xref: /linux/fs/iomap/buffered-io.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	spinlock_t		state_lock;
33 	unsigned int		read_bytes_pending;
34 	atomic_t		write_bytes_pending;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static bool ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 
68 	bitmap_set(ifs->state, first_blk, nr_blks);
69 	return ifs_is_fully_uptodate(folio, ifs);
70 }
71 
72 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
73 		size_t len)
74 {
75 	struct iomap_folio_state *ifs = folio->private;
76 	unsigned long flags;
77 	bool uptodate = true;
78 
79 	if (ifs) {
80 		spin_lock_irqsave(&ifs->state_lock, flags);
81 		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
82 		spin_unlock_irqrestore(&ifs->state_lock, flags);
83 	}
84 
85 	if (uptodate)
86 		folio_mark_uptodate(folio);
87 }
88 
89 static inline bool ifs_block_is_dirty(struct folio *folio,
90 		struct iomap_folio_state *ifs, int block)
91 {
92 	struct inode *inode = folio->mapping->host;
93 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
94 
95 	return test_bit(block + blks_per_folio, ifs->state);
96 }
97 
98 static void ifs_clear_range_dirty(struct folio *folio,
99 		struct iomap_folio_state *ifs, size_t off, size_t len)
100 {
101 	struct inode *inode = folio->mapping->host;
102 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
103 	unsigned int first_blk = (off >> inode->i_blkbits);
104 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
105 	unsigned int nr_blks = last_blk - first_blk + 1;
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&ifs->state_lock, flags);
109 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
110 	spin_unlock_irqrestore(&ifs->state_lock, flags);
111 }
112 
113 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
114 {
115 	struct iomap_folio_state *ifs = folio->private;
116 
117 	if (ifs)
118 		ifs_clear_range_dirty(folio, ifs, off, len);
119 }
120 
121 static void ifs_set_range_dirty(struct folio *folio,
122 		struct iomap_folio_state *ifs, size_t off, size_t len)
123 {
124 	struct inode *inode = folio->mapping->host;
125 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
126 	unsigned int first_blk = (off >> inode->i_blkbits);
127 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
128 	unsigned int nr_blks = last_blk - first_blk + 1;
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&ifs->state_lock, flags);
132 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
133 	spin_unlock_irqrestore(&ifs->state_lock, flags);
134 }
135 
136 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
137 {
138 	struct iomap_folio_state *ifs = folio->private;
139 
140 	if (ifs)
141 		ifs_set_range_dirty(folio, ifs, off, len);
142 }
143 
144 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
145 		struct folio *folio, unsigned int flags)
146 {
147 	struct iomap_folio_state *ifs = folio->private;
148 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
149 	gfp_t gfp;
150 
151 	if (ifs || nr_blocks <= 1)
152 		return ifs;
153 
154 	if (flags & IOMAP_NOWAIT)
155 		gfp = GFP_NOWAIT;
156 	else
157 		gfp = GFP_NOFS | __GFP_NOFAIL;
158 
159 	/*
160 	 * ifs->state tracks two sets of state flags when the
161 	 * filesystem block size is smaller than the folio size.
162 	 * The first state tracks per-block uptodate and the
163 	 * second tracks per-block dirty state.
164 	 */
165 	ifs = kzalloc(struct_size(ifs, state,
166 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
167 	if (!ifs)
168 		return ifs;
169 
170 	spin_lock_init(&ifs->state_lock);
171 	if (folio_test_uptodate(folio))
172 		bitmap_set(ifs->state, 0, nr_blocks);
173 	if (folio_test_dirty(folio))
174 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
175 	folio_attach_private(folio, ifs);
176 
177 	return ifs;
178 }
179 
180 static void ifs_free(struct folio *folio)
181 {
182 	struct iomap_folio_state *ifs = folio_detach_private(folio);
183 
184 	if (!ifs)
185 		return;
186 	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
187 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
188 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
189 			folio_test_uptodate(folio));
190 	kfree(ifs);
191 }
192 
193 /*
194  * Calculate the range inside the folio that we actually need to read.
195  */
196 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
197 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
198 {
199 	struct iomap_folio_state *ifs = folio->private;
200 	loff_t orig_pos = *pos;
201 	loff_t isize = i_size_read(inode);
202 	unsigned block_bits = inode->i_blkbits;
203 	unsigned block_size = (1 << block_bits);
204 	size_t poff = offset_in_folio(folio, *pos);
205 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
206 	unsigned first = poff >> block_bits;
207 	unsigned last = (poff + plen - 1) >> block_bits;
208 
209 	/*
210 	 * If the block size is smaller than the page size, we need to check the
211 	 * per-block uptodate status and adjust the offset and length if needed
212 	 * to avoid reading in already uptodate ranges.
213 	 */
214 	if (ifs) {
215 		unsigned int i;
216 
217 		/* move forward for each leading block marked uptodate */
218 		for (i = first; i <= last; i++) {
219 			if (!ifs_block_is_uptodate(ifs, i))
220 				break;
221 			*pos += block_size;
222 			poff += block_size;
223 			plen -= block_size;
224 			first++;
225 		}
226 
227 		/* truncate len if we find any trailing uptodate block(s) */
228 		for ( ; i <= last; i++) {
229 			if (ifs_block_is_uptodate(ifs, i)) {
230 				plen -= (last - i + 1) * block_size;
231 				last = i - 1;
232 				break;
233 			}
234 		}
235 	}
236 
237 	/*
238 	 * If the extent spans the block that contains the i_size, we need to
239 	 * handle both halves separately so that we properly zero data in the
240 	 * page cache for blocks that are entirely outside of i_size.
241 	 */
242 	if (orig_pos <= isize && orig_pos + length > isize) {
243 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
244 
245 		if (first <= end && last > end)
246 			plen -= (last - end) * block_size;
247 	}
248 
249 	*offp = poff;
250 	*lenp = plen;
251 }
252 
253 static void iomap_finish_folio_read(struct folio *folio, size_t off,
254 		size_t len, int error)
255 {
256 	struct iomap_folio_state *ifs = folio->private;
257 	bool uptodate = !error;
258 	bool finished = true;
259 
260 	if (ifs) {
261 		unsigned long flags;
262 
263 		spin_lock_irqsave(&ifs->state_lock, flags);
264 		if (!error)
265 			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
266 		ifs->read_bytes_pending -= len;
267 		finished = !ifs->read_bytes_pending;
268 		spin_unlock_irqrestore(&ifs->state_lock, flags);
269 	}
270 
271 	if (error)
272 		folio_set_error(folio);
273 	if (finished)
274 		folio_end_read(folio, uptodate);
275 }
276 
277 static void iomap_read_end_io(struct bio *bio)
278 {
279 	int error = blk_status_to_errno(bio->bi_status);
280 	struct folio_iter fi;
281 
282 	bio_for_each_folio_all(fi, bio)
283 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
284 	bio_put(bio);
285 }
286 
287 struct iomap_readpage_ctx {
288 	struct folio		*cur_folio;
289 	bool			cur_folio_in_bio;
290 	struct bio		*bio;
291 	struct readahead_control *rac;
292 };
293 
294 /**
295  * iomap_read_inline_data - copy inline data into the page cache
296  * @iter: iteration structure
297  * @folio: folio to copy to
298  *
299  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
300  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
301  * Returns zero for success to complete the read, or the usual negative errno.
302  */
303 static int iomap_read_inline_data(const struct iomap_iter *iter,
304 		struct folio *folio)
305 {
306 	const struct iomap *iomap = iomap_iter_srcmap(iter);
307 	size_t size = i_size_read(iter->inode) - iomap->offset;
308 	size_t poff = offset_in_page(iomap->offset);
309 	size_t offset = offset_in_folio(folio, iomap->offset);
310 	void *addr;
311 
312 	if (folio_test_uptodate(folio))
313 		return 0;
314 
315 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
316 		return -EIO;
317 	if (WARN_ON_ONCE(size > PAGE_SIZE -
318 			 offset_in_page(iomap->inline_data)))
319 		return -EIO;
320 	if (WARN_ON_ONCE(size > iomap->length))
321 		return -EIO;
322 	if (offset > 0)
323 		ifs_alloc(iter->inode, folio, iter->flags);
324 
325 	addr = kmap_local_folio(folio, offset);
326 	memcpy(addr, iomap->inline_data, size);
327 	memset(addr + size, 0, PAGE_SIZE - poff - size);
328 	kunmap_local(addr);
329 	iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
330 	return 0;
331 }
332 
333 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
334 		loff_t pos)
335 {
336 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
337 
338 	return srcmap->type != IOMAP_MAPPED ||
339 		(srcmap->flags & IOMAP_F_NEW) ||
340 		pos >= i_size_read(iter->inode);
341 }
342 
343 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
344 		struct iomap_readpage_ctx *ctx, loff_t offset)
345 {
346 	const struct iomap *iomap = &iter->iomap;
347 	loff_t pos = iter->pos + offset;
348 	loff_t length = iomap_length(iter) - offset;
349 	struct folio *folio = ctx->cur_folio;
350 	struct iomap_folio_state *ifs;
351 	loff_t orig_pos = pos;
352 	size_t poff, plen;
353 	sector_t sector;
354 
355 	if (iomap->type == IOMAP_INLINE)
356 		return iomap_read_inline_data(iter, folio);
357 
358 	/* zero post-eof blocks as the page may be mapped */
359 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
360 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
361 	if (plen == 0)
362 		goto done;
363 
364 	if (iomap_block_needs_zeroing(iter, pos)) {
365 		folio_zero_range(folio, poff, plen);
366 		iomap_set_range_uptodate(folio, poff, plen);
367 		goto done;
368 	}
369 
370 	ctx->cur_folio_in_bio = true;
371 	if (ifs) {
372 		spin_lock_irq(&ifs->state_lock);
373 		ifs->read_bytes_pending += plen;
374 		spin_unlock_irq(&ifs->state_lock);
375 	}
376 
377 	sector = iomap_sector(iomap, pos);
378 	if (!ctx->bio ||
379 	    bio_end_sector(ctx->bio) != sector ||
380 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
381 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
382 		gfp_t orig_gfp = gfp;
383 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
384 
385 		if (ctx->bio)
386 			submit_bio(ctx->bio);
387 
388 		if (ctx->rac) /* same as readahead_gfp_mask */
389 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
390 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
391 				     REQ_OP_READ, gfp);
392 		/*
393 		 * If the bio_alloc fails, try it again for a single page to
394 		 * avoid having to deal with partial page reads.  This emulates
395 		 * what do_mpage_read_folio does.
396 		 */
397 		if (!ctx->bio) {
398 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
399 					     orig_gfp);
400 		}
401 		if (ctx->rac)
402 			ctx->bio->bi_opf |= REQ_RAHEAD;
403 		ctx->bio->bi_iter.bi_sector = sector;
404 		ctx->bio->bi_end_io = iomap_read_end_io;
405 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
406 	}
407 
408 done:
409 	/*
410 	 * Move the caller beyond our range so that it keeps making progress.
411 	 * For that, we have to include any leading non-uptodate ranges, but
412 	 * we can skip trailing ones as they will be handled in the next
413 	 * iteration.
414 	 */
415 	return pos - orig_pos + plen;
416 }
417 
418 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
419 {
420 	struct iomap_iter iter = {
421 		.inode		= folio->mapping->host,
422 		.pos		= folio_pos(folio),
423 		.len		= folio_size(folio),
424 	};
425 	struct iomap_readpage_ctx ctx = {
426 		.cur_folio	= folio,
427 	};
428 	int ret;
429 
430 	trace_iomap_readpage(iter.inode, 1);
431 
432 	while ((ret = iomap_iter(&iter, ops)) > 0)
433 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
434 
435 	if (ret < 0)
436 		folio_set_error(folio);
437 
438 	if (ctx.bio) {
439 		submit_bio(ctx.bio);
440 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
441 	} else {
442 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
443 		folio_unlock(folio);
444 	}
445 
446 	/*
447 	 * Just like mpage_readahead and block_read_full_folio, we always
448 	 * return 0 and just set the folio error flag on errors.  This
449 	 * should be cleaned up throughout the stack eventually.
450 	 */
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(iomap_read_folio);
454 
455 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
456 		struct iomap_readpage_ctx *ctx)
457 {
458 	loff_t length = iomap_length(iter);
459 	loff_t done, ret;
460 
461 	for (done = 0; done < length; done += ret) {
462 		if (ctx->cur_folio &&
463 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
464 			if (!ctx->cur_folio_in_bio)
465 				folio_unlock(ctx->cur_folio);
466 			ctx->cur_folio = NULL;
467 		}
468 		if (!ctx->cur_folio) {
469 			ctx->cur_folio = readahead_folio(ctx->rac);
470 			ctx->cur_folio_in_bio = false;
471 		}
472 		ret = iomap_readpage_iter(iter, ctx, done);
473 		if (ret <= 0)
474 			return ret;
475 	}
476 
477 	return done;
478 }
479 
480 /**
481  * iomap_readahead - Attempt to read pages from a file.
482  * @rac: Describes the pages to be read.
483  * @ops: The operations vector for the filesystem.
484  *
485  * This function is for filesystems to call to implement their readahead
486  * address_space operation.
487  *
488  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
489  * blocks from disc), and may wait for it.  The caller may be trying to
490  * access a different page, and so sleeping excessively should be avoided.
491  * It may allocate memory, but should avoid costly allocations.  This
492  * function is called with memalloc_nofs set, so allocations will not cause
493  * the filesystem to be reentered.
494  */
495 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
496 {
497 	struct iomap_iter iter = {
498 		.inode	= rac->mapping->host,
499 		.pos	= readahead_pos(rac),
500 		.len	= readahead_length(rac),
501 	};
502 	struct iomap_readpage_ctx ctx = {
503 		.rac	= rac,
504 	};
505 
506 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
507 
508 	while (iomap_iter(&iter, ops) > 0)
509 		iter.processed = iomap_readahead_iter(&iter, &ctx);
510 
511 	if (ctx.bio)
512 		submit_bio(ctx.bio);
513 	if (ctx.cur_folio) {
514 		if (!ctx.cur_folio_in_bio)
515 			folio_unlock(ctx.cur_folio);
516 	}
517 }
518 EXPORT_SYMBOL_GPL(iomap_readahead);
519 
520 /*
521  * iomap_is_partially_uptodate checks whether blocks within a folio are
522  * uptodate or not.
523  *
524  * Returns true if all blocks which correspond to the specified part
525  * of the folio are uptodate.
526  */
527 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
528 {
529 	struct iomap_folio_state *ifs = folio->private;
530 	struct inode *inode = folio->mapping->host;
531 	unsigned first, last, i;
532 
533 	if (!ifs)
534 		return false;
535 
536 	/* Caller's range may extend past the end of this folio */
537 	count = min(folio_size(folio) - from, count);
538 
539 	/* First and last blocks in range within folio */
540 	first = from >> inode->i_blkbits;
541 	last = (from + count - 1) >> inode->i_blkbits;
542 
543 	for (i = first; i <= last; i++)
544 		if (!ifs_block_is_uptodate(ifs, i))
545 			return false;
546 	return true;
547 }
548 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
549 
550 /**
551  * iomap_get_folio - get a folio reference for writing
552  * @iter: iteration structure
553  * @pos: start offset of write
554  * @len: Suggested size of folio to create.
555  *
556  * Returns a locked reference to the folio at @pos, or an error pointer if the
557  * folio could not be obtained.
558  */
559 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
560 {
561 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
562 
563 	if (iter->flags & IOMAP_NOWAIT)
564 		fgp |= FGP_NOWAIT;
565 	fgp |= fgf_set_order(len);
566 
567 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
568 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
569 }
570 EXPORT_SYMBOL_GPL(iomap_get_folio);
571 
572 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
573 {
574 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
575 			folio_size(folio));
576 
577 	/*
578 	 * If the folio is dirty, we refuse to release our metadata because
579 	 * it may be partially dirty.  Once we track per-block dirty state,
580 	 * we can release the metadata if every block is dirty.
581 	 */
582 	if (folio_test_dirty(folio))
583 		return false;
584 	ifs_free(folio);
585 	return true;
586 }
587 EXPORT_SYMBOL_GPL(iomap_release_folio);
588 
589 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
590 {
591 	trace_iomap_invalidate_folio(folio->mapping->host,
592 					folio_pos(folio) + offset, len);
593 
594 	/*
595 	 * If we're invalidating the entire folio, clear the dirty state
596 	 * from it and release it to avoid unnecessary buildup of the LRU.
597 	 */
598 	if (offset == 0 && len == folio_size(folio)) {
599 		WARN_ON_ONCE(folio_test_writeback(folio));
600 		folio_cancel_dirty(folio);
601 		ifs_free(folio);
602 	}
603 }
604 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
605 
606 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
607 {
608 	struct inode *inode = mapping->host;
609 	size_t len = folio_size(folio);
610 
611 	ifs_alloc(inode, folio, 0);
612 	iomap_set_range_dirty(folio, 0, len);
613 	return filemap_dirty_folio(mapping, folio);
614 }
615 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
616 
617 static void
618 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
619 {
620 	loff_t i_size = i_size_read(inode);
621 
622 	/*
623 	 * Only truncate newly allocated pages beyoned EOF, even if the
624 	 * write started inside the existing inode size.
625 	 */
626 	if (pos + len > i_size)
627 		truncate_pagecache_range(inode, max(pos, i_size),
628 					 pos + len - 1);
629 }
630 
631 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
632 		size_t poff, size_t plen, const struct iomap *iomap)
633 {
634 	struct bio_vec bvec;
635 	struct bio bio;
636 
637 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
638 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
639 	bio_add_folio_nofail(&bio, folio, plen, poff);
640 	return submit_bio_wait(&bio);
641 }
642 
643 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
644 		size_t len, struct folio *folio)
645 {
646 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
647 	struct iomap_folio_state *ifs;
648 	loff_t block_size = i_blocksize(iter->inode);
649 	loff_t block_start = round_down(pos, block_size);
650 	loff_t block_end = round_up(pos + len, block_size);
651 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
652 	size_t from = offset_in_folio(folio, pos), to = from + len;
653 	size_t poff, plen;
654 
655 	/*
656 	 * If the write or zeroing completely overlaps the current folio, then
657 	 * entire folio will be dirtied so there is no need for
658 	 * per-block state tracking structures to be attached to this folio.
659 	 * For the unshare case, we must read in the ondisk contents because we
660 	 * are not changing pagecache contents.
661 	 */
662 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
663 	    pos + len >= folio_pos(folio) + folio_size(folio))
664 		return 0;
665 
666 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
667 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
668 		return -EAGAIN;
669 
670 	if (folio_test_uptodate(folio))
671 		return 0;
672 	folio_clear_error(folio);
673 
674 	do {
675 		iomap_adjust_read_range(iter->inode, folio, &block_start,
676 				block_end - block_start, &poff, &plen);
677 		if (plen == 0)
678 			break;
679 
680 		if (!(iter->flags & IOMAP_UNSHARE) &&
681 		    (from <= poff || from >= poff + plen) &&
682 		    (to <= poff || to >= poff + plen))
683 			continue;
684 
685 		if (iomap_block_needs_zeroing(iter, block_start)) {
686 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
687 				return -EIO;
688 			folio_zero_segments(folio, poff, from, to, poff + plen);
689 		} else {
690 			int status;
691 
692 			if (iter->flags & IOMAP_NOWAIT)
693 				return -EAGAIN;
694 
695 			status = iomap_read_folio_sync(block_start, folio,
696 					poff, plen, srcmap);
697 			if (status)
698 				return status;
699 		}
700 		iomap_set_range_uptodate(folio, poff, plen);
701 	} while ((block_start += plen) < block_end);
702 
703 	return 0;
704 }
705 
706 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
707 		size_t len)
708 {
709 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
710 
711 	if (folio_ops && folio_ops->get_folio)
712 		return folio_ops->get_folio(iter, pos, len);
713 	else
714 		return iomap_get_folio(iter, pos, len);
715 }
716 
717 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
718 		struct folio *folio)
719 {
720 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
721 
722 	if (folio_ops && folio_ops->put_folio) {
723 		folio_ops->put_folio(iter->inode, pos, ret, folio);
724 	} else {
725 		folio_unlock(folio);
726 		folio_put(folio);
727 	}
728 }
729 
730 static int iomap_write_begin_inline(const struct iomap_iter *iter,
731 		struct folio *folio)
732 {
733 	/* needs more work for the tailpacking case; disable for now */
734 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
735 		return -EIO;
736 	return iomap_read_inline_data(iter, folio);
737 }
738 
739 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
740 		size_t len, struct folio **foliop)
741 {
742 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
743 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
744 	struct folio *folio;
745 	int status = 0;
746 
747 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
748 	if (srcmap != &iter->iomap)
749 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
750 
751 	if (fatal_signal_pending(current))
752 		return -EINTR;
753 
754 	if (!mapping_large_folio_support(iter->inode->i_mapping))
755 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
756 
757 	folio = __iomap_get_folio(iter, pos, len);
758 	if (IS_ERR(folio))
759 		return PTR_ERR(folio);
760 
761 	/*
762 	 * Now we have a locked folio, before we do anything with it we need to
763 	 * check that the iomap we have cached is not stale. The inode extent
764 	 * mapping can change due to concurrent IO in flight (e.g.
765 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
766 	 * reclaimed a previously partially written page at this index after IO
767 	 * completion before this write reaches this file offset) and hence we
768 	 * could do the wrong thing here (zero a page range incorrectly or fail
769 	 * to zero) and corrupt data.
770 	 */
771 	if (folio_ops && folio_ops->iomap_valid) {
772 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
773 							 &iter->iomap);
774 		if (!iomap_valid) {
775 			iter->iomap.flags |= IOMAP_F_STALE;
776 			status = 0;
777 			goto out_unlock;
778 		}
779 	}
780 
781 	if (pos + len > folio_pos(folio) + folio_size(folio))
782 		len = folio_pos(folio) + folio_size(folio) - pos;
783 
784 	if (srcmap->type == IOMAP_INLINE)
785 		status = iomap_write_begin_inline(iter, folio);
786 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
787 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
788 	else
789 		status = __iomap_write_begin(iter, pos, len, folio);
790 
791 	if (unlikely(status))
792 		goto out_unlock;
793 
794 	*foliop = folio;
795 	return 0;
796 
797 out_unlock:
798 	__iomap_put_folio(iter, pos, 0, folio);
799 	iomap_write_failed(iter->inode, pos, len);
800 
801 	return status;
802 }
803 
804 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
805 		size_t copied, struct folio *folio)
806 {
807 	flush_dcache_folio(folio);
808 
809 	/*
810 	 * The blocks that were entirely written will now be uptodate, so we
811 	 * don't have to worry about a read_folio reading them and overwriting a
812 	 * partial write.  However, if we've encountered a short write and only
813 	 * partially written into a block, it will not be marked uptodate, so a
814 	 * read_folio might come in and destroy our partial write.
815 	 *
816 	 * Do the simplest thing and just treat any short write to a
817 	 * non-uptodate page as a zero-length write, and force the caller to
818 	 * redo the whole thing.
819 	 */
820 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
821 		return 0;
822 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
823 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
824 	filemap_dirty_folio(inode->i_mapping, folio);
825 	return copied;
826 }
827 
828 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
829 		struct folio *folio, loff_t pos, size_t copied)
830 {
831 	const struct iomap *iomap = &iter->iomap;
832 	void *addr;
833 
834 	WARN_ON_ONCE(!folio_test_uptodate(folio));
835 	BUG_ON(!iomap_inline_data_valid(iomap));
836 
837 	flush_dcache_folio(folio);
838 	addr = kmap_local_folio(folio, pos);
839 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
840 	kunmap_local(addr);
841 
842 	mark_inode_dirty(iter->inode);
843 	return copied;
844 }
845 
846 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
847 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
848 		size_t copied, struct folio *folio)
849 {
850 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
851 	loff_t old_size = iter->inode->i_size;
852 	size_t ret;
853 
854 	if (srcmap->type == IOMAP_INLINE) {
855 		ret = iomap_write_end_inline(iter, folio, pos, copied);
856 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
857 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
858 				copied, &folio->page, NULL);
859 	} else {
860 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
861 	}
862 
863 	/*
864 	 * Update the in-memory inode size after copying the data into the page
865 	 * cache.  It's up to the file system to write the updated size to disk,
866 	 * preferably after I/O completion so that no stale data is exposed.
867 	 */
868 	if (pos + ret > old_size) {
869 		i_size_write(iter->inode, pos + ret);
870 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
871 	}
872 	__iomap_put_folio(iter, pos, ret, folio);
873 
874 	if (old_size < pos)
875 		pagecache_isize_extended(iter->inode, old_size, pos);
876 	if (ret < len)
877 		iomap_write_failed(iter->inode, pos + ret, len - ret);
878 	return ret;
879 }
880 
881 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
882 {
883 	loff_t length = iomap_length(iter);
884 	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
885 	loff_t pos = iter->pos;
886 	ssize_t written = 0;
887 	long status = 0;
888 	struct address_space *mapping = iter->inode->i_mapping;
889 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
890 
891 	do {
892 		struct folio *folio;
893 		size_t offset;		/* Offset into folio */
894 		size_t bytes;		/* Bytes to write to folio */
895 		size_t copied;		/* Bytes copied from user */
896 
897 		bytes = iov_iter_count(i);
898 retry:
899 		offset = pos & (chunk - 1);
900 		bytes = min(chunk - offset, bytes);
901 		status = balance_dirty_pages_ratelimited_flags(mapping,
902 							       bdp_flags);
903 		if (unlikely(status))
904 			break;
905 
906 		if (bytes > length)
907 			bytes = length;
908 
909 		/*
910 		 * Bring in the user page that we'll copy from _first_.
911 		 * Otherwise there's a nasty deadlock on copying from the
912 		 * same page as we're writing to, without it being marked
913 		 * up-to-date.
914 		 *
915 		 * For async buffered writes the assumption is that the user
916 		 * page has already been faulted in. This can be optimized by
917 		 * faulting the user page.
918 		 */
919 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
920 			status = -EFAULT;
921 			break;
922 		}
923 
924 		status = iomap_write_begin(iter, pos, bytes, &folio);
925 		if (unlikely(status))
926 			break;
927 		if (iter->iomap.flags & IOMAP_F_STALE)
928 			break;
929 
930 		offset = offset_in_folio(folio, pos);
931 		if (bytes > folio_size(folio) - offset)
932 			bytes = folio_size(folio) - offset;
933 
934 		if (mapping_writably_mapped(mapping))
935 			flush_dcache_folio(folio);
936 
937 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
938 		status = iomap_write_end(iter, pos, bytes, copied, folio);
939 
940 		if (unlikely(copied != status))
941 			iov_iter_revert(i, copied - status);
942 
943 		cond_resched();
944 		if (unlikely(status == 0)) {
945 			/*
946 			 * A short copy made iomap_write_end() reject the
947 			 * thing entirely.  Might be memory poisoning
948 			 * halfway through, might be a race with munmap,
949 			 * might be severe memory pressure.
950 			 */
951 			if (chunk > PAGE_SIZE)
952 				chunk /= 2;
953 			if (copied) {
954 				bytes = copied;
955 				goto retry;
956 			}
957 		} else {
958 			pos += status;
959 			written += status;
960 			length -= status;
961 		}
962 	} while (iov_iter_count(i) && length);
963 
964 	if (status == -EAGAIN) {
965 		iov_iter_revert(i, written);
966 		return -EAGAIN;
967 	}
968 	return written ? written : status;
969 }
970 
971 ssize_t
972 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
973 		const struct iomap_ops *ops)
974 {
975 	struct iomap_iter iter = {
976 		.inode		= iocb->ki_filp->f_mapping->host,
977 		.pos		= iocb->ki_pos,
978 		.len		= iov_iter_count(i),
979 		.flags		= IOMAP_WRITE,
980 	};
981 	ssize_t ret;
982 
983 	if (iocb->ki_flags & IOCB_NOWAIT)
984 		iter.flags |= IOMAP_NOWAIT;
985 
986 	while ((ret = iomap_iter(&iter, ops)) > 0)
987 		iter.processed = iomap_write_iter(&iter, i);
988 
989 	if (unlikely(iter.pos == iocb->ki_pos))
990 		return ret;
991 	ret = iter.pos - iocb->ki_pos;
992 	iocb->ki_pos = iter.pos;
993 	return ret;
994 }
995 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
996 
997 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
998 		struct folio *folio, loff_t start_byte, loff_t end_byte,
999 		iomap_punch_t punch)
1000 {
1001 	unsigned int first_blk, last_blk, i;
1002 	loff_t last_byte;
1003 	u8 blkbits = inode->i_blkbits;
1004 	struct iomap_folio_state *ifs;
1005 	int ret = 0;
1006 
1007 	/*
1008 	 * When we have per-block dirty tracking, there can be
1009 	 * blocks within a folio which are marked uptodate
1010 	 * but not dirty. In that case it is necessary to punch
1011 	 * out such blocks to avoid leaking any delalloc blocks.
1012 	 */
1013 	ifs = folio->private;
1014 	if (!ifs)
1015 		return ret;
1016 
1017 	last_byte = min_t(loff_t, end_byte - 1,
1018 			folio_pos(folio) + folio_size(folio) - 1);
1019 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1020 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1021 	for (i = first_blk; i <= last_blk; i++) {
1022 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1023 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1024 				    1 << blkbits);
1025 			if (ret)
1026 				return ret;
1027 		}
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 
1034 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1035 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1036 		iomap_punch_t punch)
1037 {
1038 	int ret = 0;
1039 
1040 	if (!folio_test_dirty(folio))
1041 		return ret;
1042 
1043 	/* if dirty, punch up to offset */
1044 	if (start_byte > *punch_start_byte) {
1045 		ret = punch(inode, *punch_start_byte,
1046 				start_byte - *punch_start_byte);
1047 		if (ret)
1048 			return ret;
1049 	}
1050 
1051 	/* Punch non-dirty blocks within folio */
1052 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1053 			end_byte, punch);
1054 	if (ret)
1055 		return ret;
1056 
1057 	/*
1058 	 * Make sure the next punch start is correctly bound to
1059 	 * the end of this data range, not the end of the folio.
1060 	 */
1061 	*punch_start_byte = min_t(loff_t, end_byte,
1062 				folio_pos(folio) + folio_size(folio));
1063 
1064 	return ret;
1065 }
1066 
1067 /*
1068  * Scan the data range passed to us for dirty page cache folios. If we find a
1069  * dirty folio, punch out the preceding range and update the offset from which
1070  * the next punch will start from.
1071  *
1072  * We can punch out storage reservations under clean pages because they either
1073  * contain data that has been written back - in which case the delalloc punch
1074  * over that range is a no-op - or they have been read faults in which case they
1075  * contain zeroes and we can remove the delalloc backing range and any new
1076  * writes to those pages will do the normal hole filling operation...
1077  *
1078  * This makes the logic simple: we only need to keep the delalloc extents only
1079  * over the dirty ranges of the page cache.
1080  *
1081  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1082  * simplify range iterations.
1083  */
1084 static int iomap_write_delalloc_scan(struct inode *inode,
1085 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1086 		iomap_punch_t punch)
1087 {
1088 	while (start_byte < end_byte) {
1089 		struct folio	*folio;
1090 		int ret;
1091 
1092 		/* grab locked page */
1093 		folio = filemap_lock_folio(inode->i_mapping,
1094 				start_byte >> PAGE_SHIFT);
1095 		if (IS_ERR(folio)) {
1096 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1097 					PAGE_SIZE;
1098 			continue;
1099 		}
1100 
1101 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1102 						 start_byte, end_byte, punch);
1103 		if (ret) {
1104 			folio_unlock(folio);
1105 			folio_put(folio);
1106 			return ret;
1107 		}
1108 
1109 		/* move offset to start of next folio in range */
1110 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1111 		folio_unlock(folio);
1112 		folio_put(folio);
1113 	}
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Punch out all the delalloc blocks in the range given except for those that
1119  * have dirty data still pending in the page cache - those are going to be
1120  * written and so must still retain the delalloc backing for writeback.
1121  *
1122  * As we are scanning the page cache for data, we don't need to reimplement the
1123  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1124  * start and end of data ranges correctly even for sub-folio block sizes. This
1125  * byte range based iteration is especially convenient because it means we
1126  * don't have to care about variable size folios, nor where the start or end of
1127  * the data range lies within a folio, if they lie within the same folio or even
1128  * if there are multiple discontiguous data ranges within the folio.
1129  *
1130  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1131  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1132  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1133  * date. A write page fault can then mark it dirty. If we then fail a write()
1134  * beyond EOF into that up to date cached range, we allocate a delalloc block
1135  * beyond EOF and then have to punch it out. Because the range is up to date,
1136  * mapping_seek_hole_data() will return it, and we will skip the punch because
1137  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1138  * beyond EOF in this case as writeback will never write back and covert that
1139  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1140  * resulting in always punching out the range from the EOF to the end of the
1141  * range the iomap spans.
1142  *
1143  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1144  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1145  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1146  * returns the end of the data range (data_end). Using closed intervals would
1147  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1148  * the code to subtle off-by-one bugs....
1149  */
1150 static int iomap_write_delalloc_release(struct inode *inode,
1151 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1152 {
1153 	loff_t punch_start_byte = start_byte;
1154 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1155 	int error = 0;
1156 
1157 	/*
1158 	 * Lock the mapping to avoid races with page faults re-instantiating
1159 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1160 	 * cache and perform delalloc extent removal. Failing to do this can
1161 	 * leave dirty pages with no space reservation in the cache.
1162 	 */
1163 	filemap_invalidate_lock(inode->i_mapping);
1164 	while (start_byte < scan_end_byte) {
1165 		loff_t		data_end;
1166 
1167 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1168 				start_byte, scan_end_byte, SEEK_DATA);
1169 		/*
1170 		 * If there is no more data to scan, all that is left is to
1171 		 * punch out the remaining range.
1172 		 */
1173 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1174 			break;
1175 		if (start_byte < 0) {
1176 			error = start_byte;
1177 			goto out_unlock;
1178 		}
1179 		WARN_ON_ONCE(start_byte < punch_start_byte);
1180 		WARN_ON_ONCE(start_byte > scan_end_byte);
1181 
1182 		/*
1183 		 * We find the end of this contiguous cached data range by
1184 		 * seeking from start_byte to the beginning of the next hole.
1185 		 */
1186 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1187 				scan_end_byte, SEEK_HOLE);
1188 		if (data_end < 0) {
1189 			error = data_end;
1190 			goto out_unlock;
1191 		}
1192 		WARN_ON_ONCE(data_end <= start_byte);
1193 		WARN_ON_ONCE(data_end > scan_end_byte);
1194 
1195 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1196 				start_byte, data_end, punch);
1197 		if (error)
1198 			goto out_unlock;
1199 
1200 		/* The next data search starts at the end of this one. */
1201 		start_byte = data_end;
1202 	}
1203 
1204 	if (punch_start_byte < end_byte)
1205 		error = punch(inode, punch_start_byte,
1206 				end_byte - punch_start_byte);
1207 out_unlock:
1208 	filemap_invalidate_unlock(inode->i_mapping);
1209 	return error;
1210 }
1211 
1212 /*
1213  * When a short write occurs, the filesystem may need to remove reserved space
1214  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1215  * filesystems that use delayed allocation, we need to punch out delalloc
1216  * extents from the range that are not dirty in the page cache. As the write can
1217  * race with page faults, there can be dirty pages over the delalloc extent
1218  * outside the range of a short write but still within the delalloc extent
1219  * allocated for this iomap.
1220  *
1221  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1222  * simplify range iterations.
1223  *
1224  * The punch() callback *must* only punch delalloc extents in the range passed
1225  * to it. It must skip over all other types of extents in the range and leave
1226  * them completely unchanged. It must do this punch atomically with respect to
1227  * other extent modifications.
1228  *
1229  * The punch() callback may be called with a folio locked to prevent writeback
1230  * extent allocation racing at the edge of the range we are currently punching.
1231  * The locked folio may or may not cover the range being punched, so it is not
1232  * safe for the punch() callback to lock folios itself.
1233  *
1234  * Lock order is:
1235  *
1236  * inode->i_rwsem (shared or exclusive)
1237  *   inode->i_mapping->invalidate_lock (exclusive)
1238  *     folio_lock()
1239  *       ->punch
1240  *         internal filesystem allocation lock
1241  */
1242 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1243 		struct iomap *iomap, loff_t pos, loff_t length,
1244 		ssize_t written, iomap_punch_t punch)
1245 {
1246 	loff_t			start_byte;
1247 	loff_t			end_byte;
1248 	unsigned int		blocksize = i_blocksize(inode);
1249 
1250 	if (iomap->type != IOMAP_DELALLOC)
1251 		return 0;
1252 
1253 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1254 	if (!(iomap->flags & IOMAP_F_NEW))
1255 		return 0;
1256 
1257 	/*
1258 	 * start_byte refers to the first unused block after a short write. If
1259 	 * nothing was written, round offset down to point at the first block in
1260 	 * the range.
1261 	 */
1262 	if (unlikely(!written))
1263 		start_byte = round_down(pos, blocksize);
1264 	else
1265 		start_byte = round_up(pos + written, blocksize);
1266 	end_byte = round_up(pos + length, blocksize);
1267 
1268 	/* Nothing to do if we've written the entire delalloc extent */
1269 	if (start_byte >= end_byte)
1270 		return 0;
1271 
1272 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1273 					punch);
1274 }
1275 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1276 
1277 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1278 {
1279 	struct iomap *iomap = &iter->iomap;
1280 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1281 	loff_t pos = iter->pos;
1282 	loff_t length = iomap_length(iter);
1283 	loff_t written = 0;
1284 
1285 	/* don't bother with blocks that are not shared to start with */
1286 	if (!(iomap->flags & IOMAP_F_SHARED))
1287 		return length;
1288 	/* don't bother with holes or unwritten extents */
1289 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1290 		return length;
1291 
1292 	do {
1293 		struct folio *folio;
1294 		int status;
1295 		size_t offset;
1296 		size_t bytes = min_t(u64, SIZE_MAX, length);
1297 
1298 		status = iomap_write_begin(iter, pos, bytes, &folio);
1299 		if (unlikely(status))
1300 			return status;
1301 		if (iomap->flags & IOMAP_F_STALE)
1302 			break;
1303 
1304 		offset = offset_in_folio(folio, pos);
1305 		if (bytes > folio_size(folio) - offset)
1306 			bytes = folio_size(folio) - offset;
1307 
1308 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1309 		if (WARN_ON_ONCE(bytes == 0))
1310 			return -EIO;
1311 
1312 		cond_resched();
1313 
1314 		pos += bytes;
1315 		written += bytes;
1316 		length -= bytes;
1317 
1318 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1319 	} while (length > 0);
1320 
1321 	return written;
1322 }
1323 
1324 int
1325 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1326 		const struct iomap_ops *ops)
1327 {
1328 	struct iomap_iter iter = {
1329 		.inode		= inode,
1330 		.pos		= pos,
1331 		.len		= len,
1332 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1333 	};
1334 	int ret;
1335 
1336 	while ((ret = iomap_iter(&iter, ops)) > 0)
1337 		iter.processed = iomap_unshare_iter(&iter);
1338 	return ret;
1339 }
1340 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1341 
1342 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1343 {
1344 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1345 	loff_t pos = iter->pos;
1346 	loff_t length = iomap_length(iter);
1347 	loff_t written = 0;
1348 
1349 	/* already zeroed?  we're done. */
1350 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1351 		return length;
1352 
1353 	do {
1354 		struct folio *folio;
1355 		int status;
1356 		size_t offset;
1357 		size_t bytes = min_t(u64, SIZE_MAX, length);
1358 
1359 		status = iomap_write_begin(iter, pos, bytes, &folio);
1360 		if (status)
1361 			return status;
1362 		if (iter->iomap.flags & IOMAP_F_STALE)
1363 			break;
1364 
1365 		offset = offset_in_folio(folio, pos);
1366 		if (bytes > folio_size(folio) - offset)
1367 			bytes = folio_size(folio) - offset;
1368 
1369 		folio_zero_range(folio, offset, bytes);
1370 		folio_mark_accessed(folio);
1371 
1372 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1373 		if (WARN_ON_ONCE(bytes == 0))
1374 			return -EIO;
1375 
1376 		pos += bytes;
1377 		length -= bytes;
1378 		written += bytes;
1379 	} while (length > 0);
1380 
1381 	if (did_zero)
1382 		*did_zero = true;
1383 	return written;
1384 }
1385 
1386 int
1387 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1388 		const struct iomap_ops *ops)
1389 {
1390 	struct iomap_iter iter = {
1391 		.inode		= inode,
1392 		.pos		= pos,
1393 		.len		= len,
1394 		.flags		= IOMAP_ZERO,
1395 	};
1396 	int ret;
1397 
1398 	while ((ret = iomap_iter(&iter, ops)) > 0)
1399 		iter.processed = iomap_zero_iter(&iter, did_zero);
1400 	return ret;
1401 }
1402 EXPORT_SYMBOL_GPL(iomap_zero_range);
1403 
1404 int
1405 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1406 		const struct iomap_ops *ops)
1407 {
1408 	unsigned int blocksize = i_blocksize(inode);
1409 	unsigned int off = pos & (blocksize - 1);
1410 
1411 	/* Block boundary? Nothing to do */
1412 	if (!off)
1413 		return 0;
1414 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1415 }
1416 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1417 
1418 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1419 		struct folio *folio)
1420 {
1421 	loff_t length = iomap_length(iter);
1422 	int ret;
1423 
1424 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1425 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1426 					      &iter->iomap);
1427 		if (ret)
1428 			return ret;
1429 		block_commit_write(&folio->page, 0, length);
1430 	} else {
1431 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1432 		folio_mark_dirty(folio);
1433 	}
1434 
1435 	return length;
1436 }
1437 
1438 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1439 {
1440 	struct iomap_iter iter = {
1441 		.inode		= file_inode(vmf->vma->vm_file),
1442 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1443 	};
1444 	struct folio *folio = page_folio(vmf->page);
1445 	ssize_t ret;
1446 
1447 	folio_lock(folio);
1448 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1449 	if (ret < 0)
1450 		goto out_unlock;
1451 	iter.pos = folio_pos(folio);
1452 	iter.len = ret;
1453 	while ((ret = iomap_iter(&iter, ops)) > 0)
1454 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1455 
1456 	if (ret < 0)
1457 		goto out_unlock;
1458 	folio_wait_stable(folio);
1459 	return VM_FAULT_LOCKED;
1460 out_unlock:
1461 	folio_unlock(folio);
1462 	return vmf_fs_error(ret);
1463 }
1464 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1465 
1466 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1467 		size_t len, int error)
1468 {
1469 	struct iomap_folio_state *ifs = folio->private;
1470 
1471 	if (error) {
1472 		folio_set_error(folio);
1473 		mapping_set_error(inode->i_mapping, error);
1474 	}
1475 
1476 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1477 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1478 
1479 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1480 		folio_end_writeback(folio);
1481 }
1482 
1483 /*
1484  * We're now finished for good with this ioend structure.  Update the page
1485  * state, release holds on bios, and finally free up memory.  Do not use the
1486  * ioend after this.
1487  */
1488 static u32
1489 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1490 {
1491 	struct inode *inode = ioend->io_inode;
1492 	struct bio *bio = &ioend->io_inline_bio;
1493 	struct bio *last = ioend->io_bio, *next;
1494 	u64 start = bio->bi_iter.bi_sector;
1495 	loff_t offset = ioend->io_offset;
1496 	bool quiet = bio_flagged(bio, BIO_QUIET);
1497 	u32 folio_count = 0;
1498 
1499 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1500 		struct folio_iter fi;
1501 
1502 		/*
1503 		 * For the last bio, bi_private points to the ioend, so we
1504 		 * need to explicitly end the iteration here.
1505 		 */
1506 		if (bio == last)
1507 			next = NULL;
1508 		else
1509 			next = bio->bi_private;
1510 
1511 		/* walk all folios in bio, ending page IO on them */
1512 		bio_for_each_folio_all(fi, bio) {
1513 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1514 					error);
1515 			folio_count++;
1516 		}
1517 		bio_put(bio);
1518 	}
1519 	/* The ioend has been freed by bio_put() */
1520 
1521 	if (unlikely(error && !quiet)) {
1522 		printk_ratelimited(KERN_ERR
1523 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1524 			inode->i_sb->s_id, inode->i_ino, offset, start);
1525 	}
1526 	return folio_count;
1527 }
1528 
1529 /*
1530  * Ioend completion routine for merged bios. This can only be called from task
1531  * contexts as merged ioends can be of unbound length. Hence we have to break up
1532  * the writeback completions into manageable chunks to avoid long scheduler
1533  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1534  * good batch processing throughput without creating adverse scheduler latency
1535  * conditions.
1536  */
1537 void
1538 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1539 {
1540 	struct list_head tmp;
1541 	u32 completions;
1542 
1543 	might_sleep();
1544 
1545 	list_replace_init(&ioend->io_list, &tmp);
1546 	completions = iomap_finish_ioend(ioend, error);
1547 
1548 	while (!list_empty(&tmp)) {
1549 		if (completions > IOEND_BATCH_SIZE * 8) {
1550 			cond_resched();
1551 			completions = 0;
1552 		}
1553 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1554 		list_del_init(&ioend->io_list);
1555 		completions += iomap_finish_ioend(ioend, error);
1556 	}
1557 }
1558 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1559 
1560 /*
1561  * We can merge two adjacent ioends if they have the same set of work to do.
1562  */
1563 static bool
1564 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1565 {
1566 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1567 		return false;
1568 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1569 	    (next->io_flags & IOMAP_F_SHARED))
1570 		return false;
1571 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1572 	    (next->io_type == IOMAP_UNWRITTEN))
1573 		return false;
1574 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1575 		return false;
1576 	/*
1577 	 * Do not merge physically discontiguous ioends. The filesystem
1578 	 * completion functions will have to iterate the physical
1579 	 * discontiguities even if we merge the ioends at a logical level, so
1580 	 * we don't gain anything by merging physical discontiguities here.
1581 	 *
1582 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1583 	 * submission so does not point to the start sector of the bio at
1584 	 * completion.
1585 	 */
1586 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1587 		return false;
1588 	return true;
1589 }
1590 
1591 void
1592 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1593 {
1594 	struct iomap_ioend *next;
1595 
1596 	INIT_LIST_HEAD(&ioend->io_list);
1597 
1598 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1599 			io_list))) {
1600 		if (!iomap_ioend_can_merge(ioend, next))
1601 			break;
1602 		list_move_tail(&next->io_list, &ioend->io_list);
1603 		ioend->io_size += next->io_size;
1604 	}
1605 }
1606 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1607 
1608 static int
1609 iomap_ioend_compare(void *priv, const struct list_head *a,
1610 		const struct list_head *b)
1611 {
1612 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1613 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1614 
1615 	if (ia->io_offset < ib->io_offset)
1616 		return -1;
1617 	if (ia->io_offset > ib->io_offset)
1618 		return 1;
1619 	return 0;
1620 }
1621 
1622 void
1623 iomap_sort_ioends(struct list_head *ioend_list)
1624 {
1625 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1626 }
1627 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1628 
1629 static void iomap_writepage_end_bio(struct bio *bio)
1630 {
1631 	struct iomap_ioend *ioend = bio->bi_private;
1632 
1633 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1634 }
1635 
1636 /*
1637  * Submit the final bio for an ioend.
1638  *
1639  * If @error is non-zero, it means that we have a situation where some part of
1640  * the submission process has failed after we've marked pages for writeback
1641  * and unlocked them.  In this situation, we need to fail the bio instead of
1642  * submitting it.  This typically only happens on a filesystem shutdown.
1643  */
1644 static int
1645 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1646 		int error)
1647 {
1648 	ioend->io_bio->bi_private = ioend;
1649 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1650 
1651 	if (wpc->ops->prepare_ioend)
1652 		error = wpc->ops->prepare_ioend(ioend, error);
1653 	if (error) {
1654 		/*
1655 		 * If we're failing the IO now, just mark the ioend with an
1656 		 * error and finish it.  This will run IO completion immediately
1657 		 * as there is only one reference to the ioend at this point in
1658 		 * time.
1659 		 */
1660 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1661 		bio_endio(ioend->io_bio);
1662 		return error;
1663 	}
1664 
1665 	submit_bio(ioend->io_bio);
1666 	return 0;
1667 }
1668 
1669 static struct iomap_ioend *
1670 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1671 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1672 {
1673 	struct iomap_ioend *ioend;
1674 	struct bio *bio;
1675 
1676 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1677 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1678 			       GFP_NOFS, &iomap_ioend_bioset);
1679 	bio->bi_iter.bi_sector = sector;
1680 	wbc_init_bio(wbc, bio);
1681 
1682 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1683 	INIT_LIST_HEAD(&ioend->io_list);
1684 	ioend->io_type = wpc->iomap.type;
1685 	ioend->io_flags = wpc->iomap.flags;
1686 	ioend->io_inode = inode;
1687 	ioend->io_size = 0;
1688 	ioend->io_folios = 0;
1689 	ioend->io_offset = offset;
1690 	ioend->io_bio = bio;
1691 	ioend->io_sector = sector;
1692 	return ioend;
1693 }
1694 
1695 /*
1696  * Allocate a new bio, and chain the old bio to the new one.
1697  *
1698  * Note that we have to perform the chaining in this unintuitive order
1699  * so that the bi_private linkage is set up in the right direction for the
1700  * traversal in iomap_finish_ioend().
1701  */
1702 static struct bio *
1703 iomap_chain_bio(struct bio *prev)
1704 {
1705 	struct bio *new;
1706 
1707 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1708 	bio_clone_blkg_association(new, prev);
1709 	new->bi_iter.bi_sector = bio_end_sector(prev);
1710 
1711 	bio_chain(prev, new);
1712 	bio_get(prev);		/* for iomap_finish_ioend */
1713 	submit_bio(prev);
1714 	return new;
1715 }
1716 
1717 static bool
1718 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1719 		sector_t sector)
1720 {
1721 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1722 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1723 		return false;
1724 	if (wpc->iomap.type != wpc->ioend->io_type)
1725 		return false;
1726 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1727 		return false;
1728 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1729 		return false;
1730 	/*
1731 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1732 	 * also prevents long tight loops ending page writeback on all the
1733 	 * folios in the ioend.
1734 	 */
1735 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1736 		return false;
1737 	return true;
1738 }
1739 
1740 /*
1741  * Test to see if we have an existing ioend structure that we could append to
1742  * first; otherwise finish off the current ioend and start another.
1743  */
1744 static void
1745 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1746 		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1747 		struct writeback_control *wbc, struct list_head *iolist)
1748 {
1749 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1750 	unsigned len = i_blocksize(inode);
1751 	size_t poff = offset_in_folio(folio, pos);
1752 
1753 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1754 		if (wpc->ioend)
1755 			list_add(&wpc->ioend->io_list, iolist);
1756 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1757 	}
1758 
1759 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1760 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1761 		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1762 	}
1763 
1764 	if (ifs)
1765 		atomic_add(len, &ifs->write_bytes_pending);
1766 	wpc->ioend->io_size += len;
1767 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1768 }
1769 
1770 /*
1771  * We implement an immediate ioend submission policy here to avoid needing to
1772  * chain multiple ioends and hence nest mempool allocations which can violate
1773  * the forward progress guarantees we need to provide. The current ioend we're
1774  * adding blocks to is cached in the writepage context, and if the new block
1775  * doesn't append to the cached ioend, it will create a new ioend and cache that
1776  * instead.
1777  *
1778  * If a new ioend is created and cached, the old ioend is returned and queued
1779  * locally for submission once the entire page is processed or an error has been
1780  * detected.  While ioends are submitted immediately after they are completed,
1781  * batching optimisations are provided by higher level block plugging.
1782  *
1783  * At the end of a writeback pass, there will be a cached ioend remaining on the
1784  * writepage context that the caller will need to submit.
1785  */
1786 static int
1787 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1788 		struct writeback_control *wbc, struct inode *inode,
1789 		struct folio *folio, u64 end_pos)
1790 {
1791 	struct iomap_folio_state *ifs = folio->private;
1792 	struct iomap_ioend *ioend, *next;
1793 	unsigned len = i_blocksize(inode);
1794 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1795 	u64 pos = folio_pos(folio);
1796 	int error = 0, count = 0, i;
1797 	LIST_HEAD(submit_list);
1798 
1799 	WARN_ON_ONCE(end_pos <= pos);
1800 
1801 	if (!ifs && nblocks > 1) {
1802 		ifs = ifs_alloc(inode, folio, 0);
1803 		iomap_set_range_dirty(folio, 0, end_pos - pos);
1804 	}
1805 
1806 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1807 
1808 	/*
1809 	 * Walk through the folio to find areas to write back. If we
1810 	 * run off the end of the current map or find the current map
1811 	 * invalid, grab a new one.
1812 	 */
1813 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1814 		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1815 			continue;
1816 
1817 		error = wpc->ops->map_blocks(wpc, inode, pos);
1818 		if (error)
1819 			break;
1820 		trace_iomap_writepage_map(inode, &wpc->iomap);
1821 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1822 			continue;
1823 		if (wpc->iomap.type == IOMAP_HOLE)
1824 			continue;
1825 		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1826 				 &submit_list);
1827 		count++;
1828 	}
1829 	if (count)
1830 		wpc->ioend->io_folios++;
1831 
1832 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1833 	WARN_ON_ONCE(!folio_test_locked(folio));
1834 	WARN_ON_ONCE(folio_test_writeback(folio));
1835 	WARN_ON_ONCE(folio_test_dirty(folio));
1836 
1837 	/*
1838 	 * We cannot cancel the ioend directly here on error.  We may have
1839 	 * already set other pages under writeback and hence we have to run I/O
1840 	 * completion to mark the error state of the pages under writeback
1841 	 * appropriately.
1842 	 */
1843 	if (unlikely(error)) {
1844 		/*
1845 		 * Let the filesystem know what portion of the current page
1846 		 * failed to map. If the page hasn't been added to ioend, it
1847 		 * won't be affected by I/O completion and we must unlock it
1848 		 * now.
1849 		 */
1850 		if (wpc->ops->discard_folio)
1851 			wpc->ops->discard_folio(folio, pos);
1852 		if (!count) {
1853 			folio_unlock(folio);
1854 			goto done;
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * We can have dirty bits set past end of file in page_mkwrite path
1860 	 * while mapping the last partial folio. Hence it's better to clear
1861 	 * all the dirty bits in the folio here.
1862 	 */
1863 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1864 	folio_start_writeback(folio);
1865 	folio_unlock(folio);
1866 
1867 	/*
1868 	 * Preserve the original error if there was one; catch
1869 	 * submission errors here and propagate into subsequent ioend
1870 	 * submissions.
1871 	 */
1872 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1873 		int error2;
1874 
1875 		list_del_init(&ioend->io_list);
1876 		error2 = iomap_submit_ioend(wpc, ioend, error);
1877 		if (error2 && !error)
1878 			error = error2;
1879 	}
1880 
1881 	/*
1882 	 * We can end up here with no error and nothing to write only if we race
1883 	 * with a partial page truncate on a sub-page block sized filesystem.
1884 	 */
1885 	if (!count)
1886 		folio_end_writeback(folio);
1887 done:
1888 	mapping_set_error(inode->i_mapping, error);
1889 	return error;
1890 }
1891 
1892 /*
1893  * Write out a dirty page.
1894  *
1895  * For delalloc space on the page, we need to allocate space and flush it.
1896  * For unwritten space on the page, we need to start the conversion to
1897  * regular allocated space.
1898  */
1899 static int iomap_do_writepage(struct folio *folio,
1900 		struct writeback_control *wbc, void *data)
1901 {
1902 	struct iomap_writepage_ctx *wpc = data;
1903 	struct inode *inode = folio->mapping->host;
1904 	u64 end_pos, isize;
1905 
1906 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1907 
1908 	/*
1909 	 * Refuse to write the folio out if we're called from reclaim context.
1910 	 *
1911 	 * This avoids stack overflows when called from deeply used stacks in
1912 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1913 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1914 	 *
1915 	 * This should never happen except in the case of a VM regression so
1916 	 * warn about it.
1917 	 */
1918 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1919 			PF_MEMALLOC))
1920 		goto redirty;
1921 
1922 	/*
1923 	 * Is this folio beyond the end of the file?
1924 	 *
1925 	 * The folio index is less than the end_index, adjust the end_pos
1926 	 * to the highest offset that this folio should represent.
1927 	 * -----------------------------------------------------
1928 	 * |			file mapping	       | <EOF> |
1929 	 * -----------------------------------------------------
1930 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1931 	 * ^--------------------------------^----------|--------
1932 	 * |     desired writeback range    |      see else    |
1933 	 * ---------------------------------^------------------|
1934 	 */
1935 	isize = i_size_read(inode);
1936 	end_pos = folio_pos(folio) + folio_size(folio);
1937 	if (end_pos > isize) {
1938 		/*
1939 		 * Check whether the page to write out is beyond or straddles
1940 		 * i_size or not.
1941 		 * -------------------------------------------------------
1942 		 * |		file mapping		        | <EOF>  |
1943 		 * -------------------------------------------------------
1944 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1945 		 * ^--------------------------------^-----------|---------
1946 		 * |				    |      Straddles     |
1947 		 * ---------------------------------^-----------|--------|
1948 		 */
1949 		size_t poff = offset_in_folio(folio, isize);
1950 		pgoff_t end_index = isize >> PAGE_SHIFT;
1951 
1952 		/*
1953 		 * Skip the page if it's fully outside i_size, e.g.
1954 		 * due to a truncate operation that's in progress.  We've
1955 		 * cleaned this page and truncate will finish things off for
1956 		 * us.
1957 		 *
1958 		 * Note that the end_index is unsigned long.  If the given
1959 		 * offset is greater than 16TB on a 32-bit system then if we
1960 		 * checked if the page is fully outside i_size with
1961 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1962 		 * overflow and evaluate to 0.  Hence this page would be
1963 		 * redirtied and written out repeatedly, which would result in
1964 		 * an infinite loop; the user program performing this operation
1965 		 * would hang.  Instead, we can detect this situation by
1966 		 * checking if the page is totally beyond i_size or if its
1967 		 * offset is just equal to the EOF.
1968 		 */
1969 		if (folio->index > end_index ||
1970 		    (folio->index == end_index && poff == 0))
1971 			goto unlock;
1972 
1973 		/*
1974 		 * The page straddles i_size.  It must be zeroed out on each
1975 		 * and every writepage invocation because it may be mmapped.
1976 		 * "A file is mapped in multiples of the page size.  For a file
1977 		 * that is not a multiple of the page size, the remaining
1978 		 * memory is zeroed when mapped, and writes to that region are
1979 		 * not written out to the file."
1980 		 */
1981 		folio_zero_segment(folio, poff, folio_size(folio));
1982 		end_pos = isize;
1983 	}
1984 
1985 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1986 
1987 redirty:
1988 	folio_redirty_for_writepage(wbc, folio);
1989 unlock:
1990 	folio_unlock(folio);
1991 	return 0;
1992 }
1993 
1994 int
1995 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1996 		struct iomap_writepage_ctx *wpc,
1997 		const struct iomap_writeback_ops *ops)
1998 {
1999 	int			ret;
2000 
2001 	wpc->ops = ops;
2002 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
2003 	if (!wpc->ioend)
2004 		return ret;
2005 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
2006 }
2007 EXPORT_SYMBOL_GPL(iomap_writepages);
2008 
2009 static int __init iomap_init(void)
2010 {
2011 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2012 			   offsetof(struct iomap_ioend, io_inline_bio),
2013 			   BIOSET_NEED_BVECS);
2014 }
2015 fs_initcall(iomap_init);
2016