1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (folio_test_error(folio)) 158 return; 159 160 if (iop) 161 iomap_iop_set_range_uptodate(folio, iop, off, len); 162 else 163 folio_mark_uptodate(folio); 164 } 165 166 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 167 size_t len, int error) 168 { 169 struct iomap_page *iop = to_iomap_page(folio); 170 171 if (unlikely(error)) { 172 folio_clear_uptodate(folio); 173 folio_set_error(folio); 174 } else { 175 iomap_set_range_uptodate(folio, iop, offset, len); 176 } 177 178 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 179 folio_unlock(folio); 180 } 181 182 static void iomap_read_end_io(struct bio *bio) 183 { 184 int error = blk_status_to_errno(bio->bi_status); 185 struct folio_iter fi; 186 187 bio_for_each_folio_all(fi, bio) 188 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 189 bio_put(bio); 190 } 191 192 struct iomap_readpage_ctx { 193 struct folio *cur_folio; 194 bool cur_folio_in_bio; 195 struct bio *bio; 196 struct readahead_control *rac; 197 }; 198 199 /** 200 * iomap_read_inline_data - copy inline data into the page cache 201 * @iter: iteration structure 202 * @folio: folio to copy to 203 * 204 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 205 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 206 * Returns zero for success to complete the read, or the usual negative errno. 207 */ 208 static int iomap_read_inline_data(const struct iomap_iter *iter, 209 struct folio *folio) 210 { 211 struct iomap_page *iop; 212 const struct iomap *iomap = iomap_iter_srcmap(iter); 213 size_t size = i_size_read(iter->inode) - iomap->offset; 214 size_t poff = offset_in_page(iomap->offset); 215 size_t offset = offset_in_folio(folio, iomap->offset); 216 void *addr; 217 218 if (folio_test_uptodate(folio)) 219 return 0; 220 221 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 222 return -EIO; 223 if (WARN_ON_ONCE(size > PAGE_SIZE - 224 offset_in_page(iomap->inline_data))) 225 return -EIO; 226 if (WARN_ON_ONCE(size > iomap->length)) 227 return -EIO; 228 if (offset > 0) 229 iop = iomap_page_create(iter->inode, folio); 230 else 231 iop = to_iomap_page(folio); 232 233 addr = kmap_local_folio(folio, offset); 234 memcpy(addr, iomap->inline_data, size); 235 memset(addr + size, 0, PAGE_SIZE - poff - size); 236 kunmap_local(addr); 237 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 238 return 0; 239 } 240 241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 242 loff_t pos) 243 { 244 const struct iomap *srcmap = iomap_iter_srcmap(iter); 245 246 return srcmap->type != IOMAP_MAPPED || 247 (srcmap->flags & IOMAP_F_NEW) || 248 pos >= i_size_read(iter->inode); 249 } 250 251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 252 struct iomap_readpage_ctx *ctx, loff_t offset) 253 { 254 const struct iomap *iomap = &iter->iomap; 255 loff_t pos = iter->pos + offset; 256 loff_t length = iomap_length(iter) - offset; 257 struct folio *folio = ctx->cur_folio; 258 struct iomap_page *iop; 259 loff_t orig_pos = pos; 260 size_t poff, plen; 261 sector_t sector; 262 263 if (iomap->type == IOMAP_INLINE) 264 return iomap_read_inline_data(iter, folio); 265 266 /* zero post-eof blocks as the page may be mapped */ 267 iop = iomap_page_create(iter->inode, folio); 268 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 269 if (plen == 0) 270 goto done; 271 272 if (iomap_block_needs_zeroing(iter, pos)) { 273 folio_zero_range(folio, poff, plen); 274 iomap_set_range_uptodate(folio, iop, poff, plen); 275 goto done; 276 } 277 278 ctx->cur_folio_in_bio = true; 279 if (iop) 280 atomic_add(plen, &iop->read_bytes_pending); 281 282 sector = iomap_sector(iomap, pos); 283 if (!ctx->bio || 284 bio_end_sector(ctx->bio) != sector || 285 !bio_add_folio(ctx->bio, folio, plen, poff)) { 286 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 287 gfp_t orig_gfp = gfp; 288 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 289 290 if (ctx->bio) 291 submit_bio(ctx->bio); 292 293 if (ctx->rac) /* same as readahead_gfp_mask */ 294 gfp |= __GFP_NORETRY | __GFP_NOWARN; 295 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 296 REQ_OP_READ, gfp); 297 /* 298 * If the bio_alloc fails, try it again for a single page to 299 * avoid having to deal with partial page reads. This emulates 300 * what do_mpage_read_folio does. 301 */ 302 if (!ctx->bio) { 303 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 304 orig_gfp); 305 } 306 if (ctx->rac) 307 ctx->bio->bi_opf |= REQ_RAHEAD; 308 ctx->bio->bi_iter.bi_sector = sector; 309 ctx->bio->bi_end_io = iomap_read_end_io; 310 bio_add_folio(ctx->bio, folio, plen, poff); 311 } 312 313 done: 314 /* 315 * Move the caller beyond our range so that it keeps making progress. 316 * For that, we have to include any leading non-uptodate ranges, but 317 * we can skip trailing ones as they will be handled in the next 318 * iteration. 319 */ 320 return pos - orig_pos + plen; 321 } 322 323 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 324 { 325 struct iomap_iter iter = { 326 .inode = folio->mapping->host, 327 .pos = folio_pos(folio), 328 .len = folio_size(folio), 329 }; 330 struct iomap_readpage_ctx ctx = { 331 .cur_folio = folio, 332 }; 333 int ret; 334 335 trace_iomap_readpage(iter.inode, 1); 336 337 while ((ret = iomap_iter(&iter, ops)) > 0) 338 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 339 340 if (ret < 0) 341 folio_set_error(folio); 342 343 if (ctx.bio) { 344 submit_bio(ctx.bio); 345 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 346 } else { 347 WARN_ON_ONCE(ctx.cur_folio_in_bio); 348 folio_unlock(folio); 349 } 350 351 /* 352 * Just like mpage_readahead and block_read_full_folio, we always 353 * return 0 and just set the folio error flag on errors. This 354 * should be cleaned up throughout the stack eventually. 355 */ 356 return 0; 357 } 358 EXPORT_SYMBOL_GPL(iomap_read_folio); 359 360 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 361 struct iomap_readpage_ctx *ctx) 362 { 363 loff_t length = iomap_length(iter); 364 loff_t done, ret; 365 366 for (done = 0; done < length; done += ret) { 367 if (ctx->cur_folio && 368 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 369 if (!ctx->cur_folio_in_bio) 370 folio_unlock(ctx->cur_folio); 371 ctx->cur_folio = NULL; 372 } 373 if (!ctx->cur_folio) { 374 ctx->cur_folio = readahead_folio(ctx->rac); 375 ctx->cur_folio_in_bio = false; 376 } 377 ret = iomap_readpage_iter(iter, ctx, done); 378 if (ret <= 0) 379 return ret; 380 } 381 382 return done; 383 } 384 385 /** 386 * iomap_readahead - Attempt to read pages from a file. 387 * @rac: Describes the pages to be read. 388 * @ops: The operations vector for the filesystem. 389 * 390 * This function is for filesystems to call to implement their readahead 391 * address_space operation. 392 * 393 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 394 * blocks from disc), and may wait for it. The caller may be trying to 395 * access a different page, and so sleeping excessively should be avoided. 396 * It may allocate memory, but should avoid costly allocations. This 397 * function is called with memalloc_nofs set, so allocations will not cause 398 * the filesystem to be reentered. 399 */ 400 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 401 { 402 struct iomap_iter iter = { 403 .inode = rac->mapping->host, 404 .pos = readahead_pos(rac), 405 .len = readahead_length(rac), 406 }; 407 struct iomap_readpage_ctx ctx = { 408 .rac = rac, 409 }; 410 411 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 412 413 while (iomap_iter(&iter, ops) > 0) 414 iter.processed = iomap_readahead_iter(&iter, &ctx); 415 416 if (ctx.bio) 417 submit_bio(ctx.bio); 418 if (ctx.cur_folio) { 419 if (!ctx.cur_folio_in_bio) 420 folio_unlock(ctx.cur_folio); 421 } 422 } 423 EXPORT_SYMBOL_GPL(iomap_readahead); 424 425 /* 426 * iomap_is_partially_uptodate checks whether blocks within a folio are 427 * uptodate or not. 428 * 429 * Returns true if all blocks which correspond to the specified part 430 * of the folio are uptodate. 431 */ 432 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 433 { 434 struct iomap_page *iop = to_iomap_page(folio); 435 struct inode *inode = folio->mapping->host; 436 unsigned first, last, i; 437 438 if (!iop) 439 return false; 440 441 /* Caller's range may extend past the end of this folio */ 442 count = min(folio_size(folio) - from, count); 443 444 /* First and last blocks in range within folio */ 445 first = from >> inode->i_blkbits; 446 last = (from + count - 1) >> inode->i_blkbits; 447 448 for (i = first; i <= last; i++) 449 if (!test_bit(i, iop->uptodate)) 450 return false; 451 return true; 452 } 453 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 454 455 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 456 { 457 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 458 folio_size(folio)); 459 460 /* 461 * mm accommodates an old ext3 case where clean folios might 462 * not have had the dirty bit cleared. Thus, it can send actual 463 * dirty folios to ->release_folio() via shrink_active_list(); 464 * skip those here. 465 */ 466 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 467 return false; 468 iomap_page_release(folio); 469 return true; 470 } 471 EXPORT_SYMBOL_GPL(iomap_release_folio); 472 473 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 474 { 475 trace_iomap_invalidate_folio(folio->mapping->host, 476 folio_pos(folio) + offset, len); 477 478 /* 479 * If we're invalidating the entire folio, clear the dirty state 480 * from it and release it to avoid unnecessary buildup of the LRU. 481 */ 482 if (offset == 0 && len == folio_size(folio)) { 483 WARN_ON_ONCE(folio_test_writeback(folio)); 484 folio_cancel_dirty(folio); 485 iomap_page_release(folio); 486 } else if (folio_test_large(folio)) { 487 /* Must release the iop so the page can be split */ 488 WARN_ON_ONCE(!folio_test_uptodate(folio) && 489 folio_test_dirty(folio)); 490 iomap_page_release(folio); 491 } 492 } 493 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 494 495 #ifdef CONFIG_MIGRATION 496 int 497 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 498 struct page *page, enum migrate_mode mode) 499 { 500 struct folio *folio = page_folio(page); 501 struct folio *newfolio = page_folio(newpage); 502 int ret; 503 504 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 505 if (ret != MIGRATEPAGE_SUCCESS) 506 return ret; 507 508 if (folio_test_private(folio)) 509 folio_attach_private(newfolio, folio_detach_private(folio)); 510 511 if (mode != MIGRATE_SYNC_NO_COPY) 512 folio_migrate_copy(newfolio, folio); 513 else 514 folio_migrate_flags(newfolio, folio); 515 return MIGRATEPAGE_SUCCESS; 516 } 517 EXPORT_SYMBOL_GPL(iomap_migrate_page); 518 #endif /* CONFIG_MIGRATION */ 519 520 static void 521 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 522 { 523 loff_t i_size = i_size_read(inode); 524 525 /* 526 * Only truncate newly allocated pages beyoned EOF, even if the 527 * write started inside the existing inode size. 528 */ 529 if (pos + len > i_size) 530 truncate_pagecache_range(inode, max(pos, i_size), 531 pos + len - 1); 532 } 533 534 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 535 size_t poff, size_t plen, const struct iomap *iomap) 536 { 537 struct bio_vec bvec; 538 struct bio bio; 539 540 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 541 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 542 bio_add_folio(&bio, folio, plen, poff); 543 return submit_bio_wait(&bio); 544 } 545 546 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 547 size_t len, struct folio *folio) 548 { 549 const struct iomap *srcmap = iomap_iter_srcmap(iter); 550 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 551 loff_t block_size = i_blocksize(iter->inode); 552 loff_t block_start = round_down(pos, block_size); 553 loff_t block_end = round_up(pos + len, block_size); 554 size_t from = offset_in_folio(folio, pos), to = from + len; 555 size_t poff, plen; 556 557 if (folio_test_uptodate(folio)) 558 return 0; 559 folio_clear_error(folio); 560 561 do { 562 iomap_adjust_read_range(iter->inode, folio, &block_start, 563 block_end - block_start, &poff, &plen); 564 if (plen == 0) 565 break; 566 567 if (!(iter->flags & IOMAP_UNSHARE) && 568 (from <= poff || from >= poff + plen) && 569 (to <= poff || to >= poff + plen)) 570 continue; 571 572 if (iomap_block_needs_zeroing(iter, block_start)) { 573 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 574 return -EIO; 575 folio_zero_segments(folio, poff, from, to, poff + plen); 576 } else { 577 int status = iomap_read_folio_sync(block_start, folio, 578 poff, plen, srcmap); 579 if (status) 580 return status; 581 } 582 iomap_set_range_uptodate(folio, iop, poff, plen); 583 } while ((block_start += plen) < block_end); 584 585 return 0; 586 } 587 588 static int iomap_write_begin_inline(const struct iomap_iter *iter, 589 struct folio *folio) 590 { 591 /* needs more work for the tailpacking case; disable for now */ 592 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 593 return -EIO; 594 return iomap_read_inline_data(iter, folio); 595 } 596 597 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 598 size_t len, struct folio **foliop) 599 { 600 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 601 const struct iomap *srcmap = iomap_iter_srcmap(iter); 602 struct folio *folio; 603 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 604 int status = 0; 605 606 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 607 if (srcmap != &iter->iomap) 608 BUG_ON(pos + len > srcmap->offset + srcmap->length); 609 610 if (fatal_signal_pending(current)) 611 return -EINTR; 612 613 if (!mapping_large_folio_support(iter->inode->i_mapping)) 614 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 615 616 if (page_ops && page_ops->page_prepare) { 617 status = page_ops->page_prepare(iter->inode, pos, len); 618 if (status) 619 return status; 620 } 621 622 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 623 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 624 if (!folio) { 625 status = -ENOMEM; 626 goto out_no_page; 627 } 628 if (pos + len > folio_pos(folio) + folio_size(folio)) 629 len = folio_pos(folio) + folio_size(folio) - pos; 630 631 if (srcmap->type == IOMAP_INLINE) 632 status = iomap_write_begin_inline(iter, folio); 633 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 634 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 635 else 636 status = __iomap_write_begin(iter, pos, len, folio); 637 638 if (unlikely(status)) 639 goto out_unlock; 640 641 *foliop = folio; 642 return 0; 643 644 out_unlock: 645 folio_unlock(folio); 646 folio_put(folio); 647 iomap_write_failed(iter->inode, pos, len); 648 649 out_no_page: 650 if (page_ops && page_ops->page_done) 651 page_ops->page_done(iter->inode, pos, 0, NULL); 652 return status; 653 } 654 655 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 656 size_t copied, struct folio *folio) 657 { 658 struct iomap_page *iop = to_iomap_page(folio); 659 flush_dcache_folio(folio); 660 661 /* 662 * The blocks that were entirely written will now be uptodate, so we 663 * don't have to worry about a read_folio reading them and overwriting a 664 * partial write. However, if we've encountered a short write and only 665 * partially written into a block, it will not be marked uptodate, so a 666 * read_folio might come in and destroy our partial write. 667 * 668 * Do the simplest thing and just treat any short write to a 669 * non-uptodate page as a zero-length write, and force the caller to 670 * redo the whole thing. 671 */ 672 if (unlikely(copied < len && !folio_test_uptodate(folio))) 673 return 0; 674 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 675 filemap_dirty_folio(inode->i_mapping, folio); 676 return copied; 677 } 678 679 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 680 struct folio *folio, loff_t pos, size_t copied) 681 { 682 const struct iomap *iomap = &iter->iomap; 683 void *addr; 684 685 WARN_ON_ONCE(!folio_test_uptodate(folio)); 686 BUG_ON(!iomap_inline_data_valid(iomap)); 687 688 flush_dcache_folio(folio); 689 addr = kmap_local_folio(folio, pos); 690 memcpy(iomap_inline_data(iomap, pos), addr, copied); 691 kunmap_local(addr); 692 693 mark_inode_dirty(iter->inode); 694 return copied; 695 } 696 697 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 698 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 699 size_t copied, struct folio *folio) 700 { 701 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 702 const struct iomap *srcmap = iomap_iter_srcmap(iter); 703 loff_t old_size = iter->inode->i_size; 704 size_t ret; 705 706 if (srcmap->type == IOMAP_INLINE) { 707 ret = iomap_write_end_inline(iter, folio, pos, copied); 708 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 709 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 710 copied, &folio->page, NULL); 711 } else { 712 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 713 } 714 715 /* 716 * Update the in-memory inode size after copying the data into the page 717 * cache. It's up to the file system to write the updated size to disk, 718 * preferably after I/O completion so that no stale data is exposed. 719 */ 720 if (pos + ret > old_size) { 721 i_size_write(iter->inode, pos + ret); 722 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 723 } 724 folio_unlock(folio); 725 726 if (old_size < pos) 727 pagecache_isize_extended(iter->inode, old_size, pos); 728 if (page_ops && page_ops->page_done) 729 page_ops->page_done(iter->inode, pos, ret, &folio->page); 730 folio_put(folio); 731 732 if (ret < len) 733 iomap_write_failed(iter->inode, pos + ret, len - ret); 734 return ret; 735 } 736 737 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 738 { 739 loff_t length = iomap_length(iter); 740 loff_t pos = iter->pos; 741 ssize_t written = 0; 742 long status = 0; 743 744 do { 745 struct folio *folio; 746 struct page *page; 747 unsigned long offset; /* Offset into pagecache page */ 748 unsigned long bytes; /* Bytes to write to page */ 749 size_t copied; /* Bytes copied from user */ 750 751 offset = offset_in_page(pos); 752 bytes = min_t(unsigned long, PAGE_SIZE - offset, 753 iov_iter_count(i)); 754 again: 755 if (bytes > length) 756 bytes = length; 757 758 /* 759 * Bring in the user page that we'll copy from _first_. 760 * Otherwise there's a nasty deadlock on copying from the 761 * same page as we're writing to, without it being marked 762 * up-to-date. 763 */ 764 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 765 status = -EFAULT; 766 break; 767 } 768 769 status = iomap_write_begin(iter, pos, bytes, &folio); 770 if (unlikely(status)) 771 break; 772 773 page = folio_file_page(folio, pos >> PAGE_SHIFT); 774 if (mapping_writably_mapped(iter->inode->i_mapping)) 775 flush_dcache_page(page); 776 777 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 778 779 status = iomap_write_end(iter, pos, bytes, copied, folio); 780 781 if (unlikely(copied != status)) 782 iov_iter_revert(i, copied - status); 783 784 cond_resched(); 785 if (unlikely(status == 0)) { 786 /* 787 * A short copy made iomap_write_end() reject the 788 * thing entirely. Might be memory poisoning 789 * halfway through, might be a race with munmap, 790 * might be severe memory pressure. 791 */ 792 if (copied) 793 bytes = copied; 794 goto again; 795 } 796 pos += status; 797 written += status; 798 length -= status; 799 800 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 801 } while (iov_iter_count(i) && length); 802 803 return written ? written : status; 804 } 805 806 ssize_t 807 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 808 const struct iomap_ops *ops) 809 { 810 struct iomap_iter iter = { 811 .inode = iocb->ki_filp->f_mapping->host, 812 .pos = iocb->ki_pos, 813 .len = iov_iter_count(i), 814 .flags = IOMAP_WRITE, 815 }; 816 int ret; 817 818 while ((ret = iomap_iter(&iter, ops)) > 0) 819 iter.processed = iomap_write_iter(&iter, i); 820 if (iter.pos == iocb->ki_pos) 821 return ret; 822 return iter.pos - iocb->ki_pos; 823 } 824 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 825 826 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 827 { 828 struct iomap *iomap = &iter->iomap; 829 const struct iomap *srcmap = iomap_iter_srcmap(iter); 830 loff_t pos = iter->pos; 831 loff_t length = iomap_length(iter); 832 long status = 0; 833 loff_t written = 0; 834 835 /* don't bother with blocks that are not shared to start with */ 836 if (!(iomap->flags & IOMAP_F_SHARED)) 837 return length; 838 /* don't bother with holes or unwritten extents */ 839 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 840 return length; 841 842 do { 843 unsigned long offset = offset_in_page(pos); 844 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 845 struct folio *folio; 846 847 status = iomap_write_begin(iter, pos, bytes, &folio); 848 if (unlikely(status)) 849 return status; 850 851 status = iomap_write_end(iter, pos, bytes, bytes, folio); 852 if (WARN_ON_ONCE(status == 0)) 853 return -EIO; 854 855 cond_resched(); 856 857 pos += status; 858 written += status; 859 length -= status; 860 861 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 862 } while (length); 863 864 return written; 865 } 866 867 int 868 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 869 const struct iomap_ops *ops) 870 { 871 struct iomap_iter iter = { 872 .inode = inode, 873 .pos = pos, 874 .len = len, 875 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 876 }; 877 int ret; 878 879 while ((ret = iomap_iter(&iter, ops)) > 0) 880 iter.processed = iomap_unshare_iter(&iter); 881 return ret; 882 } 883 EXPORT_SYMBOL_GPL(iomap_file_unshare); 884 885 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 886 { 887 const struct iomap *srcmap = iomap_iter_srcmap(iter); 888 loff_t pos = iter->pos; 889 loff_t length = iomap_length(iter); 890 loff_t written = 0; 891 892 /* already zeroed? we're done. */ 893 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 894 return length; 895 896 do { 897 struct folio *folio; 898 int status; 899 size_t offset; 900 size_t bytes = min_t(u64, SIZE_MAX, length); 901 902 status = iomap_write_begin(iter, pos, bytes, &folio); 903 if (status) 904 return status; 905 906 offset = offset_in_folio(folio, pos); 907 if (bytes > folio_size(folio) - offset) 908 bytes = folio_size(folio) - offset; 909 910 folio_zero_range(folio, offset, bytes); 911 folio_mark_accessed(folio); 912 913 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 914 if (WARN_ON_ONCE(bytes == 0)) 915 return -EIO; 916 917 pos += bytes; 918 length -= bytes; 919 written += bytes; 920 if (did_zero) 921 *did_zero = true; 922 } while (length > 0); 923 924 return written; 925 } 926 927 int 928 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 929 const struct iomap_ops *ops) 930 { 931 struct iomap_iter iter = { 932 .inode = inode, 933 .pos = pos, 934 .len = len, 935 .flags = IOMAP_ZERO, 936 }; 937 int ret; 938 939 while ((ret = iomap_iter(&iter, ops)) > 0) 940 iter.processed = iomap_zero_iter(&iter, did_zero); 941 return ret; 942 } 943 EXPORT_SYMBOL_GPL(iomap_zero_range); 944 945 int 946 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 947 const struct iomap_ops *ops) 948 { 949 unsigned int blocksize = i_blocksize(inode); 950 unsigned int off = pos & (blocksize - 1); 951 952 /* Block boundary? Nothing to do */ 953 if (!off) 954 return 0; 955 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 956 } 957 EXPORT_SYMBOL_GPL(iomap_truncate_page); 958 959 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 960 struct folio *folio) 961 { 962 loff_t length = iomap_length(iter); 963 int ret; 964 965 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 966 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 967 &iter->iomap); 968 if (ret) 969 return ret; 970 block_commit_write(&folio->page, 0, length); 971 } else { 972 WARN_ON_ONCE(!folio_test_uptodate(folio)); 973 folio_mark_dirty(folio); 974 } 975 976 return length; 977 } 978 979 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 980 { 981 struct iomap_iter iter = { 982 .inode = file_inode(vmf->vma->vm_file), 983 .flags = IOMAP_WRITE | IOMAP_FAULT, 984 }; 985 struct folio *folio = page_folio(vmf->page); 986 ssize_t ret; 987 988 folio_lock(folio); 989 ret = folio_mkwrite_check_truncate(folio, iter.inode); 990 if (ret < 0) 991 goto out_unlock; 992 iter.pos = folio_pos(folio); 993 iter.len = ret; 994 while ((ret = iomap_iter(&iter, ops)) > 0) 995 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 996 997 if (ret < 0) 998 goto out_unlock; 999 folio_wait_stable(folio); 1000 return VM_FAULT_LOCKED; 1001 out_unlock: 1002 folio_unlock(folio); 1003 return block_page_mkwrite_return(ret); 1004 } 1005 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1006 1007 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1008 size_t len, int error) 1009 { 1010 struct iomap_page *iop = to_iomap_page(folio); 1011 1012 if (error) { 1013 folio_set_error(folio); 1014 mapping_set_error(inode->i_mapping, error); 1015 } 1016 1017 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1018 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1019 1020 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1021 folio_end_writeback(folio); 1022 } 1023 1024 /* 1025 * We're now finished for good with this ioend structure. Update the page 1026 * state, release holds on bios, and finally free up memory. Do not use the 1027 * ioend after this. 1028 */ 1029 static u32 1030 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1031 { 1032 struct inode *inode = ioend->io_inode; 1033 struct bio *bio = &ioend->io_inline_bio; 1034 struct bio *last = ioend->io_bio, *next; 1035 u64 start = bio->bi_iter.bi_sector; 1036 loff_t offset = ioend->io_offset; 1037 bool quiet = bio_flagged(bio, BIO_QUIET); 1038 u32 folio_count = 0; 1039 1040 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1041 struct folio_iter fi; 1042 1043 /* 1044 * For the last bio, bi_private points to the ioend, so we 1045 * need to explicitly end the iteration here. 1046 */ 1047 if (bio == last) 1048 next = NULL; 1049 else 1050 next = bio->bi_private; 1051 1052 /* walk all folios in bio, ending page IO on them */ 1053 bio_for_each_folio_all(fi, bio) { 1054 iomap_finish_folio_write(inode, fi.folio, fi.length, 1055 error); 1056 folio_count++; 1057 } 1058 bio_put(bio); 1059 } 1060 /* The ioend has been freed by bio_put() */ 1061 1062 if (unlikely(error && !quiet)) { 1063 printk_ratelimited(KERN_ERR 1064 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1065 inode->i_sb->s_id, inode->i_ino, offset, start); 1066 } 1067 return folio_count; 1068 } 1069 1070 /* 1071 * Ioend completion routine for merged bios. This can only be called from task 1072 * contexts as merged ioends can be of unbound length. Hence we have to break up 1073 * the writeback completions into manageable chunks to avoid long scheduler 1074 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1075 * good batch processing throughput without creating adverse scheduler latency 1076 * conditions. 1077 */ 1078 void 1079 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1080 { 1081 struct list_head tmp; 1082 u32 completions; 1083 1084 might_sleep(); 1085 1086 list_replace_init(&ioend->io_list, &tmp); 1087 completions = iomap_finish_ioend(ioend, error); 1088 1089 while (!list_empty(&tmp)) { 1090 if (completions > IOEND_BATCH_SIZE * 8) { 1091 cond_resched(); 1092 completions = 0; 1093 } 1094 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1095 list_del_init(&ioend->io_list); 1096 completions += iomap_finish_ioend(ioend, error); 1097 } 1098 } 1099 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1100 1101 /* 1102 * We can merge two adjacent ioends if they have the same set of work to do. 1103 */ 1104 static bool 1105 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1106 { 1107 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1108 return false; 1109 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1110 (next->io_flags & IOMAP_F_SHARED)) 1111 return false; 1112 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1113 (next->io_type == IOMAP_UNWRITTEN)) 1114 return false; 1115 if (ioend->io_offset + ioend->io_size != next->io_offset) 1116 return false; 1117 /* 1118 * Do not merge physically discontiguous ioends. The filesystem 1119 * completion functions will have to iterate the physical 1120 * discontiguities even if we merge the ioends at a logical level, so 1121 * we don't gain anything by merging physical discontiguities here. 1122 * 1123 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1124 * submission so does not point to the start sector of the bio at 1125 * completion. 1126 */ 1127 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1128 return false; 1129 return true; 1130 } 1131 1132 void 1133 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1134 { 1135 struct iomap_ioend *next; 1136 1137 INIT_LIST_HEAD(&ioend->io_list); 1138 1139 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1140 io_list))) { 1141 if (!iomap_ioend_can_merge(ioend, next)) 1142 break; 1143 list_move_tail(&next->io_list, &ioend->io_list); 1144 ioend->io_size += next->io_size; 1145 } 1146 } 1147 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1148 1149 static int 1150 iomap_ioend_compare(void *priv, const struct list_head *a, 1151 const struct list_head *b) 1152 { 1153 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1154 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1155 1156 if (ia->io_offset < ib->io_offset) 1157 return -1; 1158 if (ia->io_offset > ib->io_offset) 1159 return 1; 1160 return 0; 1161 } 1162 1163 void 1164 iomap_sort_ioends(struct list_head *ioend_list) 1165 { 1166 list_sort(NULL, ioend_list, iomap_ioend_compare); 1167 } 1168 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1169 1170 static void iomap_writepage_end_bio(struct bio *bio) 1171 { 1172 struct iomap_ioend *ioend = bio->bi_private; 1173 1174 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1175 } 1176 1177 /* 1178 * Submit the final bio for an ioend. 1179 * 1180 * If @error is non-zero, it means that we have a situation where some part of 1181 * the submission process has failed after we've marked pages for writeback 1182 * and unlocked them. In this situation, we need to fail the bio instead of 1183 * submitting it. This typically only happens on a filesystem shutdown. 1184 */ 1185 static int 1186 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1187 int error) 1188 { 1189 ioend->io_bio->bi_private = ioend; 1190 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1191 1192 if (wpc->ops->prepare_ioend) 1193 error = wpc->ops->prepare_ioend(ioend, error); 1194 if (error) { 1195 /* 1196 * If we're failing the IO now, just mark the ioend with an 1197 * error and finish it. This will run IO completion immediately 1198 * as there is only one reference to the ioend at this point in 1199 * time. 1200 */ 1201 ioend->io_bio->bi_status = errno_to_blk_status(error); 1202 bio_endio(ioend->io_bio); 1203 return error; 1204 } 1205 1206 submit_bio(ioend->io_bio); 1207 return 0; 1208 } 1209 1210 static struct iomap_ioend * 1211 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1212 loff_t offset, sector_t sector, struct writeback_control *wbc) 1213 { 1214 struct iomap_ioend *ioend; 1215 struct bio *bio; 1216 1217 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1218 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1219 GFP_NOFS, &iomap_ioend_bioset); 1220 bio->bi_iter.bi_sector = sector; 1221 wbc_init_bio(wbc, bio); 1222 1223 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1224 INIT_LIST_HEAD(&ioend->io_list); 1225 ioend->io_type = wpc->iomap.type; 1226 ioend->io_flags = wpc->iomap.flags; 1227 ioend->io_inode = inode; 1228 ioend->io_size = 0; 1229 ioend->io_folios = 0; 1230 ioend->io_offset = offset; 1231 ioend->io_bio = bio; 1232 ioend->io_sector = sector; 1233 return ioend; 1234 } 1235 1236 /* 1237 * Allocate a new bio, and chain the old bio to the new one. 1238 * 1239 * Note that we have to perform the chaining in this unintuitive order 1240 * so that the bi_private linkage is set up in the right direction for the 1241 * traversal in iomap_finish_ioend(). 1242 */ 1243 static struct bio * 1244 iomap_chain_bio(struct bio *prev) 1245 { 1246 struct bio *new; 1247 1248 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1249 bio_clone_blkg_association(new, prev); 1250 new->bi_iter.bi_sector = bio_end_sector(prev); 1251 1252 bio_chain(prev, new); 1253 bio_get(prev); /* for iomap_finish_ioend */ 1254 submit_bio(prev); 1255 return new; 1256 } 1257 1258 static bool 1259 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1260 sector_t sector) 1261 { 1262 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1263 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1264 return false; 1265 if (wpc->iomap.type != wpc->ioend->io_type) 1266 return false; 1267 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1268 return false; 1269 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1270 return false; 1271 /* 1272 * Limit ioend bio chain lengths to minimise IO completion latency. This 1273 * also prevents long tight loops ending page writeback on all the 1274 * folios in the ioend. 1275 */ 1276 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1277 return false; 1278 return true; 1279 } 1280 1281 /* 1282 * Test to see if we have an existing ioend structure that we could append to 1283 * first; otherwise finish off the current ioend and start another. 1284 */ 1285 static void 1286 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1287 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1288 struct writeback_control *wbc, struct list_head *iolist) 1289 { 1290 sector_t sector = iomap_sector(&wpc->iomap, pos); 1291 unsigned len = i_blocksize(inode); 1292 size_t poff = offset_in_folio(folio, pos); 1293 1294 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1295 if (wpc->ioend) 1296 list_add(&wpc->ioend->io_list, iolist); 1297 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1298 } 1299 1300 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1301 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1302 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1303 } 1304 1305 if (iop) 1306 atomic_add(len, &iop->write_bytes_pending); 1307 wpc->ioend->io_size += len; 1308 wbc_account_cgroup_owner(wbc, &folio->page, len); 1309 } 1310 1311 /* 1312 * We implement an immediate ioend submission policy here to avoid needing to 1313 * chain multiple ioends and hence nest mempool allocations which can violate 1314 * the forward progress guarantees we need to provide. The current ioend we're 1315 * adding blocks to is cached in the writepage context, and if the new block 1316 * doesn't append to the cached ioend, it will create a new ioend and cache that 1317 * instead. 1318 * 1319 * If a new ioend is created and cached, the old ioend is returned and queued 1320 * locally for submission once the entire page is processed or an error has been 1321 * detected. While ioends are submitted immediately after they are completed, 1322 * batching optimisations are provided by higher level block plugging. 1323 * 1324 * At the end of a writeback pass, there will be a cached ioend remaining on the 1325 * writepage context that the caller will need to submit. 1326 */ 1327 static int 1328 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1329 struct writeback_control *wbc, struct inode *inode, 1330 struct folio *folio, u64 end_pos) 1331 { 1332 struct iomap_page *iop = iomap_page_create(inode, folio); 1333 struct iomap_ioend *ioend, *next; 1334 unsigned len = i_blocksize(inode); 1335 unsigned nblocks = i_blocks_per_folio(inode, folio); 1336 u64 pos = folio_pos(folio); 1337 int error = 0, count = 0, i; 1338 LIST_HEAD(submit_list); 1339 1340 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1341 1342 /* 1343 * Walk through the folio to find areas to write back. If we 1344 * run off the end of the current map or find the current map 1345 * invalid, grab a new one. 1346 */ 1347 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1348 if (iop && !test_bit(i, iop->uptodate)) 1349 continue; 1350 1351 error = wpc->ops->map_blocks(wpc, inode, pos); 1352 if (error) 1353 break; 1354 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1355 continue; 1356 if (wpc->iomap.type == IOMAP_HOLE) 1357 continue; 1358 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1359 &submit_list); 1360 count++; 1361 } 1362 if (count) 1363 wpc->ioend->io_folios++; 1364 1365 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1366 WARN_ON_ONCE(!folio_test_locked(folio)); 1367 WARN_ON_ONCE(folio_test_writeback(folio)); 1368 WARN_ON_ONCE(folio_test_dirty(folio)); 1369 1370 /* 1371 * We cannot cancel the ioend directly here on error. We may have 1372 * already set other pages under writeback and hence we have to run I/O 1373 * completion to mark the error state of the pages under writeback 1374 * appropriately. 1375 */ 1376 if (unlikely(error)) { 1377 /* 1378 * Let the filesystem know what portion of the current page 1379 * failed to map. If the page hasn't been added to ioend, it 1380 * won't be affected by I/O completion and we must unlock it 1381 * now. 1382 */ 1383 if (wpc->ops->discard_folio) 1384 wpc->ops->discard_folio(folio, pos); 1385 if (!count) { 1386 folio_unlock(folio); 1387 goto done; 1388 } 1389 } 1390 1391 folio_start_writeback(folio); 1392 folio_unlock(folio); 1393 1394 /* 1395 * Preserve the original error if there was one; catch 1396 * submission errors here and propagate into subsequent ioend 1397 * submissions. 1398 */ 1399 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1400 int error2; 1401 1402 list_del_init(&ioend->io_list); 1403 error2 = iomap_submit_ioend(wpc, ioend, error); 1404 if (error2 && !error) 1405 error = error2; 1406 } 1407 1408 /* 1409 * We can end up here with no error and nothing to write only if we race 1410 * with a partial page truncate on a sub-page block sized filesystem. 1411 */ 1412 if (!count) 1413 folio_end_writeback(folio); 1414 done: 1415 mapping_set_error(folio->mapping, error); 1416 return error; 1417 } 1418 1419 /* 1420 * Write out a dirty page. 1421 * 1422 * For delalloc space on the page, we need to allocate space and flush it. 1423 * For unwritten space on the page, we need to start the conversion to 1424 * regular allocated space. 1425 */ 1426 static int 1427 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1428 { 1429 struct folio *folio = page_folio(page); 1430 struct iomap_writepage_ctx *wpc = data; 1431 struct inode *inode = folio->mapping->host; 1432 u64 end_pos, isize; 1433 1434 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1435 1436 /* 1437 * Refuse to write the folio out if we're called from reclaim context. 1438 * 1439 * This avoids stack overflows when called from deeply used stacks in 1440 * random callers for direct reclaim or memcg reclaim. We explicitly 1441 * allow reclaim from kswapd as the stack usage there is relatively low. 1442 * 1443 * This should never happen except in the case of a VM regression so 1444 * warn about it. 1445 */ 1446 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1447 PF_MEMALLOC)) 1448 goto redirty; 1449 1450 /* 1451 * Is this folio beyond the end of the file? 1452 * 1453 * The folio index is less than the end_index, adjust the end_pos 1454 * to the highest offset that this folio should represent. 1455 * ----------------------------------------------------- 1456 * | file mapping | <EOF> | 1457 * ----------------------------------------------------- 1458 * | Page ... | Page N-2 | Page N-1 | Page N | | 1459 * ^--------------------------------^----------|-------- 1460 * | desired writeback range | see else | 1461 * ---------------------------------^------------------| 1462 */ 1463 isize = i_size_read(inode); 1464 end_pos = folio_pos(folio) + folio_size(folio); 1465 if (end_pos > isize) { 1466 /* 1467 * Check whether the page to write out is beyond or straddles 1468 * i_size or not. 1469 * ------------------------------------------------------- 1470 * | file mapping | <EOF> | 1471 * ------------------------------------------------------- 1472 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1473 * ^--------------------------------^-----------|--------- 1474 * | | Straddles | 1475 * ---------------------------------^-----------|--------| 1476 */ 1477 size_t poff = offset_in_folio(folio, isize); 1478 pgoff_t end_index = isize >> PAGE_SHIFT; 1479 1480 /* 1481 * Skip the page if it's fully outside i_size, e.g. due to a 1482 * truncate operation that's in progress. We must redirty the 1483 * page so that reclaim stops reclaiming it. Otherwise 1484 * iomap_release_folio() is called on it and gets confused. 1485 * 1486 * Note that the end_index is unsigned long. If the given 1487 * offset is greater than 16TB on a 32-bit system then if we 1488 * checked if the page is fully outside i_size with 1489 * "if (page->index >= end_index + 1)", "end_index + 1" would 1490 * overflow and evaluate to 0. Hence this page would be 1491 * redirtied and written out repeatedly, which would result in 1492 * an infinite loop; the user program performing this operation 1493 * would hang. Instead, we can detect this situation by 1494 * checking if the page is totally beyond i_size or if its 1495 * offset is just equal to the EOF. 1496 */ 1497 if (folio->index > end_index || 1498 (folio->index == end_index && poff == 0)) 1499 goto redirty; 1500 1501 /* 1502 * The page straddles i_size. It must be zeroed out on each 1503 * and every writepage invocation because it may be mmapped. 1504 * "A file is mapped in multiples of the page size. For a file 1505 * that is not a multiple of the page size, the remaining 1506 * memory is zeroed when mapped, and writes to that region are 1507 * not written out to the file." 1508 */ 1509 folio_zero_segment(folio, poff, folio_size(folio)); 1510 end_pos = isize; 1511 } 1512 1513 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1514 1515 redirty: 1516 folio_redirty_for_writepage(wbc, folio); 1517 folio_unlock(folio); 1518 return 0; 1519 } 1520 1521 int 1522 iomap_writepage(struct page *page, struct writeback_control *wbc, 1523 struct iomap_writepage_ctx *wpc, 1524 const struct iomap_writeback_ops *ops) 1525 { 1526 int ret; 1527 1528 wpc->ops = ops; 1529 ret = iomap_do_writepage(page, wbc, wpc); 1530 if (!wpc->ioend) 1531 return ret; 1532 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1533 } 1534 EXPORT_SYMBOL_GPL(iomap_writepage); 1535 1536 int 1537 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1538 struct iomap_writepage_ctx *wpc, 1539 const struct iomap_writeback_ops *ops) 1540 { 1541 int ret; 1542 1543 wpc->ops = ops; 1544 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1545 if (!wpc->ioend) 1546 return ret; 1547 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1548 } 1549 EXPORT_SYMBOL_GPL(iomap_writepages); 1550 1551 static int __init iomap_init(void) 1552 { 1553 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1554 offsetof(struct iomap_ioend, io_inline_bio), 1555 BIOSET_NEED_BVECS); 1556 } 1557 fs_initcall(iomap_init); 1558