1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/bio.h> 17 #include <linux/sched/signal.h> 18 #include <linux/migrate.h> 19 #include "internal.h" 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 /* 25 * Structure allocated for each folio to track per-block uptodate, dirty state 26 * and I/O completions. 27 */ 28 struct iomap_folio_state { 29 spinlock_t state_lock; 30 unsigned int read_bytes_pending; 31 atomic_t write_bytes_pending; 32 33 /* 34 * Each block has two bits in this bitmap: 35 * Bits [0..blocks_per_folio) has the uptodate status. 36 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 37 */ 38 unsigned long state[]; 39 }; 40 41 static inline bool ifs_is_fully_uptodate(struct folio *folio, 42 struct iomap_folio_state *ifs) 43 { 44 struct inode *inode = folio->mapping->host; 45 46 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 47 } 48 49 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 50 unsigned int block) 51 { 52 return test_bit(block, ifs->state); 53 } 54 55 static bool ifs_set_range_uptodate(struct folio *folio, 56 struct iomap_folio_state *ifs, size_t off, size_t len) 57 { 58 struct inode *inode = folio->mapping->host; 59 unsigned int first_blk = off >> inode->i_blkbits; 60 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 61 unsigned int nr_blks = last_blk - first_blk + 1; 62 63 bitmap_set(ifs->state, first_blk, nr_blks); 64 return ifs_is_fully_uptodate(folio, ifs); 65 } 66 67 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 68 size_t len) 69 { 70 struct iomap_folio_state *ifs = folio->private; 71 unsigned long flags; 72 bool uptodate = true; 73 74 if (ifs) { 75 spin_lock_irqsave(&ifs->state_lock, flags); 76 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 77 spin_unlock_irqrestore(&ifs->state_lock, flags); 78 } 79 80 if (uptodate) 81 folio_mark_uptodate(folio); 82 } 83 84 static inline bool ifs_block_is_dirty(struct folio *folio, 85 struct iomap_folio_state *ifs, int block) 86 { 87 struct inode *inode = folio->mapping->host; 88 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 89 90 return test_bit(block + blks_per_folio, ifs->state); 91 } 92 93 static unsigned ifs_find_dirty_range(struct folio *folio, 94 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 95 { 96 struct inode *inode = folio->mapping->host; 97 unsigned start_blk = 98 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 99 unsigned end_blk = min_not_zero( 100 offset_in_folio(folio, range_end) >> inode->i_blkbits, 101 i_blocks_per_folio(inode, folio)); 102 unsigned nblks = 1; 103 104 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 105 if (++start_blk == end_blk) 106 return 0; 107 108 while (start_blk + nblks < end_blk) { 109 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 110 break; 111 nblks++; 112 } 113 114 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 115 return nblks << inode->i_blkbits; 116 } 117 118 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 119 u64 range_end) 120 { 121 struct iomap_folio_state *ifs = folio->private; 122 123 if (*range_start >= range_end) 124 return 0; 125 126 if (ifs) 127 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 128 return range_end - *range_start; 129 } 130 131 static void ifs_clear_range_dirty(struct folio *folio, 132 struct iomap_folio_state *ifs, size_t off, size_t len) 133 { 134 struct inode *inode = folio->mapping->host; 135 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 136 unsigned int first_blk = (off >> inode->i_blkbits); 137 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 138 unsigned int nr_blks = last_blk - first_blk + 1; 139 unsigned long flags; 140 141 spin_lock_irqsave(&ifs->state_lock, flags); 142 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 143 spin_unlock_irqrestore(&ifs->state_lock, flags); 144 } 145 146 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 147 { 148 struct iomap_folio_state *ifs = folio->private; 149 150 if (ifs) 151 ifs_clear_range_dirty(folio, ifs, off, len); 152 } 153 154 static void ifs_set_range_dirty(struct folio *folio, 155 struct iomap_folio_state *ifs, size_t off, size_t len) 156 { 157 struct inode *inode = folio->mapping->host; 158 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 159 unsigned int first_blk = (off >> inode->i_blkbits); 160 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 161 unsigned int nr_blks = last_blk - first_blk + 1; 162 unsigned long flags; 163 164 spin_lock_irqsave(&ifs->state_lock, flags); 165 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 166 spin_unlock_irqrestore(&ifs->state_lock, flags); 167 } 168 169 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 170 { 171 struct iomap_folio_state *ifs = folio->private; 172 173 if (ifs) 174 ifs_set_range_dirty(folio, ifs, off, len); 175 } 176 177 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 178 struct folio *folio, unsigned int flags) 179 { 180 struct iomap_folio_state *ifs = folio->private; 181 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 182 gfp_t gfp; 183 184 if (ifs || nr_blocks <= 1) 185 return ifs; 186 187 if (flags & IOMAP_NOWAIT) 188 gfp = GFP_NOWAIT; 189 else 190 gfp = GFP_NOFS | __GFP_NOFAIL; 191 192 /* 193 * ifs->state tracks two sets of state flags when the 194 * filesystem block size is smaller than the folio size. 195 * The first state tracks per-block uptodate and the 196 * second tracks per-block dirty state. 197 */ 198 ifs = kzalloc(struct_size(ifs, state, 199 BITS_TO_LONGS(2 * nr_blocks)), gfp); 200 if (!ifs) 201 return ifs; 202 203 spin_lock_init(&ifs->state_lock); 204 if (folio_test_uptodate(folio)) 205 bitmap_set(ifs->state, 0, nr_blocks); 206 if (folio_test_dirty(folio)) 207 bitmap_set(ifs->state, nr_blocks, nr_blocks); 208 folio_attach_private(folio, ifs); 209 210 return ifs; 211 } 212 213 static void ifs_free(struct folio *folio) 214 { 215 struct iomap_folio_state *ifs = folio_detach_private(folio); 216 217 if (!ifs) 218 return; 219 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 220 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 221 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 222 folio_test_uptodate(folio)); 223 kfree(ifs); 224 } 225 226 /* 227 * Calculate the range inside the folio that we actually need to read. 228 */ 229 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 230 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 231 { 232 struct iomap_folio_state *ifs = folio->private; 233 loff_t orig_pos = *pos; 234 loff_t isize = i_size_read(inode); 235 unsigned block_bits = inode->i_blkbits; 236 unsigned block_size = (1 << block_bits); 237 size_t poff = offset_in_folio(folio, *pos); 238 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 239 size_t orig_plen = plen; 240 unsigned first = poff >> block_bits; 241 unsigned last = (poff + plen - 1) >> block_bits; 242 243 /* 244 * If the block size is smaller than the page size, we need to check the 245 * per-block uptodate status and adjust the offset and length if needed 246 * to avoid reading in already uptodate ranges. 247 */ 248 if (ifs) { 249 unsigned int i; 250 251 /* move forward for each leading block marked uptodate */ 252 for (i = first; i <= last; i++) { 253 if (!ifs_block_is_uptodate(ifs, i)) 254 break; 255 *pos += block_size; 256 poff += block_size; 257 plen -= block_size; 258 first++; 259 } 260 261 /* truncate len if we find any trailing uptodate block(s) */ 262 while (++i <= last) { 263 if (ifs_block_is_uptodate(ifs, i)) { 264 plen -= (last - i + 1) * block_size; 265 last = i - 1; 266 break; 267 } 268 } 269 } 270 271 /* 272 * If the extent spans the block that contains the i_size, we need to 273 * handle both halves separately so that we properly zero data in the 274 * page cache for blocks that are entirely outside of i_size. 275 */ 276 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 277 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 278 279 if (first <= end && last > end) 280 plen -= (last - end) * block_size; 281 } 282 283 *offp = poff; 284 *lenp = plen; 285 } 286 287 static void iomap_finish_folio_read(struct folio *folio, size_t off, 288 size_t len, int error) 289 { 290 struct iomap_folio_state *ifs = folio->private; 291 bool uptodate = !error; 292 bool finished = true; 293 294 if (ifs) { 295 unsigned long flags; 296 297 spin_lock_irqsave(&ifs->state_lock, flags); 298 if (!error) 299 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 300 ifs->read_bytes_pending -= len; 301 finished = !ifs->read_bytes_pending; 302 spin_unlock_irqrestore(&ifs->state_lock, flags); 303 } 304 305 if (finished) 306 folio_end_read(folio, uptodate); 307 } 308 309 static void iomap_read_end_io(struct bio *bio) 310 { 311 int error = blk_status_to_errno(bio->bi_status); 312 struct folio_iter fi; 313 314 bio_for_each_folio_all(fi, bio) 315 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 316 bio_put(bio); 317 } 318 319 struct iomap_readpage_ctx { 320 struct folio *cur_folio; 321 bool cur_folio_in_bio; 322 struct bio *bio; 323 struct readahead_control *rac; 324 }; 325 326 /** 327 * iomap_read_inline_data - copy inline data into the page cache 328 * @iter: iteration structure 329 * @folio: folio to copy to 330 * 331 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 332 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 333 * Returns zero for success to complete the read, or the usual negative errno. 334 */ 335 static int iomap_read_inline_data(const struct iomap_iter *iter, 336 struct folio *folio) 337 { 338 const struct iomap *iomap = iomap_iter_srcmap(iter); 339 size_t size = i_size_read(iter->inode) - iomap->offset; 340 size_t offset = offset_in_folio(folio, iomap->offset); 341 342 if (folio_test_uptodate(folio)) 343 return 0; 344 345 if (WARN_ON_ONCE(size > iomap->length)) 346 return -EIO; 347 if (offset > 0) 348 ifs_alloc(iter->inode, folio, iter->flags); 349 350 folio_fill_tail(folio, offset, iomap->inline_data, size); 351 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 352 return 0; 353 } 354 355 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 356 loff_t pos) 357 { 358 const struct iomap *srcmap = iomap_iter_srcmap(iter); 359 360 return srcmap->type != IOMAP_MAPPED || 361 (srcmap->flags & IOMAP_F_NEW) || 362 pos >= i_size_read(iter->inode); 363 } 364 365 static int iomap_readpage_iter(struct iomap_iter *iter, 366 struct iomap_readpage_ctx *ctx) 367 { 368 const struct iomap *iomap = &iter->iomap; 369 loff_t pos = iter->pos; 370 loff_t length = iomap_length(iter); 371 struct folio *folio = ctx->cur_folio; 372 struct iomap_folio_state *ifs; 373 size_t poff, plen; 374 sector_t sector; 375 int ret; 376 377 if (iomap->type == IOMAP_INLINE) { 378 ret = iomap_read_inline_data(iter, folio); 379 if (ret) 380 return ret; 381 return iomap_iter_advance(iter, &length); 382 } 383 384 /* zero post-eof blocks as the page may be mapped */ 385 ifs = ifs_alloc(iter->inode, folio, iter->flags); 386 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 387 if (plen == 0) 388 goto done; 389 390 if (iomap_block_needs_zeroing(iter, pos)) { 391 folio_zero_range(folio, poff, plen); 392 iomap_set_range_uptodate(folio, poff, plen); 393 goto done; 394 } 395 396 ctx->cur_folio_in_bio = true; 397 if (ifs) { 398 spin_lock_irq(&ifs->state_lock); 399 ifs->read_bytes_pending += plen; 400 spin_unlock_irq(&ifs->state_lock); 401 } 402 403 sector = iomap_sector(iomap, pos); 404 if (!ctx->bio || 405 bio_end_sector(ctx->bio) != sector || 406 !bio_add_folio(ctx->bio, folio, plen, poff)) { 407 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 408 gfp_t orig_gfp = gfp; 409 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 410 411 if (ctx->bio) 412 submit_bio(ctx->bio); 413 414 if (ctx->rac) /* same as readahead_gfp_mask */ 415 gfp |= __GFP_NORETRY | __GFP_NOWARN; 416 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 417 REQ_OP_READ, gfp); 418 /* 419 * If the bio_alloc fails, try it again for a single page to 420 * avoid having to deal with partial page reads. This emulates 421 * what do_mpage_read_folio does. 422 */ 423 if (!ctx->bio) { 424 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 425 orig_gfp); 426 } 427 if (ctx->rac) 428 ctx->bio->bi_opf |= REQ_RAHEAD; 429 ctx->bio->bi_iter.bi_sector = sector; 430 ctx->bio->bi_end_io = iomap_read_end_io; 431 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 432 } 433 434 done: 435 /* 436 * Move the caller beyond our range so that it keeps making progress. 437 * For that, we have to include any leading non-uptodate ranges, but 438 * we can skip trailing ones as they will be handled in the next 439 * iteration. 440 */ 441 length = pos - iter->pos + plen; 442 return iomap_iter_advance(iter, &length); 443 } 444 445 static int iomap_read_folio_iter(struct iomap_iter *iter, 446 struct iomap_readpage_ctx *ctx) 447 { 448 int ret; 449 450 while (iomap_length(iter)) { 451 ret = iomap_readpage_iter(iter, ctx); 452 if (ret) 453 return ret; 454 } 455 456 return 0; 457 } 458 459 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 460 { 461 struct iomap_iter iter = { 462 .inode = folio->mapping->host, 463 .pos = folio_pos(folio), 464 .len = folio_size(folio), 465 }; 466 struct iomap_readpage_ctx ctx = { 467 .cur_folio = folio, 468 }; 469 int ret; 470 471 trace_iomap_readpage(iter.inode, 1); 472 473 while ((ret = iomap_iter(&iter, ops)) > 0) 474 iter.status = iomap_read_folio_iter(&iter, &ctx); 475 476 if (ctx.bio) { 477 submit_bio(ctx.bio); 478 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 479 } else { 480 WARN_ON_ONCE(ctx.cur_folio_in_bio); 481 folio_unlock(folio); 482 } 483 484 /* 485 * Just like mpage_readahead and block_read_full_folio, we always 486 * return 0 and just set the folio error flag on errors. This 487 * should be cleaned up throughout the stack eventually. 488 */ 489 return 0; 490 } 491 EXPORT_SYMBOL_GPL(iomap_read_folio); 492 493 static int iomap_readahead_iter(struct iomap_iter *iter, 494 struct iomap_readpage_ctx *ctx) 495 { 496 int ret; 497 498 while (iomap_length(iter)) { 499 if (ctx->cur_folio && 500 offset_in_folio(ctx->cur_folio, iter->pos) == 0) { 501 if (!ctx->cur_folio_in_bio) 502 folio_unlock(ctx->cur_folio); 503 ctx->cur_folio = NULL; 504 } 505 if (!ctx->cur_folio) { 506 ctx->cur_folio = readahead_folio(ctx->rac); 507 ctx->cur_folio_in_bio = false; 508 } 509 ret = iomap_readpage_iter(iter, ctx); 510 if (ret) 511 return ret; 512 } 513 514 return 0; 515 } 516 517 /** 518 * iomap_readahead - Attempt to read pages from a file. 519 * @rac: Describes the pages to be read. 520 * @ops: The operations vector for the filesystem. 521 * 522 * This function is for filesystems to call to implement their readahead 523 * address_space operation. 524 * 525 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 526 * blocks from disc), and may wait for it. The caller may be trying to 527 * access a different page, and so sleeping excessively should be avoided. 528 * It may allocate memory, but should avoid costly allocations. This 529 * function is called with memalloc_nofs set, so allocations will not cause 530 * the filesystem to be reentered. 531 */ 532 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 533 { 534 struct iomap_iter iter = { 535 .inode = rac->mapping->host, 536 .pos = readahead_pos(rac), 537 .len = readahead_length(rac), 538 }; 539 struct iomap_readpage_ctx ctx = { 540 .rac = rac, 541 }; 542 543 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 544 545 while (iomap_iter(&iter, ops) > 0) 546 iter.status = iomap_readahead_iter(&iter, &ctx); 547 548 if (ctx.bio) 549 submit_bio(ctx.bio); 550 if (ctx.cur_folio) { 551 if (!ctx.cur_folio_in_bio) 552 folio_unlock(ctx.cur_folio); 553 } 554 } 555 EXPORT_SYMBOL_GPL(iomap_readahead); 556 557 /* 558 * iomap_is_partially_uptodate checks whether blocks within a folio are 559 * uptodate or not. 560 * 561 * Returns true if all blocks which correspond to the specified part 562 * of the folio are uptodate. 563 */ 564 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 565 { 566 struct iomap_folio_state *ifs = folio->private; 567 struct inode *inode = folio->mapping->host; 568 unsigned first, last, i; 569 570 if (!ifs) 571 return false; 572 573 /* Caller's range may extend past the end of this folio */ 574 count = min(folio_size(folio) - from, count); 575 576 /* First and last blocks in range within folio */ 577 first = from >> inode->i_blkbits; 578 last = (from + count - 1) >> inode->i_blkbits; 579 580 for (i = first; i <= last; i++) 581 if (!ifs_block_is_uptodate(ifs, i)) 582 return false; 583 return true; 584 } 585 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 586 587 /** 588 * iomap_get_folio - get a folio reference for writing 589 * @iter: iteration structure 590 * @pos: start offset of write 591 * @len: Suggested size of folio to create. 592 * 593 * Returns a locked reference to the folio at @pos, or an error pointer if the 594 * folio could not be obtained. 595 */ 596 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 597 { 598 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 599 600 if (iter->flags & IOMAP_NOWAIT) 601 fgp |= FGP_NOWAIT; 602 if (iter->flags & IOMAP_DONTCACHE) 603 fgp |= FGP_DONTCACHE; 604 fgp |= fgf_set_order(len); 605 606 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 607 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 608 } 609 EXPORT_SYMBOL_GPL(iomap_get_folio); 610 611 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 612 { 613 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 614 folio_size(folio)); 615 616 /* 617 * If the folio is dirty, we refuse to release our metadata because 618 * it may be partially dirty. Once we track per-block dirty state, 619 * we can release the metadata if every block is dirty. 620 */ 621 if (folio_test_dirty(folio)) 622 return false; 623 ifs_free(folio); 624 return true; 625 } 626 EXPORT_SYMBOL_GPL(iomap_release_folio); 627 628 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 629 { 630 trace_iomap_invalidate_folio(folio->mapping->host, 631 folio_pos(folio) + offset, len); 632 633 /* 634 * If we're invalidating the entire folio, clear the dirty state 635 * from it and release it to avoid unnecessary buildup of the LRU. 636 */ 637 if (offset == 0 && len == folio_size(folio)) { 638 WARN_ON_ONCE(folio_test_writeback(folio)); 639 folio_cancel_dirty(folio); 640 ifs_free(folio); 641 } 642 } 643 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 644 645 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 646 { 647 struct inode *inode = mapping->host; 648 size_t len = folio_size(folio); 649 650 ifs_alloc(inode, folio, 0); 651 iomap_set_range_dirty(folio, 0, len); 652 return filemap_dirty_folio(mapping, folio); 653 } 654 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 655 656 static void 657 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 658 { 659 loff_t i_size = i_size_read(inode); 660 661 /* 662 * Only truncate newly allocated pages beyoned EOF, even if the 663 * write started inside the existing inode size. 664 */ 665 if (pos + len > i_size) 666 truncate_pagecache_range(inode, max(pos, i_size), 667 pos + len - 1); 668 } 669 670 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 671 size_t poff, size_t plen, const struct iomap *iomap) 672 { 673 struct bio_vec bvec; 674 struct bio bio; 675 676 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 677 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 678 bio_add_folio_nofail(&bio, folio, plen, poff); 679 return submit_bio_wait(&bio); 680 } 681 682 static int __iomap_write_begin(const struct iomap_iter *iter, size_t len, 683 struct folio *folio) 684 { 685 const struct iomap *srcmap = iomap_iter_srcmap(iter); 686 struct iomap_folio_state *ifs; 687 loff_t pos = iter->pos; 688 loff_t block_size = i_blocksize(iter->inode); 689 loff_t block_start = round_down(pos, block_size); 690 loff_t block_end = round_up(pos + len, block_size); 691 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 692 size_t from = offset_in_folio(folio, pos), to = from + len; 693 size_t poff, plen; 694 695 /* 696 * If the write or zeroing completely overlaps the current folio, then 697 * entire folio will be dirtied so there is no need for 698 * per-block state tracking structures to be attached to this folio. 699 * For the unshare case, we must read in the ondisk contents because we 700 * are not changing pagecache contents. 701 */ 702 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 703 pos + len >= folio_pos(folio) + folio_size(folio)) 704 return 0; 705 706 ifs = ifs_alloc(iter->inode, folio, iter->flags); 707 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 708 return -EAGAIN; 709 710 if (folio_test_uptodate(folio)) 711 return 0; 712 713 do { 714 iomap_adjust_read_range(iter->inode, folio, &block_start, 715 block_end - block_start, &poff, &plen); 716 if (plen == 0) 717 break; 718 719 if (!(iter->flags & IOMAP_UNSHARE) && 720 (from <= poff || from >= poff + plen) && 721 (to <= poff || to >= poff + plen)) 722 continue; 723 724 if (iomap_block_needs_zeroing(iter, block_start)) { 725 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 726 return -EIO; 727 folio_zero_segments(folio, poff, from, to, poff + plen); 728 } else { 729 int status; 730 731 if (iter->flags & IOMAP_NOWAIT) 732 return -EAGAIN; 733 734 status = iomap_read_folio_sync(block_start, folio, 735 poff, plen, srcmap); 736 if (status) 737 return status; 738 } 739 iomap_set_range_uptodate(folio, poff, plen); 740 } while ((block_start += plen) < block_end); 741 742 return 0; 743 } 744 745 static struct folio *__iomap_get_folio(struct iomap_iter *iter, size_t len) 746 { 747 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 748 loff_t pos = iter->pos; 749 750 if (!mapping_large_folio_support(iter->inode->i_mapping)) 751 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 752 753 if (folio_ops && folio_ops->get_folio) 754 return folio_ops->get_folio(iter, pos, len); 755 else 756 return iomap_get_folio(iter, pos, len); 757 } 758 759 static void __iomap_put_folio(struct iomap_iter *iter, size_t ret, 760 struct folio *folio) 761 { 762 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 763 loff_t pos = iter->pos; 764 765 if (folio_ops && folio_ops->put_folio) { 766 folio_ops->put_folio(iter->inode, pos, ret, folio); 767 } else { 768 folio_unlock(folio); 769 folio_put(folio); 770 } 771 } 772 773 /* trim pos and bytes to within a given folio */ 774 static loff_t iomap_trim_folio_range(struct iomap_iter *iter, 775 struct folio *folio, size_t *offset, u64 *bytes) 776 { 777 loff_t pos = iter->pos; 778 size_t fsize = folio_size(folio); 779 780 WARN_ON_ONCE(pos < folio_pos(folio)); 781 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize); 782 783 *offset = offset_in_folio(folio, pos); 784 *bytes = min(*bytes, fsize - *offset); 785 786 return pos; 787 } 788 789 static int iomap_write_begin_inline(const struct iomap_iter *iter, 790 struct folio *folio) 791 { 792 /* needs more work for the tailpacking case; disable for now */ 793 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 794 return -EIO; 795 return iomap_read_inline_data(iter, folio); 796 } 797 798 /* 799 * Grab and prepare a folio for write based on iter state. Returns the folio, 800 * offset, and length. Callers can optionally pass a max length *plen, 801 * otherwise init to zero. 802 */ 803 static int iomap_write_begin(struct iomap_iter *iter, struct folio **foliop, 804 size_t *poffset, u64 *plen) 805 { 806 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 807 const struct iomap *srcmap = iomap_iter_srcmap(iter); 808 loff_t pos = iter->pos; 809 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter)); 810 struct folio *folio; 811 int status = 0; 812 813 len = min_not_zero(len, *plen); 814 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 815 if (srcmap != &iter->iomap) 816 BUG_ON(pos + len > srcmap->offset + srcmap->length); 817 818 if (fatal_signal_pending(current)) 819 return -EINTR; 820 821 folio = __iomap_get_folio(iter, len); 822 if (IS_ERR(folio)) 823 return PTR_ERR(folio); 824 825 /* 826 * Now we have a locked folio, before we do anything with it we need to 827 * check that the iomap we have cached is not stale. The inode extent 828 * mapping can change due to concurrent IO in flight (e.g. 829 * IOMAP_UNWRITTEN state can change and memory reclaim could have 830 * reclaimed a previously partially written page at this index after IO 831 * completion before this write reaches this file offset) and hence we 832 * could do the wrong thing here (zero a page range incorrectly or fail 833 * to zero) and corrupt data. 834 */ 835 if (folio_ops && folio_ops->iomap_valid) { 836 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 837 &iter->iomap); 838 if (!iomap_valid) { 839 iter->iomap.flags |= IOMAP_F_STALE; 840 status = 0; 841 goto out_unlock; 842 } 843 } 844 845 pos = iomap_trim_folio_range(iter, folio, poffset, &len); 846 847 if (srcmap->type == IOMAP_INLINE) 848 status = iomap_write_begin_inline(iter, folio); 849 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 850 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 851 else 852 status = __iomap_write_begin(iter, len, folio); 853 854 if (unlikely(status)) 855 goto out_unlock; 856 857 *foliop = folio; 858 *plen = len; 859 return 0; 860 861 out_unlock: 862 __iomap_put_folio(iter, 0, folio); 863 864 return status; 865 } 866 867 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 868 size_t copied, struct folio *folio) 869 { 870 flush_dcache_folio(folio); 871 872 /* 873 * The blocks that were entirely written will now be uptodate, so we 874 * don't have to worry about a read_folio reading them and overwriting a 875 * partial write. However, if we've encountered a short write and only 876 * partially written into a block, it will not be marked uptodate, so a 877 * read_folio might come in and destroy our partial write. 878 * 879 * Do the simplest thing and just treat any short write to a 880 * non-uptodate page as a zero-length write, and force the caller to 881 * redo the whole thing. 882 */ 883 if (unlikely(copied < len && !folio_test_uptodate(folio))) 884 return false; 885 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 886 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 887 filemap_dirty_folio(inode->i_mapping, folio); 888 return true; 889 } 890 891 static void iomap_write_end_inline(const struct iomap_iter *iter, 892 struct folio *folio, loff_t pos, size_t copied) 893 { 894 const struct iomap *iomap = &iter->iomap; 895 void *addr; 896 897 WARN_ON_ONCE(!folio_test_uptodate(folio)); 898 BUG_ON(!iomap_inline_data_valid(iomap)); 899 900 flush_dcache_folio(folio); 901 addr = kmap_local_folio(folio, pos); 902 memcpy(iomap_inline_data(iomap, pos), addr, copied); 903 kunmap_local(addr); 904 905 mark_inode_dirty(iter->inode); 906 } 907 908 /* 909 * Returns true if all copied bytes have been written to the pagecache, 910 * otherwise return false. 911 */ 912 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied, 913 struct folio *folio) 914 { 915 const struct iomap *srcmap = iomap_iter_srcmap(iter); 916 loff_t pos = iter->pos; 917 918 if (srcmap->type == IOMAP_INLINE) { 919 iomap_write_end_inline(iter, folio, pos, copied); 920 return true; 921 } 922 923 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 924 size_t bh_written; 925 926 bh_written = block_write_end(NULL, iter->inode->i_mapping, pos, 927 len, copied, folio, NULL); 928 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 929 return bh_written == copied; 930 } 931 932 return __iomap_write_end(iter->inode, pos, len, copied, folio); 933 } 934 935 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 936 { 937 ssize_t total_written = 0; 938 int status = 0; 939 struct address_space *mapping = iter->inode->i_mapping; 940 size_t chunk = mapping_max_folio_size(mapping); 941 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 942 943 do { 944 struct folio *folio; 945 loff_t old_size; 946 size_t offset; /* Offset into folio */ 947 u64 bytes; /* Bytes to write to folio */ 948 size_t copied; /* Bytes copied from user */ 949 u64 written; /* Bytes have been written */ 950 loff_t pos; 951 952 bytes = iov_iter_count(i); 953 retry: 954 offset = iter->pos & (chunk - 1); 955 bytes = min(chunk - offset, bytes); 956 status = balance_dirty_pages_ratelimited_flags(mapping, 957 bdp_flags); 958 if (unlikely(status)) 959 break; 960 961 if (bytes > iomap_length(iter)) 962 bytes = iomap_length(iter); 963 964 /* 965 * Bring in the user page that we'll copy from _first_. 966 * Otherwise there's a nasty deadlock on copying from the 967 * same page as we're writing to, without it being marked 968 * up-to-date. 969 * 970 * For async buffered writes the assumption is that the user 971 * page has already been faulted in. This can be optimized by 972 * faulting the user page. 973 */ 974 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 975 status = -EFAULT; 976 break; 977 } 978 979 status = iomap_write_begin(iter, &folio, &offset, &bytes); 980 if (unlikely(status)) { 981 iomap_write_failed(iter->inode, iter->pos, bytes); 982 break; 983 } 984 if (iter->iomap.flags & IOMAP_F_STALE) 985 break; 986 987 pos = iter->pos; 988 989 if (mapping_writably_mapped(mapping)) 990 flush_dcache_folio(folio); 991 992 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 993 written = iomap_write_end(iter, bytes, copied, folio) ? 994 copied : 0; 995 996 /* 997 * Update the in-memory inode size after copying the data into 998 * the page cache. It's up to the file system to write the 999 * updated size to disk, preferably after I/O completion so that 1000 * no stale data is exposed. Only once that's done can we 1001 * unlock and release the folio. 1002 */ 1003 old_size = iter->inode->i_size; 1004 if (pos + written > old_size) { 1005 i_size_write(iter->inode, pos + written); 1006 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 1007 } 1008 __iomap_put_folio(iter, written, folio); 1009 1010 if (old_size < pos) 1011 pagecache_isize_extended(iter->inode, old_size, pos); 1012 1013 cond_resched(); 1014 if (unlikely(written == 0)) { 1015 /* 1016 * A short copy made iomap_write_end() reject the 1017 * thing entirely. Might be memory poisoning 1018 * halfway through, might be a race with munmap, 1019 * might be severe memory pressure. 1020 */ 1021 iomap_write_failed(iter->inode, pos, bytes); 1022 iov_iter_revert(i, copied); 1023 1024 if (chunk > PAGE_SIZE) 1025 chunk /= 2; 1026 if (copied) { 1027 bytes = copied; 1028 goto retry; 1029 } 1030 } else { 1031 total_written += written; 1032 iomap_iter_advance(iter, &written); 1033 } 1034 } while (iov_iter_count(i) && iomap_length(iter)); 1035 1036 return total_written ? 0 : status; 1037 } 1038 1039 ssize_t 1040 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1041 const struct iomap_ops *ops, void *private) 1042 { 1043 struct iomap_iter iter = { 1044 .inode = iocb->ki_filp->f_mapping->host, 1045 .pos = iocb->ki_pos, 1046 .len = iov_iter_count(i), 1047 .flags = IOMAP_WRITE, 1048 .private = private, 1049 }; 1050 ssize_t ret; 1051 1052 if (iocb->ki_flags & IOCB_NOWAIT) 1053 iter.flags |= IOMAP_NOWAIT; 1054 if (iocb->ki_flags & IOCB_DONTCACHE) 1055 iter.flags |= IOMAP_DONTCACHE; 1056 1057 while ((ret = iomap_iter(&iter, ops)) > 0) 1058 iter.status = iomap_write_iter(&iter, i); 1059 1060 if (unlikely(iter.pos == iocb->ki_pos)) 1061 return ret; 1062 ret = iter.pos - iocb->ki_pos; 1063 iocb->ki_pos = iter.pos; 1064 return ret; 1065 } 1066 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1067 1068 static void iomap_write_delalloc_ifs_punch(struct inode *inode, 1069 struct folio *folio, loff_t start_byte, loff_t end_byte, 1070 struct iomap *iomap, iomap_punch_t punch) 1071 { 1072 unsigned int first_blk, last_blk, i; 1073 loff_t last_byte; 1074 u8 blkbits = inode->i_blkbits; 1075 struct iomap_folio_state *ifs; 1076 1077 /* 1078 * When we have per-block dirty tracking, there can be 1079 * blocks within a folio which are marked uptodate 1080 * but not dirty. In that case it is necessary to punch 1081 * out such blocks to avoid leaking any delalloc blocks. 1082 */ 1083 ifs = folio->private; 1084 if (!ifs) 1085 return; 1086 1087 last_byte = min_t(loff_t, end_byte - 1, 1088 folio_pos(folio) + folio_size(folio) - 1); 1089 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1090 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1091 for (i = first_blk; i <= last_blk; i++) { 1092 if (!ifs_block_is_dirty(folio, ifs, i)) 1093 punch(inode, folio_pos(folio) + (i << blkbits), 1094 1 << blkbits, iomap); 1095 } 1096 } 1097 1098 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1099 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1100 struct iomap *iomap, iomap_punch_t punch) 1101 { 1102 if (!folio_test_dirty(folio)) 1103 return; 1104 1105 /* if dirty, punch up to offset */ 1106 if (start_byte > *punch_start_byte) { 1107 punch(inode, *punch_start_byte, start_byte - *punch_start_byte, 1108 iomap); 1109 } 1110 1111 /* Punch non-dirty blocks within folio */ 1112 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, 1113 iomap, punch); 1114 1115 /* 1116 * Make sure the next punch start is correctly bound to 1117 * the end of this data range, not the end of the folio. 1118 */ 1119 *punch_start_byte = min_t(loff_t, end_byte, 1120 folio_pos(folio) + folio_size(folio)); 1121 } 1122 1123 /* 1124 * Scan the data range passed to us for dirty page cache folios. If we find a 1125 * dirty folio, punch out the preceding range and update the offset from which 1126 * the next punch will start from. 1127 * 1128 * We can punch out storage reservations under clean pages because they either 1129 * contain data that has been written back - in which case the delalloc punch 1130 * over that range is a no-op - or they have been read faults in which case they 1131 * contain zeroes and we can remove the delalloc backing range and any new 1132 * writes to those pages will do the normal hole filling operation... 1133 * 1134 * This makes the logic simple: we only need to keep the delalloc extents only 1135 * over the dirty ranges of the page cache. 1136 * 1137 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1138 * simplify range iterations. 1139 */ 1140 static void iomap_write_delalloc_scan(struct inode *inode, 1141 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1142 struct iomap *iomap, iomap_punch_t punch) 1143 { 1144 while (start_byte < end_byte) { 1145 struct folio *folio; 1146 1147 /* grab locked page */ 1148 folio = filemap_lock_folio(inode->i_mapping, 1149 start_byte >> PAGE_SHIFT); 1150 if (IS_ERR(folio)) { 1151 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1152 PAGE_SIZE; 1153 continue; 1154 } 1155 1156 iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1157 start_byte, end_byte, iomap, punch); 1158 1159 /* move offset to start of next folio in range */ 1160 start_byte = folio_pos(folio) + folio_size(folio); 1161 folio_unlock(folio); 1162 folio_put(folio); 1163 } 1164 } 1165 1166 /* 1167 * When a short write occurs, the filesystem might need to use ->iomap_end 1168 * to remove space reservations created in ->iomap_begin. 1169 * 1170 * For filesystems that use delayed allocation, there can be dirty pages over 1171 * the delalloc extent outside the range of a short write but still within the 1172 * delalloc extent allocated for this iomap if the write raced with page 1173 * faults. 1174 * 1175 * Punch out all the delalloc blocks in the range given except for those that 1176 * have dirty data still pending in the page cache - those are going to be 1177 * written and so must still retain the delalloc backing for writeback. 1178 * 1179 * The punch() callback *must* only punch delalloc extents in the range passed 1180 * to it. It must skip over all other types of extents in the range and leave 1181 * them completely unchanged. It must do this punch atomically with respect to 1182 * other extent modifications. 1183 * 1184 * The punch() callback may be called with a folio locked to prevent writeback 1185 * extent allocation racing at the edge of the range we are currently punching. 1186 * The locked folio may or may not cover the range being punched, so it is not 1187 * safe for the punch() callback to lock folios itself. 1188 * 1189 * Lock order is: 1190 * 1191 * inode->i_rwsem (shared or exclusive) 1192 * inode->i_mapping->invalidate_lock (exclusive) 1193 * folio_lock() 1194 * ->punch 1195 * internal filesystem allocation lock 1196 * 1197 * As we are scanning the page cache for data, we don't need to reimplement the 1198 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1199 * start and end of data ranges correctly even for sub-folio block sizes. This 1200 * byte range based iteration is especially convenient because it means we 1201 * don't have to care about variable size folios, nor where the start or end of 1202 * the data range lies within a folio, if they lie within the same folio or even 1203 * if there are multiple discontiguous data ranges within the folio. 1204 * 1205 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1206 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1207 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1208 * date. A write page fault can then mark it dirty. If we then fail a write() 1209 * beyond EOF into that up to date cached range, we allocate a delalloc block 1210 * beyond EOF and then have to punch it out. Because the range is up to date, 1211 * mapping_seek_hole_data() will return it, and we will skip the punch because 1212 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1213 * beyond EOF in this case as writeback will never write back and covert that 1214 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1215 * resulting in always punching out the range from the EOF to the end of the 1216 * range the iomap spans. 1217 * 1218 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1219 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1220 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1221 * returns the end of the data range (data_end). Using closed intervals would 1222 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1223 * the code to subtle off-by-one bugs.... 1224 */ 1225 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, 1226 loff_t end_byte, unsigned flags, struct iomap *iomap, 1227 iomap_punch_t punch) 1228 { 1229 loff_t punch_start_byte = start_byte; 1230 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1231 1232 /* 1233 * The caller must hold invalidate_lock to avoid races with page faults 1234 * re-instantiating folios and dirtying them via ->page_mkwrite whilst 1235 * we walk the cache and perform delalloc extent removal. Failing to do 1236 * this can leave dirty pages with no space reservation in the cache. 1237 */ 1238 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock); 1239 1240 while (start_byte < scan_end_byte) { 1241 loff_t data_end; 1242 1243 start_byte = mapping_seek_hole_data(inode->i_mapping, 1244 start_byte, scan_end_byte, SEEK_DATA); 1245 /* 1246 * If there is no more data to scan, all that is left is to 1247 * punch out the remaining range. 1248 * 1249 * Note that mapping_seek_hole_data is only supposed to return 1250 * either an offset or -ENXIO, so WARN on any other error as 1251 * that would be an API change without updating the callers. 1252 */ 1253 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1254 break; 1255 if (WARN_ON_ONCE(start_byte < 0)) 1256 return; 1257 WARN_ON_ONCE(start_byte < punch_start_byte); 1258 WARN_ON_ONCE(start_byte > scan_end_byte); 1259 1260 /* 1261 * We find the end of this contiguous cached data range by 1262 * seeking from start_byte to the beginning of the next hole. 1263 */ 1264 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1265 scan_end_byte, SEEK_HOLE); 1266 if (WARN_ON_ONCE(data_end < 0)) 1267 return; 1268 1269 /* 1270 * If we race with post-direct I/O invalidation of the page cache, 1271 * there might be no data left at start_byte. 1272 */ 1273 if (data_end == start_byte) 1274 continue; 1275 1276 WARN_ON_ONCE(data_end < start_byte); 1277 WARN_ON_ONCE(data_end > scan_end_byte); 1278 1279 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, 1280 data_end, iomap, punch); 1281 1282 /* The next data search starts at the end of this one. */ 1283 start_byte = data_end; 1284 } 1285 1286 if (punch_start_byte < end_byte) 1287 punch(inode, punch_start_byte, end_byte - punch_start_byte, 1288 iomap); 1289 } 1290 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release); 1291 1292 static int iomap_unshare_iter(struct iomap_iter *iter) 1293 { 1294 struct iomap *iomap = &iter->iomap; 1295 u64 bytes = iomap_length(iter); 1296 int status; 1297 1298 if (!iomap_want_unshare_iter(iter)) 1299 return iomap_iter_advance(iter, &bytes); 1300 1301 do { 1302 struct folio *folio; 1303 size_t offset; 1304 bool ret; 1305 1306 bytes = min_t(u64, SIZE_MAX, bytes); 1307 status = iomap_write_begin(iter, &folio, &offset, &bytes); 1308 if (unlikely(status)) 1309 return status; 1310 if (iomap->flags & IOMAP_F_STALE) 1311 break; 1312 1313 ret = iomap_write_end(iter, bytes, bytes, folio); 1314 __iomap_put_folio(iter, bytes, folio); 1315 if (WARN_ON_ONCE(!ret)) 1316 return -EIO; 1317 1318 cond_resched(); 1319 1320 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1321 1322 status = iomap_iter_advance(iter, &bytes); 1323 if (status) 1324 break; 1325 } while (bytes > 0); 1326 1327 return status; 1328 } 1329 1330 int 1331 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1332 const struct iomap_ops *ops) 1333 { 1334 struct iomap_iter iter = { 1335 .inode = inode, 1336 .pos = pos, 1337 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1338 }; 1339 loff_t size = i_size_read(inode); 1340 int ret; 1341 1342 if (pos < 0 || pos >= size) 1343 return 0; 1344 1345 iter.len = min(len, size - pos); 1346 while ((ret = iomap_iter(&iter, ops)) > 0) 1347 iter.status = iomap_unshare_iter(&iter); 1348 return ret; 1349 } 1350 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1351 1352 /* 1353 * Flush the remaining range of the iter and mark the current mapping stale. 1354 * This is used when zero range sees an unwritten mapping that may have had 1355 * dirty pagecache over it. 1356 */ 1357 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) 1358 { 1359 struct address_space *mapping = i->inode->i_mapping; 1360 loff_t end = i->pos + i->len - 1; 1361 1362 i->iomap.flags |= IOMAP_F_STALE; 1363 return filemap_write_and_wait_range(mapping, i->pos, end); 1364 } 1365 1366 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1367 { 1368 u64 bytes = iomap_length(iter); 1369 int status; 1370 1371 do { 1372 struct folio *folio; 1373 size_t offset; 1374 bool ret; 1375 1376 bytes = min_t(u64, SIZE_MAX, bytes); 1377 status = iomap_write_begin(iter, &folio, &offset, &bytes); 1378 if (status) 1379 return status; 1380 if (iter->iomap.flags & IOMAP_F_STALE) 1381 break; 1382 1383 /* warn about zeroing folios beyond eof that won't write back */ 1384 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size); 1385 1386 folio_zero_range(folio, offset, bytes); 1387 folio_mark_accessed(folio); 1388 1389 ret = iomap_write_end(iter, bytes, bytes, folio); 1390 __iomap_put_folio(iter, bytes, folio); 1391 if (WARN_ON_ONCE(!ret)) 1392 return -EIO; 1393 1394 status = iomap_iter_advance(iter, &bytes); 1395 if (status) 1396 break; 1397 } while (bytes > 0); 1398 1399 if (did_zero) 1400 *did_zero = true; 1401 return status; 1402 } 1403 1404 int 1405 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1406 const struct iomap_ops *ops, void *private) 1407 { 1408 struct iomap_iter iter = { 1409 .inode = inode, 1410 .pos = pos, 1411 .len = len, 1412 .flags = IOMAP_ZERO, 1413 .private = private, 1414 }; 1415 struct address_space *mapping = inode->i_mapping; 1416 unsigned int blocksize = i_blocksize(inode); 1417 unsigned int off = pos & (blocksize - 1); 1418 loff_t plen = min_t(loff_t, len, blocksize - off); 1419 int ret; 1420 bool range_dirty; 1421 1422 /* 1423 * Zero range can skip mappings that are zero on disk so long as 1424 * pagecache is clean. If pagecache was dirty prior to zero range, the 1425 * mapping converts on writeback completion and so must be zeroed. 1426 * 1427 * The simplest way to deal with this across a range is to flush 1428 * pagecache and process the updated mappings. To avoid excessive 1429 * flushing on partial eof zeroing, special case it to zero the 1430 * unaligned start portion if already dirty in pagecache. 1431 */ 1432 if (off && 1433 filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) { 1434 iter.len = plen; 1435 while ((ret = iomap_iter(&iter, ops)) > 0) 1436 iter.status = iomap_zero_iter(&iter, did_zero); 1437 1438 iter.len = len - (iter.pos - pos); 1439 if (ret || !iter.len) 1440 return ret; 1441 } 1442 1443 /* 1444 * To avoid an unconditional flush, check pagecache state and only flush 1445 * if dirty and the fs returns a mapping that might convert on 1446 * writeback. 1447 */ 1448 range_dirty = filemap_range_needs_writeback(inode->i_mapping, 1449 iter.pos, iter.pos + iter.len - 1); 1450 while ((ret = iomap_iter(&iter, ops)) > 0) { 1451 const struct iomap *srcmap = iomap_iter_srcmap(&iter); 1452 1453 if (srcmap->type == IOMAP_HOLE || 1454 srcmap->type == IOMAP_UNWRITTEN) { 1455 s64 status; 1456 1457 if (range_dirty) { 1458 range_dirty = false; 1459 status = iomap_zero_iter_flush_and_stale(&iter); 1460 } else { 1461 status = iomap_iter_advance_full(&iter); 1462 } 1463 iter.status = status; 1464 continue; 1465 } 1466 1467 iter.status = iomap_zero_iter(&iter, did_zero); 1468 } 1469 return ret; 1470 } 1471 EXPORT_SYMBOL_GPL(iomap_zero_range); 1472 1473 int 1474 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1475 const struct iomap_ops *ops, void *private) 1476 { 1477 unsigned int blocksize = i_blocksize(inode); 1478 unsigned int off = pos & (blocksize - 1); 1479 1480 /* Block boundary? Nothing to do */ 1481 if (!off) 1482 return 0; 1483 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops, 1484 private); 1485 } 1486 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1487 1488 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1489 struct folio *folio) 1490 { 1491 loff_t length = iomap_length(iter); 1492 int ret; 1493 1494 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1495 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1496 &iter->iomap); 1497 if (ret) 1498 return ret; 1499 block_commit_write(folio, 0, length); 1500 } else { 1501 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1502 folio_mark_dirty(folio); 1503 } 1504 1505 return iomap_iter_advance(iter, &length); 1506 } 1507 1508 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops, 1509 void *private) 1510 { 1511 struct iomap_iter iter = { 1512 .inode = file_inode(vmf->vma->vm_file), 1513 .flags = IOMAP_WRITE | IOMAP_FAULT, 1514 .private = private, 1515 }; 1516 struct folio *folio = page_folio(vmf->page); 1517 ssize_t ret; 1518 1519 folio_lock(folio); 1520 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1521 if (ret < 0) 1522 goto out_unlock; 1523 iter.pos = folio_pos(folio); 1524 iter.len = ret; 1525 while ((ret = iomap_iter(&iter, ops)) > 0) 1526 iter.status = iomap_folio_mkwrite_iter(&iter, folio); 1527 1528 if (ret < 0) 1529 goto out_unlock; 1530 folio_wait_stable(folio); 1531 return VM_FAULT_LOCKED; 1532 out_unlock: 1533 folio_unlock(folio); 1534 return vmf_fs_error(ret); 1535 } 1536 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1537 1538 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1539 size_t len) 1540 { 1541 struct iomap_folio_state *ifs = folio->private; 1542 1543 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1544 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1545 1546 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1547 folio_end_writeback(folio); 1548 } 1549 1550 /* 1551 * We're now finished for good with this ioend structure. Update the page 1552 * state, release holds on bios, and finally free up memory. Do not use the 1553 * ioend after this. 1554 */ 1555 u32 iomap_finish_ioend_buffered(struct iomap_ioend *ioend) 1556 { 1557 struct inode *inode = ioend->io_inode; 1558 struct bio *bio = &ioend->io_bio; 1559 struct folio_iter fi; 1560 u32 folio_count = 0; 1561 1562 if (ioend->io_error) { 1563 mapping_set_error(inode->i_mapping, ioend->io_error); 1564 if (!bio_flagged(bio, BIO_QUIET)) { 1565 pr_err_ratelimited( 1566 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1567 inode->i_sb->s_id, inode->i_ino, 1568 ioend->io_offset, ioend->io_sector); 1569 } 1570 } 1571 1572 /* walk all folios in bio, ending page IO on them */ 1573 bio_for_each_folio_all(fi, bio) { 1574 iomap_finish_folio_write(inode, fi.folio, fi.length); 1575 folio_count++; 1576 } 1577 1578 bio_put(bio); /* frees the ioend */ 1579 return folio_count; 1580 } 1581 1582 static void iomap_writepage_end_bio(struct bio *bio) 1583 { 1584 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 1585 1586 ioend->io_error = blk_status_to_errno(bio->bi_status); 1587 iomap_finish_ioend_buffered(ioend); 1588 } 1589 1590 /* 1591 * Submit an ioend. 1592 * 1593 * If @error is non-zero, it means that we have a situation where some part of 1594 * the submission process has failed after we've marked pages for writeback. 1595 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1596 * with the error status here to run the normal I/O completion handler to clear 1597 * the writeback bit and let the file system proess the errors. 1598 */ 1599 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1600 { 1601 if (!wpc->ioend) 1602 return error; 1603 1604 /* 1605 * Let the file systems prepare the I/O submission and hook in an I/O 1606 * comletion handler. This also needs to happen in case after a 1607 * failure happened so that the file system end I/O handler gets called 1608 * to clean up. 1609 */ 1610 if (wpc->ops->submit_ioend) { 1611 error = wpc->ops->submit_ioend(wpc, error); 1612 } else { 1613 if (WARN_ON_ONCE(wpc->iomap.flags & IOMAP_F_ANON_WRITE)) 1614 error = -EIO; 1615 if (!error) 1616 submit_bio(&wpc->ioend->io_bio); 1617 } 1618 1619 if (error) { 1620 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1621 bio_endio(&wpc->ioend->io_bio); 1622 } 1623 1624 wpc->ioend = NULL; 1625 return error; 1626 } 1627 1628 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1629 struct writeback_control *wbc, struct inode *inode, loff_t pos, 1630 u16 ioend_flags) 1631 { 1632 struct bio *bio; 1633 1634 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1635 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1636 GFP_NOFS, &iomap_ioend_bioset); 1637 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1638 bio->bi_end_io = iomap_writepage_end_bio; 1639 bio->bi_write_hint = inode->i_write_hint; 1640 wbc_init_bio(wbc, bio); 1641 wpc->nr_folios = 0; 1642 return iomap_init_ioend(inode, bio, pos, ioend_flags); 1643 } 1644 1645 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos, 1646 u16 ioend_flags) 1647 { 1648 if (ioend_flags & IOMAP_IOEND_BOUNDARY) 1649 return false; 1650 if ((ioend_flags & IOMAP_IOEND_NOMERGE_FLAGS) != 1651 (wpc->ioend->io_flags & IOMAP_IOEND_NOMERGE_FLAGS)) 1652 return false; 1653 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1654 return false; 1655 if (!(wpc->iomap.flags & IOMAP_F_ANON_WRITE) && 1656 iomap_sector(&wpc->iomap, pos) != 1657 bio_end_sector(&wpc->ioend->io_bio)) 1658 return false; 1659 /* 1660 * Limit ioend bio chain lengths to minimise IO completion latency. This 1661 * also prevents long tight loops ending page writeback on all the 1662 * folios in the ioend. 1663 */ 1664 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1665 return false; 1666 return true; 1667 } 1668 1669 /* 1670 * Test to see if we have an existing ioend structure that we could append to 1671 * first; otherwise finish off the current ioend and start another. 1672 * 1673 * If a new ioend is created and cached, the old ioend is submitted to the block 1674 * layer instantly. Batching optimisations are provided by higher level block 1675 * plugging. 1676 * 1677 * At the end of a writeback pass, there will be a cached ioend remaining on the 1678 * writepage context that the caller will need to submit. 1679 */ 1680 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1681 struct writeback_control *wbc, struct folio *folio, 1682 struct inode *inode, loff_t pos, loff_t end_pos, 1683 unsigned len) 1684 { 1685 struct iomap_folio_state *ifs = folio->private; 1686 size_t poff = offset_in_folio(folio, pos); 1687 unsigned int ioend_flags = 0; 1688 int error; 1689 1690 if (wpc->iomap.type == IOMAP_UNWRITTEN) 1691 ioend_flags |= IOMAP_IOEND_UNWRITTEN; 1692 if (wpc->iomap.flags & IOMAP_F_SHARED) 1693 ioend_flags |= IOMAP_IOEND_SHARED; 1694 if (folio_test_dropbehind(folio)) 1695 ioend_flags |= IOMAP_IOEND_DONTCACHE; 1696 if (pos == wpc->iomap.offset && (wpc->iomap.flags & IOMAP_F_BOUNDARY)) 1697 ioend_flags |= IOMAP_IOEND_BOUNDARY; 1698 1699 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, ioend_flags)) { 1700 new_ioend: 1701 error = iomap_submit_ioend(wpc, 0); 1702 if (error) 1703 return error; 1704 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos, 1705 ioend_flags); 1706 } 1707 1708 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1709 goto new_ioend; 1710 1711 if (ifs) 1712 atomic_add(len, &ifs->write_bytes_pending); 1713 1714 /* 1715 * Clamp io_offset and io_size to the incore EOF so that ondisk 1716 * file size updates in the ioend completion are byte-accurate. 1717 * This avoids recovering files with zeroed tail regions when 1718 * writeback races with appending writes: 1719 * 1720 * Thread 1: Thread 2: 1721 * ------------ ----------- 1722 * write [A, A+B] 1723 * update inode size to A+B 1724 * submit I/O [A, A+BS] 1725 * write [A+B, A+B+C] 1726 * update inode size to A+B+C 1727 * <I/O completes, updates disk size to min(A+B+C, A+BS)> 1728 * <power failure> 1729 * 1730 * After reboot: 1731 * 1) with A+B+C < A+BS, the file has zero padding in range 1732 * [A+B, A+B+C] 1733 * 1734 * |< Block Size (BS) >| 1735 * |DDDDDDDDDDDD0000000000000| 1736 * ^ ^ ^ 1737 * A A+B A+B+C 1738 * (EOF) 1739 * 1740 * 2) with A+B+C > A+BS, the file has zero padding in range 1741 * [A+B, A+BS] 1742 * 1743 * |< Block Size (BS) >|< Block Size (BS) >| 1744 * |DDDDDDDDDDDD0000000000000|00000000000000000000000000| 1745 * ^ ^ ^ ^ 1746 * A A+B A+BS A+B+C 1747 * (EOF) 1748 * 1749 * D = Valid Data 1750 * 0 = Zero Padding 1751 * 1752 * Note that this defeats the ability to chain the ioends of 1753 * appending writes. 1754 */ 1755 wpc->ioend->io_size += len; 1756 if (wpc->ioend->io_offset + wpc->ioend->io_size > end_pos) 1757 wpc->ioend->io_size = end_pos - wpc->ioend->io_offset; 1758 1759 wbc_account_cgroup_owner(wbc, folio, len); 1760 return 0; 1761 } 1762 1763 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1764 struct writeback_control *wbc, struct folio *folio, 1765 struct inode *inode, u64 pos, u64 end_pos, 1766 unsigned dirty_len, unsigned *count) 1767 { 1768 int error; 1769 1770 do { 1771 unsigned map_len; 1772 1773 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1774 if (error) 1775 break; 1776 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1777 1778 map_len = min_t(u64, dirty_len, 1779 wpc->iomap.offset + wpc->iomap.length - pos); 1780 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1781 1782 switch (wpc->iomap.type) { 1783 case IOMAP_INLINE: 1784 WARN_ON_ONCE(1); 1785 error = -EIO; 1786 break; 1787 case IOMAP_HOLE: 1788 break; 1789 default: 1790 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1791 end_pos, map_len); 1792 if (!error) 1793 (*count)++; 1794 break; 1795 } 1796 dirty_len -= map_len; 1797 pos += map_len; 1798 } while (dirty_len && !error); 1799 1800 /* 1801 * We cannot cancel the ioend directly here on error. We may have 1802 * already set other pages under writeback and hence we have to run I/O 1803 * completion to mark the error state of the pages under writeback 1804 * appropriately. 1805 * 1806 * Just let the file system know what portion of the folio failed to 1807 * map. 1808 */ 1809 if (error && wpc->ops->discard_folio) 1810 wpc->ops->discard_folio(folio, pos); 1811 return error; 1812 } 1813 1814 /* 1815 * Check interaction of the folio with the file end. 1816 * 1817 * If the folio is entirely beyond i_size, return false. If it straddles 1818 * i_size, adjust end_pos and zero all data beyond i_size. 1819 */ 1820 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1821 u64 *end_pos) 1822 { 1823 u64 isize = i_size_read(inode); 1824 1825 if (*end_pos > isize) { 1826 size_t poff = offset_in_folio(folio, isize); 1827 pgoff_t end_index = isize >> PAGE_SHIFT; 1828 1829 /* 1830 * If the folio is entirely ouside of i_size, skip it. 1831 * 1832 * This can happen due to a truncate operation that is in 1833 * progress and in that case truncate will finish it off once 1834 * we've dropped the folio lock. 1835 * 1836 * Note that the pgoff_t used for end_index is an unsigned long. 1837 * If the given offset is greater than 16TB on a 32-bit system, 1838 * then if we checked if the folio is fully outside i_size with 1839 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1840 * overflow and evaluate to 0. Hence this folio would be 1841 * redirtied and written out repeatedly, which would result in 1842 * an infinite loop; the user program performing this operation 1843 * would hang. Instead, we can detect this situation by 1844 * checking if the folio is totally beyond i_size or if its 1845 * offset is just equal to the EOF. 1846 */ 1847 if (folio->index > end_index || 1848 (folio->index == end_index && poff == 0)) 1849 return false; 1850 1851 /* 1852 * The folio straddles i_size. 1853 * 1854 * It must be zeroed out on each and every writepage invocation 1855 * because it may be mmapped: 1856 * 1857 * A file is mapped in multiples of the page size. For a 1858 * file that is not a multiple of the page size, the 1859 * remaining memory is zeroed when mapped, and writes to that 1860 * region are not written out to the file. 1861 * 1862 * Also adjust the end_pos to the end of file and skip writeback 1863 * for all blocks entirely beyond i_size. 1864 */ 1865 folio_zero_segment(folio, poff, folio_size(folio)); 1866 *end_pos = isize; 1867 } 1868 1869 return true; 1870 } 1871 1872 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1873 struct writeback_control *wbc, struct folio *folio) 1874 { 1875 struct iomap_folio_state *ifs = folio->private; 1876 struct inode *inode = folio->mapping->host; 1877 u64 pos = folio_pos(folio); 1878 u64 end_pos = pos + folio_size(folio); 1879 u64 end_aligned = 0; 1880 unsigned count = 0; 1881 int error = 0; 1882 u32 rlen; 1883 1884 WARN_ON_ONCE(!folio_test_locked(folio)); 1885 WARN_ON_ONCE(folio_test_dirty(folio)); 1886 WARN_ON_ONCE(folio_test_writeback(folio)); 1887 1888 trace_iomap_writepage(inode, pos, folio_size(folio)); 1889 1890 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1891 folio_unlock(folio); 1892 return 0; 1893 } 1894 WARN_ON_ONCE(end_pos <= pos); 1895 1896 if (i_blocks_per_folio(inode, folio) > 1) { 1897 if (!ifs) { 1898 ifs = ifs_alloc(inode, folio, 0); 1899 iomap_set_range_dirty(folio, 0, end_pos - pos); 1900 } 1901 1902 /* 1903 * Keep the I/O completion handler from clearing the writeback 1904 * bit until we have submitted all blocks by adding a bias to 1905 * ifs->write_bytes_pending, which is dropped after submitting 1906 * all blocks. 1907 */ 1908 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1909 atomic_inc(&ifs->write_bytes_pending); 1910 } 1911 1912 /* 1913 * Set the writeback bit ASAP, as the I/O completion for the single 1914 * block per folio case happen hit as soon as we're submitting the bio. 1915 */ 1916 folio_start_writeback(folio); 1917 1918 /* 1919 * Walk through the folio to find dirty areas to write back. 1920 */ 1921 end_aligned = round_up(end_pos, i_blocksize(inode)); 1922 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) { 1923 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1924 pos, end_pos, rlen, &count); 1925 if (error) 1926 break; 1927 pos += rlen; 1928 } 1929 1930 if (count) 1931 wpc->nr_folios++; 1932 1933 /* 1934 * We can have dirty bits set past end of file in page_mkwrite path 1935 * while mapping the last partial folio. Hence it's better to clear 1936 * all the dirty bits in the folio here. 1937 */ 1938 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1939 1940 /* 1941 * Usually the writeback bit is cleared by the I/O completion handler. 1942 * But we may end up either not actually writing any blocks, or (when 1943 * there are multiple blocks in a folio) all I/O might have finished 1944 * already at this point. In that case we need to clear the writeback 1945 * bit ourselves right after unlocking the page. 1946 */ 1947 folio_unlock(folio); 1948 if (ifs) { 1949 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1950 folio_end_writeback(folio); 1951 } else { 1952 if (!count) 1953 folio_end_writeback(folio); 1954 } 1955 mapping_set_error(inode->i_mapping, error); 1956 return error; 1957 } 1958 1959 int 1960 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1961 struct iomap_writepage_ctx *wpc, 1962 const struct iomap_writeback_ops *ops) 1963 { 1964 struct folio *folio = NULL; 1965 int error; 1966 1967 /* 1968 * Writeback from reclaim context should never happen except in the case 1969 * of a VM regression so warn about it and refuse to write the data. 1970 */ 1971 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1972 PF_MEMALLOC)) 1973 return -EIO; 1974 1975 wpc->ops = ops; 1976 while ((folio = writeback_iter(mapping, wbc, folio, &error))) 1977 error = iomap_writepage_map(wpc, wbc, folio); 1978 return iomap_submit_ioend(wpc, error); 1979 } 1980 EXPORT_SYMBOL_GPL(iomap_writepages); 1981