xref: /linux/fs/iomap/buffered-io.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page or THP when block size < page size
26  * to track sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	/*
38 	 * per-block data is stored in the head page.  Callers should
39 	 * not be dealing with tail pages (and if they are, they can
40 	 * call thp_head() first.
41 	 */
42 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43 
44 	if (page_has_private(page))
45 		return (struct iomap_page *)page_private(page);
46 	return NULL;
47 }
48 
49 static struct bio_set iomap_ioend_bioset;
50 
51 static struct iomap_page *
52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 	struct iomap_page *iop = to_iomap_page(page);
55 	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56 
57 	if (iop || nr_blocks <= 1)
58 		return iop;
59 
60 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 			GFP_NOFS | __GFP_NOFAIL);
62 	spin_lock_init(&iop->uptodate_lock);
63 	if (PageUptodate(page))
64 		bitmap_fill(iop->uptodate, nr_blocks);
65 	attach_page_private(page, iop);
66 	return iop;
67 }
68 
69 static void
70 iomap_page_release(struct page *page)
71 {
72 	struct iomap_page *iop = detach_page_private(page);
73 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74 
75 	if (!iop)
76 		return;
77 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 			PageUptodate(page));
81 	kfree(iop);
82 }
83 
84 /*
85  * Calculate the range inside the page that we actually need to read.
86  */
87 static void
88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 	loff_t orig_pos = *pos;
92 	loff_t isize = i_size_read(inode);
93 	unsigned block_bits = inode->i_blkbits;
94 	unsigned block_size = (1 << block_bits);
95 	unsigned poff = offset_in_page(*pos);
96 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 	unsigned first = poff >> block_bits;
98 	unsigned last = (poff + plen - 1) >> block_bits;
99 
100 	/*
101 	 * If the block size is smaller than the page size we need to check the
102 	 * per-block uptodate status and adjust the offset and length if needed
103 	 * to avoid reading in already uptodate ranges.
104 	 */
105 	if (iop) {
106 		unsigned int i;
107 
108 		/* move forward for each leading block marked uptodate */
109 		for (i = first; i <= last; i++) {
110 			if (!test_bit(i, iop->uptodate))
111 				break;
112 			*pos += block_size;
113 			poff += block_size;
114 			plen -= block_size;
115 			first++;
116 		}
117 
118 		/* truncate len if we find any trailing uptodate block(s) */
119 		for ( ; i <= last; i++) {
120 			if (test_bit(i, iop->uptodate)) {
121 				plen -= (last - i + 1) * block_size;
122 				last = i - 1;
123 				break;
124 			}
125 		}
126 	}
127 
128 	/*
129 	 * If the extent spans the block that contains the i_size we need to
130 	 * handle both halves separately so that we properly zero data in the
131 	 * page cache for blocks that are entirely outside of i_size.
132 	 */
133 	if (orig_pos <= isize && orig_pos + length > isize) {
134 		unsigned end = offset_in_page(isize - 1) >> block_bits;
135 
136 		if (first <= end && last > end)
137 			plen -= (last - end) * block_size;
138 	}
139 
140 	*offp = poff;
141 	*lenp = plen;
142 }
143 
144 static void
145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 	struct iomap_page *iop = to_iomap_page(page);
148 	struct inode *inode = page->mapping->host;
149 	unsigned first = off >> inode->i_blkbits;
150 	unsigned last = (off + len - 1) >> inode->i_blkbits;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&iop->uptodate_lock, flags);
154 	bitmap_set(iop->uptodate, first, last - first + 1);
155 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 		SetPageUptodate(page);
157 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159 
160 static void
161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 	if (PageError(page))
164 		return;
165 
166 	if (page_has_private(page))
167 		iomap_iop_set_range_uptodate(page, off, len);
168 	else
169 		SetPageUptodate(page);
170 }
171 
172 static void
173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 	struct page *page = bvec->bv_page;
176 	struct iomap_page *iop = to_iomap_page(page);
177 
178 	if (unlikely(error)) {
179 		ClearPageUptodate(page);
180 		SetPageError(page);
181 	} else {
182 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 	}
184 
185 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 		unlock_page(page);
187 }
188 
189 static void
190 iomap_read_end_io(struct bio *bio)
191 {
192 	int error = blk_status_to_errno(bio->bi_status);
193 	struct bio_vec *bvec;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bvec, bio, iter_all)
197 		iomap_read_page_end_io(bvec, error);
198 	bio_put(bio);
199 }
200 
201 struct iomap_readpage_ctx {
202 	struct page		*cur_page;
203 	bool			cur_page_in_bio;
204 	struct bio		*bio;
205 	struct readahead_control *rac;
206 };
207 
208 static void
209 iomap_read_inline_data(struct inode *inode, struct page *page,
210 		struct iomap *iomap)
211 {
212 	size_t size = i_size_read(inode);
213 	void *addr;
214 
215 	if (PageUptodate(page))
216 		return;
217 
218 	BUG_ON(page->index);
219 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220 
221 	addr = kmap_atomic(page);
222 	memcpy(addr, iomap->inline_data, size);
223 	memset(addr + size, 0, PAGE_SIZE - size);
224 	kunmap_atomic(addr);
225 	SetPageUptodate(page);
226 }
227 
228 static inline bool iomap_block_needs_zeroing(struct inode *inode,
229 		struct iomap *iomap, loff_t pos)
230 {
231 	return iomap->type != IOMAP_MAPPED ||
232 		(iomap->flags & IOMAP_F_NEW) ||
233 		pos >= i_size_read(inode);
234 }
235 
236 static loff_t
237 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238 		struct iomap *iomap, struct iomap *srcmap)
239 {
240 	struct iomap_readpage_ctx *ctx = data;
241 	struct page *page = ctx->cur_page;
242 	struct iomap_page *iop = iomap_page_create(inode, page);
243 	bool same_page = false, is_contig = false;
244 	loff_t orig_pos = pos;
245 	unsigned poff, plen;
246 	sector_t sector;
247 
248 	if (iomap->type == IOMAP_INLINE) {
249 		WARN_ON_ONCE(pos);
250 		iomap_read_inline_data(inode, page, iomap);
251 		return PAGE_SIZE;
252 	}
253 
254 	/* zero post-eof blocks as the page may be mapped */
255 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256 	if (plen == 0)
257 		goto done;
258 
259 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260 		zero_user(page, poff, plen);
261 		iomap_set_range_uptodate(page, poff, plen);
262 		goto done;
263 	}
264 
265 	ctx->cur_page_in_bio = true;
266 	if (iop)
267 		atomic_add(plen, &iop->read_bytes_pending);
268 
269 	/* Try to merge into a previous segment if we can */
270 	sector = iomap_sector(iomap, pos);
271 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272 		if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273 				&same_page))
274 			goto done;
275 		is_contig = true;
276 	}
277 
278 	if (!is_contig || bio_full(ctx->bio, plen)) {
279 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280 		gfp_t orig_gfp = gfp;
281 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
282 
283 		if (ctx->bio)
284 			submit_bio(ctx->bio);
285 
286 		if (ctx->rac) /* same as readahead_gfp_mask */
287 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
288 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
289 		/*
290 		 * If the bio_alloc fails, try it again for a single page to
291 		 * avoid having to deal with partial page reads.  This emulates
292 		 * what do_mpage_readpage does.
293 		 */
294 		if (!ctx->bio)
295 			ctx->bio = bio_alloc(orig_gfp, 1);
296 		ctx->bio->bi_opf = REQ_OP_READ;
297 		if (ctx->rac)
298 			ctx->bio->bi_opf |= REQ_RAHEAD;
299 		ctx->bio->bi_iter.bi_sector = sector;
300 		bio_set_dev(ctx->bio, iomap->bdev);
301 		ctx->bio->bi_end_io = iomap_read_end_io;
302 	}
303 
304 	bio_add_page(ctx->bio, page, plen, poff);
305 done:
306 	/*
307 	 * Move the caller beyond our range so that it keeps making progress.
308 	 * For that we have to include any leading non-uptodate ranges, but
309 	 * we can skip trailing ones as they will be handled in the next
310 	 * iteration.
311 	 */
312 	return pos - orig_pos + plen;
313 }
314 
315 int
316 iomap_readpage(struct page *page, const struct iomap_ops *ops)
317 {
318 	struct iomap_readpage_ctx ctx = { .cur_page = page };
319 	struct inode *inode = page->mapping->host;
320 	unsigned poff;
321 	loff_t ret;
322 
323 	trace_iomap_readpage(page->mapping->host, 1);
324 
325 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326 		ret = iomap_apply(inode, page_offset(page) + poff,
327 				PAGE_SIZE - poff, 0, ops, &ctx,
328 				iomap_readpage_actor);
329 		if (ret <= 0) {
330 			WARN_ON_ONCE(ret == 0);
331 			SetPageError(page);
332 			break;
333 		}
334 	}
335 
336 	if (ctx.bio) {
337 		submit_bio(ctx.bio);
338 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
339 	} else {
340 		WARN_ON_ONCE(ctx.cur_page_in_bio);
341 		unlock_page(page);
342 	}
343 
344 	/*
345 	 * Just like mpage_readahead and block_read_full_page we always
346 	 * return 0 and just mark the page as PageError on errors.  This
347 	 * should be cleaned up all through the stack eventually.
348 	 */
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(iomap_readpage);
352 
353 static loff_t
354 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355 		void *data, struct iomap *iomap, struct iomap *srcmap)
356 {
357 	struct iomap_readpage_ctx *ctx = data;
358 	loff_t done, ret;
359 
360 	for (done = 0; done < length; done += ret) {
361 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362 			if (!ctx->cur_page_in_bio)
363 				unlock_page(ctx->cur_page);
364 			put_page(ctx->cur_page);
365 			ctx->cur_page = NULL;
366 		}
367 		if (!ctx->cur_page) {
368 			ctx->cur_page = readahead_page(ctx->rac);
369 			ctx->cur_page_in_bio = false;
370 		}
371 		ret = iomap_readpage_actor(inode, pos + done, length - done,
372 				ctx, iomap, srcmap);
373 	}
374 
375 	return done;
376 }
377 
378 /**
379  * iomap_readahead - Attempt to read pages from a file.
380  * @rac: Describes the pages to be read.
381  * @ops: The operations vector for the filesystem.
382  *
383  * This function is for filesystems to call to implement their readahead
384  * address_space operation.
385  *
386  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387  * blocks from disc), and may wait for it.  The caller may be trying to
388  * access a different page, and so sleeping excessively should be avoided.
389  * It may allocate memory, but should avoid costly allocations.  This
390  * function is called with memalloc_nofs set, so allocations will not cause
391  * the filesystem to be reentered.
392  */
393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 	struct inode *inode = rac->mapping->host;
396 	loff_t pos = readahead_pos(rac);
397 	loff_t length = readahead_length(rac);
398 	struct iomap_readpage_ctx ctx = {
399 		.rac	= rac,
400 	};
401 
402 	trace_iomap_readahead(inode, readahead_count(rac));
403 
404 	while (length > 0) {
405 		loff_t ret = iomap_apply(inode, pos, length, 0, ops,
406 				&ctx, iomap_readahead_actor);
407 		if (ret <= 0) {
408 			WARN_ON_ONCE(ret == 0);
409 			break;
410 		}
411 		pos += ret;
412 		length -= ret;
413 	}
414 
415 	if (ctx.bio)
416 		submit_bio(ctx.bio);
417 	if (ctx.cur_page) {
418 		if (!ctx.cur_page_in_bio)
419 			unlock_page(ctx.cur_page);
420 		put_page(ctx.cur_page);
421 	}
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424 
425 /*
426  * iomap_is_partially_uptodate checks whether blocks within a page are
427  * uptodate or not.
428  *
429  * Returns true if all blocks which correspond to a file portion
430  * we want to read within the page are uptodate.
431  */
432 int
433 iomap_is_partially_uptodate(struct page *page, unsigned long from,
434 		unsigned long count)
435 {
436 	struct iomap_page *iop = to_iomap_page(page);
437 	struct inode *inode = page->mapping->host;
438 	unsigned len, first, last;
439 	unsigned i;
440 
441 	/* Limit range to one page */
442 	len = min_t(unsigned, PAGE_SIZE - from, count);
443 
444 	/* First and last blocks in range within page */
445 	first = from >> inode->i_blkbits;
446 	last = (from + len - 1) >> inode->i_blkbits;
447 
448 	if (iop) {
449 		for (i = first; i <= last; i++)
450 			if (!test_bit(i, iop->uptodate))
451 				return 0;
452 		return 1;
453 	}
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458 
459 int
460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
463 			PAGE_SIZE);
464 
465 	/*
466 	 * mm accommodates an old ext3 case where clean pages might not have had
467 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
468 	 * ->releasepage() via shrink_active_list(), skip those here.
469 	 */
470 	if (PageDirty(page) || PageWriteback(page))
471 		return 0;
472 	iomap_page_release(page);
473 	return 1;
474 }
475 EXPORT_SYMBOL_GPL(iomap_releasepage);
476 
477 void
478 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479 {
480 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
481 
482 	/*
483 	 * If we are invalidating the entire page, clear the dirty state from it
484 	 * and release it to avoid unnecessary buildup of the LRU.
485 	 */
486 	if (offset == 0 && len == PAGE_SIZE) {
487 		WARN_ON_ONCE(PageWriteback(page));
488 		cancel_dirty_page(page);
489 		iomap_page_release(page);
490 	}
491 }
492 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493 
494 #ifdef CONFIG_MIGRATION
495 int
496 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497 		struct page *page, enum migrate_mode mode)
498 {
499 	int ret;
500 
501 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502 	if (ret != MIGRATEPAGE_SUCCESS)
503 		return ret;
504 
505 	if (page_has_private(page))
506 		attach_page_private(newpage, detach_page_private(page));
507 
508 	if (mode != MIGRATE_SYNC_NO_COPY)
509 		migrate_page_copy(newpage, page);
510 	else
511 		migrate_page_states(newpage, page);
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL_GPL(iomap_migrate_page);
515 #endif /* CONFIG_MIGRATION */
516 
517 enum {
518 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
519 };
520 
521 static void
522 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523 {
524 	loff_t i_size = i_size_read(inode);
525 
526 	/*
527 	 * Only truncate newly allocated pages beyoned EOF, even if the
528 	 * write started inside the existing inode size.
529 	 */
530 	if (pos + len > i_size)
531 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
532 }
533 
534 static int
535 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
536 		unsigned plen, struct iomap *iomap)
537 {
538 	struct bio_vec bvec;
539 	struct bio bio;
540 
541 	bio_init(&bio, &bvec, 1);
542 	bio.bi_opf = REQ_OP_READ;
543 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
544 	bio_set_dev(&bio, iomap->bdev);
545 	__bio_add_page(&bio, page, plen, poff);
546 	return submit_bio_wait(&bio);
547 }
548 
549 static int
550 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
551 		struct page *page, struct iomap *srcmap)
552 {
553 	struct iomap_page *iop = iomap_page_create(inode, page);
554 	loff_t block_size = i_blocksize(inode);
555 	loff_t block_start = round_down(pos, block_size);
556 	loff_t block_end = round_up(pos + len, block_size);
557 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
558 
559 	if (PageUptodate(page))
560 		return 0;
561 	ClearPageError(page);
562 
563 	do {
564 		iomap_adjust_read_range(inode, iop, &block_start,
565 				block_end - block_start, &poff, &plen);
566 		if (plen == 0)
567 			break;
568 
569 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
570 		    (from <= poff || from >= poff + plen) &&
571 		    (to <= poff || to >= poff + plen))
572 			continue;
573 
574 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
575 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
576 				return -EIO;
577 			zero_user_segments(page, poff, from, to, poff + plen);
578 		} else {
579 			int status = iomap_read_page_sync(block_start, page,
580 					poff, plen, srcmap);
581 			if (status)
582 				return status;
583 		}
584 		iomap_set_range_uptodate(page, poff, plen);
585 	} while ((block_start += plen) < block_end);
586 
587 	return 0;
588 }
589 
590 static int
591 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
592 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
593 {
594 	const struct iomap_page_ops *page_ops = iomap->page_ops;
595 	struct page *page;
596 	int status = 0;
597 
598 	BUG_ON(pos + len > iomap->offset + iomap->length);
599 	if (srcmap != iomap)
600 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
601 
602 	if (fatal_signal_pending(current))
603 		return -EINTR;
604 
605 	if (page_ops && page_ops->page_prepare) {
606 		status = page_ops->page_prepare(inode, pos, len, iomap);
607 		if (status)
608 			return status;
609 	}
610 
611 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
612 			AOP_FLAG_NOFS);
613 	if (!page) {
614 		status = -ENOMEM;
615 		goto out_no_page;
616 	}
617 
618 	if (srcmap->type == IOMAP_INLINE)
619 		iomap_read_inline_data(inode, page, srcmap);
620 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
621 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
622 	else
623 		status = __iomap_write_begin(inode, pos, len, flags, page,
624 				srcmap);
625 
626 	if (unlikely(status))
627 		goto out_unlock;
628 
629 	*pagep = page;
630 	return 0;
631 
632 out_unlock:
633 	unlock_page(page);
634 	put_page(page);
635 	iomap_write_failed(inode, pos, len);
636 
637 out_no_page:
638 	if (page_ops && page_ops->page_done)
639 		page_ops->page_done(inode, pos, 0, NULL, iomap);
640 	return status;
641 }
642 
643 int
644 iomap_set_page_dirty(struct page *page)
645 {
646 	struct address_space *mapping = page_mapping(page);
647 	int newly_dirty;
648 
649 	if (unlikely(!mapping))
650 		return !TestSetPageDirty(page);
651 
652 	/*
653 	 * Lock out page's memcg migration to keep PageDirty
654 	 * synchronized with per-memcg dirty page counters.
655 	 */
656 	lock_page_memcg(page);
657 	newly_dirty = !TestSetPageDirty(page);
658 	if (newly_dirty)
659 		__set_page_dirty(page, mapping, 0);
660 	unlock_page_memcg(page);
661 
662 	if (newly_dirty)
663 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
664 	return newly_dirty;
665 }
666 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
667 
668 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
669 		size_t copied, struct page *page)
670 {
671 	flush_dcache_page(page);
672 
673 	/*
674 	 * The blocks that were entirely written will now be uptodate, so we
675 	 * don't have to worry about a readpage reading them and overwriting a
676 	 * partial write.  However if we have encountered a short write and only
677 	 * partially written into a block, it will not be marked uptodate, so a
678 	 * readpage might come in and destroy our partial write.
679 	 *
680 	 * Do the simplest thing, and just treat any short write to a non
681 	 * uptodate page as a zero-length write, and force the caller to redo
682 	 * the whole thing.
683 	 */
684 	if (unlikely(copied < len && !PageUptodate(page)))
685 		return 0;
686 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
687 	iomap_set_page_dirty(page);
688 	return copied;
689 }
690 
691 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
692 		struct iomap *iomap, loff_t pos, size_t copied)
693 {
694 	void *addr;
695 
696 	WARN_ON_ONCE(!PageUptodate(page));
697 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
698 
699 	flush_dcache_page(page);
700 	addr = kmap_atomic(page);
701 	memcpy(iomap->inline_data + pos, addr + pos, copied);
702 	kunmap_atomic(addr);
703 
704 	mark_inode_dirty(inode);
705 	return copied;
706 }
707 
708 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
709 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
710 		size_t copied, struct page *page, struct iomap *iomap,
711 		struct iomap *srcmap)
712 {
713 	const struct iomap_page_ops *page_ops = iomap->page_ops;
714 	loff_t old_size = inode->i_size;
715 	size_t ret;
716 
717 	if (srcmap->type == IOMAP_INLINE) {
718 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
719 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
720 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
721 				page, NULL);
722 	} else {
723 		ret = __iomap_write_end(inode, pos, len, copied, page);
724 	}
725 
726 	/*
727 	 * Update the in-memory inode size after copying the data into the page
728 	 * cache.  It's up to the file system to write the updated size to disk,
729 	 * preferably after I/O completion so that no stale data is exposed.
730 	 */
731 	if (pos + ret > old_size) {
732 		i_size_write(inode, pos + ret);
733 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
734 	}
735 	unlock_page(page);
736 
737 	if (old_size < pos)
738 		pagecache_isize_extended(inode, old_size, pos);
739 	if (page_ops && page_ops->page_done)
740 		page_ops->page_done(inode, pos, ret, page, iomap);
741 	put_page(page);
742 
743 	if (ret < len)
744 		iomap_write_failed(inode, pos, len);
745 	return ret;
746 }
747 
748 static loff_t
749 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
750 		struct iomap *iomap, struct iomap *srcmap)
751 {
752 	struct iov_iter *i = data;
753 	long status = 0;
754 	ssize_t written = 0;
755 
756 	do {
757 		struct page *page;
758 		unsigned long offset;	/* Offset into pagecache page */
759 		unsigned long bytes;	/* Bytes to write to page */
760 		size_t copied;		/* Bytes copied from user */
761 
762 		offset = offset_in_page(pos);
763 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
764 						iov_iter_count(i));
765 again:
766 		if (bytes > length)
767 			bytes = length;
768 
769 		/*
770 		 * Bring in the user page that we will copy from _first_.
771 		 * Otherwise there's a nasty deadlock on copying from the
772 		 * same page as we're writing to, without it being marked
773 		 * up-to-date.
774 		 *
775 		 * Not only is this an optimisation, but it is also required
776 		 * to check that the address is actually valid, when atomic
777 		 * usercopies are used, below.
778 		 */
779 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
780 			status = -EFAULT;
781 			break;
782 		}
783 
784 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
785 				srcmap);
786 		if (unlikely(status))
787 			break;
788 
789 		if (mapping_writably_mapped(inode->i_mapping))
790 			flush_dcache_page(page);
791 
792 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
793 
794 		copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
795 				srcmap);
796 
797 		cond_resched();
798 
799 		iov_iter_advance(i, copied);
800 		if (unlikely(copied == 0)) {
801 			/*
802 			 * If we were unable to copy any data at all, we must
803 			 * fall back to a single segment length write.
804 			 *
805 			 * If we didn't fallback here, we could livelock
806 			 * because not all segments in the iov can be copied at
807 			 * once without a pagefault.
808 			 */
809 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
810 						iov_iter_single_seg_count(i));
811 			goto again;
812 		}
813 		pos += copied;
814 		written += copied;
815 		length -= copied;
816 
817 		balance_dirty_pages_ratelimited(inode->i_mapping);
818 	} while (iov_iter_count(i) && length);
819 
820 	return written ? written : status;
821 }
822 
823 ssize_t
824 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
825 		const struct iomap_ops *ops)
826 {
827 	struct inode *inode = iocb->ki_filp->f_mapping->host;
828 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
829 
830 	while (iov_iter_count(iter)) {
831 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
832 				IOMAP_WRITE, ops, iter, iomap_write_actor);
833 		if (ret <= 0)
834 			break;
835 		pos += ret;
836 		written += ret;
837 	}
838 
839 	return written ? written : ret;
840 }
841 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
842 
843 static loff_t
844 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
845 		struct iomap *iomap, struct iomap *srcmap)
846 {
847 	long status = 0;
848 	loff_t written = 0;
849 
850 	/* don't bother with blocks that are not shared to start with */
851 	if (!(iomap->flags & IOMAP_F_SHARED))
852 		return length;
853 	/* don't bother with holes or unwritten extents */
854 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
855 		return length;
856 
857 	do {
858 		unsigned long offset = offset_in_page(pos);
859 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
860 		struct page *page;
861 
862 		status = iomap_write_begin(inode, pos, bytes,
863 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
864 		if (unlikely(status))
865 			return status;
866 
867 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
868 				srcmap);
869 		if (WARN_ON_ONCE(status == 0))
870 			return -EIO;
871 
872 		cond_resched();
873 
874 		pos += status;
875 		written += status;
876 		length -= status;
877 
878 		balance_dirty_pages_ratelimited(inode->i_mapping);
879 	} while (length);
880 
881 	return written;
882 }
883 
884 int
885 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
886 		const struct iomap_ops *ops)
887 {
888 	loff_t ret;
889 
890 	while (len) {
891 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
892 				iomap_unshare_actor);
893 		if (ret <= 0)
894 			return ret;
895 		pos += ret;
896 		len -= ret;
897 	}
898 
899 	return 0;
900 }
901 EXPORT_SYMBOL_GPL(iomap_file_unshare);
902 
903 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
904 		struct iomap *iomap, struct iomap *srcmap)
905 {
906 	struct page *page;
907 	int status;
908 	unsigned offset = offset_in_page(pos);
909 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
910 
911 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
912 	if (status)
913 		return status;
914 
915 	zero_user(page, offset, bytes);
916 	mark_page_accessed(page);
917 
918 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
919 }
920 
921 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
922 		loff_t length, void *data, struct iomap *iomap,
923 		struct iomap *srcmap)
924 {
925 	bool *did_zero = data;
926 	loff_t written = 0;
927 
928 	/* already zeroed?  we're done. */
929 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
930 		return length;
931 
932 	do {
933 		s64 bytes;
934 
935 		if (IS_DAX(inode))
936 			bytes = dax_iomap_zero(pos, length, iomap);
937 		else
938 			bytes = iomap_zero(inode, pos, length, iomap, srcmap);
939 		if (bytes < 0)
940 			return bytes;
941 
942 		pos += bytes;
943 		length -= bytes;
944 		written += bytes;
945 		if (did_zero)
946 			*did_zero = true;
947 	} while (length > 0);
948 
949 	return written;
950 }
951 
952 int
953 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
954 		const struct iomap_ops *ops)
955 {
956 	loff_t ret;
957 
958 	while (len > 0) {
959 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
960 				ops, did_zero, iomap_zero_range_actor);
961 		if (ret <= 0)
962 			return ret;
963 
964 		pos += ret;
965 		len -= ret;
966 	}
967 
968 	return 0;
969 }
970 EXPORT_SYMBOL_GPL(iomap_zero_range);
971 
972 int
973 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
974 		const struct iomap_ops *ops)
975 {
976 	unsigned int blocksize = i_blocksize(inode);
977 	unsigned int off = pos & (blocksize - 1);
978 
979 	/* Block boundary? Nothing to do */
980 	if (!off)
981 		return 0;
982 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
983 }
984 EXPORT_SYMBOL_GPL(iomap_truncate_page);
985 
986 static loff_t
987 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
988 		void *data, struct iomap *iomap, struct iomap *srcmap)
989 {
990 	struct page *page = data;
991 	int ret;
992 
993 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
994 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
995 		if (ret)
996 			return ret;
997 		block_commit_write(page, 0, length);
998 	} else {
999 		WARN_ON_ONCE(!PageUptodate(page));
1000 		iomap_page_create(inode, page);
1001 		set_page_dirty(page);
1002 	}
1003 
1004 	return length;
1005 }
1006 
1007 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1008 {
1009 	struct page *page = vmf->page;
1010 	struct inode *inode = file_inode(vmf->vma->vm_file);
1011 	unsigned long length;
1012 	loff_t offset;
1013 	ssize_t ret;
1014 
1015 	lock_page(page);
1016 	ret = page_mkwrite_check_truncate(page, inode);
1017 	if (ret < 0)
1018 		goto out_unlock;
1019 	length = ret;
1020 
1021 	offset = page_offset(page);
1022 	while (length > 0) {
1023 		ret = iomap_apply(inode, offset, length,
1024 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1025 				iomap_page_mkwrite_actor);
1026 		if (unlikely(ret <= 0))
1027 			goto out_unlock;
1028 		offset += ret;
1029 		length -= ret;
1030 	}
1031 
1032 	wait_for_stable_page(page);
1033 	return VM_FAULT_LOCKED;
1034 out_unlock:
1035 	unlock_page(page);
1036 	return block_page_mkwrite_return(ret);
1037 }
1038 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1039 
1040 static void
1041 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1042 		int error, unsigned int len)
1043 {
1044 	struct iomap_page *iop = to_iomap_page(page);
1045 
1046 	if (error) {
1047 		SetPageError(page);
1048 		mapping_set_error(inode->i_mapping, -EIO);
1049 	}
1050 
1051 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1052 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1053 
1054 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1055 		end_page_writeback(page);
1056 }
1057 
1058 /*
1059  * We're now finished for good with this ioend structure.  Update the page
1060  * state, release holds on bios, and finally free up memory.  Do not use the
1061  * ioend after this.
1062  */
1063 static void
1064 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1065 {
1066 	struct inode *inode = ioend->io_inode;
1067 	struct bio *bio = &ioend->io_inline_bio;
1068 	struct bio *last = ioend->io_bio, *next;
1069 	u64 start = bio->bi_iter.bi_sector;
1070 	loff_t offset = ioend->io_offset;
1071 	bool quiet = bio_flagged(bio, BIO_QUIET);
1072 
1073 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1074 		struct bio_vec *bv;
1075 		struct bvec_iter_all iter_all;
1076 
1077 		/*
1078 		 * For the last bio, bi_private points to the ioend, so we
1079 		 * need to explicitly end the iteration here.
1080 		 */
1081 		if (bio == last)
1082 			next = NULL;
1083 		else
1084 			next = bio->bi_private;
1085 
1086 		/* walk each page on bio, ending page IO on them */
1087 		bio_for_each_segment_all(bv, bio, iter_all)
1088 			iomap_finish_page_writeback(inode, bv->bv_page, error,
1089 					bv->bv_len);
1090 		bio_put(bio);
1091 	}
1092 	/* The ioend has been freed by bio_put() */
1093 
1094 	if (unlikely(error && !quiet)) {
1095 		printk_ratelimited(KERN_ERR
1096 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1097 			inode->i_sb->s_id, inode->i_ino, offset, start);
1098 	}
1099 }
1100 
1101 void
1102 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1103 {
1104 	struct list_head tmp;
1105 
1106 	list_replace_init(&ioend->io_list, &tmp);
1107 	iomap_finish_ioend(ioend, error);
1108 
1109 	while (!list_empty(&tmp)) {
1110 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1111 		list_del_init(&ioend->io_list);
1112 		iomap_finish_ioend(ioend, error);
1113 	}
1114 }
1115 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1116 
1117 /*
1118  * We can merge two adjacent ioends if they have the same set of work to do.
1119  */
1120 static bool
1121 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1122 {
1123 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1124 		return false;
1125 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1126 	    (next->io_flags & IOMAP_F_SHARED))
1127 		return false;
1128 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1129 	    (next->io_type == IOMAP_UNWRITTEN))
1130 		return false;
1131 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1132 		return false;
1133 	return true;
1134 }
1135 
1136 void
1137 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1138 		void (*merge_private)(struct iomap_ioend *ioend,
1139 				struct iomap_ioend *next))
1140 {
1141 	struct iomap_ioend *next;
1142 
1143 	INIT_LIST_HEAD(&ioend->io_list);
1144 
1145 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1146 			io_list))) {
1147 		if (!iomap_ioend_can_merge(ioend, next))
1148 			break;
1149 		list_move_tail(&next->io_list, &ioend->io_list);
1150 		ioend->io_size += next->io_size;
1151 		if (next->io_private && merge_private)
1152 			merge_private(ioend, next);
1153 	}
1154 }
1155 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1156 
1157 static int
1158 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1159 {
1160 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1161 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1162 
1163 	if (ia->io_offset < ib->io_offset)
1164 		return -1;
1165 	if (ia->io_offset > ib->io_offset)
1166 		return 1;
1167 	return 0;
1168 }
1169 
1170 void
1171 iomap_sort_ioends(struct list_head *ioend_list)
1172 {
1173 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1174 }
1175 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1176 
1177 static void iomap_writepage_end_bio(struct bio *bio)
1178 {
1179 	struct iomap_ioend *ioend = bio->bi_private;
1180 
1181 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1182 }
1183 
1184 /*
1185  * Submit the final bio for an ioend.
1186  *
1187  * If @error is non-zero, it means that we have a situation where some part of
1188  * the submission process has failed after we have marked paged for writeback
1189  * and unlocked them.  In this situation, we need to fail the bio instead of
1190  * submitting it.  This typically only happens on a filesystem shutdown.
1191  */
1192 static int
1193 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1194 		int error)
1195 {
1196 	ioend->io_bio->bi_private = ioend;
1197 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1198 
1199 	if (wpc->ops->prepare_ioend)
1200 		error = wpc->ops->prepare_ioend(ioend, error);
1201 	if (error) {
1202 		/*
1203 		 * If we are failing the IO now, just mark the ioend with an
1204 		 * error and finish it.  This will run IO completion immediately
1205 		 * as there is only one reference to the ioend at this point in
1206 		 * time.
1207 		 */
1208 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1209 		bio_endio(ioend->io_bio);
1210 		return error;
1211 	}
1212 
1213 	submit_bio(ioend->io_bio);
1214 	return 0;
1215 }
1216 
1217 static struct iomap_ioend *
1218 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1219 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1220 {
1221 	struct iomap_ioend *ioend;
1222 	struct bio *bio;
1223 
1224 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1225 	bio_set_dev(bio, wpc->iomap.bdev);
1226 	bio->bi_iter.bi_sector = sector;
1227 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1228 	bio->bi_write_hint = inode->i_write_hint;
1229 	wbc_init_bio(wbc, bio);
1230 
1231 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1232 	INIT_LIST_HEAD(&ioend->io_list);
1233 	ioend->io_type = wpc->iomap.type;
1234 	ioend->io_flags = wpc->iomap.flags;
1235 	ioend->io_inode = inode;
1236 	ioend->io_size = 0;
1237 	ioend->io_offset = offset;
1238 	ioend->io_private = NULL;
1239 	ioend->io_bio = bio;
1240 	return ioend;
1241 }
1242 
1243 /*
1244  * Allocate a new bio, and chain the old bio to the new one.
1245  *
1246  * Note that we have to do perform the chaining in this unintuitive order
1247  * so that the bi_private linkage is set up in the right direction for the
1248  * traversal in iomap_finish_ioend().
1249  */
1250 static struct bio *
1251 iomap_chain_bio(struct bio *prev)
1252 {
1253 	struct bio *new;
1254 
1255 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1256 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1257 	new->bi_iter.bi_sector = bio_end_sector(prev);
1258 	new->bi_opf = prev->bi_opf;
1259 	new->bi_write_hint = prev->bi_write_hint;
1260 
1261 	bio_chain(prev, new);
1262 	bio_get(prev);		/* for iomap_finish_ioend */
1263 	submit_bio(prev);
1264 	return new;
1265 }
1266 
1267 static bool
1268 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1269 		sector_t sector)
1270 {
1271 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1272 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1273 		return false;
1274 	if (wpc->iomap.type != wpc->ioend->io_type)
1275 		return false;
1276 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1277 		return false;
1278 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1279 		return false;
1280 	return true;
1281 }
1282 
1283 /*
1284  * Test to see if we have an existing ioend structure that we could append to
1285  * first, otherwise finish off the current ioend and start another.
1286  */
1287 static void
1288 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1289 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1290 		struct writeback_control *wbc, struct list_head *iolist)
1291 {
1292 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1293 	unsigned len = i_blocksize(inode);
1294 	unsigned poff = offset & (PAGE_SIZE - 1);
1295 	bool merged, same_page = false;
1296 
1297 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1298 		if (wpc->ioend)
1299 			list_add(&wpc->ioend->io_list, iolist);
1300 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1301 	}
1302 
1303 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1304 			&same_page);
1305 	if (iop)
1306 		atomic_add(len, &iop->write_bytes_pending);
1307 
1308 	if (!merged) {
1309 		if (bio_full(wpc->ioend->io_bio, len)) {
1310 			wpc->ioend->io_bio =
1311 				iomap_chain_bio(wpc->ioend->io_bio);
1312 		}
1313 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1314 	}
1315 
1316 	wpc->ioend->io_size += len;
1317 	wbc_account_cgroup_owner(wbc, page, len);
1318 }
1319 
1320 /*
1321  * We implement an immediate ioend submission policy here to avoid needing to
1322  * chain multiple ioends and hence nest mempool allocations which can violate
1323  * forward progress guarantees we need to provide. The current ioend we are
1324  * adding blocks to is cached on the writepage context, and if the new block
1325  * does not append to the cached ioend it will create a new ioend and cache that
1326  * instead.
1327  *
1328  * If a new ioend is created and cached, the old ioend is returned and queued
1329  * locally for submission once the entire page is processed or an error has been
1330  * detected.  While ioends are submitted immediately after they are completed,
1331  * batching optimisations are provided by higher level block plugging.
1332  *
1333  * At the end of a writeback pass, there will be a cached ioend remaining on the
1334  * writepage context that the caller will need to submit.
1335  */
1336 static int
1337 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1338 		struct writeback_control *wbc, struct inode *inode,
1339 		struct page *page, u64 end_offset)
1340 {
1341 	struct iomap_page *iop = to_iomap_page(page);
1342 	struct iomap_ioend *ioend, *next;
1343 	unsigned len = i_blocksize(inode);
1344 	u64 file_offset; /* file offset of page */
1345 	int error = 0, count = 0, i;
1346 	LIST_HEAD(submit_list);
1347 
1348 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1349 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1350 
1351 	/*
1352 	 * Walk through the page to find areas to write back. If we run off the
1353 	 * end of the current map or find the current map invalid, grab a new
1354 	 * one.
1355 	 */
1356 	for (i = 0, file_offset = page_offset(page);
1357 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1358 	     i++, file_offset += len) {
1359 		if (iop && !test_bit(i, iop->uptodate))
1360 			continue;
1361 
1362 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1363 		if (error)
1364 			break;
1365 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1366 			continue;
1367 		if (wpc->iomap.type == IOMAP_HOLE)
1368 			continue;
1369 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1370 				 &submit_list);
1371 		count++;
1372 	}
1373 
1374 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1375 	WARN_ON_ONCE(!PageLocked(page));
1376 	WARN_ON_ONCE(PageWriteback(page));
1377 	WARN_ON_ONCE(PageDirty(page));
1378 
1379 	/*
1380 	 * We cannot cancel the ioend directly here on error.  We may have
1381 	 * already set other pages under writeback and hence we have to run I/O
1382 	 * completion to mark the error state of the pages under writeback
1383 	 * appropriately.
1384 	 */
1385 	if (unlikely(error)) {
1386 		/*
1387 		 * Let the filesystem know what portion of the current page
1388 		 * failed to map. If the page wasn't been added to ioend, it
1389 		 * won't be affected by I/O completion and we must unlock it
1390 		 * now.
1391 		 */
1392 		if (wpc->ops->discard_page)
1393 			wpc->ops->discard_page(page, file_offset);
1394 		if (!count) {
1395 			ClearPageUptodate(page);
1396 			unlock_page(page);
1397 			goto done;
1398 		}
1399 	}
1400 
1401 	set_page_writeback(page);
1402 	unlock_page(page);
1403 
1404 	/*
1405 	 * Preserve the original error if there was one, otherwise catch
1406 	 * submission errors here and propagate into subsequent ioend
1407 	 * submissions.
1408 	 */
1409 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1410 		int error2;
1411 
1412 		list_del_init(&ioend->io_list);
1413 		error2 = iomap_submit_ioend(wpc, ioend, error);
1414 		if (error2 && !error)
1415 			error = error2;
1416 	}
1417 
1418 	/*
1419 	 * We can end up here with no error and nothing to write only if we race
1420 	 * with a partial page truncate on a sub-page block sized filesystem.
1421 	 */
1422 	if (!count)
1423 		end_page_writeback(page);
1424 done:
1425 	mapping_set_error(page->mapping, error);
1426 	return error;
1427 }
1428 
1429 /*
1430  * Write out a dirty page.
1431  *
1432  * For delalloc space on the page we need to allocate space and flush it.
1433  * For unwritten space on the page we need to start the conversion to
1434  * regular allocated space.
1435  */
1436 static int
1437 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1438 {
1439 	struct iomap_writepage_ctx *wpc = data;
1440 	struct inode *inode = page->mapping->host;
1441 	pgoff_t end_index;
1442 	u64 end_offset;
1443 	loff_t offset;
1444 
1445 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1446 
1447 	/*
1448 	 * Refuse to write the page out if we are called from reclaim context.
1449 	 *
1450 	 * This avoids stack overflows when called from deeply used stacks in
1451 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1452 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1453 	 *
1454 	 * This should never happen except in the case of a VM regression so
1455 	 * warn about it.
1456 	 */
1457 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1458 			PF_MEMALLOC))
1459 		goto redirty;
1460 
1461 	/*
1462 	 * Given that we do not allow direct reclaim to call us, we should
1463 	 * never be called in a recursive filesystem reclaim context.
1464 	 */
1465 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1466 		goto redirty;
1467 
1468 	/*
1469 	 * Is this page beyond the end of the file?
1470 	 *
1471 	 * The page index is less than the end_index, adjust the end_offset
1472 	 * to the highest offset that this page should represent.
1473 	 * -----------------------------------------------------
1474 	 * |			file mapping	       | <EOF> |
1475 	 * -----------------------------------------------------
1476 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1477 	 * ^--------------------------------^----------|--------
1478 	 * |     desired writeback range    |      see else    |
1479 	 * ---------------------------------^------------------|
1480 	 */
1481 	offset = i_size_read(inode);
1482 	end_index = offset >> PAGE_SHIFT;
1483 	if (page->index < end_index)
1484 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1485 	else {
1486 		/*
1487 		 * Check whether the page to write out is beyond or straddles
1488 		 * i_size or not.
1489 		 * -------------------------------------------------------
1490 		 * |		file mapping		        | <EOF>  |
1491 		 * -------------------------------------------------------
1492 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1493 		 * ^--------------------------------^-----------|---------
1494 		 * |				    |      Straddles     |
1495 		 * ---------------------------------^-----------|--------|
1496 		 */
1497 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1498 
1499 		/*
1500 		 * Skip the page if it is fully outside i_size, e.g. due to a
1501 		 * truncate operation that is in progress. We must redirty the
1502 		 * page so that reclaim stops reclaiming it. Otherwise
1503 		 * iomap_vm_releasepage() is called on it and gets confused.
1504 		 *
1505 		 * Note that the end_index is unsigned long, it would overflow
1506 		 * if the given offset is greater than 16TB on 32-bit system
1507 		 * and if we do check the page is fully outside i_size or not
1508 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1509 		 * will be evaluated to 0.  Hence this page will be redirtied
1510 		 * and be written out repeatedly which would result in an
1511 		 * infinite loop, the user program that perform this operation
1512 		 * will hang.  Instead, we can verify this situation by checking
1513 		 * if the page to write is totally beyond the i_size or if it's
1514 		 * offset is just equal to the EOF.
1515 		 */
1516 		if (page->index > end_index ||
1517 		    (page->index == end_index && offset_into_page == 0))
1518 			goto redirty;
1519 
1520 		/*
1521 		 * The page straddles i_size.  It must be zeroed out on each
1522 		 * and every writepage invocation because it may be mmapped.
1523 		 * "A file is mapped in multiples of the page size.  For a file
1524 		 * that is not a multiple of the page size, the remaining
1525 		 * memory is zeroed when mapped, and writes to that region are
1526 		 * not written out to the file."
1527 		 */
1528 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1529 
1530 		/* Adjust the end_offset to the end of file */
1531 		end_offset = offset;
1532 	}
1533 
1534 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1535 
1536 redirty:
1537 	redirty_page_for_writepage(wbc, page);
1538 	unlock_page(page);
1539 	return 0;
1540 }
1541 
1542 int
1543 iomap_writepage(struct page *page, struct writeback_control *wbc,
1544 		struct iomap_writepage_ctx *wpc,
1545 		const struct iomap_writeback_ops *ops)
1546 {
1547 	int ret;
1548 
1549 	wpc->ops = ops;
1550 	ret = iomap_do_writepage(page, wbc, wpc);
1551 	if (!wpc->ioend)
1552 		return ret;
1553 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1554 }
1555 EXPORT_SYMBOL_GPL(iomap_writepage);
1556 
1557 int
1558 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1559 		struct iomap_writepage_ctx *wpc,
1560 		const struct iomap_writeback_ops *ops)
1561 {
1562 	int			ret;
1563 
1564 	wpc->ops = ops;
1565 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1566 	if (!wpc->ioend)
1567 		return ret;
1568 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1569 }
1570 EXPORT_SYMBOL_GPL(iomap_writepages);
1571 
1572 static int __init iomap_init(void)
1573 {
1574 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1575 			   offsetof(struct iomap_ioend, io_inline_bio),
1576 			   BIOSET_NEED_BVECS);
1577 }
1578 fs_initcall(iomap_init);
1579