1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (folio_test_error(folio)) 158 return; 159 160 if (iop) 161 iomap_iop_set_range_uptodate(folio, iop, off, len); 162 else 163 folio_mark_uptodate(folio); 164 } 165 166 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 167 size_t len, int error) 168 { 169 struct iomap_page *iop = to_iomap_page(folio); 170 171 if (unlikely(error)) { 172 folio_clear_uptodate(folio); 173 folio_set_error(folio); 174 } else { 175 iomap_set_range_uptodate(folio, iop, offset, len); 176 } 177 178 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 179 folio_unlock(folio); 180 } 181 182 static void iomap_read_end_io(struct bio *bio) 183 { 184 int error = blk_status_to_errno(bio->bi_status); 185 struct folio_iter fi; 186 187 bio_for_each_folio_all(fi, bio) 188 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 189 bio_put(bio); 190 } 191 192 struct iomap_readpage_ctx { 193 struct folio *cur_folio; 194 bool cur_folio_in_bio; 195 struct bio *bio; 196 struct readahead_control *rac; 197 }; 198 199 /** 200 * iomap_read_inline_data - copy inline data into the page cache 201 * @iter: iteration structure 202 * @folio: folio to copy to 203 * 204 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 205 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 206 * Returns zero for success to complete the read, or the usual negative errno. 207 */ 208 static int iomap_read_inline_data(const struct iomap_iter *iter, 209 struct folio *folio) 210 { 211 struct iomap_page *iop; 212 const struct iomap *iomap = iomap_iter_srcmap(iter); 213 size_t size = i_size_read(iter->inode) - iomap->offset; 214 size_t poff = offset_in_page(iomap->offset); 215 size_t offset = offset_in_folio(folio, iomap->offset); 216 void *addr; 217 218 if (folio_test_uptodate(folio)) 219 return 0; 220 221 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 222 return -EIO; 223 if (WARN_ON_ONCE(size > PAGE_SIZE - 224 offset_in_page(iomap->inline_data))) 225 return -EIO; 226 if (WARN_ON_ONCE(size > iomap->length)) 227 return -EIO; 228 if (offset > 0) 229 iop = iomap_page_create(iter->inode, folio); 230 else 231 iop = to_iomap_page(folio); 232 233 addr = kmap_local_folio(folio, offset); 234 memcpy(addr, iomap->inline_data, size); 235 memset(addr + size, 0, PAGE_SIZE - poff - size); 236 kunmap_local(addr); 237 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 238 return 0; 239 } 240 241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 242 loff_t pos) 243 { 244 const struct iomap *srcmap = iomap_iter_srcmap(iter); 245 246 return srcmap->type != IOMAP_MAPPED || 247 (srcmap->flags & IOMAP_F_NEW) || 248 pos >= i_size_read(iter->inode); 249 } 250 251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 252 struct iomap_readpage_ctx *ctx, loff_t offset) 253 { 254 const struct iomap *iomap = &iter->iomap; 255 loff_t pos = iter->pos + offset; 256 loff_t length = iomap_length(iter) - offset; 257 struct folio *folio = ctx->cur_folio; 258 struct iomap_page *iop; 259 loff_t orig_pos = pos; 260 size_t poff, plen; 261 sector_t sector; 262 263 if (iomap->type == IOMAP_INLINE) 264 return iomap_read_inline_data(iter, folio); 265 266 /* zero post-eof blocks as the page may be mapped */ 267 iop = iomap_page_create(iter->inode, folio); 268 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 269 if (plen == 0) 270 goto done; 271 272 if (iomap_block_needs_zeroing(iter, pos)) { 273 folio_zero_range(folio, poff, plen); 274 iomap_set_range_uptodate(folio, iop, poff, plen); 275 goto done; 276 } 277 278 ctx->cur_folio_in_bio = true; 279 if (iop) 280 atomic_add(plen, &iop->read_bytes_pending); 281 282 sector = iomap_sector(iomap, pos); 283 if (!ctx->bio || 284 bio_end_sector(ctx->bio) != sector || 285 !bio_add_folio(ctx->bio, folio, plen, poff)) { 286 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 287 gfp_t orig_gfp = gfp; 288 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 289 290 if (ctx->bio) 291 submit_bio(ctx->bio); 292 293 if (ctx->rac) /* same as readahead_gfp_mask */ 294 gfp |= __GFP_NORETRY | __GFP_NOWARN; 295 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 296 REQ_OP_READ, gfp); 297 /* 298 * If the bio_alloc fails, try it again for a single page to 299 * avoid having to deal with partial page reads. This emulates 300 * what do_mpage_readpage does. 301 */ 302 if (!ctx->bio) { 303 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 304 orig_gfp); 305 } 306 if (ctx->rac) 307 ctx->bio->bi_opf |= REQ_RAHEAD; 308 ctx->bio->bi_iter.bi_sector = sector; 309 ctx->bio->bi_end_io = iomap_read_end_io; 310 bio_add_folio(ctx->bio, folio, plen, poff); 311 } 312 313 done: 314 /* 315 * Move the caller beyond our range so that it keeps making progress. 316 * For that, we have to include any leading non-uptodate ranges, but 317 * we can skip trailing ones as they will be handled in the next 318 * iteration. 319 */ 320 return pos - orig_pos + plen; 321 } 322 323 int 324 iomap_readpage(struct page *page, const struct iomap_ops *ops) 325 { 326 struct folio *folio = page_folio(page); 327 struct iomap_iter iter = { 328 .inode = folio->mapping->host, 329 .pos = folio_pos(folio), 330 .len = folio_size(folio), 331 }; 332 struct iomap_readpage_ctx ctx = { 333 .cur_folio = folio, 334 }; 335 int ret; 336 337 trace_iomap_readpage(iter.inode, 1); 338 339 while ((ret = iomap_iter(&iter, ops)) > 0) 340 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 341 342 if (ret < 0) 343 folio_set_error(folio); 344 345 if (ctx.bio) { 346 submit_bio(ctx.bio); 347 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 348 } else { 349 WARN_ON_ONCE(ctx.cur_folio_in_bio); 350 folio_unlock(folio); 351 } 352 353 /* 354 * Just like mpage_readahead and block_read_full_page, we always 355 * return 0 and just mark the page as PageError on errors. This 356 * should be cleaned up throughout the stack eventually. 357 */ 358 return 0; 359 } 360 EXPORT_SYMBOL_GPL(iomap_readpage); 361 362 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 363 struct iomap_readpage_ctx *ctx) 364 { 365 loff_t length = iomap_length(iter); 366 loff_t done, ret; 367 368 for (done = 0; done < length; done += ret) { 369 if (ctx->cur_folio && 370 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 371 if (!ctx->cur_folio_in_bio) 372 folio_unlock(ctx->cur_folio); 373 ctx->cur_folio = NULL; 374 } 375 if (!ctx->cur_folio) { 376 ctx->cur_folio = readahead_folio(ctx->rac); 377 ctx->cur_folio_in_bio = false; 378 } 379 ret = iomap_readpage_iter(iter, ctx, done); 380 if (ret <= 0) 381 return ret; 382 } 383 384 return done; 385 } 386 387 /** 388 * iomap_readahead - Attempt to read pages from a file. 389 * @rac: Describes the pages to be read. 390 * @ops: The operations vector for the filesystem. 391 * 392 * This function is for filesystems to call to implement their readahead 393 * address_space operation. 394 * 395 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 396 * blocks from disc), and may wait for it. The caller may be trying to 397 * access a different page, and so sleeping excessively should be avoided. 398 * It may allocate memory, but should avoid costly allocations. This 399 * function is called with memalloc_nofs set, so allocations will not cause 400 * the filesystem to be reentered. 401 */ 402 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 403 { 404 struct iomap_iter iter = { 405 .inode = rac->mapping->host, 406 .pos = readahead_pos(rac), 407 .len = readahead_length(rac), 408 }; 409 struct iomap_readpage_ctx ctx = { 410 .rac = rac, 411 }; 412 413 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 414 415 while (iomap_iter(&iter, ops) > 0) 416 iter.processed = iomap_readahead_iter(&iter, &ctx); 417 418 if (ctx.bio) 419 submit_bio(ctx.bio); 420 if (ctx.cur_folio) { 421 if (!ctx.cur_folio_in_bio) 422 folio_unlock(ctx.cur_folio); 423 } 424 } 425 EXPORT_SYMBOL_GPL(iomap_readahead); 426 427 /* 428 * iomap_is_partially_uptodate checks whether blocks within a folio are 429 * uptodate or not. 430 * 431 * Returns true if all blocks which correspond to the specified part 432 * of the folio are uptodate. 433 */ 434 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 435 { 436 struct iomap_page *iop = to_iomap_page(folio); 437 struct inode *inode = folio->mapping->host; 438 unsigned first, last, i; 439 440 if (!iop) 441 return false; 442 443 /* Caller's range may extend past the end of this folio */ 444 count = min(folio_size(folio) - from, count); 445 446 /* First and last blocks in range within folio */ 447 first = from >> inode->i_blkbits; 448 last = (from + count - 1) >> inode->i_blkbits; 449 450 for (i = first; i <= last; i++) 451 if (!test_bit(i, iop->uptodate)) 452 return false; 453 return true; 454 } 455 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 456 457 int 458 iomap_releasepage(struct page *page, gfp_t gfp_mask) 459 { 460 struct folio *folio = page_folio(page); 461 462 trace_iomap_releasepage(folio->mapping->host, folio_pos(folio), 463 folio_size(folio)); 464 465 /* 466 * mm accommodates an old ext3 case where clean pages might not have had 467 * the dirty bit cleared. Thus, it can send actual dirty pages to 468 * ->releasepage() via shrink_active_list(); skip those here. 469 */ 470 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 471 return 0; 472 iomap_page_release(folio); 473 return 1; 474 } 475 EXPORT_SYMBOL_GPL(iomap_releasepage); 476 477 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 478 { 479 trace_iomap_invalidate_folio(folio->mapping->host, 480 folio_pos(folio) + offset, len); 481 482 /* 483 * If we're invalidating the entire folio, clear the dirty state 484 * from it and release it to avoid unnecessary buildup of the LRU. 485 */ 486 if (offset == 0 && len == folio_size(folio)) { 487 WARN_ON_ONCE(folio_test_writeback(folio)); 488 folio_cancel_dirty(folio); 489 iomap_page_release(folio); 490 } else if (folio_test_large(folio)) { 491 /* Must release the iop so the page can be split */ 492 WARN_ON_ONCE(!folio_test_uptodate(folio) && 493 folio_test_dirty(folio)); 494 iomap_page_release(folio); 495 } 496 } 497 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 498 499 #ifdef CONFIG_MIGRATION 500 int 501 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 502 struct page *page, enum migrate_mode mode) 503 { 504 struct folio *folio = page_folio(page); 505 struct folio *newfolio = page_folio(newpage); 506 int ret; 507 508 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 509 if (ret != MIGRATEPAGE_SUCCESS) 510 return ret; 511 512 if (folio_test_private(folio)) 513 folio_attach_private(newfolio, folio_detach_private(folio)); 514 515 if (mode != MIGRATE_SYNC_NO_COPY) 516 folio_migrate_copy(newfolio, folio); 517 else 518 folio_migrate_flags(newfolio, folio); 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL_GPL(iomap_migrate_page); 522 #endif /* CONFIG_MIGRATION */ 523 524 static void 525 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 526 { 527 loff_t i_size = i_size_read(inode); 528 529 /* 530 * Only truncate newly allocated pages beyoned EOF, even if the 531 * write started inside the existing inode size. 532 */ 533 if (pos + len > i_size) 534 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 535 } 536 537 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 538 size_t poff, size_t plen, const struct iomap *iomap) 539 { 540 struct bio_vec bvec; 541 struct bio bio; 542 543 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 544 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 545 bio_add_folio(&bio, folio, plen, poff); 546 return submit_bio_wait(&bio); 547 } 548 549 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 550 size_t len, struct folio *folio) 551 { 552 const struct iomap *srcmap = iomap_iter_srcmap(iter); 553 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 554 loff_t block_size = i_blocksize(iter->inode); 555 loff_t block_start = round_down(pos, block_size); 556 loff_t block_end = round_up(pos + len, block_size); 557 size_t from = offset_in_folio(folio, pos), to = from + len; 558 size_t poff, plen; 559 560 if (folio_test_uptodate(folio)) 561 return 0; 562 folio_clear_error(folio); 563 564 do { 565 iomap_adjust_read_range(iter->inode, folio, &block_start, 566 block_end - block_start, &poff, &plen); 567 if (plen == 0) 568 break; 569 570 if (!(iter->flags & IOMAP_UNSHARE) && 571 (from <= poff || from >= poff + plen) && 572 (to <= poff || to >= poff + plen)) 573 continue; 574 575 if (iomap_block_needs_zeroing(iter, block_start)) { 576 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 577 return -EIO; 578 folio_zero_segments(folio, poff, from, to, poff + plen); 579 } else { 580 int status = iomap_read_folio_sync(block_start, folio, 581 poff, plen, srcmap); 582 if (status) 583 return status; 584 } 585 iomap_set_range_uptodate(folio, iop, poff, plen); 586 } while ((block_start += plen) < block_end); 587 588 return 0; 589 } 590 591 static int iomap_write_begin_inline(const struct iomap_iter *iter, 592 struct folio *folio) 593 { 594 /* needs more work for the tailpacking case; disable for now */ 595 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 596 return -EIO; 597 return iomap_read_inline_data(iter, folio); 598 } 599 600 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 601 size_t len, struct folio **foliop) 602 { 603 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 604 const struct iomap *srcmap = iomap_iter_srcmap(iter); 605 struct folio *folio; 606 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 607 int status = 0; 608 609 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 610 if (srcmap != &iter->iomap) 611 BUG_ON(pos + len > srcmap->offset + srcmap->length); 612 613 if (fatal_signal_pending(current)) 614 return -EINTR; 615 616 if (!mapping_large_folio_support(iter->inode->i_mapping)) 617 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 618 619 if (page_ops && page_ops->page_prepare) { 620 status = page_ops->page_prepare(iter->inode, pos, len); 621 if (status) 622 return status; 623 } 624 625 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 626 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 627 if (!folio) { 628 status = -ENOMEM; 629 goto out_no_page; 630 } 631 if (pos + len > folio_pos(folio) + folio_size(folio)) 632 len = folio_pos(folio) + folio_size(folio) - pos; 633 634 if (srcmap->type == IOMAP_INLINE) 635 status = iomap_write_begin_inline(iter, folio); 636 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 637 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 638 else 639 status = __iomap_write_begin(iter, pos, len, folio); 640 641 if (unlikely(status)) 642 goto out_unlock; 643 644 *foliop = folio; 645 return 0; 646 647 out_unlock: 648 folio_unlock(folio); 649 folio_put(folio); 650 iomap_write_failed(iter->inode, pos, len); 651 652 out_no_page: 653 if (page_ops && page_ops->page_done) 654 page_ops->page_done(iter->inode, pos, 0, NULL); 655 return status; 656 } 657 658 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 659 size_t copied, struct folio *folio) 660 { 661 struct iomap_page *iop = to_iomap_page(folio); 662 flush_dcache_folio(folio); 663 664 /* 665 * The blocks that were entirely written will now be uptodate, so we 666 * don't have to worry about a readpage reading them and overwriting a 667 * partial write. However, if we've encountered a short write and only 668 * partially written into a block, it will not be marked uptodate, so a 669 * readpage might come in and destroy our partial write. 670 * 671 * Do the simplest thing and just treat any short write to a 672 * non-uptodate page as a zero-length write, and force the caller to 673 * redo the whole thing. 674 */ 675 if (unlikely(copied < len && !folio_test_uptodate(folio))) 676 return 0; 677 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 678 filemap_dirty_folio(inode->i_mapping, folio); 679 return copied; 680 } 681 682 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 683 struct folio *folio, loff_t pos, size_t copied) 684 { 685 const struct iomap *iomap = &iter->iomap; 686 void *addr; 687 688 WARN_ON_ONCE(!folio_test_uptodate(folio)); 689 BUG_ON(!iomap_inline_data_valid(iomap)); 690 691 flush_dcache_folio(folio); 692 addr = kmap_local_folio(folio, pos); 693 memcpy(iomap_inline_data(iomap, pos), addr, copied); 694 kunmap_local(addr); 695 696 mark_inode_dirty(iter->inode); 697 return copied; 698 } 699 700 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 701 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 702 size_t copied, struct folio *folio) 703 { 704 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 705 const struct iomap *srcmap = iomap_iter_srcmap(iter); 706 loff_t old_size = iter->inode->i_size; 707 size_t ret; 708 709 if (srcmap->type == IOMAP_INLINE) { 710 ret = iomap_write_end_inline(iter, folio, pos, copied); 711 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 712 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 713 copied, &folio->page, NULL); 714 } else { 715 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 716 } 717 718 /* 719 * Update the in-memory inode size after copying the data into the page 720 * cache. It's up to the file system to write the updated size to disk, 721 * preferably after I/O completion so that no stale data is exposed. 722 */ 723 if (pos + ret > old_size) { 724 i_size_write(iter->inode, pos + ret); 725 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 726 } 727 folio_unlock(folio); 728 729 if (old_size < pos) 730 pagecache_isize_extended(iter->inode, old_size, pos); 731 if (page_ops && page_ops->page_done) 732 page_ops->page_done(iter->inode, pos, ret, &folio->page); 733 folio_put(folio); 734 735 if (ret < len) 736 iomap_write_failed(iter->inode, pos, len); 737 return ret; 738 } 739 740 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 741 { 742 loff_t length = iomap_length(iter); 743 loff_t pos = iter->pos; 744 ssize_t written = 0; 745 long status = 0; 746 747 do { 748 struct folio *folio; 749 struct page *page; 750 unsigned long offset; /* Offset into pagecache page */ 751 unsigned long bytes; /* Bytes to write to page */ 752 size_t copied; /* Bytes copied from user */ 753 754 offset = offset_in_page(pos); 755 bytes = min_t(unsigned long, PAGE_SIZE - offset, 756 iov_iter_count(i)); 757 again: 758 if (bytes > length) 759 bytes = length; 760 761 /* 762 * Bring in the user page that we'll copy from _first_. 763 * Otherwise there's a nasty deadlock on copying from the 764 * same page as we're writing to, without it being marked 765 * up-to-date. 766 */ 767 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 768 status = -EFAULT; 769 break; 770 } 771 772 status = iomap_write_begin(iter, pos, bytes, &folio); 773 if (unlikely(status)) 774 break; 775 776 page = folio_file_page(folio, pos >> PAGE_SHIFT); 777 if (mapping_writably_mapped(iter->inode->i_mapping)) 778 flush_dcache_page(page); 779 780 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 781 782 status = iomap_write_end(iter, pos, bytes, copied, folio); 783 784 if (unlikely(copied != status)) 785 iov_iter_revert(i, copied - status); 786 787 cond_resched(); 788 if (unlikely(status == 0)) { 789 /* 790 * A short copy made iomap_write_end() reject the 791 * thing entirely. Might be memory poisoning 792 * halfway through, might be a race with munmap, 793 * might be severe memory pressure. 794 */ 795 if (copied) 796 bytes = copied; 797 goto again; 798 } 799 pos += status; 800 written += status; 801 length -= status; 802 803 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 804 } while (iov_iter_count(i) && length); 805 806 return written ? written : status; 807 } 808 809 ssize_t 810 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 811 const struct iomap_ops *ops) 812 { 813 struct iomap_iter iter = { 814 .inode = iocb->ki_filp->f_mapping->host, 815 .pos = iocb->ki_pos, 816 .len = iov_iter_count(i), 817 .flags = IOMAP_WRITE, 818 }; 819 int ret; 820 821 while ((ret = iomap_iter(&iter, ops)) > 0) 822 iter.processed = iomap_write_iter(&iter, i); 823 if (iter.pos == iocb->ki_pos) 824 return ret; 825 return iter.pos - iocb->ki_pos; 826 } 827 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 828 829 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 830 { 831 struct iomap *iomap = &iter->iomap; 832 const struct iomap *srcmap = iomap_iter_srcmap(iter); 833 loff_t pos = iter->pos; 834 loff_t length = iomap_length(iter); 835 long status = 0; 836 loff_t written = 0; 837 838 /* don't bother with blocks that are not shared to start with */ 839 if (!(iomap->flags & IOMAP_F_SHARED)) 840 return length; 841 /* don't bother with holes or unwritten extents */ 842 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 843 return length; 844 845 do { 846 unsigned long offset = offset_in_page(pos); 847 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 848 struct folio *folio; 849 850 status = iomap_write_begin(iter, pos, bytes, &folio); 851 if (unlikely(status)) 852 return status; 853 854 status = iomap_write_end(iter, pos, bytes, bytes, folio); 855 if (WARN_ON_ONCE(status == 0)) 856 return -EIO; 857 858 cond_resched(); 859 860 pos += status; 861 written += status; 862 length -= status; 863 864 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 865 } while (length); 866 867 return written; 868 } 869 870 int 871 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 872 const struct iomap_ops *ops) 873 { 874 struct iomap_iter iter = { 875 .inode = inode, 876 .pos = pos, 877 .len = len, 878 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 879 }; 880 int ret; 881 882 while ((ret = iomap_iter(&iter, ops)) > 0) 883 iter.processed = iomap_unshare_iter(&iter); 884 return ret; 885 } 886 EXPORT_SYMBOL_GPL(iomap_file_unshare); 887 888 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 889 { 890 const struct iomap *srcmap = iomap_iter_srcmap(iter); 891 loff_t pos = iter->pos; 892 loff_t length = iomap_length(iter); 893 loff_t written = 0; 894 895 /* already zeroed? we're done. */ 896 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 897 return length; 898 899 do { 900 struct folio *folio; 901 int status; 902 size_t offset; 903 size_t bytes = min_t(u64, SIZE_MAX, length); 904 905 status = iomap_write_begin(iter, pos, bytes, &folio); 906 if (status) 907 return status; 908 909 offset = offset_in_folio(folio, pos); 910 if (bytes > folio_size(folio) - offset) 911 bytes = folio_size(folio) - offset; 912 913 folio_zero_range(folio, offset, bytes); 914 folio_mark_accessed(folio); 915 916 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 917 if (WARN_ON_ONCE(bytes == 0)) 918 return -EIO; 919 920 pos += bytes; 921 length -= bytes; 922 written += bytes; 923 if (did_zero) 924 *did_zero = true; 925 } while (length > 0); 926 927 return written; 928 } 929 930 int 931 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 932 const struct iomap_ops *ops) 933 { 934 struct iomap_iter iter = { 935 .inode = inode, 936 .pos = pos, 937 .len = len, 938 .flags = IOMAP_ZERO, 939 }; 940 int ret; 941 942 while ((ret = iomap_iter(&iter, ops)) > 0) 943 iter.processed = iomap_zero_iter(&iter, did_zero); 944 return ret; 945 } 946 EXPORT_SYMBOL_GPL(iomap_zero_range); 947 948 int 949 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 950 const struct iomap_ops *ops) 951 { 952 unsigned int blocksize = i_blocksize(inode); 953 unsigned int off = pos & (blocksize - 1); 954 955 /* Block boundary? Nothing to do */ 956 if (!off) 957 return 0; 958 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 959 } 960 EXPORT_SYMBOL_GPL(iomap_truncate_page); 961 962 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 963 struct folio *folio) 964 { 965 loff_t length = iomap_length(iter); 966 int ret; 967 968 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 969 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 970 &iter->iomap); 971 if (ret) 972 return ret; 973 block_commit_write(&folio->page, 0, length); 974 } else { 975 WARN_ON_ONCE(!folio_test_uptodate(folio)); 976 folio_mark_dirty(folio); 977 } 978 979 return length; 980 } 981 982 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 983 { 984 struct iomap_iter iter = { 985 .inode = file_inode(vmf->vma->vm_file), 986 .flags = IOMAP_WRITE | IOMAP_FAULT, 987 }; 988 struct folio *folio = page_folio(vmf->page); 989 ssize_t ret; 990 991 folio_lock(folio); 992 ret = folio_mkwrite_check_truncate(folio, iter.inode); 993 if (ret < 0) 994 goto out_unlock; 995 iter.pos = folio_pos(folio); 996 iter.len = ret; 997 while ((ret = iomap_iter(&iter, ops)) > 0) 998 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 999 1000 if (ret < 0) 1001 goto out_unlock; 1002 folio_wait_stable(folio); 1003 return VM_FAULT_LOCKED; 1004 out_unlock: 1005 folio_unlock(folio); 1006 return block_page_mkwrite_return(ret); 1007 } 1008 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1009 1010 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1011 size_t len, int error) 1012 { 1013 struct iomap_page *iop = to_iomap_page(folio); 1014 1015 if (error) { 1016 folio_set_error(folio); 1017 mapping_set_error(inode->i_mapping, error); 1018 } 1019 1020 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1021 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1022 1023 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1024 folio_end_writeback(folio); 1025 } 1026 1027 /* 1028 * We're now finished for good with this ioend structure. Update the page 1029 * state, release holds on bios, and finally free up memory. Do not use the 1030 * ioend after this. 1031 */ 1032 static u32 1033 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1034 { 1035 struct inode *inode = ioend->io_inode; 1036 struct bio *bio = &ioend->io_inline_bio; 1037 struct bio *last = ioend->io_bio, *next; 1038 u64 start = bio->bi_iter.bi_sector; 1039 loff_t offset = ioend->io_offset; 1040 bool quiet = bio_flagged(bio, BIO_QUIET); 1041 u32 folio_count = 0; 1042 1043 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1044 struct folio_iter fi; 1045 1046 /* 1047 * For the last bio, bi_private points to the ioend, so we 1048 * need to explicitly end the iteration here. 1049 */ 1050 if (bio == last) 1051 next = NULL; 1052 else 1053 next = bio->bi_private; 1054 1055 /* walk all folios in bio, ending page IO on them */ 1056 bio_for_each_folio_all(fi, bio) { 1057 iomap_finish_folio_write(inode, fi.folio, fi.length, 1058 error); 1059 folio_count++; 1060 } 1061 bio_put(bio); 1062 } 1063 /* The ioend has been freed by bio_put() */ 1064 1065 if (unlikely(error && !quiet)) { 1066 printk_ratelimited(KERN_ERR 1067 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1068 inode->i_sb->s_id, inode->i_ino, offset, start); 1069 } 1070 return folio_count; 1071 } 1072 1073 /* 1074 * Ioend completion routine for merged bios. This can only be called from task 1075 * contexts as merged ioends can be of unbound length. Hence we have to break up 1076 * the writeback completions into manageable chunks to avoid long scheduler 1077 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1078 * good batch processing throughput without creating adverse scheduler latency 1079 * conditions. 1080 */ 1081 void 1082 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1083 { 1084 struct list_head tmp; 1085 u32 completions; 1086 1087 might_sleep(); 1088 1089 list_replace_init(&ioend->io_list, &tmp); 1090 completions = iomap_finish_ioend(ioend, error); 1091 1092 while (!list_empty(&tmp)) { 1093 if (completions > IOEND_BATCH_SIZE * 8) { 1094 cond_resched(); 1095 completions = 0; 1096 } 1097 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1098 list_del_init(&ioend->io_list); 1099 completions += iomap_finish_ioend(ioend, error); 1100 } 1101 } 1102 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1103 1104 /* 1105 * We can merge two adjacent ioends if they have the same set of work to do. 1106 */ 1107 static bool 1108 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1109 { 1110 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1111 return false; 1112 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1113 (next->io_flags & IOMAP_F_SHARED)) 1114 return false; 1115 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1116 (next->io_type == IOMAP_UNWRITTEN)) 1117 return false; 1118 if (ioend->io_offset + ioend->io_size != next->io_offset) 1119 return false; 1120 /* 1121 * Do not merge physically discontiguous ioends. The filesystem 1122 * completion functions will have to iterate the physical 1123 * discontiguities even if we merge the ioends at a logical level, so 1124 * we don't gain anything by merging physical discontiguities here. 1125 * 1126 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1127 * submission so does not point to the start sector of the bio at 1128 * completion. 1129 */ 1130 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1131 return false; 1132 return true; 1133 } 1134 1135 void 1136 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1137 { 1138 struct iomap_ioend *next; 1139 1140 INIT_LIST_HEAD(&ioend->io_list); 1141 1142 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1143 io_list))) { 1144 if (!iomap_ioend_can_merge(ioend, next)) 1145 break; 1146 list_move_tail(&next->io_list, &ioend->io_list); 1147 ioend->io_size += next->io_size; 1148 } 1149 } 1150 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1151 1152 static int 1153 iomap_ioend_compare(void *priv, const struct list_head *a, 1154 const struct list_head *b) 1155 { 1156 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1157 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1158 1159 if (ia->io_offset < ib->io_offset) 1160 return -1; 1161 if (ia->io_offset > ib->io_offset) 1162 return 1; 1163 return 0; 1164 } 1165 1166 void 1167 iomap_sort_ioends(struct list_head *ioend_list) 1168 { 1169 list_sort(NULL, ioend_list, iomap_ioend_compare); 1170 } 1171 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1172 1173 static void iomap_writepage_end_bio(struct bio *bio) 1174 { 1175 struct iomap_ioend *ioend = bio->bi_private; 1176 1177 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1178 } 1179 1180 /* 1181 * Submit the final bio for an ioend. 1182 * 1183 * If @error is non-zero, it means that we have a situation where some part of 1184 * the submission process has failed after we've marked pages for writeback 1185 * and unlocked them. In this situation, we need to fail the bio instead of 1186 * submitting it. This typically only happens on a filesystem shutdown. 1187 */ 1188 static int 1189 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1190 int error) 1191 { 1192 ioend->io_bio->bi_private = ioend; 1193 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1194 1195 if (wpc->ops->prepare_ioend) 1196 error = wpc->ops->prepare_ioend(ioend, error); 1197 if (error) { 1198 /* 1199 * If we're failing the IO now, just mark the ioend with an 1200 * error and finish it. This will run IO completion immediately 1201 * as there is only one reference to the ioend at this point in 1202 * time. 1203 */ 1204 ioend->io_bio->bi_status = errno_to_blk_status(error); 1205 bio_endio(ioend->io_bio); 1206 return error; 1207 } 1208 1209 submit_bio(ioend->io_bio); 1210 return 0; 1211 } 1212 1213 static struct iomap_ioend * 1214 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1215 loff_t offset, sector_t sector, struct writeback_control *wbc) 1216 { 1217 struct iomap_ioend *ioend; 1218 struct bio *bio; 1219 1220 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1221 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1222 GFP_NOFS, &iomap_ioend_bioset); 1223 bio->bi_iter.bi_sector = sector; 1224 wbc_init_bio(wbc, bio); 1225 1226 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1227 INIT_LIST_HEAD(&ioend->io_list); 1228 ioend->io_type = wpc->iomap.type; 1229 ioend->io_flags = wpc->iomap.flags; 1230 ioend->io_inode = inode; 1231 ioend->io_size = 0; 1232 ioend->io_folios = 0; 1233 ioend->io_offset = offset; 1234 ioend->io_bio = bio; 1235 ioend->io_sector = sector; 1236 return ioend; 1237 } 1238 1239 /* 1240 * Allocate a new bio, and chain the old bio to the new one. 1241 * 1242 * Note that we have to perform the chaining in this unintuitive order 1243 * so that the bi_private linkage is set up in the right direction for the 1244 * traversal in iomap_finish_ioend(). 1245 */ 1246 static struct bio * 1247 iomap_chain_bio(struct bio *prev) 1248 { 1249 struct bio *new; 1250 1251 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1252 bio_clone_blkg_association(new, prev); 1253 new->bi_iter.bi_sector = bio_end_sector(prev); 1254 1255 bio_chain(prev, new); 1256 bio_get(prev); /* for iomap_finish_ioend */ 1257 submit_bio(prev); 1258 return new; 1259 } 1260 1261 static bool 1262 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1263 sector_t sector) 1264 { 1265 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1266 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1267 return false; 1268 if (wpc->iomap.type != wpc->ioend->io_type) 1269 return false; 1270 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1271 return false; 1272 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1273 return false; 1274 /* 1275 * Limit ioend bio chain lengths to minimise IO completion latency. This 1276 * also prevents long tight loops ending page writeback on all the 1277 * folios in the ioend. 1278 */ 1279 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1280 return false; 1281 return true; 1282 } 1283 1284 /* 1285 * Test to see if we have an existing ioend structure that we could append to 1286 * first; otherwise finish off the current ioend and start another. 1287 */ 1288 static void 1289 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1290 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1291 struct writeback_control *wbc, struct list_head *iolist) 1292 { 1293 sector_t sector = iomap_sector(&wpc->iomap, pos); 1294 unsigned len = i_blocksize(inode); 1295 size_t poff = offset_in_folio(folio, pos); 1296 1297 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1298 if (wpc->ioend) 1299 list_add(&wpc->ioend->io_list, iolist); 1300 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1301 } 1302 1303 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1304 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1305 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1306 } 1307 1308 if (iop) 1309 atomic_add(len, &iop->write_bytes_pending); 1310 wpc->ioend->io_size += len; 1311 wbc_account_cgroup_owner(wbc, &folio->page, len); 1312 } 1313 1314 /* 1315 * We implement an immediate ioend submission policy here to avoid needing to 1316 * chain multiple ioends and hence nest mempool allocations which can violate 1317 * the forward progress guarantees we need to provide. The current ioend we're 1318 * adding blocks to is cached in the writepage context, and if the new block 1319 * doesn't append to the cached ioend, it will create a new ioend and cache that 1320 * instead. 1321 * 1322 * If a new ioend is created and cached, the old ioend is returned and queued 1323 * locally for submission once the entire page is processed or an error has been 1324 * detected. While ioends are submitted immediately after they are completed, 1325 * batching optimisations are provided by higher level block plugging. 1326 * 1327 * At the end of a writeback pass, there will be a cached ioend remaining on the 1328 * writepage context that the caller will need to submit. 1329 */ 1330 static int 1331 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1332 struct writeback_control *wbc, struct inode *inode, 1333 struct folio *folio, u64 end_pos) 1334 { 1335 struct iomap_page *iop = iomap_page_create(inode, folio); 1336 struct iomap_ioend *ioend, *next; 1337 unsigned len = i_blocksize(inode); 1338 unsigned nblocks = i_blocks_per_folio(inode, folio); 1339 u64 pos = folio_pos(folio); 1340 int error = 0, count = 0, i; 1341 LIST_HEAD(submit_list); 1342 1343 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1344 1345 /* 1346 * Walk through the folio to find areas to write back. If we 1347 * run off the end of the current map or find the current map 1348 * invalid, grab a new one. 1349 */ 1350 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1351 if (iop && !test_bit(i, iop->uptodate)) 1352 continue; 1353 1354 error = wpc->ops->map_blocks(wpc, inode, pos); 1355 if (error) 1356 break; 1357 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1358 continue; 1359 if (wpc->iomap.type == IOMAP_HOLE) 1360 continue; 1361 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1362 &submit_list); 1363 count++; 1364 } 1365 if (count) 1366 wpc->ioend->io_folios++; 1367 1368 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1369 WARN_ON_ONCE(!folio_test_locked(folio)); 1370 WARN_ON_ONCE(folio_test_writeback(folio)); 1371 WARN_ON_ONCE(folio_test_dirty(folio)); 1372 1373 /* 1374 * We cannot cancel the ioend directly here on error. We may have 1375 * already set other pages under writeback and hence we have to run I/O 1376 * completion to mark the error state of the pages under writeback 1377 * appropriately. 1378 */ 1379 if (unlikely(error)) { 1380 /* 1381 * Let the filesystem know what portion of the current page 1382 * failed to map. If the page hasn't been added to ioend, it 1383 * won't be affected by I/O completion and we must unlock it 1384 * now. 1385 */ 1386 if (wpc->ops->discard_folio) 1387 wpc->ops->discard_folio(folio, pos); 1388 if (!count) { 1389 folio_clear_uptodate(folio); 1390 folio_unlock(folio); 1391 goto done; 1392 } 1393 } 1394 1395 folio_start_writeback(folio); 1396 folio_unlock(folio); 1397 1398 /* 1399 * Preserve the original error if there was one; catch 1400 * submission errors here and propagate into subsequent ioend 1401 * submissions. 1402 */ 1403 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1404 int error2; 1405 1406 list_del_init(&ioend->io_list); 1407 error2 = iomap_submit_ioend(wpc, ioend, error); 1408 if (error2 && !error) 1409 error = error2; 1410 } 1411 1412 /* 1413 * We can end up here with no error and nothing to write only if we race 1414 * with a partial page truncate on a sub-page block sized filesystem. 1415 */ 1416 if (!count) 1417 folio_end_writeback(folio); 1418 done: 1419 mapping_set_error(folio->mapping, error); 1420 return error; 1421 } 1422 1423 /* 1424 * Write out a dirty page. 1425 * 1426 * For delalloc space on the page, we need to allocate space and flush it. 1427 * For unwritten space on the page, we need to start the conversion to 1428 * regular allocated space. 1429 */ 1430 static int 1431 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1432 { 1433 struct folio *folio = page_folio(page); 1434 struct iomap_writepage_ctx *wpc = data; 1435 struct inode *inode = folio->mapping->host; 1436 u64 end_pos, isize; 1437 1438 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1439 1440 /* 1441 * Refuse to write the folio out if we're called from reclaim context. 1442 * 1443 * This avoids stack overflows when called from deeply used stacks in 1444 * random callers for direct reclaim or memcg reclaim. We explicitly 1445 * allow reclaim from kswapd as the stack usage there is relatively low. 1446 * 1447 * This should never happen except in the case of a VM regression so 1448 * warn about it. 1449 */ 1450 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1451 PF_MEMALLOC)) 1452 goto redirty; 1453 1454 /* 1455 * Is this folio beyond the end of the file? 1456 * 1457 * The folio index is less than the end_index, adjust the end_pos 1458 * to the highest offset that this folio should represent. 1459 * ----------------------------------------------------- 1460 * | file mapping | <EOF> | 1461 * ----------------------------------------------------- 1462 * | Page ... | Page N-2 | Page N-1 | Page N | | 1463 * ^--------------------------------^----------|-------- 1464 * | desired writeback range | see else | 1465 * ---------------------------------^------------------| 1466 */ 1467 isize = i_size_read(inode); 1468 end_pos = folio_pos(folio) + folio_size(folio); 1469 if (end_pos > isize) { 1470 /* 1471 * Check whether the page to write out is beyond or straddles 1472 * i_size or not. 1473 * ------------------------------------------------------- 1474 * | file mapping | <EOF> | 1475 * ------------------------------------------------------- 1476 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1477 * ^--------------------------------^-----------|--------- 1478 * | | Straddles | 1479 * ---------------------------------^-----------|--------| 1480 */ 1481 size_t poff = offset_in_folio(folio, isize); 1482 pgoff_t end_index = isize >> PAGE_SHIFT; 1483 1484 /* 1485 * Skip the page if it's fully outside i_size, e.g. due to a 1486 * truncate operation that's in progress. We must redirty the 1487 * page so that reclaim stops reclaiming it. Otherwise 1488 * iomap_vm_releasepage() is called on it and gets confused. 1489 * 1490 * Note that the end_index is unsigned long. If the given 1491 * offset is greater than 16TB on a 32-bit system then if we 1492 * checked if the page is fully outside i_size with 1493 * "if (page->index >= end_index + 1)", "end_index + 1" would 1494 * overflow and evaluate to 0. Hence this page would be 1495 * redirtied and written out repeatedly, which would result in 1496 * an infinite loop; the user program performing this operation 1497 * would hang. Instead, we can detect this situation by 1498 * checking if the page is totally beyond i_size or if its 1499 * offset is just equal to the EOF. 1500 */ 1501 if (folio->index > end_index || 1502 (folio->index == end_index && poff == 0)) 1503 goto redirty; 1504 1505 /* 1506 * The page straddles i_size. It must be zeroed out on each 1507 * and every writepage invocation because it may be mmapped. 1508 * "A file is mapped in multiples of the page size. For a file 1509 * that is not a multiple of the page size, the remaining 1510 * memory is zeroed when mapped, and writes to that region are 1511 * not written out to the file." 1512 */ 1513 folio_zero_segment(folio, poff, folio_size(folio)); 1514 end_pos = isize; 1515 } 1516 1517 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1518 1519 redirty: 1520 folio_redirty_for_writepage(wbc, folio); 1521 folio_unlock(folio); 1522 return 0; 1523 } 1524 1525 int 1526 iomap_writepage(struct page *page, struct writeback_control *wbc, 1527 struct iomap_writepage_ctx *wpc, 1528 const struct iomap_writeback_ops *ops) 1529 { 1530 int ret; 1531 1532 wpc->ops = ops; 1533 ret = iomap_do_writepage(page, wbc, wpc); 1534 if (!wpc->ioend) 1535 return ret; 1536 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1537 } 1538 EXPORT_SYMBOL_GPL(iomap_writepage); 1539 1540 int 1541 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1542 struct iomap_writepage_ctx *wpc, 1543 const struct iomap_writeback_ops *ops) 1544 { 1545 int ret; 1546 1547 wpc->ops = ops; 1548 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1549 if (!wpc->ioend) 1550 return ret; 1551 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1552 } 1553 EXPORT_SYMBOL_GPL(iomap_writepages); 1554 1555 static int __init iomap_init(void) 1556 { 1557 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1558 offsetof(struct iomap_ioend, io_inline_bio), 1559 BIOSET_NEED_BVECS); 1560 } 1561 fs_initcall(iomap_init); 1562