1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (folio_test_error(folio)) 158 return; 159 160 if (iop) 161 iomap_iop_set_range_uptodate(folio, iop, off, len); 162 else 163 folio_mark_uptodate(folio); 164 } 165 166 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 167 size_t len, int error) 168 { 169 struct iomap_page *iop = to_iomap_page(folio); 170 171 if (unlikely(error)) { 172 folio_clear_uptodate(folio); 173 folio_set_error(folio); 174 } else { 175 iomap_set_range_uptodate(folio, iop, offset, len); 176 } 177 178 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 179 folio_unlock(folio); 180 } 181 182 static void iomap_read_end_io(struct bio *bio) 183 { 184 int error = blk_status_to_errno(bio->bi_status); 185 struct folio_iter fi; 186 187 bio_for_each_folio_all(fi, bio) 188 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 189 bio_put(bio); 190 } 191 192 struct iomap_readpage_ctx { 193 struct folio *cur_folio; 194 bool cur_folio_in_bio; 195 struct bio *bio; 196 struct readahead_control *rac; 197 }; 198 199 /** 200 * iomap_read_inline_data - copy inline data into the page cache 201 * @iter: iteration structure 202 * @folio: folio to copy to 203 * 204 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 205 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 206 * Returns zero for success to complete the read, or the usual negative errno. 207 */ 208 static int iomap_read_inline_data(const struct iomap_iter *iter, 209 struct folio *folio) 210 { 211 struct iomap_page *iop; 212 const struct iomap *iomap = iomap_iter_srcmap(iter); 213 size_t size = i_size_read(iter->inode) - iomap->offset; 214 size_t poff = offset_in_page(iomap->offset); 215 size_t offset = offset_in_folio(folio, iomap->offset); 216 void *addr; 217 218 if (folio_test_uptodate(folio)) 219 return 0; 220 221 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 222 return -EIO; 223 if (WARN_ON_ONCE(size > PAGE_SIZE - 224 offset_in_page(iomap->inline_data))) 225 return -EIO; 226 if (WARN_ON_ONCE(size > iomap->length)) 227 return -EIO; 228 if (offset > 0) 229 iop = iomap_page_create(iter->inode, folio); 230 else 231 iop = to_iomap_page(folio); 232 233 addr = kmap_local_folio(folio, offset); 234 memcpy(addr, iomap->inline_data, size); 235 memset(addr + size, 0, PAGE_SIZE - poff - size); 236 kunmap_local(addr); 237 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 238 return 0; 239 } 240 241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 242 loff_t pos) 243 { 244 const struct iomap *srcmap = iomap_iter_srcmap(iter); 245 246 return srcmap->type != IOMAP_MAPPED || 247 (srcmap->flags & IOMAP_F_NEW) || 248 pos >= i_size_read(iter->inode); 249 } 250 251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 252 struct iomap_readpage_ctx *ctx, loff_t offset) 253 { 254 const struct iomap *iomap = &iter->iomap; 255 loff_t pos = iter->pos + offset; 256 loff_t length = iomap_length(iter) - offset; 257 struct folio *folio = ctx->cur_folio; 258 struct iomap_page *iop; 259 loff_t orig_pos = pos; 260 size_t poff, plen; 261 sector_t sector; 262 263 if (iomap->type == IOMAP_INLINE) 264 return iomap_read_inline_data(iter, folio); 265 266 /* zero post-eof blocks as the page may be mapped */ 267 iop = iomap_page_create(iter->inode, folio); 268 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 269 if (plen == 0) 270 goto done; 271 272 if (iomap_block_needs_zeroing(iter, pos)) { 273 folio_zero_range(folio, poff, plen); 274 iomap_set_range_uptodate(folio, iop, poff, plen); 275 goto done; 276 } 277 278 ctx->cur_folio_in_bio = true; 279 if (iop) 280 atomic_add(plen, &iop->read_bytes_pending); 281 282 sector = iomap_sector(iomap, pos); 283 if (!ctx->bio || 284 bio_end_sector(ctx->bio) != sector || 285 !bio_add_folio(ctx->bio, folio, plen, poff)) { 286 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 287 gfp_t orig_gfp = gfp; 288 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 289 290 if (ctx->bio) 291 submit_bio(ctx->bio); 292 293 if (ctx->rac) /* same as readahead_gfp_mask */ 294 gfp |= __GFP_NORETRY | __GFP_NOWARN; 295 ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs)); 296 /* 297 * If the bio_alloc fails, try it again for a single page to 298 * avoid having to deal with partial page reads. This emulates 299 * what do_mpage_readpage does. 300 */ 301 if (!ctx->bio) 302 ctx->bio = bio_alloc(orig_gfp, 1); 303 ctx->bio->bi_opf = REQ_OP_READ; 304 if (ctx->rac) 305 ctx->bio->bi_opf |= REQ_RAHEAD; 306 ctx->bio->bi_iter.bi_sector = sector; 307 bio_set_dev(ctx->bio, iomap->bdev); 308 ctx->bio->bi_end_io = iomap_read_end_io; 309 bio_add_folio(ctx->bio, folio, plen, poff); 310 } 311 312 done: 313 /* 314 * Move the caller beyond our range so that it keeps making progress. 315 * For that, we have to include any leading non-uptodate ranges, but 316 * we can skip trailing ones as they will be handled in the next 317 * iteration. 318 */ 319 return pos - orig_pos + plen; 320 } 321 322 int 323 iomap_readpage(struct page *page, const struct iomap_ops *ops) 324 { 325 struct folio *folio = page_folio(page); 326 struct iomap_iter iter = { 327 .inode = folio->mapping->host, 328 .pos = folio_pos(folio), 329 .len = folio_size(folio), 330 }; 331 struct iomap_readpage_ctx ctx = { 332 .cur_folio = folio, 333 }; 334 int ret; 335 336 trace_iomap_readpage(iter.inode, 1); 337 338 while ((ret = iomap_iter(&iter, ops)) > 0) 339 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 340 341 if (ret < 0) 342 folio_set_error(folio); 343 344 if (ctx.bio) { 345 submit_bio(ctx.bio); 346 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 347 } else { 348 WARN_ON_ONCE(ctx.cur_folio_in_bio); 349 folio_unlock(folio); 350 } 351 352 /* 353 * Just like mpage_readahead and block_read_full_page, we always 354 * return 0 and just mark the page as PageError on errors. This 355 * should be cleaned up throughout the stack eventually. 356 */ 357 return 0; 358 } 359 EXPORT_SYMBOL_GPL(iomap_readpage); 360 361 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 362 struct iomap_readpage_ctx *ctx) 363 { 364 loff_t length = iomap_length(iter); 365 loff_t done, ret; 366 367 for (done = 0; done < length; done += ret) { 368 if (ctx->cur_folio && 369 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 370 if (!ctx->cur_folio_in_bio) 371 folio_unlock(ctx->cur_folio); 372 ctx->cur_folio = NULL; 373 } 374 if (!ctx->cur_folio) { 375 ctx->cur_folio = readahead_folio(ctx->rac); 376 ctx->cur_folio_in_bio = false; 377 } 378 ret = iomap_readpage_iter(iter, ctx, done); 379 if (ret <= 0) 380 return ret; 381 } 382 383 return done; 384 } 385 386 /** 387 * iomap_readahead - Attempt to read pages from a file. 388 * @rac: Describes the pages to be read. 389 * @ops: The operations vector for the filesystem. 390 * 391 * This function is for filesystems to call to implement their readahead 392 * address_space operation. 393 * 394 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 395 * blocks from disc), and may wait for it. The caller may be trying to 396 * access a different page, and so sleeping excessively should be avoided. 397 * It may allocate memory, but should avoid costly allocations. This 398 * function is called with memalloc_nofs set, so allocations will not cause 399 * the filesystem to be reentered. 400 */ 401 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 402 { 403 struct iomap_iter iter = { 404 .inode = rac->mapping->host, 405 .pos = readahead_pos(rac), 406 .len = readahead_length(rac), 407 }; 408 struct iomap_readpage_ctx ctx = { 409 .rac = rac, 410 }; 411 412 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 413 414 while (iomap_iter(&iter, ops) > 0) 415 iter.processed = iomap_readahead_iter(&iter, &ctx); 416 417 if (ctx.bio) 418 submit_bio(ctx.bio); 419 if (ctx.cur_folio) { 420 if (!ctx.cur_folio_in_bio) 421 folio_unlock(ctx.cur_folio); 422 } 423 } 424 EXPORT_SYMBOL_GPL(iomap_readahead); 425 426 /* 427 * iomap_is_partially_uptodate checks whether blocks within a folio are 428 * uptodate or not. 429 * 430 * Returns true if all blocks which correspond to the specified part 431 * of the folio are uptodate. 432 */ 433 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 434 { 435 struct iomap_page *iop = to_iomap_page(folio); 436 struct inode *inode = folio->mapping->host; 437 size_t len; 438 unsigned first, last, i; 439 440 if (!iop) 441 return false; 442 443 /* Limit range to this folio */ 444 len = min(folio_size(folio) - from, count); 445 446 /* First and last blocks in range within page */ 447 first = from >> inode->i_blkbits; 448 last = (from + len - 1) >> inode->i_blkbits; 449 450 for (i = first; i <= last; i++) 451 if (!test_bit(i, iop->uptodate)) 452 return false; 453 return true; 454 } 455 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 456 457 int 458 iomap_releasepage(struct page *page, gfp_t gfp_mask) 459 { 460 struct folio *folio = page_folio(page); 461 462 trace_iomap_releasepage(folio->mapping->host, folio_pos(folio), 463 folio_size(folio)); 464 465 /* 466 * mm accommodates an old ext3 case where clean pages might not have had 467 * the dirty bit cleared. Thus, it can send actual dirty pages to 468 * ->releasepage() via shrink_active_list(); skip those here. 469 */ 470 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 471 return 0; 472 iomap_page_release(folio); 473 return 1; 474 } 475 EXPORT_SYMBOL_GPL(iomap_releasepage); 476 477 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 478 { 479 trace_iomap_invalidate_folio(folio->mapping->host, 480 folio_pos(folio) + offset, len); 481 482 /* 483 * If we're invalidating the entire folio, clear the dirty state 484 * from it and release it to avoid unnecessary buildup of the LRU. 485 */ 486 if (offset == 0 && len == folio_size(folio)) { 487 WARN_ON_ONCE(folio_test_writeback(folio)); 488 folio_cancel_dirty(folio); 489 iomap_page_release(folio); 490 } else if (folio_test_large(folio)) { 491 /* Must release the iop so the page can be split */ 492 WARN_ON_ONCE(!folio_test_uptodate(folio) && 493 folio_test_dirty(folio)); 494 iomap_page_release(folio); 495 } 496 } 497 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 498 499 #ifdef CONFIG_MIGRATION 500 int 501 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 502 struct page *page, enum migrate_mode mode) 503 { 504 struct folio *folio = page_folio(page); 505 struct folio *newfolio = page_folio(newpage); 506 int ret; 507 508 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 509 if (ret != MIGRATEPAGE_SUCCESS) 510 return ret; 511 512 if (folio_test_private(folio)) 513 folio_attach_private(newfolio, folio_detach_private(folio)); 514 515 if (mode != MIGRATE_SYNC_NO_COPY) 516 folio_migrate_copy(newfolio, folio); 517 else 518 folio_migrate_flags(newfolio, folio); 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL_GPL(iomap_migrate_page); 522 #endif /* CONFIG_MIGRATION */ 523 524 static void 525 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 526 { 527 loff_t i_size = i_size_read(inode); 528 529 /* 530 * Only truncate newly allocated pages beyoned EOF, even if the 531 * write started inside the existing inode size. 532 */ 533 if (pos + len > i_size) 534 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 535 } 536 537 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 538 size_t poff, size_t plen, const struct iomap *iomap) 539 { 540 struct bio_vec bvec; 541 struct bio bio; 542 543 bio_init(&bio, &bvec, 1); 544 bio.bi_opf = REQ_OP_READ; 545 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 546 bio_set_dev(&bio, iomap->bdev); 547 bio_add_folio(&bio, folio, plen, poff); 548 return submit_bio_wait(&bio); 549 } 550 551 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 552 size_t len, struct folio *folio) 553 { 554 const struct iomap *srcmap = iomap_iter_srcmap(iter); 555 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 556 loff_t block_size = i_blocksize(iter->inode); 557 loff_t block_start = round_down(pos, block_size); 558 loff_t block_end = round_up(pos + len, block_size); 559 size_t from = offset_in_folio(folio, pos), to = from + len; 560 size_t poff, plen; 561 562 if (folio_test_uptodate(folio)) 563 return 0; 564 folio_clear_error(folio); 565 566 do { 567 iomap_adjust_read_range(iter->inode, folio, &block_start, 568 block_end - block_start, &poff, &plen); 569 if (plen == 0) 570 break; 571 572 if (!(iter->flags & IOMAP_UNSHARE) && 573 (from <= poff || from >= poff + plen) && 574 (to <= poff || to >= poff + plen)) 575 continue; 576 577 if (iomap_block_needs_zeroing(iter, block_start)) { 578 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 579 return -EIO; 580 folio_zero_segments(folio, poff, from, to, poff + plen); 581 } else { 582 int status = iomap_read_folio_sync(block_start, folio, 583 poff, plen, srcmap); 584 if (status) 585 return status; 586 } 587 iomap_set_range_uptodate(folio, iop, poff, plen); 588 } while ((block_start += plen) < block_end); 589 590 return 0; 591 } 592 593 static int iomap_write_begin_inline(const struct iomap_iter *iter, 594 struct folio *folio) 595 { 596 /* needs more work for the tailpacking case; disable for now */ 597 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 598 return -EIO; 599 return iomap_read_inline_data(iter, folio); 600 } 601 602 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 603 size_t len, struct folio **foliop) 604 { 605 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 606 const struct iomap *srcmap = iomap_iter_srcmap(iter); 607 struct folio *folio; 608 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 609 int status = 0; 610 611 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 612 if (srcmap != &iter->iomap) 613 BUG_ON(pos + len > srcmap->offset + srcmap->length); 614 615 if (fatal_signal_pending(current)) 616 return -EINTR; 617 618 if (!mapping_large_folio_support(iter->inode->i_mapping)) 619 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 620 621 if (page_ops && page_ops->page_prepare) { 622 status = page_ops->page_prepare(iter->inode, pos, len); 623 if (status) 624 return status; 625 } 626 627 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 628 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 629 if (!folio) { 630 status = -ENOMEM; 631 goto out_no_page; 632 } 633 if (pos + len > folio_pos(folio) + folio_size(folio)) 634 len = folio_pos(folio) + folio_size(folio) - pos; 635 636 if (srcmap->type == IOMAP_INLINE) 637 status = iomap_write_begin_inline(iter, folio); 638 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 639 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 640 else 641 status = __iomap_write_begin(iter, pos, len, folio); 642 643 if (unlikely(status)) 644 goto out_unlock; 645 646 *foliop = folio; 647 return 0; 648 649 out_unlock: 650 folio_unlock(folio); 651 folio_put(folio); 652 iomap_write_failed(iter->inode, pos, len); 653 654 out_no_page: 655 if (page_ops && page_ops->page_done) 656 page_ops->page_done(iter->inode, pos, 0, NULL); 657 return status; 658 } 659 660 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 661 size_t copied, struct folio *folio) 662 { 663 struct iomap_page *iop = to_iomap_page(folio); 664 flush_dcache_folio(folio); 665 666 /* 667 * The blocks that were entirely written will now be uptodate, so we 668 * don't have to worry about a readpage reading them and overwriting a 669 * partial write. However, if we've encountered a short write and only 670 * partially written into a block, it will not be marked uptodate, so a 671 * readpage might come in and destroy our partial write. 672 * 673 * Do the simplest thing and just treat any short write to a 674 * non-uptodate page as a zero-length write, and force the caller to 675 * redo the whole thing. 676 */ 677 if (unlikely(copied < len && !folio_test_uptodate(folio))) 678 return 0; 679 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 680 filemap_dirty_folio(inode->i_mapping, folio); 681 return copied; 682 } 683 684 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 685 struct folio *folio, loff_t pos, size_t copied) 686 { 687 const struct iomap *iomap = &iter->iomap; 688 void *addr; 689 690 WARN_ON_ONCE(!folio_test_uptodate(folio)); 691 BUG_ON(!iomap_inline_data_valid(iomap)); 692 693 flush_dcache_folio(folio); 694 addr = kmap_local_folio(folio, pos); 695 memcpy(iomap_inline_data(iomap, pos), addr, copied); 696 kunmap_local(addr); 697 698 mark_inode_dirty(iter->inode); 699 return copied; 700 } 701 702 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 703 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 704 size_t copied, struct folio *folio) 705 { 706 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 707 const struct iomap *srcmap = iomap_iter_srcmap(iter); 708 loff_t old_size = iter->inode->i_size; 709 size_t ret; 710 711 if (srcmap->type == IOMAP_INLINE) { 712 ret = iomap_write_end_inline(iter, folio, pos, copied); 713 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 714 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 715 copied, &folio->page, NULL); 716 } else { 717 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 718 } 719 720 /* 721 * Update the in-memory inode size after copying the data into the page 722 * cache. It's up to the file system to write the updated size to disk, 723 * preferably after I/O completion so that no stale data is exposed. 724 */ 725 if (pos + ret > old_size) { 726 i_size_write(iter->inode, pos + ret); 727 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 728 } 729 folio_unlock(folio); 730 731 if (old_size < pos) 732 pagecache_isize_extended(iter->inode, old_size, pos); 733 if (page_ops && page_ops->page_done) 734 page_ops->page_done(iter->inode, pos, ret, &folio->page); 735 folio_put(folio); 736 737 if (ret < len) 738 iomap_write_failed(iter->inode, pos, len); 739 return ret; 740 } 741 742 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 743 { 744 loff_t length = iomap_length(iter); 745 loff_t pos = iter->pos; 746 ssize_t written = 0; 747 long status = 0; 748 749 do { 750 struct folio *folio; 751 struct page *page; 752 unsigned long offset; /* Offset into pagecache page */ 753 unsigned long bytes; /* Bytes to write to page */ 754 size_t copied; /* Bytes copied from user */ 755 756 offset = offset_in_page(pos); 757 bytes = min_t(unsigned long, PAGE_SIZE - offset, 758 iov_iter_count(i)); 759 again: 760 if (bytes > length) 761 bytes = length; 762 763 /* 764 * Bring in the user page that we'll copy from _first_. 765 * Otherwise there's a nasty deadlock on copying from the 766 * same page as we're writing to, without it being marked 767 * up-to-date. 768 */ 769 if (unlikely(fault_in_iov_iter_readable(i, bytes))) { 770 status = -EFAULT; 771 break; 772 } 773 774 status = iomap_write_begin(iter, pos, bytes, &folio); 775 if (unlikely(status)) 776 break; 777 778 page = folio_file_page(folio, pos >> PAGE_SHIFT); 779 if (mapping_writably_mapped(iter->inode->i_mapping)) 780 flush_dcache_page(page); 781 782 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 783 784 status = iomap_write_end(iter, pos, bytes, copied, folio); 785 786 if (unlikely(copied != status)) 787 iov_iter_revert(i, copied - status); 788 789 cond_resched(); 790 if (unlikely(status == 0)) { 791 /* 792 * A short copy made iomap_write_end() reject the 793 * thing entirely. Might be memory poisoning 794 * halfway through, might be a race with munmap, 795 * might be severe memory pressure. 796 */ 797 if (copied) 798 bytes = copied; 799 goto again; 800 } 801 pos += status; 802 written += status; 803 length -= status; 804 805 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 806 } while (iov_iter_count(i) && length); 807 808 return written ? written : status; 809 } 810 811 ssize_t 812 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 813 const struct iomap_ops *ops) 814 { 815 struct iomap_iter iter = { 816 .inode = iocb->ki_filp->f_mapping->host, 817 .pos = iocb->ki_pos, 818 .len = iov_iter_count(i), 819 .flags = IOMAP_WRITE, 820 }; 821 int ret; 822 823 while ((ret = iomap_iter(&iter, ops)) > 0) 824 iter.processed = iomap_write_iter(&iter, i); 825 if (iter.pos == iocb->ki_pos) 826 return ret; 827 return iter.pos - iocb->ki_pos; 828 } 829 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 830 831 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 832 { 833 struct iomap *iomap = &iter->iomap; 834 const struct iomap *srcmap = iomap_iter_srcmap(iter); 835 loff_t pos = iter->pos; 836 loff_t length = iomap_length(iter); 837 long status = 0; 838 loff_t written = 0; 839 840 /* don't bother with blocks that are not shared to start with */ 841 if (!(iomap->flags & IOMAP_F_SHARED)) 842 return length; 843 /* don't bother with holes or unwritten extents */ 844 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 845 return length; 846 847 do { 848 unsigned long offset = offset_in_page(pos); 849 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 850 struct folio *folio; 851 852 status = iomap_write_begin(iter, pos, bytes, &folio); 853 if (unlikely(status)) 854 return status; 855 856 status = iomap_write_end(iter, pos, bytes, bytes, folio); 857 if (WARN_ON_ONCE(status == 0)) 858 return -EIO; 859 860 cond_resched(); 861 862 pos += status; 863 written += status; 864 length -= status; 865 866 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 867 } while (length); 868 869 return written; 870 } 871 872 int 873 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 874 const struct iomap_ops *ops) 875 { 876 struct iomap_iter iter = { 877 .inode = inode, 878 .pos = pos, 879 .len = len, 880 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 881 }; 882 int ret; 883 884 while ((ret = iomap_iter(&iter, ops)) > 0) 885 iter.processed = iomap_unshare_iter(&iter); 886 return ret; 887 } 888 EXPORT_SYMBOL_GPL(iomap_file_unshare); 889 890 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 891 { 892 const struct iomap *srcmap = iomap_iter_srcmap(iter); 893 loff_t pos = iter->pos; 894 loff_t length = iomap_length(iter); 895 loff_t written = 0; 896 897 /* already zeroed? we're done. */ 898 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 899 return length; 900 901 do { 902 struct folio *folio; 903 int status; 904 size_t offset; 905 size_t bytes = min_t(u64, SIZE_MAX, length); 906 907 status = iomap_write_begin(iter, pos, bytes, &folio); 908 if (status) 909 return status; 910 911 offset = offset_in_folio(folio, pos); 912 if (bytes > folio_size(folio) - offset) 913 bytes = folio_size(folio) - offset; 914 915 folio_zero_range(folio, offset, bytes); 916 folio_mark_accessed(folio); 917 918 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 919 if (WARN_ON_ONCE(bytes == 0)) 920 return -EIO; 921 922 pos += bytes; 923 length -= bytes; 924 written += bytes; 925 if (did_zero) 926 *did_zero = true; 927 } while (length > 0); 928 929 return written; 930 } 931 932 int 933 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 934 const struct iomap_ops *ops) 935 { 936 struct iomap_iter iter = { 937 .inode = inode, 938 .pos = pos, 939 .len = len, 940 .flags = IOMAP_ZERO, 941 }; 942 int ret; 943 944 while ((ret = iomap_iter(&iter, ops)) > 0) 945 iter.processed = iomap_zero_iter(&iter, did_zero); 946 return ret; 947 } 948 EXPORT_SYMBOL_GPL(iomap_zero_range); 949 950 int 951 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 952 const struct iomap_ops *ops) 953 { 954 unsigned int blocksize = i_blocksize(inode); 955 unsigned int off = pos & (blocksize - 1); 956 957 /* Block boundary? Nothing to do */ 958 if (!off) 959 return 0; 960 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 961 } 962 EXPORT_SYMBOL_GPL(iomap_truncate_page); 963 964 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 965 struct folio *folio) 966 { 967 loff_t length = iomap_length(iter); 968 int ret; 969 970 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 971 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 972 &iter->iomap); 973 if (ret) 974 return ret; 975 block_commit_write(&folio->page, 0, length); 976 } else { 977 WARN_ON_ONCE(!folio_test_uptodate(folio)); 978 folio_mark_dirty(folio); 979 } 980 981 return length; 982 } 983 984 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 985 { 986 struct iomap_iter iter = { 987 .inode = file_inode(vmf->vma->vm_file), 988 .flags = IOMAP_WRITE | IOMAP_FAULT, 989 }; 990 struct folio *folio = page_folio(vmf->page); 991 ssize_t ret; 992 993 folio_lock(folio); 994 ret = folio_mkwrite_check_truncate(folio, iter.inode); 995 if (ret < 0) 996 goto out_unlock; 997 iter.pos = folio_pos(folio); 998 iter.len = ret; 999 while ((ret = iomap_iter(&iter, ops)) > 0) 1000 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1001 1002 if (ret < 0) 1003 goto out_unlock; 1004 folio_wait_stable(folio); 1005 return VM_FAULT_LOCKED; 1006 out_unlock: 1007 folio_unlock(folio); 1008 return block_page_mkwrite_return(ret); 1009 } 1010 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1011 1012 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1013 size_t len, int error) 1014 { 1015 struct iomap_page *iop = to_iomap_page(folio); 1016 1017 if (error) { 1018 folio_set_error(folio); 1019 mapping_set_error(inode->i_mapping, error); 1020 } 1021 1022 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1023 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1024 1025 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1026 folio_end_writeback(folio); 1027 } 1028 1029 /* 1030 * We're now finished for good with this ioend structure. Update the page 1031 * state, release holds on bios, and finally free up memory. Do not use the 1032 * ioend after this. 1033 */ 1034 static u32 1035 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1036 { 1037 struct inode *inode = ioend->io_inode; 1038 struct bio *bio = &ioend->io_inline_bio; 1039 struct bio *last = ioend->io_bio, *next; 1040 u64 start = bio->bi_iter.bi_sector; 1041 loff_t offset = ioend->io_offset; 1042 bool quiet = bio_flagged(bio, BIO_QUIET); 1043 u32 folio_count = 0; 1044 1045 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1046 struct folio_iter fi; 1047 1048 /* 1049 * For the last bio, bi_private points to the ioend, so we 1050 * need to explicitly end the iteration here. 1051 */ 1052 if (bio == last) 1053 next = NULL; 1054 else 1055 next = bio->bi_private; 1056 1057 /* walk all folios in bio, ending page IO on them */ 1058 bio_for_each_folio_all(fi, bio) { 1059 iomap_finish_folio_write(inode, fi.folio, fi.length, 1060 error); 1061 folio_count++; 1062 } 1063 bio_put(bio); 1064 } 1065 /* The ioend has been freed by bio_put() */ 1066 1067 if (unlikely(error && !quiet)) { 1068 printk_ratelimited(KERN_ERR 1069 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1070 inode->i_sb->s_id, inode->i_ino, offset, start); 1071 } 1072 return folio_count; 1073 } 1074 1075 /* 1076 * Ioend completion routine for merged bios. This can only be called from task 1077 * contexts as merged ioends can be of unbound length. Hence we have to break up 1078 * the writeback completions into manageable chunks to avoid long scheduler 1079 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1080 * good batch processing throughput without creating adverse scheduler latency 1081 * conditions. 1082 */ 1083 void 1084 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1085 { 1086 struct list_head tmp; 1087 u32 completions; 1088 1089 might_sleep(); 1090 1091 list_replace_init(&ioend->io_list, &tmp); 1092 completions = iomap_finish_ioend(ioend, error); 1093 1094 while (!list_empty(&tmp)) { 1095 if (completions > IOEND_BATCH_SIZE * 8) { 1096 cond_resched(); 1097 completions = 0; 1098 } 1099 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1100 list_del_init(&ioend->io_list); 1101 completions += iomap_finish_ioend(ioend, error); 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1105 1106 /* 1107 * We can merge two adjacent ioends if they have the same set of work to do. 1108 */ 1109 static bool 1110 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1111 { 1112 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1113 return false; 1114 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1115 (next->io_flags & IOMAP_F_SHARED)) 1116 return false; 1117 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1118 (next->io_type == IOMAP_UNWRITTEN)) 1119 return false; 1120 if (ioend->io_offset + ioend->io_size != next->io_offset) 1121 return false; 1122 /* 1123 * Do not merge physically discontiguous ioends. The filesystem 1124 * completion functions will have to iterate the physical 1125 * discontiguities even if we merge the ioends at a logical level, so 1126 * we don't gain anything by merging physical discontiguities here. 1127 * 1128 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1129 * submission so does not point to the start sector of the bio at 1130 * completion. 1131 */ 1132 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1133 return false; 1134 return true; 1135 } 1136 1137 void 1138 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1139 { 1140 struct iomap_ioend *next; 1141 1142 INIT_LIST_HEAD(&ioend->io_list); 1143 1144 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1145 io_list))) { 1146 if (!iomap_ioend_can_merge(ioend, next)) 1147 break; 1148 list_move_tail(&next->io_list, &ioend->io_list); 1149 ioend->io_size += next->io_size; 1150 } 1151 } 1152 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1153 1154 static int 1155 iomap_ioend_compare(void *priv, const struct list_head *a, 1156 const struct list_head *b) 1157 { 1158 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1159 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1160 1161 if (ia->io_offset < ib->io_offset) 1162 return -1; 1163 if (ia->io_offset > ib->io_offset) 1164 return 1; 1165 return 0; 1166 } 1167 1168 void 1169 iomap_sort_ioends(struct list_head *ioend_list) 1170 { 1171 list_sort(NULL, ioend_list, iomap_ioend_compare); 1172 } 1173 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1174 1175 static void iomap_writepage_end_bio(struct bio *bio) 1176 { 1177 struct iomap_ioend *ioend = bio->bi_private; 1178 1179 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1180 } 1181 1182 /* 1183 * Submit the final bio for an ioend. 1184 * 1185 * If @error is non-zero, it means that we have a situation where some part of 1186 * the submission process has failed after we've marked pages for writeback 1187 * and unlocked them. In this situation, we need to fail the bio instead of 1188 * submitting it. This typically only happens on a filesystem shutdown. 1189 */ 1190 static int 1191 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1192 int error) 1193 { 1194 ioend->io_bio->bi_private = ioend; 1195 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1196 1197 if (wpc->ops->prepare_ioend) 1198 error = wpc->ops->prepare_ioend(ioend, error); 1199 if (error) { 1200 /* 1201 * If we're failing the IO now, just mark the ioend with an 1202 * error and finish it. This will run IO completion immediately 1203 * as there is only one reference to the ioend at this point in 1204 * time. 1205 */ 1206 ioend->io_bio->bi_status = errno_to_blk_status(error); 1207 bio_endio(ioend->io_bio); 1208 return error; 1209 } 1210 1211 submit_bio(ioend->io_bio); 1212 return 0; 1213 } 1214 1215 static struct iomap_ioend * 1216 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1217 loff_t offset, sector_t sector, struct writeback_control *wbc) 1218 { 1219 struct iomap_ioend *ioend; 1220 struct bio *bio; 1221 1222 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset); 1223 bio_set_dev(bio, wpc->iomap.bdev); 1224 bio->bi_iter.bi_sector = sector; 1225 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 1226 bio->bi_write_hint = inode->i_write_hint; 1227 wbc_init_bio(wbc, bio); 1228 1229 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1230 INIT_LIST_HEAD(&ioend->io_list); 1231 ioend->io_type = wpc->iomap.type; 1232 ioend->io_flags = wpc->iomap.flags; 1233 ioend->io_inode = inode; 1234 ioend->io_size = 0; 1235 ioend->io_folios = 0; 1236 ioend->io_offset = offset; 1237 ioend->io_bio = bio; 1238 ioend->io_sector = sector; 1239 return ioend; 1240 } 1241 1242 /* 1243 * Allocate a new bio, and chain the old bio to the new one. 1244 * 1245 * Note that we have to perform the chaining in this unintuitive order 1246 * so that the bi_private linkage is set up in the right direction for the 1247 * traversal in iomap_finish_ioend(). 1248 */ 1249 static struct bio * 1250 iomap_chain_bio(struct bio *prev) 1251 { 1252 struct bio *new; 1253 1254 new = bio_alloc(GFP_NOFS, BIO_MAX_VECS); 1255 bio_copy_dev(new, prev);/* also copies over blkcg information */ 1256 new->bi_iter.bi_sector = bio_end_sector(prev); 1257 new->bi_opf = prev->bi_opf; 1258 new->bi_write_hint = prev->bi_write_hint; 1259 1260 bio_chain(prev, new); 1261 bio_get(prev); /* for iomap_finish_ioend */ 1262 submit_bio(prev); 1263 return new; 1264 } 1265 1266 static bool 1267 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1268 sector_t sector) 1269 { 1270 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1271 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1272 return false; 1273 if (wpc->iomap.type != wpc->ioend->io_type) 1274 return false; 1275 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1276 return false; 1277 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1278 return false; 1279 /* 1280 * Limit ioend bio chain lengths to minimise IO completion latency. This 1281 * also prevents long tight loops ending page writeback on all the 1282 * folios in the ioend. 1283 */ 1284 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1285 return false; 1286 return true; 1287 } 1288 1289 /* 1290 * Test to see if we have an existing ioend structure that we could append to 1291 * first; otherwise finish off the current ioend and start another. 1292 */ 1293 static void 1294 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1295 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1296 struct writeback_control *wbc, struct list_head *iolist) 1297 { 1298 sector_t sector = iomap_sector(&wpc->iomap, pos); 1299 unsigned len = i_blocksize(inode); 1300 size_t poff = offset_in_folio(folio, pos); 1301 1302 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1303 if (wpc->ioend) 1304 list_add(&wpc->ioend->io_list, iolist); 1305 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1306 } 1307 1308 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1309 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1310 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1311 } 1312 1313 if (iop) 1314 atomic_add(len, &iop->write_bytes_pending); 1315 wpc->ioend->io_size += len; 1316 wbc_account_cgroup_owner(wbc, &folio->page, len); 1317 } 1318 1319 /* 1320 * We implement an immediate ioend submission policy here to avoid needing to 1321 * chain multiple ioends and hence nest mempool allocations which can violate 1322 * the forward progress guarantees we need to provide. The current ioend we're 1323 * adding blocks to is cached in the writepage context, and if the new block 1324 * doesn't append to the cached ioend, it will create a new ioend and cache that 1325 * instead. 1326 * 1327 * If a new ioend is created and cached, the old ioend is returned and queued 1328 * locally for submission once the entire page is processed or an error has been 1329 * detected. While ioends are submitted immediately after they are completed, 1330 * batching optimisations are provided by higher level block plugging. 1331 * 1332 * At the end of a writeback pass, there will be a cached ioend remaining on the 1333 * writepage context that the caller will need to submit. 1334 */ 1335 static int 1336 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1337 struct writeback_control *wbc, struct inode *inode, 1338 struct folio *folio, u64 end_pos) 1339 { 1340 struct iomap_page *iop = iomap_page_create(inode, folio); 1341 struct iomap_ioend *ioend, *next; 1342 unsigned len = i_blocksize(inode); 1343 unsigned nblocks = i_blocks_per_folio(inode, folio); 1344 u64 pos = folio_pos(folio); 1345 int error = 0, count = 0, i; 1346 LIST_HEAD(submit_list); 1347 1348 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1349 1350 /* 1351 * Walk through the folio to find areas to write back. If we 1352 * run off the end of the current map or find the current map 1353 * invalid, grab a new one. 1354 */ 1355 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1356 if (iop && !test_bit(i, iop->uptodate)) 1357 continue; 1358 1359 error = wpc->ops->map_blocks(wpc, inode, pos); 1360 if (error) 1361 break; 1362 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1363 continue; 1364 if (wpc->iomap.type == IOMAP_HOLE) 1365 continue; 1366 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1367 &submit_list); 1368 count++; 1369 } 1370 if (count) 1371 wpc->ioend->io_folios++; 1372 1373 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1374 WARN_ON_ONCE(!folio_test_locked(folio)); 1375 WARN_ON_ONCE(folio_test_writeback(folio)); 1376 WARN_ON_ONCE(folio_test_dirty(folio)); 1377 1378 /* 1379 * We cannot cancel the ioend directly here on error. We may have 1380 * already set other pages under writeback and hence we have to run I/O 1381 * completion to mark the error state of the pages under writeback 1382 * appropriately. 1383 */ 1384 if (unlikely(error)) { 1385 /* 1386 * Let the filesystem know what portion of the current page 1387 * failed to map. If the page hasn't been added to ioend, it 1388 * won't be affected by I/O completion and we must unlock it 1389 * now. 1390 */ 1391 if (wpc->ops->discard_folio) 1392 wpc->ops->discard_folio(folio, pos); 1393 if (!count) { 1394 folio_clear_uptodate(folio); 1395 folio_unlock(folio); 1396 goto done; 1397 } 1398 } 1399 1400 folio_start_writeback(folio); 1401 folio_unlock(folio); 1402 1403 /* 1404 * Preserve the original error if there was one; catch 1405 * submission errors here and propagate into subsequent ioend 1406 * submissions. 1407 */ 1408 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1409 int error2; 1410 1411 list_del_init(&ioend->io_list); 1412 error2 = iomap_submit_ioend(wpc, ioend, error); 1413 if (error2 && !error) 1414 error = error2; 1415 } 1416 1417 /* 1418 * We can end up here with no error and nothing to write only if we race 1419 * with a partial page truncate on a sub-page block sized filesystem. 1420 */ 1421 if (!count) 1422 folio_end_writeback(folio); 1423 done: 1424 mapping_set_error(folio->mapping, error); 1425 return error; 1426 } 1427 1428 /* 1429 * Write out a dirty page. 1430 * 1431 * For delalloc space on the page, we need to allocate space and flush it. 1432 * For unwritten space on the page, we need to start the conversion to 1433 * regular allocated space. 1434 */ 1435 static int 1436 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1437 { 1438 struct folio *folio = page_folio(page); 1439 struct iomap_writepage_ctx *wpc = data; 1440 struct inode *inode = folio->mapping->host; 1441 u64 end_pos, isize; 1442 1443 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1444 1445 /* 1446 * Refuse to write the folio out if we're called from reclaim context. 1447 * 1448 * This avoids stack overflows when called from deeply used stacks in 1449 * random callers for direct reclaim or memcg reclaim. We explicitly 1450 * allow reclaim from kswapd as the stack usage there is relatively low. 1451 * 1452 * This should never happen except in the case of a VM regression so 1453 * warn about it. 1454 */ 1455 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1456 PF_MEMALLOC)) 1457 goto redirty; 1458 1459 /* 1460 * Is this folio beyond the end of the file? 1461 * 1462 * The folio index is less than the end_index, adjust the end_pos 1463 * to the highest offset that this folio should represent. 1464 * ----------------------------------------------------- 1465 * | file mapping | <EOF> | 1466 * ----------------------------------------------------- 1467 * | Page ... | Page N-2 | Page N-1 | Page N | | 1468 * ^--------------------------------^----------|-------- 1469 * | desired writeback range | see else | 1470 * ---------------------------------^------------------| 1471 */ 1472 isize = i_size_read(inode); 1473 end_pos = folio_pos(folio) + folio_size(folio); 1474 if (end_pos > isize) { 1475 /* 1476 * Check whether the page to write out is beyond or straddles 1477 * i_size or not. 1478 * ------------------------------------------------------- 1479 * | file mapping | <EOF> | 1480 * ------------------------------------------------------- 1481 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1482 * ^--------------------------------^-----------|--------- 1483 * | | Straddles | 1484 * ---------------------------------^-----------|--------| 1485 */ 1486 size_t poff = offset_in_folio(folio, isize); 1487 pgoff_t end_index = isize >> PAGE_SHIFT; 1488 1489 /* 1490 * Skip the page if it's fully outside i_size, e.g. due to a 1491 * truncate operation that's in progress. We must redirty the 1492 * page so that reclaim stops reclaiming it. Otherwise 1493 * iomap_vm_releasepage() is called on it and gets confused. 1494 * 1495 * Note that the end_index is unsigned long. If the given 1496 * offset is greater than 16TB on a 32-bit system then if we 1497 * checked if the page is fully outside i_size with 1498 * "if (page->index >= end_index + 1)", "end_index + 1" would 1499 * overflow and evaluate to 0. Hence this page would be 1500 * redirtied and written out repeatedly, which would result in 1501 * an infinite loop; the user program performing this operation 1502 * would hang. Instead, we can detect this situation by 1503 * checking if the page is totally beyond i_size or if its 1504 * offset is just equal to the EOF. 1505 */ 1506 if (folio->index > end_index || 1507 (folio->index == end_index && poff == 0)) 1508 goto redirty; 1509 1510 /* 1511 * The page straddles i_size. It must be zeroed out on each 1512 * and every writepage invocation because it may be mmapped. 1513 * "A file is mapped in multiples of the page size. For a file 1514 * that is not a multiple of the page size, the remaining 1515 * memory is zeroed when mapped, and writes to that region are 1516 * not written out to the file." 1517 */ 1518 folio_zero_segment(folio, poff, folio_size(folio)); 1519 end_pos = isize; 1520 } 1521 1522 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1523 1524 redirty: 1525 folio_redirty_for_writepage(wbc, folio); 1526 folio_unlock(folio); 1527 return 0; 1528 } 1529 1530 int 1531 iomap_writepage(struct page *page, struct writeback_control *wbc, 1532 struct iomap_writepage_ctx *wpc, 1533 const struct iomap_writeback_ops *ops) 1534 { 1535 int ret; 1536 1537 wpc->ops = ops; 1538 ret = iomap_do_writepage(page, wbc, wpc); 1539 if (!wpc->ioend) 1540 return ret; 1541 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1542 } 1543 EXPORT_SYMBOL_GPL(iomap_writepage); 1544 1545 int 1546 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1547 struct iomap_writepage_ctx *wpc, 1548 const struct iomap_writeback_ops *ops) 1549 { 1550 int ret; 1551 1552 wpc->ops = ops; 1553 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1554 if (!wpc->ioend) 1555 return ret; 1556 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1557 } 1558 EXPORT_SYMBOL_GPL(iomap_writepages); 1559 1560 static int __init iomap_init(void) 1561 { 1562 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1563 offsetof(struct iomap_ioend, io_inline_bio), 1564 BIOSET_NEED_BVECS); 1565 } 1566 fs_initcall(iomap_init); 1567