io; 431 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 432 } 433 434 done: 435 /* 436 * Move the caller beyond our range so that it keeps making progress. 437 * For that, we have to include any leading non-uptodate ranges, but 438 * we can skip trailing ones as they will be handled in the next 439 * iteration. 440 */ 441 return pos - orig_pos + plen; 442 } 443 444 static loff_t iomap_read_folio_iter(const struct iomap_iter *iter, 445 struct iomap_readpage_ctx *ctx) 446 { 447 struct folio *folio = ctx->cur_folio; 448 size_t offset = offset_in_folio(folio, iter->pos); 449 loff_t length = min_t(loff_t, folio_size(folio) - offset, 450 iomap_length(iter)); 451 loff_t done, ret; 452 453 for (done = 0; done < length; done += ret) { 454 ret = iomap_readpage_iter(iter, ctx, done); 455 if (ret <= 0) 456 return ret; 457 } 458 459 return done; 460 } 461 462 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 463 { 464 struct iomap_iter iter = { 465 .inode = folio->mapping->host, 466 .pos = folio_pos(folio), 467 .len = folio_size(folio), 468 }; 469 struct iomap_readpage_ctx ctx = { 470 .cur_folio = folio, 471 }; 472 int ret; 473 474 trace_iomap_readpage(iter.inode, 1); 475 476 while ((ret = iomap_iter(&iter, ops)) > 0) 477 iter.processed = iomap_read_folio_iter(&iter, &ctx); 478 479 if (ctx.bio) { 480 submit_bio(ctx.bio); 481 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 482 } else { 483 WARN_ON_ONCE(ctx.cur_folio_in_bio); 484 folio_unlock(folio); 485 } 486 487 /* 488 * Just like mpage_readahead and block_read_full_folio, we always 489 * return 0 and just set the folio error flag on errors. This 490 * should be cleaned up throughout the stack eventually. 491 */ 492 return 0; 493 } 494 EXPORT_SYMBOL_GPL(iomap_read_folio); 495 496 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 497 struct iomap_readpage_ctx *ctx) 498 { 499 loff_t length = iomap_length(iter); 500 loff_t done, ret; 501 502 for (done = 0; done < length; done += ret) { 503 if (ctx->cur_folio && 504 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 505 if (!ctx->cur_folio_in_bio) 506 folio_unlock(ctx->cur_folio); 507 ctx->cur_folio = NULL; 508 } 509 if (!ctx->cur_folio) { 510 ctx->cur_folio = readahead_folio(ctx->rac); 511 ctx->cur_folio_in_bio = false; 512 } 513 ret = iomap_readpage_iter(iter, ctx, done); 514 if (ret <= 0) 515 return ret; 516 } 517 518 return done; 519 } 520 521 /** 522 * iomap_readahead - Attempt to read pages from a file. 523 * @rac: Describes the pages to be read. 524 * @ops: The operations vector for the filesystem. 525 * 526 * This function is for filesystems to call to implement their readahead 527 * address_space operation. 528 * 529 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 530 * blocks from disc), and may wait for it. The caller may be trying to 531 * access a different page, and so sleeping excessively should be avoided. 532 * It may allocate memory, but should avoid costly allocations. This 533 * function is called with memalloc_nofs set, so allocations will not cause 534 * the filesystem to be reentered. 535 */ 536 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 537 { 538 struct iomap_iter iter = { 539 .inode = rac->mapping->host, 540 .pos = readahead_pos(rac), 541 .len = readahead_length(rac), 542 }; 543 struct iomap_readpage_ctx ctx = { 544 .rac = rac, 545 }; 546 547 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 548 549 while (iomap_iter(&iter, ops) > 0) 550 iter.processed = iomap_readahead_iter(&iter, &ctx); 551 552 if (ctx.bio) 553 submit_bio(ctx.bio); 554 if (ctx.cur_folio) { 555 if (!ctx.cur_folio_in_bio) 556 folio_unlock(ctx.cur_folio); 557 } 558 } 559 EXPORT_SYMBOL_GPL(iomap_readahead); 560 561 /* 562 * iomap_is_partially_uptodate checks whether blocks within a folio are 563 * uptodate or not. 564 * 565 * Returns true if all blocks which correspond to the specified part 566 * of the folio are uptodate. 567 */ 568 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 569 { 570 struct iomap_folio_state *ifs = folio->private; 571 struct inode *inode = folio->mapping->host; 572 unsigned first, last, i; 573 574 if (!ifs) 575 return false; 576 577 /* Caller's range may extend past the end of this folio */ 578 count = min(folio_size(folio) - from, count); 579 580 /* First and last blocks in range within folio */ 581 first = from >> inode->i_blkbits; 582 last = (from + count - 1) >> inode->i_blkbits; 583 584 for (i = first; i <= last; i++) 585 if (!ifs_block_is_uptodate(ifs, i)) 586 return false; 587 return true; 588 } 589 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 590 591 /** 592 * iomap_get_folio - get a folio reference for writing 593 * @iter: iteration structure 594 * @pos: start offset of write 595 * @len: Suggested size of folio to create. 596 * 597 * Returns a locked reference to the folio at @pos, or an error pointer if the 598 * folio could not be obtained. 599 */ 600 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 601 { 602 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 603 604 if (iter->flags & IOMAP_NOWAIT) 605 fgp |= FGP_NOWAIT; 606 fgp |= fgf_set_order(len); 607 608 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 609 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 610 } 611 EXPORT_SYMBOL_GPL(iomap_get_folio); 612 613 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 614 { 615 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 616 folio_size(folio)); 617 618 /* 619 * If the folio is dirty, we refuse to release our metadata because 620 * it may be partially dirty. Once we track per-block dirty state, 621 * we can release the metadata if every block is dirty. 622 */ 623 if (folio_test_dirty(folio)) 624 return false; 625 ifs_free(folio); 626 return true; 627 } 628 EXPORT_SYMBOL_GPL(iomap_release_folio); 629 630 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 631 { 632 trace_iomap_invalidate_folio(folio->mapping->host, 633 folio_pos(folio) + offset, len); 634 635 /* 636 * If we're invalidating the entire folio, clear the dirty state 637 * from it and release it to avoid unnecessary buildup of the LRU. 638 */ 639 if (offset == 0 && len == folio_size(folio)) { 640 WARN_ON_ONCE(folio_test_writeback(folio)); 641 folio_cancel_dirty(folio); 642 ifs_free(folio); 643 } 644 } 645 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 646 647 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 648 { 649 struct inode *inode = mapping->host; 650 size_t len = folio_size(folio); 651 652 ifs_alloc(inode, folio, 0); 653 iomap_set_range_dirty(folio, 0, len); 654 return filemap_dirty_folio(mapping, folio); 655 } 656 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 657 658 static void 659 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 660 { 661 loff_t i_size = i_size_read(inode); 662 663 /* 664 * Only truncate newly allocated pages beyoned EOF, even if the 665 * write started inside the existing inode size. 666 */ 667 if (pos + len > i_size) 668 truncate_pagecache_range(inode, max(pos, i_size), 669 pos + len - 1); 670 } 671 672 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 673 size_t poff, size_t plen, const struct iomap *iomap) 674 { 675 struct bio_vec bvec; 676 struct bio bio; 677 678 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 679 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 680 bio_add_folio_nofail(&bio, folio, plen, poff); 681 return submit_bio_wait(&bio); 682 } 683 684 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 685 size_t len, struct folio *folio) 686 { 687 const struct iomap *srcmap = iomap_iter_srcmap(iter); 688 struct iomap_folio_state *ifs; 689 loff_t block_size = i_blocksize(iter->inode); 690 loff_t block_start = round_down(pos, block_size); 691 loff_t block_end = round_up(pos + len, block_size); 692 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 693 size_t from = offset_in_folio(folio, pos), to = from + len; 694 size_t poff, plen; 695 696 /* 697 * If the write or zeroing completely overlaps the current folio, then 698 * entire folio will be dirtied so there is no need for 699 * per-block state tracking structures to be attached to this folio. 700 * For the unshare case, we must read in the ondisk contents because we 701 * are not changing pagecache contents. 702 */ 703 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 704 pos + len >= folio_pos(folio) + folio_size(folio)) 705 return 0; 706 707 ifs = ifs_alloc(iter->inode, folio, iter->flags); 708 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 709 return -EAGAIN; 710 711 if (folio_test_uptodate(folio)) 712 return 0; 713 714 do { 715 iomap_adjust_read_range(iter->inode, folio, &block_start, 716 block_end - block_start, &poff, &plen); 717 if (plen == 0) 718 break; 719 720 if (!(iter->flags & IOMAP_UNSHARE) && 721 (from <= poff || from >= poff + plen) && 722 (to <= poff || to >= poff + plen)) 723 continue; 724 725 if (iomap_block_needs_zeroing(iter, block_start)) { 726 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 727 return -EIO; 728 folio_zero_segments(folio, poff, from, to, poff + plen); 729 } else { 730 int status; 731 732 if (iter->flags & IOMAP_NOWAIT) 733 return -EAGAIN; 734 735 status = iomap_read_folio_sync(block_start, folio, 736 poff, plen, srcmap); 737 if (status) 738 return status; 739 } 740 iomap_set_range_uptodate(folio, poff, plen); 741 } while ((block_start += plen) < block_end); 742 743 return 0; 744 } 745 746 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 747 size_t len) 748 { 749 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 750 751 if (folio_ops && folio_ops->get_folio) 752 return folio_ops->get_folio(iter, pos, len); 753 else 754 return iomap_get_folio(iter, pos, len); 755 } 756 757 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 758 struct folio *folio) 759 { 760 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 761 762 if (folio_ops && folio_ops->put_folio) { 763 folio_ops->put_folio(iter->inode, pos, ret, folio); 764 } else { 765 folio_unlock(folio); 766 folio_put(folio); 767 } 768 } 769 770 static int iomap_write_begin_inline(const struct iomap_iter *iter, 771 struct folio *folio) 772 { 773 /* needs more work for the tailpacking case; disable for now */ 774 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 775 return -EIO; 776 return iomap_read_inline_data(iter, folio); 777 } 778 779 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 780 size_t len, struct folio **foliop) 781 { 782 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 783 const struct iomap *srcmap = iomap_iter_srcmap(iter); 784 struct folio *folio; 785 int status = 0; 786 787 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 788 if (srcmap != &iter->iomap) 789 BUG_ON(pos + len > srcmap->offset + srcmap->length); 790 791 if (fatal_signal_pending(current)) 792 return -EINTR; 793 794 if (!mapping_large_folio_support(iter->inode->i_mapping)) 795 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 796 797 folio = __iomap_get_folio(iter, pos, len); 798 if (IS_ERR(folio)) 799 return PTR_ERR(folio); 800 801 /* 802 * Now we have a locked folio, before we do anything with it we need to 803 * check that the iomap we have cached is not stale. The inode extent 804 * mapping can change due to concurrent IO in flight (e.g. 805 * IOMAP_UNWRITTEN state can change and memory reclaim could have 806 * reclaimed a previously partially written page at this index after IO 807 * completion before this write reaches this file offset) and hence we 808 * could do the wrong thing here (zero a page range incorrectly or fail 809 * to zero) and corrupt data. 810 */ 811 if (folio_ops && folio_ops->iomap_valid) { 812 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 813 &iter->iomap); 814 if (!iomap_valid) { 815 iter->iomap.flags |= IOMAP_F_STALE; 816 status = 0; 817 goto out_unlock; 818 } 819 } 820 821 if (pos + len > folio_pos(folio) + folio_size(folio)) 822 len = folio_pos(folio) + folio_size(folio) - pos; 823 824 if (srcmap->type == IOMAP_INLINE) 825 status = iomap_write_begin_inline(iter, folio); 826 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 827 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 828 else 829 status = __iomap_write_begin(iter, pos, len, folio); 830 831 if (unlikely(status)) 832 goto out_unlock; 833 834 *foliop = folio; 835 return 0; 836 837 out_unlock: 838 __iomap_put_folio(iter, pos, 0, folio); 839 840 return status; 841 } 842 843 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 844 size_t copied, struct folio *folio) 845 { 846 flush_dcache_folio(folio); 847 848 /* 849 * The blocks that were entirely written will now be uptodate, so we 850 * don't have to worry about a read_folio reading them and overwriting a 851 * partial write. However, if we've encountered a short write and only 852 * partially written into a block, it will not be marked uptodate, so a 853 * read_folio might come in and destroy our partial write. 854 * 855 * Do the simplest thing and just treat any short write to a 856 * non-uptodate page as a zero-length write, and force the caller to 857 * redo the whole thing. 858 */ 859 if (unlikely(copied < len && !folio_test_uptodate(folio))) 860 return false; 861 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 862 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 863 filemap_dirty_folio(inode->i_mapping, folio); 864 return true; 865 } 866 867 static void iomap_write_end_inline(const struct iomap_iter *iter, 868 struct folio *folio, loff_t pos, size_t copied) 869 { 870 const struct iomap *iomap = &iter->iomap; 871 void *addr; 872 873 WARN_ON_ONCE(!folio_test_uptodate(folio)); 874 BUG_ON(!iomap_inline_data_valid(iomap)); 875 876 flush_dcache_folio(folio); 877 addr = kmap_local_folio(folio, pos); 878 memcpy(iomap_inline_data(iomap, pos), addr, copied); 879 kunmap_local(addr); 880 881 mark_inode_dirty(iter->inode); 882 } 883 884 /* 885 * Returns true if all copied bytes have been written to the pagecache, 886 * otherwise return false. 887 */ 888 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 889 size_t copied, struct folio *folio) 890 { 891 const struct iomap *srcmap = iomap_iter_srcmap(iter); 892 893 if (srcmap->type == IOMAP_INLINE) { 894 iomap_write_end_inline(iter, folio, pos, copied); 895 return true; 896 } 897 898 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 899 size_t bh_written; 900 901 bh_written = block_write_end(NULL, iter->inode->i_mapping, pos, 902 len, copied, folio, NULL); 903 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 904 return bh_written == copied; 905 } 906 907 return __iomap_write_end(iter->inode, pos, len, copied, folio); 908 } 909 910 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 911 { 912 loff_t length = iomap_length(iter); 913 loff_t pos = iter->pos; 914 ssize_t total_written = 0; 915 long status = 0; 916 struct address_space *mapping = iter->inode->i_mapping; 917 size_t chunk = mapping_max_folio_size(mapping); 918 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 919 920 do { 921 struct folio *folio; 922 loff_t old_size; 923 size_t offset; /* Offset into folio */ 924 size_t bytes; /* Bytes to write to folio */ 925 size_t copied; /* Bytes copied from user */ 926 size_t written; /* Bytes have been written */ 927 928 bytes = iov_iter_count(i); 929 retry: 930 offset = pos & (chunk - 1); 931 bytes = min(chunk - offset, bytes); 932 status = balance_dirty_pages_ratelimited_flags(mapping, 933 bdp_flags); 934 if (unlikely(status)) 935 break; 936 937 if (bytes > length) 938 bytes = length; 939 940 /* 941 * Bring in the user page that we'll copy from _first_. 942 * Otherwise there's a nasty deadlock on copying from the 943 * same page as we're writing to, without it being marked 944 * up-to-date. 945 * 946 * For async buffered writes the assumption is that the user 947 * page has already been faulted in. This can be optimized by 948 * faulting the user page. 949 */ 950 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 951 status = -EFAULT; 952 break; 953 } 954 955 status = iomap_write_begin(iter, pos, bytes, &folio); 956 if (unlikely(status)) { 957 iomap_write_failed(iter->inode, pos, bytes); 958 break; 959 } 960 if (iter->iomap.flags & IOMAP_F_STALE) 961 break; 962 963 offset = offset_in_folio(folio, pos); 964 if (bytes > folio_size(folio) - offset) 965 bytes = folio_size(folio) - offset; 966 967 if (mapping_writably_mapped(mapping)) 968 flush_dcache_folio(folio); 969 970 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 971 written = iomap_write_end(iter, pos, bytes, copied, folio) ? 972 copied : 0; 973 974 /* 975 * Update the in-memory inode size after copying the data into 976 * the page cache. It's up to the file system to write the 977 * updated size to disk, preferably after I/O completion so that 978 * no stale data is exposed. Only once that's done can we 979 * unlock and release the folio. 980 */ 981 old_size = iter->inode->i_size; 982 if (pos + written > old_size) { 983 i_size_write(iter->inode, pos + written); 984 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 985 } 986 __iomap_put_folio(iter, pos, written, folio); 987 988 if (old_size < pos) 989 pagecache_isize_extended(iter->inode, old_size, pos); 990 991 cond_resched(); 992 if (unlikely(written == 0)) { 993 /* 994 * A short copy made iomap_write_end() reject the 995 * thing entirely. Might be memory poisoning 996 * halfway through, might be a race with munmap, 997 * might be severe memory pressure. 998 */ 999 iomap_write_failed(iter->inode, pos, bytes); 1000 iov_iter_revert(i, copied); 1001 1002 if (chunk > PAGE_SIZE) 1003 chunk /= 2; 1004 if (copied) { 1005 bytes = copied; 1006 goto retry; 1007 } 1008 } else { 1009 pos += written; 1010 total_written += written; 1011 length -= written; 1012 } 1013 } while (iov_iter_count(i) && length); 1014 1015 if (status == -EAGAIN) { 1016 iov_iter_revert(i, total_written); 1017 return -EAGAIN; 1018 } 1019 return total_written ? total_written : status; 1020 } 1021 1022 ssize_t 1023 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1024 const struct iomap_ops *ops, void *private) 1025 { 1026 struct iomap_iter iter = { 1027 .inode = iocb->ki_filp->f_mapping->host, 1028 .pos = iocb->ki_pos, 1029 .len = iov_iter_count(i), 1030 .flags = IOMAP_WRITE, 1031 .private = private, 1032 }; 1033 ssize_t ret; 1034 1035 if (iocb->ki_flags & IOCB_NOWAIT) 1036 iter.flags |= IOMAP_NOWAIT; 1037 1038 while ((ret = iomap_iter(&iter, ops)) > 0) 1039 iter.processed = iomap_write_iter(&iter, i); 1040 1041 if (unlikely(iter.pos == iocb->ki_pos)) 1042 return ret; 1043 ret = iter.pos - iocb->ki_pos; 1044 iocb->ki_pos = iter.pos; 1045 return ret; 1046 } 1047 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1048 1049 static void iomap_write_delalloc_ifs_punch(struct inode *inode, 1050 struct folio *folio, loff_t start_byte, loff_t end_byte, 1051 struct iomap *iomap, iomap_punch_t punch) 1052 { 1053 unsigned int first_blk, last_blk, i; 1054 loff_t last_byte; 1055 u8 blkbits = inode->i_blkbits; 1056 struct iomap_folio_state *ifs; 1057 1058 /* 1059 * When we have per-block dirty tracking, there can be 1060 * blocks within a folio which are marked uptodate 1061 * but not dirty. In that case it is necessary to punch 1062 * out such blocks to avoid leaking any delalloc blocks. 1063 */ 1064 ifs = folio->private; 1065 if (!ifs) 1066 return; 1067 1068 last_byte = min_t(loff_t, end_byte - 1, 1069 folio_pos(folio) + folio_size(folio) - 1); 1070 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1071 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1072 for (i = first_blk; i <= last_blk; i++) { 1073 if (!ifs_block_is_dirty(folio, ifs, i)) 1074 punch(inode, folio_pos(folio) + (i << blkbits), 1075 1 << blkbits, iomap); 1076 } 1077 } 1078 1079 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1080 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1081 struct iomap *iomap, iomap_punch_t punch) 1082 { 1083 if (!folio_test_dirty(folio)) 1084 return; 1085 1086 /* if dirty, punch up to offset */ 1087 if (start_byte > *punch_start_byte) { 1088 punch(inode, *punch_start_byte, start_byte - *punch_start_byte, 1089 iomap); 1090 } 1091 1092 /* Punch non-dirty blocks within folio */ 1093 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, 1094 iomap, punch); 1095 1096 /* 1097 * Make sure the next punch start is correctly bound to 1098 * the end of this data range, not the end of the folio. 1099 */ 1100 *punch_start_byte = min_t(loff_t, end_byte, 1101 folio_pos(folio) + folio_size(folio)); 1102 } 1103 1104 /* 1105 * Scan the data range passed to us for dirty page cache folios. If we find a 1106 * dirty folio, punch out the preceding range and update the offset from which 1107 * the next punch will start from. 1108 * 1109 * We can punch out storage reservations under clean pages because they either 1110 * contain data that has been written back - in which case the delalloc punch 1111 * over that range is a no-op - or they have been read faults in which case they 1112 * contain zeroes and we can remove the delalloc backing range and any new 1113 * writes to those pages will do the normal hole filling operation... 1114 * 1115 * This makes the logic simple: we only need to keep the delalloc extents only 1116 * over the dirty ranges of the page cache. 1117 * 1118 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1119 * simplify range iterations. 1120 */ 1121 static void iomap_write_delalloc_scan(struct inode *inode, 1122 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1123 struct iomap *iomap, iomap_punch_t punch) 1124 { 1125 while (start_byte < end_byte) { 1126 struct folio *folio; 1127 1128 /* grab locked page */ 1129 folio = filemap_lock_folio(inode->i_mapping, 1130 start_byte >> PAGE_SHIFT); 1131 if (IS_ERR(folio)) { 1132 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1133 PAGE_SIZE; 1134 continue; 1135 } 1136 1137 iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1138 start_byte, end_byte, iomap, punch); 1139 1140 /* move offset to start of next folio in range */ 1141 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1142 folio_unlock(folio); 1143 folio_put(folio); 1144 } 1145 } 1146 1147 /* 1148 * Punch out all the delalloc blocks in the range given except for those that 1149 * have dirty data still pending in the page cache - those are going to be 1150 * written and so must still retain the delalloc backing for writeback. 1151 * 1152 * As we are scanning the page cache for data, we don't need to reimplement the 1153 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1154 * start and end of data ranges correctly even for sub-folio block sizes. This 1155 * byte range based iteration is especially convenient because it means we 1156 * don't have to care about variable size folios, nor where the start or end of 1157 * the data range lies within a folio, if they lie within the same folio or even 1158 * if there are multiple discontiguous data ranges within the folio. 1159 * 1160 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1161 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1162 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1163 * date. A write page fault can then mark it dirty. If we then fail a write() 1164 * beyond EOF into that up to date cached range, we allocate a delalloc block 1165 * beyond EOF and then have to punch it out. Because the range is up to date, 1166 * mapping_seek_hole_data() will return it, and we will skip the punch because 1167 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1168 * beyond EOF in this case as writeback will never write back and covert that 1169 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1170 * resulting in always punching out the range from the EOF to the end of the 1171 * range the iomap spans. 1172 * 1173 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1174 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1175 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1176 * returns the end of the data range (data_end). Using closed intervals would 1177 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1178 * the code to subtle off-by-one bugs.... 1179 */ 1180 static void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, 1181 loff_t end_byte, unsigned flags, struct iomap *iomap, 1182 iomap_punch_t punch) 1183 { 1184 loff_t punch_start_byte = start_byte; 1185 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1186 1187 /* 1188 * Lock the mapping to avoid races with page faults re-instantiating 1189 * folios and dirtying them via ->page_mkwrite whilst we walk the 1190 * cache and perform delalloc extent removal. Failing to do this can 1191 * leave dirty pages with no space reservation in the cache. 1192 */ 1193 filemap_invalidate_lock(inode->i_mapping); 1194 while (start_byte < scan_end_byte) { 1195 loff_t data_end; 1196 1197 start_byte = mapping_seek_hole_data(inode->i_mapping, 1198 start_byte, scan_end_byte, SEEK_DATA); 1199 /* 1200 * If there is no more data to scan, all that is left is to 1201 * punch out the remaining range. 1202 * 1203 * Note that mapping_seek_hole_data is only supposed to return 1204 * either an offset or -ENXIO, so WARN on any other error as 1205 * that would be an API change without updating the callers. 1206 */ 1207 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1208 break; 1209 if (WARN_ON_ONCE(start_byte < 0)) 1210 goto out_unlock; 1211 WARN_ON_ONCE(start_byte < punch_start_byte); 1212 WARN_ON_ONCE(start_byte > scan_end_byte); 1213 1214 /* 1215 * We find the end of this contiguous cached data range by 1216 * seeking from start_byte to the beginning of the next hole. 1217 */ 1218 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1219 scan_end_byte, SEEK_HOLE); 1220 if (WARN_ON_ONCE(data_end < 0)) 1221 goto out_unlock; 1222 1223 /* 1224 * If we race with post-direct I/O invalidation of the page cache, 1225 * there might be no data left at start_byte. 1226 */ 1227 if (data_end == start_byte) 1228 continue; 1229 1230 WARN_ON_ONCE(data_end < start_byte); 1231 WARN_ON_ONCE(data_end > scan_end_byte); 1232 1233 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, 1234 data_end, iomap, punch); 1235 1236 /* The next data search starts at the end of this one. */ 1237 start_byte = data_end; 1238 } 1239 1240 if (punch_start_byte < end_byte) 1241 punch(inode, punch_start_byte, end_byte - punch_start_byte, 1242 iomap); 1243 out_unlock: 1244 filemap_invalidate_unlock(inode->i_mapping); 1245 } 1246 1247 /* 1248 * When a short write occurs, the filesystem may need to remove reserved space 1249 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1250 * filesystems that use delayed allocation, we need to punch out delalloc 1251 * extents from the range that are not dirty in the page cache. As the write can 1252 * race with page faults, there can be dirty pages over the delalloc extent 1253 * outside the range of a short write but still within the delalloc extent 1254 * allocated for this iomap. 1255 * 1256 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1257 * simplify range iterations. 1258 * 1259 * The punch() callback *must* only punch delalloc extents in the range passed 1260 * to it. It must skip over all other types of extents in the range and leave 1261 * them completely unchanged. It must do this punch atomically with respect to 1262 * other extent modifications. 1263 * 1264 * The punch() callback may be called with a folio locked to prevent writeback 1265 * extent allocation racing at the edge of the range we are currently punching. 1266 * The locked folio may or may not cover the range being punched, so it is not 1267 * safe for the punch() callback to lock folios itself. 1268 * 1269 * Lock order is: 1270 * 1271 * inode->i_rwsem (shared or exclusive) 1272 * inode->i_mapping->invalidate_lock (exclusive) 1273 * folio_lock() 1274 * ->punch 1275 * internal filesystem allocation lock 1276 */ 1277 void iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1278 loff_t pos, loff_t length, ssize_t written, unsigned flags, 1279 struct iomap *iomap, iomap_punch_t punch) 1280 { 1281 loff_t start_byte; 1282 loff_t end_byte; 1283 unsigned int blocksize = i_blocksize(inode); 1284 1285 if (iomap->type != IOMAP_DELALLOC) 1286 return; 1287 1288 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1289 if (!(iomap->flags & IOMAP_F_NEW)) 1290 return; 1291 1292 /* 1293 * start_byte refers to the first unused block after a short write. If 1294 * nothing was written, round offset down to point at the first block in 1295 * the range. 1296 */ 1297 if (unlikely(!written)) 1298 start_byte = round_down(pos, blocksize); 1299 else 1300 start_byte = round_up(pos + written, blocksize); 1301 end_byte = round_up(pos + length, blocksize); 1302 1303 /* Nothing to do if we've written the entire delalloc extent */ 1304 if (start_byte >= end_byte) 1305 return; 1306 1307 iomap_write_delalloc_release(inode, start_byte, end_byte, flags, iomap, 1308 punch); 1309 } 1310 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1311 1312 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1313 { 1314 struct iomap *iomap = &iter->iomap; 1315 loff_t pos = iter->pos; 1316 loff_t length = iomap_length(iter); 1317 loff_t written = 0; 1318 1319 /* Don't bother with blocks that are not shared to start with. */ 1320 if (!(iomap->flags & IOMAP_F_SHARED)) 1321 return length; 1322 1323 /* 1324 * Don't bother with holes or unwritten extents. 1325 * 1326 * Note that we use srcmap directly instead of iomap_iter_srcmap as 1327 * unsharing requires providing a separate source map, and the presence 1328 * of one is a good indicator that unsharing is needed, unlike 1329 * IOMAP_F_SHARED which can be set for any data that goes into the COW 1330 * fork for XFS. 1331 */ 1332 if (iter->srcmap.type == IOMAP_HOLE || 1333 iter->srcmap.type == IOMAP_UNWRITTEN) 1334 return length; 1335 1336 do { 1337 struct folio *folio; 1338 int status; 1339 size_t offset; 1340 size_t bytes = min_t(u64, SIZE_MAX, length); 1341 bool ret; 1342 1343 status = iomap_write_begin(iter, pos, bytes, &folio); 1344 if (unlikely(status)) 1345 return status; 1346 if (iomap->flags & IOMAP_F_STALE) 1347 break; 1348 1349 offset = offset_in_folio(folio, pos); 1350 if (bytes > folio_size(folio) - offset) 1351 bytes = folio_size(folio) - offset; 1352 1353 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1354 __iomap_put_folio(iter, pos, bytes, folio); 1355 if (WARN_ON_ONCE(!ret)) 1356 return -EIO; 1357 1358 cond_resched(); 1359 1360 pos += bytes; 1361 written += bytes; 1362 length -= bytes; 1363 1364 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1365 } while (length > 0); 1366 1367 return written; 1368 } 1369 1370 int 1371 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1372 const struct iomap_ops *ops) 1373 { 1374 struct iomap_iter iter = { 1375 .inode = inode, 1376 .pos = pos, 1377 .len = len, 1378 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1379 }; 1380 int ret; 1381 1382 while ((ret = iomap_iter(&iter, ops)) > 0) 1383 iter.processed = iomap_unshare_iter(&iter); 1384 return ret; 1385 } 1386 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1387 1388 /* 1389 * Flush the remaining range of the iter and mark the current mapping stale. 1390 * This is used when zero range sees an unwritten mapping that may have had 1391 * dirty pagecache over it. 1392 */ 1393 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) 1394 { 1395 struct address_space *mapping = i->inode->i_mapping; 1396 loff_t end = i->pos + i->len - 1; 1397 1398 i->iomap.flags |= IOMAP_F_STALE; 1399 return filemap_write_and_wait_range(mapping, i->pos, end); 1400 } 1401 1402 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero, 1403 bool *range_dirty) 1404 { 1405 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1406 loff_t pos = iter->pos; 1407 loff_t length = iomap_length(iter); 1408 loff_t written = 0; 1409 1410 /* 1411 * We must zero subranges of unwritten mappings that might be dirty in 1412 * pagecache from previous writes. We only know whether the entire range 1413 * was clean or not, however, and dirty folios may have been written 1414 * back or reclaimed at any point after mapping lookup. 1415 * 1416 * The easiest way to deal with this is to flush pagecache to trigger 1417 * any pending unwritten conversions and then grab the updated extents 1418 * from the fs. The flush may change the current mapping, so mark it 1419 * stale for the iterator to remap it for the next pass to handle 1420 * properly. 1421 * 1422 * Note that holes are treated the same as unwritten because zero range 1423 * is (ab)used for partial folio zeroing in some cases. Hole backed 1424 * post-eof ranges can be dirtied via mapped write and the flush 1425 * triggers writeback time post-eof zeroing. 1426 */ 1427 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) { 1428 if (*range_dirty) { 1429 *range_dirty = false; 1430 return iomap_zero_iter_flush_and_stale(iter); 1431 } 1432 /* range is clean and already zeroed, nothing to do */ 1433 return length; 1434 } 1435 1436 do { 1437 struct folio *folio; 1438 int status; 1439 size_t offset; 1440 size_t bytes = min_t(u64, SIZE_MAX, length); 1441 bool ret; 1442 1443 status = iomap_write_begin(iter, pos, bytes, &folio); 1444 if (status) 1445 return status; 1446 if (iter->iomap.flags & IOMAP_F_STALE) 1447 break; 1448 1449 offset = offset_in_folio(folio, pos); 1450 if (bytes > folio_size(folio) - offset) 1451 bytes = folio_size(folio) - offset; 1452 1453 folio_zero_range(folio, offset, bytes); 1454 folio_mark_accessed(folio); 1455 1456 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1457 __iomap_put_folio(iter, pos, bytes, folio); 1458 if (WARN_ON_ONCE(!ret)) 1459 return -EIO; 1460 1461 pos += bytes; 1462 length -= bytes; 1463 written += bytes; 1464 } while (length > 0); 1465 1466 if (did_zero) 1467 *did_zero = true; 1468 return written; 1469 } 1470 1471 int 1472 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1473 const struct iomap_ops *ops) 1474 { 1475 struct iomap_iter iter = { 1476 .inode = inode, 1477 .pos = pos, 1478 .len = len, 1479 .flags = IOMAP_ZERO, 1480 }; 1481 int ret; 1482 bool range_dirty; 1483 1484 /* 1485 * Zero range wants to skip pre-zeroed (i.e. unwritten) mappings, but 1486 * pagecache must be flushed to ensure stale data from previous 1487 * buffered writes is not exposed. A flush is only required for certain 1488 * types of mappings, but checking pagecache after mapping lookup is 1489 * racy with writeback and reclaim. 1490 * 1491 * Therefore, check the entire range first and pass along whether any 1492 * part of it is dirty. If so and an underlying mapping warrants it, 1493 * flush the cache at that point. This trades off the occasional false 1494 * positive (and spurious flush, if the dirty data and mapping don't 1495 * happen to overlap) for simplicity in handling a relatively uncommon 1496 * situation. 1497 */ 1498 range_dirty = filemap_range_needs_writeback(inode->i_mapping, 1499 pos, pos + len - 1); 1500 1501 while ((ret = iomap_iter(&iter, ops)) > 0) 1502 iter.processed = iomap_zero_iter(&iter, did_zero, &range_dirty); 1503 return ret; 1504 } 1505 EXPORT_SYMBOL_GPL(iomap_zero_range); 1506 1507 int 1508 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1509 const struct iomap_ops *ops) 1510 { 1511 unsigned int blocksize = i_blocksize(inode); 1512 unsigned int off = pos & (blocksize - 1); 1513 1514 /* Block boundary? Nothing to do */ 1515 if (!off) 1516 return 0; 1517 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1518 } 1519 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1520 1521 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1522 struct folio *folio) 1523 { 1524 loff_t length = iomap_length(iter); 1525 int ret; 1526 1527 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1528 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1529 &iter->iomap); 1530 if (ret) 1531 return ret; 1532 block_commit_write(&folio->page, 0, length); 1533 } else { 1534 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1535 folio_mark_dirty(folio); 1536 } 1537 1538 return length; 1539 } 1540 1541 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1542 { 1543 struct iomap_iter iter = { 1544 .inode = file_inode(vmf->vma->vm_file), 1545 .flags = IOMAP_WRITE | IOMAP_FAULT, 1546 }; 1547 struct folio *folio = page_folio(vmf->page); 1548 ssize_t ret; 1549 1550 folio_lock(folio); 1551 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1552 if (ret < 0) 1553 goto out_unlock; 1554 iter.pos = folio_pos(folio); 1555 iter.len = ret; 1556 while ((ret = iomap_iter(&iter, ops)) > 0) 1557 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1558 1559 if (ret < 0) 1560 goto out_unlock; 1561 folio_wait_stable(folio); 1562 return VM_FAULT_LOCKED; 1563 out_unlock: 1564 folio_unlock(folio); 1565 return vmf_fs_error(ret); 1566 } 1567 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1568 1569 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1570 size_t len) 1571 { 1572 struct iomap_folio_state *ifs = folio->private; 1573 1574 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1575 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1576 1577 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1578 folio_end_writeback(folio); 1579 } 1580 1581 /* 1582 * We're now finished for good with this ioend structure. Update the page 1583 * state, release holds on bios, and finally free up memory. Do not use the 1584 * ioend after this. 1585 */ 1586 static u32 1587 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1588 { 1589 struct inode *inode = ioend->io_inode; 1590 struct bio *bio = &ioend->io_bio; 1591 struct folio_iter fi; 1592 u32 folio_count = 0; 1593 1594 if (error) { 1595 mapping_set_error(inode->i_mapping, error); 1596 if (!bio_flagged(bio, BIO_QUIET)) { 1597 pr_err_ratelimited( 1598 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1599 inode->i_sb->s_id, inode->i_ino, 1600 ioend->io_offset, ioend->io_sector); 1601 } 1602 } 1603 1604 /* walk all folios in bio, ending page IO on them */ 1605 bio_for_each_folio_all(fi, bio) { 1606 iomap_finish_folio_write(inode, fi.folio, fi.length); 1607 folio_count++; 1608 } 1609 1610 bio_put(bio); /* frees the ioend */ 1611 return folio_count; 1612 } 1613 1614 /* 1615 * Ioend completion routine for merged bios. This can only be called from task 1616 * contexts as merged ioends can be of unbound length. Hence we have to break up 1617 * the writeback completions into manageable chunks to avoid long scheduler 1618 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1619 * good batch processing throughput without creating adverse scheduler latency 1620 * conditions. 1621 */ 1622 void 1623 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1624 { 1625 struct list_head tmp; 1626 u32 completions; 1627 1628 might_sleep(); 1629 1630 list_replace_init(&ioend->io_list, &tmp); 1631 completions = iomap_finish_ioend(ioend, error); 1632 1633 while (!list_empty(&tmp)) { 1634 if (completions > IOEND_BATCH_SIZE * 8) { 1635 cond_resched(); 1636 completions = 0; 1637 } 1638 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1639 list_del_init(&ioend->io_list); 1640 completions += iomap_finish_ioend(ioend, error); 1641 } 1642 } 1643 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1644 1645 /* 1646 * We can merge two adjacent ioends if they have the same set of work to do. 1647 */ 1648 static bool 1649 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1650 { 1651 if (ioend->io_bio.bi_status != next->io_bio.bi_status) 1652 return false; 1653 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1654 (next->io_flags & IOMAP_F_SHARED)) 1655 return false; 1656 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1657 (next->io_type == IOMAP_UNWRITTEN)) 1658 return false; 1659 if (ioend->io_offset + ioend->io_size != next->io_offset) 1660 return false; 1661 /* 1662 * Do not merge physically discontiguous ioends. The filesystem 1663 * completion functions will have to iterate the physical 1664 * discontiguities even if we merge the ioends at a logical level, so 1665 * we don't gain anything by merging physical discontiguities here. 1666 * 1667 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1668 * submission so does not point to the start sector of the bio at 1669 * completion. 1670 */ 1671 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1672 return false; 1673 return true; 1674 } 1675 1676 void 1677 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1678 { 1679 struct iomap_ioend *next; 1680 1681 INIT_LIST_HEAD(&ioend->io_list); 1682 1683 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1684 io_list))) { 1685 if (!iomap_ioend_can_merge(ioend, next)) 1686 break; 1687 list_move_tail(&next->io_list, &ioend->io_list); 1688 ioend->io_size += next->io_size; 1689 } 1690 } 1691 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1692 1693 static int 1694 iomap_ioend_compare(void *priv, const struct list_head *a, 1695 const struct list_head *b) 1696 { 1697 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1698 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1699 1700 if (ia->io_offset < ib->io_offset) 1701 return -1; 1702 if (ia->io_offset > ib->io_offset) 1703 return 1; 1704 return 0; 1705 } 1706 1707 void 1708 iomap_sort_ioends(struct list_head *ioend_list) 1709 { 1710 list_sort(NULL, ioend_list, iomap_ioend_compare); 1711 } 1712 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1713 1714 static void iomap_writepage_end_bio(struct bio *bio) 1715 { 1716 iomap_finish_ioend(iomap_ioend_from_bio(bio), 1717 blk_status_to_errno(bio->bi_status)); 1718 } 1719 1720 /* 1721 * Submit the final bio for an ioend. 1722 * 1723 * If @error is non-zero, it means that we have a situation where some part of 1724 * the submission process has failed after we've marked pages for writeback. 1725 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1726 * with the error status here to run the normal I/O completion handler to clear 1727 * the writeback bit and let the file system proess the errors. 1728 */ 1729 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1730 { 1731 if (!wpc->ioend) 1732 return error; 1733 1734 /* 1735 * Let the file systems prepare the I/O submission and hook in an I/O 1736 * comletion handler. This also needs to happen in case after a 1737 * failure happened so that the file system end I/O handler gets called 1738 * to clean up. 1739 */ 1740 if (wpc->ops->prepare_ioend) 1741 error = wpc->ops->prepare_ioend(wpc->ioend, error); 1742 1743 if (error) { 1744 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1745 bio_endio(&wpc->ioend->io_bio); 1746 } else { 1747 submit_bio(&wpc->ioend->io_bio); 1748 } 1749 1750 wpc->ioend = NULL; 1751 return error; 1752 } 1753 1754 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1755 struct writeback_control *wbc, struct inode *inode, loff_t pos) 1756 { 1757 struct iomap_ioend *ioend; 1758 struct bio *bio; 1759 1760 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1761 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1762 GFP_NOFS, &iomap_ioend_bioset); 1763 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1764 bio->bi_end_io = iomap_writepage_end_bio; 1765 wbc_init_bio(wbc, bio); 1766 bio->bi_write_hint = inode->i_write_hint; 1767 1768 ioend = iomap_ioend_from_bio(bio); 1769 INIT_LIST_HEAD(&ioend->io_list); 1770 ioend->io_type = wpc->iomap.type; 1771 ioend->io_flags = wpc->iomap.flags; 1772 ioend->io_inode = inode; 1773 ioend->io_size = 0; 1774 ioend->io_offset = pos; 1775 ioend->io_sector = bio->bi_iter.bi_sector; 1776 1777 wpc->nr_folios = 0; 1778 return ioend; 1779 } 1780 1781 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos) 1782 { 1783 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1784 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1785 return false; 1786 if (wpc->iomap.type != wpc->ioend->io_type) 1787 return false; 1788 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1789 return false; 1790 if (iomap_sector(&wpc->iomap, pos) != 1791 bio_end_sector(&wpc->ioend->io_bio)) 1792 return false; 1793 /* 1794 * Limit ioend bio chain lengths to minimise IO completion latency. This 1795 * also prevents long tight loops ending page writeback on all the 1796 * folios in the ioend. 1797 */ 1798 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1799 return false; 1800 return true; 1801 } 1802 1803 /* 1804 * Test to see if we have an existing ioend structure that we could append to 1805 * first; otherwise finish off the current ioend and start another. 1806 * 1807 * If a new ioend is created and cached, the old ioend is submitted to the block 1808 * layer instantly. Batching optimisations are provided by higher level block 1809 * plugging. 1810 * 1811 * At the end of a writeback pass, there will be a cached ioend remaining on the 1812 * writepage context that the caller will need to submit. 1813 */ 1814 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1815 struct writeback_control *wbc, struct folio *folio, 1816 struct inode *inode, loff_t pos, unsigned len) 1817 { 1818 struct iomap_folio_state *ifs = folio->private; 1819 size_t poff = offset_in_folio(folio, pos); 1820 int error; 1821 1822 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) { 1823 new_ioend: 1824 error = iomap_submit_ioend(wpc, 0); 1825 if (error) 1826 return error; 1827 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos); 1828 } 1829 1830 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1831 goto new_ioend; 1832 1833 if (ifs) 1834 atomic_add(len, &ifs->write_bytes_pending); 1835 wpc->ioend->io_size += len; 1836 wbc_account_cgroup_owner(wbc, &folio->page, len); 1837 return 0; 1838 } 1839 1840 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1841 struct writeback_control *wbc, struct folio *folio, 1842 struct inode *inode, u64 pos, unsigned dirty_len, 1843 unsigned *count) 1844 { 1845 int error; 1846 1847 do { 1848 unsigned map_len; 1849 1850 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1851 if (error) 1852 break; 1853 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1854 1855 map_len = min_t(u64, dirty_len, 1856 wpc->iomap.offset + wpc->iomap.length - pos); 1857 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1858 1859 switch (wpc->iomap.type) { 1860 case IOMAP_INLINE: 1861 WARN_ON_ONCE(1); 1862 error = -EIO; 1863 break; 1864 case IOMAP_HOLE: 1865 break; 1866 default: 1867 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1868 map_len); 1869 if (!error) 1870 (*count)++; 1871 break; 1872 } 1873 dirty_len -= map_len; 1874 pos += map_len; 1875 } while (dirty_len && !error); 1876 1877 /* 1878 * We cannot cancel the ioend directly here on error. We may have 1879 * already set other pages under writeback and hence we have to run I/O 1880 * completion to mark the error state of the pages under writeback 1881 * appropriately. 1882 * 1883 * Just let the file system know what portion of the folio failed to 1884 * map. 1885 */ 1886 if (error && wpc->ops->discard_folio) 1887 wpc->ops->discard_folio(folio, pos); 1888 return error; 1889 } 1890 1891 /* 1892 * Check interaction of the folio with the file end. 1893 * 1894 * If the folio is entirely beyond i_size, return false. If it straddles 1895 * i_size, adjust end_pos and zero all data beyond i_size. 1896 */ 1897 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1898 u64 *end_pos) 1899 { 1900 u64 isize = i_size_read(inode); 1901 1902 if (*end_pos > isize) { 1903 size_t poff = offset_in_folio(folio, isize); 1904 pgoff_t end_index = isize >> PAGE_SHIFT; 1905 1906 /* 1907 * If the folio is entirely ouside of i_size, skip it. 1908 * 1909 * This can happen due to a truncate operation that is in 1910 * progress and in that case truncate will finish it off once 1911 * we've dropped the folio lock. 1912 * 1913 * Note that the pgoff_t used for end_index is an unsigned long. 1914 * If the given offset is greater than 16TB on a 32-bit system, 1915 * then if we checked if the folio is fully outside i_size with 1916 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1917 * overflow and evaluate to 0. Hence this folio would be 1918 * redirtied and written out repeatedly, which would result in 1919 * an infinite loop; the user program performing this operation 1920 * would hang. Instead, we can detect this situation by 1921 * checking if the folio is totally beyond i_size or if its 1922 * offset is just equal to the EOF. 1923 */ 1924 if (folio->index > end_index || 1925 (folio->index == end_index && poff == 0)) 1926 return false; 1927 1928 /* 1929 * The folio straddles i_size. 1930 * 1931 * It must be zeroed out on each and every writepage invocation 1932 * because it may be mmapped: 1933 * 1934 * A file is mapped in multiples of the page size. For a 1935 * file that is not a multiple of the page size, the 1936 * remaining memory is zeroed when mapped, and writes to that 1937 * region are not written out to the file. 1938 * 1939 * Also adjust the writeback range to skip all blocks entirely 1940 * beyond i_size. 1941 */ 1942 folio_zero_segment(folio, poff, folio_size(folio)); 1943 *end_pos = round_up(isize, i_blocksize(inode)); 1944 } 1945 1946 return true; 1947 } 1948 1949 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1950 struct writeback_control *wbc, struct folio *folio) 1951 { 1952 struct iomap_folio_state *ifs = folio->private; 1953 struct inode *inode = folio->mapping->host; 1954 u64 pos = folio_pos(folio); 1955 u64 end_pos = pos + folio_size(folio); 1956 unsigned count = 0; 1957 int error = 0; 1958 u32 rlen; 1959 1960 WARN_ON_ONCE(!folio_test_locked(folio)); 1961 WARN_ON_ONCE(folio_test_dirty(folio)); 1962 WARN_ON_ONCE(folio_test_writeback(folio)); 1963 1964 trace_iomap_writepage(inode, pos, folio_size(folio)); 1965 1966 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1967 folio_unlock(folio); 1968 return 0; 1969 } 1970 WARN_ON_ONCE(end_pos <= pos); 1971 1972 if (i_blocks_per_folio(inode, folio) > 1) { 1973 if (!ifs) { 1974 ifs = ifs_alloc(inode, folio, 0); 1975 iomap_set_range_dirty(folio, 0, end_pos - pos); 1976 } 1977 1978 /* 1979 * Keep the I/O completion handler from clearing the writeback 1980 * bit until we have submitted all blocks by adding a bias to 1981 * ifs->write_bytes_pending, which is dropped after submitting 1982 * all blocks. 1983 */ 1984 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1985 atomic_inc(&ifs->write_bytes_pending); 1986 } 1987 1988 /* 1989 * Set the writeback bit ASAP, as the I/O completion for the single 1990 * block per folio case happen hit as soon as we're submitting the bio. 1991 */ 1992 folio_start_writeback(folio); 1993 1994 /* 1995 * Walk through the folio to find dirty areas to write back. 1996 */ 1997 while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) { 1998 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1999 pos, rlen, &count); 2000 if (error) 2001 break; 2002 pos += rlen; 2003 } 2004 2005 if (count) 2006 wpc->nr_folios++; 2007 2008 /* 2009 * We can have dirty bits set past end of file in page_mkwrite path 2010 * while mapping the last partial folio. Hence it's better to clear 2011 * all the dirty bits in the folio here. 2012 */ 2013 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 2014 2015 /* 2016 * Usually the writeback bit is cleared by the I/O completion handler. 2017 * But we may end up either not actually writing any blocks, or (when 2018 * there are multiple blocks in a folio) all I/O might have finished 2019 * already at this point. In that case we need to clear the writeback 2020 * bit ourselves right after unlocking the page. 2021 */ 2022 folio_unlock(folio); 2023 if (ifs) { 2024 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 2025 folio_end_writeback(folio); 2026 } else { 2027 if (!count) 2028 folio_end_writeback(folio); 2029 } 2030 mapping_set_error(inode->i_mapping, error); 2031 return error; 2032 } 2033 2034 int 2035 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 2036 struct iomap_writepage_ctx *wpc, 2037 const struct iomap_writeback_ops *ops) 2038 { 2039 struct folio *folio = NULL; 2040 int error; 2041 2042 /* 2043 * Writeback from reclaim context should never happen except in the case 2044 * of a VM regression so warn about it and refuse to write the data. 2045 */ 2046 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 2047 PF_MEMALLOC)) 2048 return -EIO; 2049 2050 wpc->ops = ops; 2051 while ((folio = writeback_iter(mapping, wbc, folio, &error))) 2052 error = iomap_writepage_map(wpc, wbc, folio); 2053 return iomap_submit_ioend(wpc, error); 2054 } 2055 EXPORT_SYMBOL_GPL(iomap_writepages); 2056 2057 static int __init iomap_buffered_init(void) 2058 { 2059 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 2060 offsetof(struct iomap_ioend, io_bio), 2061 BIOSET_NEED_BVECS); 2062 } 2063 fs_initcall(iomap_buffered_init); 2064