1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 spinlock_t state_lock; 33 unsigned int read_bytes_pending; 34 atomic_t write_bytes_pending; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static bool ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 68 bitmap_set(ifs->state, first_blk, nr_blks); 69 return ifs_is_fully_uptodate(folio, ifs); 70 } 71 72 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 73 size_t len) 74 { 75 struct iomap_folio_state *ifs = folio->private; 76 unsigned long flags; 77 bool uptodate = true; 78 79 if (ifs) { 80 spin_lock_irqsave(&ifs->state_lock, flags); 81 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 82 spin_unlock_irqrestore(&ifs->state_lock, flags); 83 } 84 85 if (uptodate) 86 folio_mark_uptodate(folio); 87 } 88 89 static inline bool ifs_block_is_dirty(struct folio *folio, 90 struct iomap_folio_state *ifs, int block) 91 { 92 struct inode *inode = folio->mapping->host; 93 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 94 95 return test_bit(block + blks_per_folio, ifs->state); 96 } 97 98 static unsigned ifs_find_dirty_range(struct folio *folio, 99 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 100 { 101 struct inode *inode = folio->mapping->host; 102 unsigned start_blk = 103 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 104 unsigned end_blk = min_not_zero( 105 offset_in_folio(folio, range_end) >> inode->i_blkbits, 106 i_blocks_per_folio(inode, folio)); 107 unsigned nblks = 1; 108 109 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 110 if (++start_blk == end_blk) 111 return 0; 112 113 while (start_blk + nblks < end_blk) { 114 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 115 break; 116 nblks++; 117 } 118 119 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 120 return nblks << inode->i_blkbits; 121 } 122 123 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 124 u64 range_end) 125 { 126 struct iomap_folio_state *ifs = folio->private; 127 128 if (*range_start >= range_end) 129 return 0; 130 131 if (ifs) 132 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 133 return range_end - *range_start; 134 } 135 136 static void ifs_clear_range_dirty(struct folio *folio, 137 struct iomap_folio_state *ifs, size_t off, size_t len) 138 { 139 struct inode *inode = folio->mapping->host; 140 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 141 unsigned int first_blk = (off >> inode->i_blkbits); 142 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 143 unsigned int nr_blks = last_blk - first_blk + 1; 144 unsigned long flags; 145 146 spin_lock_irqsave(&ifs->state_lock, flags); 147 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 148 spin_unlock_irqrestore(&ifs->state_lock, flags); 149 } 150 151 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 152 { 153 struct iomap_folio_state *ifs = folio->private; 154 155 if (ifs) 156 ifs_clear_range_dirty(folio, ifs, off, len); 157 } 158 159 static void ifs_set_range_dirty(struct folio *folio, 160 struct iomap_folio_state *ifs, size_t off, size_t len) 161 { 162 struct inode *inode = folio->mapping->host; 163 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 164 unsigned int first_blk = (off >> inode->i_blkbits); 165 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 166 unsigned int nr_blks = last_blk - first_blk + 1; 167 unsigned long flags; 168 169 spin_lock_irqsave(&ifs->state_lock, flags); 170 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 171 spin_unlock_irqrestore(&ifs->state_lock, flags); 172 } 173 174 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 175 { 176 struct iomap_folio_state *ifs = folio->private; 177 178 if (ifs) 179 ifs_set_range_dirty(folio, ifs, off, len); 180 } 181 182 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 183 struct folio *folio, unsigned int flags) 184 { 185 struct iomap_folio_state *ifs = folio->private; 186 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 187 gfp_t gfp; 188 189 if (ifs || nr_blocks <= 1) 190 return ifs; 191 192 if (flags & IOMAP_NOWAIT) 193 gfp = GFP_NOWAIT; 194 else 195 gfp = GFP_NOFS | __GFP_NOFAIL; 196 197 /* 198 * ifs->state tracks two sets of state flags when the 199 * filesystem block size is smaller than the folio size. 200 * The first state tracks per-block uptodate and the 201 * second tracks per-block dirty state. 202 */ 203 ifs = kzalloc(struct_size(ifs, state, 204 BITS_TO_LONGS(2 * nr_blocks)), gfp); 205 if (!ifs) 206 return ifs; 207 208 spin_lock_init(&ifs->state_lock); 209 if (folio_test_uptodate(folio)) 210 bitmap_set(ifs->state, 0, nr_blocks); 211 if (folio_test_dirty(folio)) 212 bitmap_set(ifs->state, nr_blocks, nr_blocks); 213 folio_attach_private(folio, ifs); 214 215 return ifs; 216 } 217 218 static void ifs_free(struct folio *folio) 219 { 220 struct iomap_folio_state *ifs = folio_detach_private(folio); 221 222 if (!ifs) 223 return; 224 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 225 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 226 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 227 folio_test_uptodate(folio)); 228 kfree(ifs); 229 } 230 231 /* 232 * Calculate the range inside the folio that we actually need to read. 233 */ 234 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 235 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 236 { 237 struct iomap_folio_state *ifs = folio->private; 238 loff_t orig_pos = *pos; 239 loff_t isize = i_size_read(inode); 240 unsigned block_bits = inode->i_blkbits; 241 unsigned block_size = (1 << block_bits); 242 size_t poff = offset_in_folio(folio, *pos); 243 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 244 unsigned first = poff >> block_bits; 245 unsigned last = (poff + plen - 1) >> block_bits; 246 247 /* 248 * If the block size is smaller than the page size, we need to check the 249 * per-block uptodate status and adjust the offset and length if needed 250 * to avoid reading in already uptodate ranges. 251 */ 252 if (ifs) { 253 unsigned int i; 254 255 /* move forward for each leading block marked uptodate */ 256 for (i = first; i <= last; i++) { 257 if (!ifs_block_is_uptodate(ifs, i)) 258 break; 259 *pos += block_size; 260 poff += block_size; 261 plen -= block_size; 262 first++; 263 } 264 265 /* truncate len if we find any trailing uptodate block(s) */ 266 for ( ; i <= last; i++) { 267 if (ifs_block_is_uptodate(ifs, i)) { 268 plen -= (last - i + 1) * block_size; 269 last = i - 1; 270 break; 271 } 272 } 273 } 274 275 /* 276 * If the extent spans the block that contains the i_size, we need to 277 * handle both halves separately so that we properly zero data in the 278 * page cache for blocks that are entirely outside of i_size. 279 */ 280 if (orig_pos <= isize && orig_pos + length > isize) { 281 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 282 283 if (first <= end && last > end) 284 plen -= (last - end) * block_size; 285 } 286 287 *offp = poff; 288 *lenp = plen; 289 } 290 291 static void iomap_finish_folio_read(struct folio *folio, size_t off, 292 size_t len, int error) 293 { 294 struct iomap_folio_state *ifs = folio->private; 295 bool uptodate = !error; 296 bool finished = true; 297 298 if (ifs) { 299 unsigned long flags; 300 301 spin_lock_irqsave(&ifs->state_lock, flags); 302 if (!error) 303 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 304 ifs->read_bytes_pending -= len; 305 finished = !ifs->read_bytes_pending; 306 spin_unlock_irqrestore(&ifs->state_lock, flags); 307 } 308 309 if (error) 310 folio_set_error(folio); 311 if (finished) 312 folio_end_read(folio, uptodate); 313 } 314 315 static void iomap_read_end_io(struct bio *bio) 316 { 317 int error = blk_status_to_errno(bio->bi_status); 318 struct folio_iter fi; 319 320 bio_for_each_folio_all(fi, bio) 321 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 322 bio_put(bio); 323 } 324 325 struct iomap_readpage_ctx { 326 struct folio *cur_folio; 327 bool cur_folio_in_bio; 328 struct bio *bio; 329 struct readahead_control *rac; 330 }; 331 332 /** 333 * iomap_read_inline_data - copy inline data into the page cache 334 * @iter: iteration structure 335 * @folio: folio to copy to 336 * 337 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 338 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 339 * Returns zero for success to complete the read, or the usual negative errno. 340 */ 341 static int iomap_read_inline_data(const struct iomap_iter *iter, 342 struct folio *folio) 343 { 344 const struct iomap *iomap = iomap_iter_srcmap(iter); 345 size_t size = i_size_read(iter->inode) - iomap->offset; 346 size_t offset = offset_in_folio(folio, iomap->offset); 347 348 if (folio_test_uptodate(folio)) 349 return 0; 350 351 if (WARN_ON_ONCE(size > iomap->length)) 352 return -EIO; 353 if (offset > 0) 354 ifs_alloc(iter->inode, folio, iter->flags); 355 356 folio_fill_tail(folio, offset, iomap->inline_data, size); 357 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 358 return 0; 359 } 360 361 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 362 loff_t pos) 363 { 364 const struct iomap *srcmap = iomap_iter_srcmap(iter); 365 366 return srcmap->type != IOMAP_MAPPED || 367 (srcmap->flags & IOMAP_F_NEW) || 368 pos >= i_size_read(iter->inode); 369 } 370 371 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 372 struct iomap_readpage_ctx *ctx, loff_t offset) 373 { 374 const struct iomap *iomap = &iter->iomap; 375 loff_t pos = iter->pos + offset; 376 loff_t length = iomap_length(iter) - offset; 377 struct folio *folio = ctx->cur_folio; 378 struct iomap_folio_state *ifs; 379 loff_t orig_pos = pos; 380 size_t poff, plen; 381 sector_t sector; 382 383 if (iomap->type == IOMAP_INLINE) 384 return iomap_read_inline_data(iter, folio); 385 386 /* zero post-eof blocks as the page may be mapped */ 387 ifs = ifs_alloc(iter->inode, folio, iter->flags); 388 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 389 if (plen == 0) 390 goto done; 391 392 if (iomap_block_needs_zeroing(iter, pos)) { 393 folio_zero_range(folio, poff, plen); 394 iomap_set_range_uptodate(folio, poff, plen); 395 goto done; 396 } 397 398 ctx->cur_folio_in_bio = true; 399 if (ifs) { 400 spin_lock_irq(&ifs->state_lock); 401 ifs->read_bytes_pending += plen; 402 spin_unlock_irq(&ifs->state_lock); 403 } 404 405 sector = iomap_sector(iomap, pos); 406 if (!ctx->bio || 407 bio_end_sector(ctx->bio) != sector || 408 !bio_add_folio(ctx->bio, folio, plen, poff)) { 409 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 410 gfp_t orig_gfp = gfp; 411 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 412 413 if (ctx->bio) 414 submit_bio(ctx->bio); 415 416 if (ctx->rac) /* same as readahead_gfp_mask */ 417 gfp |= __GFP_NORETRY | __GFP_NOWARN; 418 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 419 REQ_OP_READ, gfp); 420 /* 421 * If the bio_alloc fails, try it again for a single page to 422 * avoid having to deal with partial page reads. This emulates 423 * what do_mpage_read_folio does. 424 */ 425 if (!ctx->bio) { 426 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 427 orig_gfp); 428 } 429 if (ctx->rac) 430 ctx->bio->bi_opf |= REQ_RAHEAD; 431 ctx->bio->bi_iter.bi_sector = sector; 432 ctx->bio->bi_end_io = iomap_read_end_io; 433 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 434 } 435 436 done: 437 /* 438 * Move the caller beyond our range so that it keeps making progress. 439 * For that, we have to include any leading non-uptodate ranges, but 440 * we can skip trailing ones as they will be handled in the next 441 * iteration. 442 */ 443 return pos - orig_pos + plen; 444 } 445 446 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 447 { 448 struct iomap_iter iter = { 449 .inode = folio->mapping->host, 450 .pos = folio_pos(folio), 451 .len = folio_size(folio), 452 }; 453 struct iomap_readpage_ctx ctx = { 454 .cur_folio = folio, 455 }; 456 int ret; 457 458 trace_iomap_readpage(iter.inode, 1); 459 460 while ((ret = iomap_iter(&iter, ops)) > 0) 461 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 462 463 if (ret < 0) 464 folio_set_error(folio); 465 466 if (ctx.bio) { 467 submit_bio(ctx.bio); 468 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 469 } else { 470 WARN_ON_ONCE(ctx.cur_folio_in_bio); 471 folio_unlock(folio); 472 } 473 474 /* 475 * Just like mpage_readahead and block_read_full_folio, we always 476 * return 0 and just set the folio error flag on errors. This 477 * should be cleaned up throughout the stack eventually. 478 */ 479 return 0; 480 } 481 EXPORT_SYMBOL_GPL(iomap_read_folio); 482 483 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 484 struct iomap_readpage_ctx *ctx) 485 { 486 loff_t length = iomap_length(iter); 487 loff_t done, ret; 488 489 for (done = 0; done < length; done += ret) { 490 if (ctx->cur_folio && 491 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 492 if (!ctx->cur_folio_in_bio) 493 folio_unlock(ctx->cur_folio); 494 ctx->cur_folio = NULL; 495 } 496 if (!ctx->cur_folio) { 497 ctx->cur_folio = readahead_folio(ctx->rac); 498 ctx->cur_folio_in_bio = false; 499 } 500 ret = iomap_readpage_iter(iter, ctx, done); 501 if (ret <= 0) 502 return ret; 503 } 504 505 return done; 506 } 507 508 /** 509 * iomap_readahead - Attempt to read pages from a file. 510 * @rac: Describes the pages to be read. 511 * @ops: The operations vector for the filesystem. 512 * 513 * This function is for filesystems to call to implement their readahead 514 * address_space operation. 515 * 516 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 517 * blocks from disc), and may wait for it. The caller may be trying to 518 * access a different page, and so sleeping excessively should be avoided. 519 * It may allocate memory, but should avoid costly allocations. This 520 * function is called with memalloc_nofs set, so allocations will not cause 521 * the filesystem to be reentered. 522 */ 523 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 524 { 525 struct iomap_iter iter = { 526 .inode = rac->mapping->host, 527 .pos = readahead_pos(rac), 528 .len = readahead_length(rac), 529 }; 530 struct iomap_readpage_ctx ctx = { 531 .rac = rac, 532 }; 533 534 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 535 536 while (iomap_iter(&iter, ops) > 0) 537 iter.processed = iomap_readahead_iter(&iter, &ctx); 538 539 if (ctx.bio) 540 submit_bio(ctx.bio); 541 if (ctx.cur_folio) { 542 if (!ctx.cur_folio_in_bio) 543 folio_unlock(ctx.cur_folio); 544 } 545 } 546 EXPORT_SYMBOL_GPL(iomap_readahead); 547 548 /* 549 * iomap_is_partially_uptodate checks whether blocks within a folio are 550 * uptodate or not. 551 * 552 * Returns true if all blocks which correspond to the specified part 553 * of the folio are uptodate. 554 */ 555 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 556 { 557 struct iomap_folio_state *ifs = folio->private; 558 struct inode *inode = folio->mapping->host; 559 unsigned first, last, i; 560 561 if (!ifs) 562 return false; 563 564 /* Caller's range may extend past the end of this folio */ 565 count = min(folio_size(folio) - from, count); 566 567 /* First and last blocks in range within folio */ 568 first = from >> inode->i_blkbits; 569 last = (from + count - 1) >> inode->i_blkbits; 570 571 for (i = first; i <= last; i++) 572 if (!ifs_block_is_uptodate(ifs, i)) 573 return false; 574 return true; 575 } 576 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 577 578 /** 579 * iomap_get_folio - get a folio reference for writing 580 * @iter: iteration structure 581 * @pos: start offset of write 582 * @len: Suggested size of folio to create. 583 * 584 * Returns a locked reference to the folio at @pos, or an error pointer if the 585 * folio could not be obtained. 586 */ 587 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 588 { 589 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 590 591 if (iter->flags & IOMAP_NOWAIT) 592 fgp |= FGP_NOWAIT; 593 fgp |= fgf_set_order(len); 594 595 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 596 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 597 } 598 EXPORT_SYMBOL_GPL(iomap_get_folio); 599 600 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 601 { 602 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 603 folio_size(folio)); 604 605 /* 606 * If the folio is dirty, we refuse to release our metadata because 607 * it may be partially dirty. Once we track per-block dirty state, 608 * we can release the metadata if every block is dirty. 609 */ 610 if (folio_test_dirty(folio)) 611 return false; 612 ifs_free(folio); 613 return true; 614 } 615 EXPORT_SYMBOL_GPL(iomap_release_folio); 616 617 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 618 { 619 trace_iomap_invalidate_folio(folio->mapping->host, 620 folio_pos(folio) + offset, len); 621 622 /* 623 * If we're invalidating the entire folio, clear the dirty state 624 * from it and release it to avoid unnecessary buildup of the LRU. 625 */ 626 if (offset == 0 && len == folio_size(folio)) { 627 WARN_ON_ONCE(folio_test_writeback(folio)); 628 folio_cancel_dirty(folio); 629 ifs_free(folio); 630 } 631 } 632 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 633 634 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 635 { 636 struct inode *inode = mapping->host; 637 size_t len = folio_size(folio); 638 639 ifs_alloc(inode, folio, 0); 640 iomap_set_range_dirty(folio, 0, len); 641 return filemap_dirty_folio(mapping, folio); 642 } 643 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 644 645 static void 646 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 647 { 648 loff_t i_size = i_size_read(inode); 649 650 /* 651 * Only truncate newly allocated pages beyoned EOF, even if the 652 * write started inside the existing inode size. 653 */ 654 if (pos + len > i_size) 655 truncate_pagecache_range(inode, max(pos, i_size), 656 pos + len - 1); 657 } 658 659 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 660 size_t poff, size_t plen, const struct iomap *iomap) 661 { 662 struct bio_vec bvec; 663 struct bio bio; 664 665 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 666 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 667 bio_add_folio_nofail(&bio, folio, plen, poff); 668 return submit_bio_wait(&bio); 669 } 670 671 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 672 size_t len, struct folio *folio) 673 { 674 const struct iomap *srcmap = iomap_iter_srcmap(iter); 675 struct iomap_folio_state *ifs; 676 loff_t block_size = i_blocksize(iter->inode); 677 loff_t block_start = round_down(pos, block_size); 678 loff_t block_end = round_up(pos + len, block_size); 679 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 680 size_t from = offset_in_folio(folio, pos), to = from + len; 681 size_t poff, plen; 682 683 /* 684 * If the write or zeroing completely overlaps the current folio, then 685 * entire folio will be dirtied so there is no need for 686 * per-block state tracking structures to be attached to this folio. 687 * For the unshare case, we must read in the ondisk contents because we 688 * are not changing pagecache contents. 689 */ 690 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 691 pos + len >= folio_pos(folio) + folio_size(folio)) 692 return 0; 693 694 ifs = ifs_alloc(iter->inode, folio, iter->flags); 695 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 696 return -EAGAIN; 697 698 if (folio_test_uptodate(folio)) 699 return 0; 700 folio_clear_error(folio); 701 702 do { 703 iomap_adjust_read_range(iter->inode, folio, &block_start, 704 block_end - block_start, &poff, &plen); 705 if (plen == 0) 706 break; 707 708 if (!(iter->flags & IOMAP_UNSHARE) && 709 (from <= poff || from >= poff + plen) && 710 (to <= poff || to >= poff + plen)) 711 continue; 712 713 if (iomap_block_needs_zeroing(iter, block_start)) { 714 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 715 return -EIO; 716 folio_zero_segments(folio, poff, from, to, poff + plen); 717 } else { 718 int status; 719 720 if (iter->flags & IOMAP_NOWAIT) 721 return -EAGAIN; 722 723 status = iomap_read_folio_sync(block_start, folio, 724 poff, plen, srcmap); 725 if (status) 726 return status; 727 } 728 iomap_set_range_uptodate(folio, poff, plen); 729 } while ((block_start += plen) < block_end); 730 731 return 0; 732 } 733 734 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 735 size_t len) 736 { 737 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 738 739 if (folio_ops && folio_ops->get_folio) 740 return folio_ops->get_folio(iter, pos, len); 741 else 742 return iomap_get_folio(iter, pos, len); 743 } 744 745 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 746 struct folio *folio) 747 { 748 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 749 750 if (folio_ops && folio_ops->put_folio) { 751 folio_ops->put_folio(iter->inode, pos, ret, folio); 752 } else { 753 folio_unlock(folio); 754 folio_put(folio); 755 } 756 } 757 758 static int iomap_write_begin_inline(const struct iomap_iter *iter, 759 struct folio *folio) 760 { 761 /* needs more work for the tailpacking case; disable for now */ 762 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 763 return -EIO; 764 return iomap_read_inline_data(iter, folio); 765 } 766 767 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 768 size_t len, struct folio **foliop) 769 { 770 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 771 const struct iomap *srcmap = iomap_iter_srcmap(iter); 772 struct folio *folio; 773 int status = 0; 774 775 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 776 if (srcmap != &iter->iomap) 777 BUG_ON(pos + len > srcmap->offset + srcmap->length); 778 779 if (fatal_signal_pending(current)) 780 return -EINTR; 781 782 if (!mapping_large_folio_support(iter->inode->i_mapping)) 783 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 784 785 folio = __iomap_get_folio(iter, pos, len); 786 if (IS_ERR(folio)) 787 return PTR_ERR(folio); 788 789 /* 790 * Now we have a locked folio, before we do anything with it we need to 791 * check that the iomap we have cached is not stale. The inode extent 792 * mapping can change due to concurrent IO in flight (e.g. 793 * IOMAP_UNWRITTEN state can change and memory reclaim could have 794 * reclaimed a previously partially written page at this index after IO 795 * completion before this write reaches this file offset) and hence we 796 * could do the wrong thing here (zero a page range incorrectly or fail 797 * to zero) and corrupt data. 798 */ 799 if (folio_ops && folio_ops->iomap_valid) { 800 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 801 &iter->iomap); 802 if (!iomap_valid) { 803 iter->iomap.flags |= IOMAP_F_STALE; 804 status = 0; 805 goto out_unlock; 806 } 807 } 808 809 if (pos + len > folio_pos(folio) + folio_size(folio)) 810 len = folio_pos(folio) + folio_size(folio) - pos; 811 812 if (srcmap->type == IOMAP_INLINE) 813 status = iomap_write_begin_inline(iter, folio); 814 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 815 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 816 else 817 status = __iomap_write_begin(iter, pos, len, folio); 818 819 if (unlikely(status)) 820 goto out_unlock; 821 822 *foliop = folio; 823 return 0; 824 825 out_unlock: 826 __iomap_put_folio(iter, pos, 0, folio); 827 iomap_write_failed(iter->inode, pos, len); 828 829 return status; 830 } 831 832 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 833 size_t copied, struct folio *folio) 834 { 835 flush_dcache_folio(folio); 836 837 /* 838 * The blocks that were entirely written will now be uptodate, so we 839 * don't have to worry about a read_folio reading them and overwriting a 840 * partial write. However, if we've encountered a short write and only 841 * partially written into a block, it will not be marked uptodate, so a 842 * read_folio might come in and destroy our partial write. 843 * 844 * Do the simplest thing and just treat any short write to a 845 * non-uptodate page as a zero-length write, and force the caller to 846 * redo the whole thing. 847 */ 848 if (unlikely(copied < len && !folio_test_uptodate(folio))) 849 return 0; 850 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 851 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 852 filemap_dirty_folio(inode->i_mapping, folio); 853 return copied; 854 } 855 856 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 857 struct folio *folio, loff_t pos, size_t copied) 858 { 859 const struct iomap *iomap = &iter->iomap; 860 void *addr; 861 862 WARN_ON_ONCE(!folio_test_uptodate(folio)); 863 BUG_ON(!iomap_inline_data_valid(iomap)); 864 865 flush_dcache_folio(folio); 866 addr = kmap_local_folio(folio, pos); 867 memcpy(iomap_inline_data(iomap, pos), addr, copied); 868 kunmap_local(addr); 869 870 mark_inode_dirty(iter->inode); 871 return copied; 872 } 873 874 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 875 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 876 size_t copied, struct folio *folio) 877 { 878 const struct iomap *srcmap = iomap_iter_srcmap(iter); 879 loff_t old_size = iter->inode->i_size; 880 size_t ret; 881 882 if (srcmap->type == IOMAP_INLINE) { 883 ret = iomap_write_end_inline(iter, folio, pos, copied); 884 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 885 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 886 copied, &folio->page, NULL); 887 } else { 888 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 889 } 890 891 /* 892 * Update the in-memory inode size after copying the data into the page 893 * cache. It's up to the file system to write the updated size to disk, 894 * preferably after I/O completion so that no stale data is exposed. 895 */ 896 if (pos + ret > old_size) { 897 i_size_write(iter->inode, pos + ret); 898 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 899 } 900 __iomap_put_folio(iter, pos, ret, folio); 901 902 if (old_size < pos) 903 pagecache_isize_extended(iter->inode, old_size, pos); 904 if (ret < len) 905 iomap_write_failed(iter->inode, pos + ret, len - ret); 906 return ret; 907 } 908 909 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 910 { 911 loff_t length = iomap_length(iter); 912 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER; 913 loff_t pos = iter->pos; 914 ssize_t written = 0; 915 long status = 0; 916 struct address_space *mapping = iter->inode->i_mapping; 917 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 918 919 do { 920 struct folio *folio; 921 size_t offset; /* Offset into folio */ 922 size_t bytes; /* Bytes to write to folio */ 923 size_t copied; /* Bytes copied from user */ 924 925 bytes = iov_iter_count(i); 926 retry: 927 offset = pos & (chunk - 1); 928 bytes = min(chunk - offset, bytes); 929 status = balance_dirty_pages_ratelimited_flags(mapping, 930 bdp_flags); 931 if (unlikely(status)) 932 break; 933 934 if (bytes > length) 935 bytes = length; 936 937 /* 938 * Bring in the user page that we'll copy from _first_. 939 * Otherwise there's a nasty deadlock on copying from the 940 * same page as we're writing to, without it being marked 941 * up-to-date. 942 * 943 * For async buffered writes the assumption is that the user 944 * page has already been faulted in. This can be optimized by 945 * faulting the user page. 946 */ 947 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 948 status = -EFAULT; 949 break; 950 } 951 952 status = iomap_write_begin(iter, pos, bytes, &folio); 953 if (unlikely(status)) 954 break; 955 if (iter->iomap.flags & IOMAP_F_STALE) 956 break; 957 958 offset = offset_in_folio(folio, pos); 959 if (bytes > folio_size(folio) - offset) 960 bytes = folio_size(folio) - offset; 961 962 if (mapping_writably_mapped(mapping)) 963 flush_dcache_folio(folio); 964 965 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 966 status = iomap_write_end(iter, pos, bytes, copied, folio); 967 968 if (unlikely(copied != status)) 969 iov_iter_revert(i, copied - status); 970 971 cond_resched(); 972 if (unlikely(status == 0)) { 973 /* 974 * A short copy made iomap_write_end() reject the 975 * thing entirely. Might be memory poisoning 976 * halfway through, might be a race with munmap, 977 * might be severe memory pressure. 978 */ 979 if (chunk > PAGE_SIZE) 980 chunk /= 2; 981 if (copied) { 982 bytes = copied; 983 goto retry; 984 } 985 } else { 986 pos += status; 987 written += status; 988 length -= status; 989 } 990 } while (iov_iter_count(i) && length); 991 992 if (status == -EAGAIN) { 993 iov_iter_revert(i, written); 994 return -EAGAIN; 995 } 996 return written ? written : status; 997 } 998 999 ssize_t 1000 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1001 const struct iomap_ops *ops) 1002 { 1003 struct iomap_iter iter = { 1004 .inode = iocb->ki_filp->f_mapping->host, 1005 .pos = iocb->ki_pos, 1006 .len = iov_iter_count(i), 1007 .flags = IOMAP_WRITE, 1008 }; 1009 ssize_t ret; 1010 1011 if (iocb->ki_flags & IOCB_NOWAIT) 1012 iter.flags |= IOMAP_NOWAIT; 1013 1014 while ((ret = iomap_iter(&iter, ops)) > 0) 1015 iter.processed = iomap_write_iter(&iter, i); 1016 1017 if (unlikely(iter.pos == iocb->ki_pos)) 1018 return ret; 1019 ret = iter.pos - iocb->ki_pos; 1020 iocb->ki_pos = iter.pos; 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1024 1025 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 1026 struct folio *folio, loff_t start_byte, loff_t end_byte, 1027 iomap_punch_t punch) 1028 { 1029 unsigned int first_blk, last_blk, i; 1030 loff_t last_byte; 1031 u8 blkbits = inode->i_blkbits; 1032 struct iomap_folio_state *ifs; 1033 int ret = 0; 1034 1035 /* 1036 * When we have per-block dirty tracking, there can be 1037 * blocks within a folio which are marked uptodate 1038 * but not dirty. In that case it is necessary to punch 1039 * out such blocks to avoid leaking any delalloc blocks. 1040 */ 1041 ifs = folio->private; 1042 if (!ifs) 1043 return ret; 1044 1045 last_byte = min_t(loff_t, end_byte - 1, 1046 folio_pos(folio) + folio_size(folio) - 1); 1047 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1048 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1049 for (i = first_blk; i <= last_blk; i++) { 1050 if (!ifs_block_is_dirty(folio, ifs, i)) { 1051 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1052 1 << blkbits); 1053 if (ret) 1054 return ret; 1055 } 1056 } 1057 1058 return ret; 1059 } 1060 1061 1062 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1063 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1064 iomap_punch_t punch) 1065 { 1066 int ret = 0; 1067 1068 if (!folio_test_dirty(folio)) 1069 return ret; 1070 1071 /* if dirty, punch up to offset */ 1072 if (start_byte > *punch_start_byte) { 1073 ret = punch(inode, *punch_start_byte, 1074 start_byte - *punch_start_byte); 1075 if (ret) 1076 return ret; 1077 } 1078 1079 /* Punch non-dirty blocks within folio */ 1080 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1081 end_byte, punch); 1082 if (ret) 1083 return ret; 1084 1085 /* 1086 * Make sure the next punch start is correctly bound to 1087 * the end of this data range, not the end of the folio. 1088 */ 1089 *punch_start_byte = min_t(loff_t, end_byte, 1090 folio_pos(folio) + folio_size(folio)); 1091 1092 return ret; 1093 } 1094 1095 /* 1096 * Scan the data range passed to us for dirty page cache folios. If we find a 1097 * dirty folio, punch out the preceding range and update the offset from which 1098 * the next punch will start from. 1099 * 1100 * We can punch out storage reservations under clean pages because they either 1101 * contain data that has been written back - in which case the delalloc punch 1102 * over that range is a no-op - or they have been read faults in which case they 1103 * contain zeroes and we can remove the delalloc backing range and any new 1104 * writes to those pages will do the normal hole filling operation... 1105 * 1106 * This makes the logic simple: we only need to keep the delalloc extents only 1107 * over the dirty ranges of the page cache. 1108 * 1109 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1110 * simplify range iterations. 1111 */ 1112 static int iomap_write_delalloc_scan(struct inode *inode, 1113 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1114 iomap_punch_t punch) 1115 { 1116 while (start_byte < end_byte) { 1117 struct folio *folio; 1118 int ret; 1119 1120 /* grab locked page */ 1121 folio = filemap_lock_folio(inode->i_mapping, 1122 start_byte >> PAGE_SHIFT); 1123 if (IS_ERR(folio)) { 1124 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1125 PAGE_SIZE; 1126 continue; 1127 } 1128 1129 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1130 start_byte, end_byte, punch); 1131 if (ret) { 1132 folio_unlock(folio); 1133 folio_put(folio); 1134 return ret; 1135 } 1136 1137 /* move offset to start of next folio in range */ 1138 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1139 folio_unlock(folio); 1140 folio_put(folio); 1141 } 1142 return 0; 1143 } 1144 1145 /* 1146 * Punch out all the delalloc blocks in the range given except for those that 1147 * have dirty data still pending in the page cache - those are going to be 1148 * written and so must still retain the delalloc backing for writeback. 1149 * 1150 * As we are scanning the page cache for data, we don't need to reimplement the 1151 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1152 * start and end of data ranges correctly even for sub-folio block sizes. This 1153 * byte range based iteration is especially convenient because it means we 1154 * don't have to care about variable size folios, nor where the start or end of 1155 * the data range lies within a folio, if they lie within the same folio or even 1156 * if there are multiple discontiguous data ranges within the folio. 1157 * 1158 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1159 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1160 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1161 * date. A write page fault can then mark it dirty. If we then fail a write() 1162 * beyond EOF into that up to date cached range, we allocate a delalloc block 1163 * beyond EOF and then have to punch it out. Because the range is up to date, 1164 * mapping_seek_hole_data() will return it, and we will skip the punch because 1165 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1166 * beyond EOF in this case as writeback will never write back and covert that 1167 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1168 * resulting in always punching out the range from the EOF to the end of the 1169 * range the iomap spans. 1170 * 1171 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1172 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1173 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1174 * returns the end of the data range (data_end). Using closed intervals would 1175 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1176 * the code to subtle off-by-one bugs.... 1177 */ 1178 static int iomap_write_delalloc_release(struct inode *inode, 1179 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1180 { 1181 loff_t punch_start_byte = start_byte; 1182 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1183 int error = 0; 1184 1185 /* 1186 * Lock the mapping to avoid races with page faults re-instantiating 1187 * folios and dirtying them via ->page_mkwrite whilst we walk the 1188 * cache and perform delalloc extent removal. Failing to do this can 1189 * leave dirty pages with no space reservation in the cache. 1190 */ 1191 filemap_invalidate_lock(inode->i_mapping); 1192 while (start_byte < scan_end_byte) { 1193 loff_t data_end; 1194 1195 start_byte = mapping_seek_hole_data(inode->i_mapping, 1196 start_byte, scan_end_byte, SEEK_DATA); 1197 /* 1198 * If there is no more data to scan, all that is left is to 1199 * punch out the remaining range. 1200 */ 1201 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1202 break; 1203 if (start_byte < 0) { 1204 error = start_byte; 1205 goto out_unlock; 1206 } 1207 WARN_ON_ONCE(start_byte < punch_start_byte); 1208 WARN_ON_ONCE(start_byte > scan_end_byte); 1209 1210 /* 1211 * We find the end of this contiguous cached data range by 1212 * seeking from start_byte to the beginning of the next hole. 1213 */ 1214 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1215 scan_end_byte, SEEK_HOLE); 1216 if (data_end < 0) { 1217 error = data_end; 1218 goto out_unlock; 1219 } 1220 WARN_ON_ONCE(data_end <= start_byte); 1221 WARN_ON_ONCE(data_end > scan_end_byte); 1222 1223 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1224 start_byte, data_end, punch); 1225 if (error) 1226 goto out_unlock; 1227 1228 /* The next data search starts at the end of this one. */ 1229 start_byte = data_end; 1230 } 1231 1232 if (punch_start_byte < end_byte) 1233 error = punch(inode, punch_start_byte, 1234 end_byte - punch_start_byte); 1235 out_unlock: 1236 filemap_invalidate_unlock(inode->i_mapping); 1237 return error; 1238 } 1239 1240 /* 1241 * When a short write occurs, the filesystem may need to remove reserved space 1242 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1243 * filesystems that use delayed allocation, we need to punch out delalloc 1244 * extents from the range that are not dirty in the page cache. As the write can 1245 * race with page faults, there can be dirty pages over the delalloc extent 1246 * outside the range of a short write but still within the delalloc extent 1247 * allocated for this iomap. 1248 * 1249 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1250 * simplify range iterations. 1251 * 1252 * The punch() callback *must* only punch delalloc extents in the range passed 1253 * to it. It must skip over all other types of extents in the range and leave 1254 * them completely unchanged. It must do this punch atomically with respect to 1255 * other extent modifications. 1256 * 1257 * The punch() callback may be called with a folio locked to prevent writeback 1258 * extent allocation racing at the edge of the range we are currently punching. 1259 * The locked folio may or may not cover the range being punched, so it is not 1260 * safe for the punch() callback to lock folios itself. 1261 * 1262 * Lock order is: 1263 * 1264 * inode->i_rwsem (shared or exclusive) 1265 * inode->i_mapping->invalidate_lock (exclusive) 1266 * folio_lock() 1267 * ->punch 1268 * internal filesystem allocation lock 1269 */ 1270 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1271 struct iomap *iomap, loff_t pos, loff_t length, 1272 ssize_t written, iomap_punch_t punch) 1273 { 1274 loff_t start_byte; 1275 loff_t end_byte; 1276 unsigned int blocksize = i_blocksize(inode); 1277 1278 if (iomap->type != IOMAP_DELALLOC) 1279 return 0; 1280 1281 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1282 if (!(iomap->flags & IOMAP_F_NEW)) 1283 return 0; 1284 1285 /* 1286 * start_byte refers to the first unused block after a short write. If 1287 * nothing was written, round offset down to point at the first block in 1288 * the range. 1289 */ 1290 if (unlikely(!written)) 1291 start_byte = round_down(pos, blocksize); 1292 else 1293 start_byte = round_up(pos + written, blocksize); 1294 end_byte = round_up(pos + length, blocksize); 1295 1296 /* Nothing to do if we've written the entire delalloc extent */ 1297 if (start_byte >= end_byte) 1298 return 0; 1299 1300 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1301 punch); 1302 } 1303 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1304 1305 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1306 { 1307 struct iomap *iomap = &iter->iomap; 1308 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1309 loff_t pos = iter->pos; 1310 loff_t length = iomap_length(iter); 1311 loff_t written = 0; 1312 1313 /* don't bother with blocks that are not shared to start with */ 1314 if (!(iomap->flags & IOMAP_F_SHARED)) 1315 return length; 1316 /* don't bother with holes or unwritten extents */ 1317 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1318 return length; 1319 1320 do { 1321 struct folio *folio; 1322 int status; 1323 size_t offset; 1324 size_t bytes = min_t(u64, SIZE_MAX, length); 1325 1326 status = iomap_write_begin(iter, pos, bytes, &folio); 1327 if (unlikely(status)) 1328 return status; 1329 if (iomap->flags & IOMAP_F_STALE) 1330 break; 1331 1332 offset = offset_in_folio(folio, pos); 1333 if (bytes > folio_size(folio) - offset) 1334 bytes = folio_size(folio) - offset; 1335 1336 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1337 if (WARN_ON_ONCE(bytes == 0)) 1338 return -EIO; 1339 1340 cond_resched(); 1341 1342 pos += bytes; 1343 written += bytes; 1344 length -= bytes; 1345 1346 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1347 } while (length > 0); 1348 1349 return written; 1350 } 1351 1352 int 1353 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1354 const struct iomap_ops *ops) 1355 { 1356 struct iomap_iter iter = { 1357 .inode = inode, 1358 .pos = pos, 1359 .len = len, 1360 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1361 }; 1362 int ret; 1363 1364 while ((ret = iomap_iter(&iter, ops)) > 0) 1365 iter.processed = iomap_unshare_iter(&iter); 1366 return ret; 1367 } 1368 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1369 1370 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1371 { 1372 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1373 loff_t pos = iter->pos; 1374 loff_t length = iomap_length(iter); 1375 loff_t written = 0; 1376 1377 /* already zeroed? we're done. */ 1378 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1379 return length; 1380 1381 do { 1382 struct folio *folio; 1383 int status; 1384 size_t offset; 1385 size_t bytes = min_t(u64, SIZE_MAX, length); 1386 1387 status = iomap_write_begin(iter, pos, bytes, &folio); 1388 if (status) 1389 return status; 1390 if (iter->iomap.flags & IOMAP_F_STALE) 1391 break; 1392 1393 offset = offset_in_folio(folio, pos); 1394 if (bytes > folio_size(folio) - offset) 1395 bytes = folio_size(folio) - offset; 1396 1397 folio_zero_range(folio, offset, bytes); 1398 folio_mark_accessed(folio); 1399 1400 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1401 if (WARN_ON_ONCE(bytes == 0)) 1402 return -EIO; 1403 1404 pos += bytes; 1405 length -= bytes; 1406 written += bytes; 1407 } while (length > 0); 1408 1409 if (did_zero) 1410 *did_zero = true; 1411 return written; 1412 } 1413 1414 int 1415 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1416 const struct iomap_ops *ops) 1417 { 1418 struct iomap_iter iter = { 1419 .inode = inode, 1420 .pos = pos, 1421 .len = len, 1422 .flags = IOMAP_ZERO, 1423 }; 1424 int ret; 1425 1426 while ((ret = iomap_iter(&iter, ops)) > 0) 1427 iter.processed = iomap_zero_iter(&iter, did_zero); 1428 return ret; 1429 } 1430 EXPORT_SYMBOL_GPL(iomap_zero_range); 1431 1432 int 1433 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1434 const struct iomap_ops *ops) 1435 { 1436 unsigned int blocksize = i_blocksize(inode); 1437 unsigned int off = pos & (blocksize - 1); 1438 1439 /* Block boundary? Nothing to do */ 1440 if (!off) 1441 return 0; 1442 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1443 } 1444 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1445 1446 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1447 struct folio *folio) 1448 { 1449 loff_t length = iomap_length(iter); 1450 int ret; 1451 1452 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1453 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1454 &iter->iomap); 1455 if (ret) 1456 return ret; 1457 block_commit_write(&folio->page, 0, length); 1458 } else { 1459 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1460 folio_mark_dirty(folio); 1461 } 1462 1463 return length; 1464 } 1465 1466 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1467 { 1468 struct iomap_iter iter = { 1469 .inode = file_inode(vmf->vma->vm_file), 1470 .flags = IOMAP_WRITE | IOMAP_FAULT, 1471 }; 1472 struct folio *folio = page_folio(vmf->page); 1473 ssize_t ret; 1474 1475 folio_lock(folio); 1476 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1477 if (ret < 0) 1478 goto out_unlock; 1479 iter.pos = folio_pos(folio); 1480 iter.len = ret; 1481 while ((ret = iomap_iter(&iter, ops)) > 0) 1482 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1483 1484 if (ret < 0) 1485 goto out_unlock; 1486 folio_wait_stable(folio); 1487 return VM_FAULT_LOCKED; 1488 out_unlock: 1489 folio_unlock(folio); 1490 return vmf_fs_error(ret); 1491 } 1492 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1493 1494 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1495 size_t len) 1496 { 1497 struct iomap_folio_state *ifs = folio->private; 1498 1499 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1500 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1501 1502 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1503 folio_end_writeback(folio); 1504 } 1505 1506 /* 1507 * We're now finished for good with this ioend structure. Update the page 1508 * state, release holds on bios, and finally free up memory. Do not use the 1509 * ioend after this. 1510 */ 1511 static u32 1512 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1513 { 1514 struct inode *inode = ioend->io_inode; 1515 struct bio *bio = &ioend->io_bio; 1516 struct folio_iter fi; 1517 u32 folio_count = 0; 1518 1519 if (error) { 1520 mapping_set_error(inode->i_mapping, error); 1521 if (!bio_flagged(bio, BIO_QUIET)) { 1522 pr_err_ratelimited( 1523 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1524 inode->i_sb->s_id, inode->i_ino, 1525 ioend->io_offset, ioend->io_sector); 1526 } 1527 } 1528 1529 /* walk all folios in bio, ending page IO on them */ 1530 bio_for_each_folio_all(fi, bio) { 1531 if (error) 1532 folio_set_error(fi.folio); 1533 iomap_finish_folio_write(inode, fi.folio, fi.length); 1534 folio_count++; 1535 } 1536 1537 bio_put(bio); /* frees the ioend */ 1538 return folio_count; 1539 } 1540 1541 /* 1542 * Ioend completion routine for merged bios. This can only be called from task 1543 * contexts as merged ioends can be of unbound length. Hence we have to break up 1544 * the writeback completions into manageable chunks to avoid long scheduler 1545 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1546 * good batch processing throughput without creating adverse scheduler latency 1547 * conditions. 1548 */ 1549 void 1550 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1551 { 1552 struct list_head tmp; 1553 u32 completions; 1554 1555 might_sleep(); 1556 1557 list_replace_init(&ioend->io_list, &tmp); 1558 completions = iomap_finish_ioend(ioend, error); 1559 1560 while (!list_empty(&tmp)) { 1561 if (completions > IOEND_BATCH_SIZE * 8) { 1562 cond_resched(); 1563 completions = 0; 1564 } 1565 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1566 list_del_init(&ioend->io_list); 1567 completions += iomap_finish_ioend(ioend, error); 1568 } 1569 } 1570 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1571 1572 /* 1573 * We can merge two adjacent ioends if they have the same set of work to do. 1574 */ 1575 static bool 1576 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1577 { 1578 if (ioend->io_bio.bi_status != next->io_bio.bi_status) 1579 return false; 1580 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1581 (next->io_flags & IOMAP_F_SHARED)) 1582 return false; 1583 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1584 (next->io_type == IOMAP_UNWRITTEN)) 1585 return false; 1586 if (ioend->io_offset + ioend->io_size != next->io_offset) 1587 return false; 1588 /* 1589 * Do not merge physically discontiguous ioends. The filesystem 1590 * completion functions will have to iterate the physical 1591 * discontiguities even if we merge the ioends at a logical level, so 1592 * we don't gain anything by merging physical discontiguities here. 1593 * 1594 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1595 * submission so does not point to the start sector of the bio at 1596 * completion. 1597 */ 1598 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1599 return false; 1600 return true; 1601 } 1602 1603 void 1604 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1605 { 1606 struct iomap_ioend *next; 1607 1608 INIT_LIST_HEAD(&ioend->io_list); 1609 1610 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1611 io_list))) { 1612 if (!iomap_ioend_can_merge(ioend, next)) 1613 break; 1614 list_move_tail(&next->io_list, &ioend->io_list); 1615 ioend->io_size += next->io_size; 1616 } 1617 } 1618 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1619 1620 static int 1621 iomap_ioend_compare(void *priv, const struct list_head *a, 1622 const struct list_head *b) 1623 { 1624 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1625 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1626 1627 if (ia->io_offset < ib->io_offset) 1628 return -1; 1629 if (ia->io_offset > ib->io_offset) 1630 return 1; 1631 return 0; 1632 } 1633 1634 void 1635 iomap_sort_ioends(struct list_head *ioend_list) 1636 { 1637 list_sort(NULL, ioend_list, iomap_ioend_compare); 1638 } 1639 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1640 1641 static void iomap_writepage_end_bio(struct bio *bio) 1642 { 1643 iomap_finish_ioend(iomap_ioend_from_bio(bio), 1644 blk_status_to_errno(bio->bi_status)); 1645 } 1646 1647 /* 1648 * Submit the final bio for an ioend. 1649 * 1650 * If @error is non-zero, it means that we have a situation where some part of 1651 * the submission process has failed after we've marked pages for writeback. 1652 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1653 * with the error status here to run the normal I/O completion handler to clear 1654 * the writeback bit and let the file system proess the errors. 1655 */ 1656 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1657 { 1658 if (!wpc->ioend) 1659 return error; 1660 1661 /* 1662 * Let the file systems prepare the I/O submission and hook in an I/O 1663 * comletion handler. This also needs to happen in case after a 1664 * failure happened so that the file system end I/O handler gets called 1665 * to clean up. 1666 */ 1667 if (wpc->ops->prepare_ioend) 1668 error = wpc->ops->prepare_ioend(wpc->ioend, error); 1669 1670 if (error) { 1671 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1672 bio_endio(&wpc->ioend->io_bio); 1673 } else { 1674 submit_bio(&wpc->ioend->io_bio); 1675 } 1676 1677 wpc->ioend = NULL; 1678 return error; 1679 } 1680 1681 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1682 struct writeback_control *wbc, struct inode *inode, loff_t pos) 1683 { 1684 struct iomap_ioend *ioend; 1685 struct bio *bio; 1686 1687 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1688 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1689 GFP_NOFS, &iomap_ioend_bioset); 1690 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1691 bio->bi_end_io = iomap_writepage_end_bio; 1692 wbc_init_bio(wbc, bio); 1693 bio->bi_write_hint = inode->i_write_hint; 1694 1695 ioend = iomap_ioend_from_bio(bio); 1696 INIT_LIST_HEAD(&ioend->io_list); 1697 ioend->io_type = wpc->iomap.type; 1698 ioend->io_flags = wpc->iomap.flags; 1699 ioend->io_inode = inode; 1700 ioend->io_size = 0; 1701 ioend->io_offset = pos; 1702 ioend->io_sector = bio->bi_iter.bi_sector; 1703 1704 wpc->nr_folios = 0; 1705 return ioend; 1706 } 1707 1708 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos) 1709 { 1710 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1711 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1712 return false; 1713 if (wpc->iomap.type != wpc->ioend->io_type) 1714 return false; 1715 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1716 return false; 1717 if (iomap_sector(&wpc->iomap, pos) != 1718 bio_end_sector(&wpc->ioend->io_bio)) 1719 return false; 1720 /* 1721 * Limit ioend bio chain lengths to minimise IO completion latency. This 1722 * also prevents long tight loops ending page writeback on all the 1723 * folios in the ioend. 1724 */ 1725 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1726 return false; 1727 return true; 1728 } 1729 1730 /* 1731 * Test to see if we have an existing ioend structure that we could append to 1732 * first; otherwise finish off the current ioend and start another. 1733 * 1734 * If a new ioend is created and cached, the old ioend is submitted to the block 1735 * layer instantly. Batching optimisations are provided by higher level block 1736 * plugging. 1737 * 1738 * At the end of a writeback pass, there will be a cached ioend remaining on the 1739 * writepage context that the caller will need to submit. 1740 */ 1741 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1742 struct writeback_control *wbc, struct folio *folio, 1743 struct inode *inode, loff_t pos, unsigned len) 1744 { 1745 struct iomap_folio_state *ifs = folio->private; 1746 size_t poff = offset_in_folio(folio, pos); 1747 int error; 1748 1749 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) { 1750 new_ioend: 1751 error = iomap_submit_ioend(wpc, 0); 1752 if (error) 1753 return error; 1754 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos); 1755 } 1756 1757 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1758 goto new_ioend; 1759 1760 if (ifs) 1761 atomic_add(len, &ifs->write_bytes_pending); 1762 wpc->ioend->io_size += len; 1763 wbc_account_cgroup_owner(wbc, &folio->page, len); 1764 return 0; 1765 } 1766 1767 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1768 struct writeback_control *wbc, struct folio *folio, 1769 struct inode *inode, u64 pos, unsigned dirty_len, 1770 unsigned *count) 1771 { 1772 int error; 1773 1774 do { 1775 unsigned map_len; 1776 1777 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1778 if (error) 1779 break; 1780 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1781 1782 map_len = min_t(u64, dirty_len, 1783 wpc->iomap.offset + wpc->iomap.length - pos); 1784 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1785 1786 switch (wpc->iomap.type) { 1787 case IOMAP_INLINE: 1788 WARN_ON_ONCE(1); 1789 error = -EIO; 1790 break; 1791 case IOMAP_HOLE: 1792 break; 1793 default: 1794 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1795 map_len); 1796 if (!error) 1797 (*count)++; 1798 break; 1799 } 1800 dirty_len -= map_len; 1801 pos += map_len; 1802 } while (dirty_len && !error); 1803 1804 /* 1805 * We cannot cancel the ioend directly here on error. We may have 1806 * already set other pages under writeback and hence we have to run I/O 1807 * completion to mark the error state of the pages under writeback 1808 * appropriately. 1809 * 1810 * Just let the file system know what portion of the folio failed to 1811 * map. 1812 */ 1813 if (error && wpc->ops->discard_folio) 1814 wpc->ops->discard_folio(folio, pos); 1815 return error; 1816 } 1817 1818 /* 1819 * Check interaction of the folio with the file end. 1820 * 1821 * If the folio is entirely beyond i_size, return false. If it straddles 1822 * i_size, adjust end_pos and zero all data beyond i_size. 1823 */ 1824 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1825 u64 *end_pos) 1826 { 1827 u64 isize = i_size_read(inode); 1828 1829 if (*end_pos > isize) { 1830 size_t poff = offset_in_folio(folio, isize); 1831 pgoff_t end_index = isize >> PAGE_SHIFT; 1832 1833 /* 1834 * If the folio is entirely ouside of i_size, skip it. 1835 * 1836 * This can happen due to a truncate operation that is in 1837 * progress and in that case truncate will finish it off once 1838 * we've dropped the folio lock. 1839 * 1840 * Note that the pgoff_t used for end_index is an unsigned long. 1841 * If the given offset is greater than 16TB on a 32-bit system, 1842 * then if we checked if the folio is fully outside i_size with 1843 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1844 * overflow and evaluate to 0. Hence this folio would be 1845 * redirtied and written out repeatedly, which would result in 1846 * an infinite loop; the user program performing this operation 1847 * would hang. Instead, we can detect this situation by 1848 * checking if the folio is totally beyond i_size or if its 1849 * offset is just equal to the EOF. 1850 */ 1851 if (folio->index > end_index || 1852 (folio->index == end_index && poff == 0)) 1853 return false; 1854 1855 /* 1856 * The folio straddles i_size. 1857 * 1858 * It must be zeroed out on each and every writepage invocation 1859 * because it may be mmapped: 1860 * 1861 * A file is mapped in multiples of the page size. For a 1862 * file that is not a multiple of the page size, the 1863 * remaining memory is zeroed when mapped, and writes to that 1864 * region are not written out to the file. 1865 * 1866 * Also adjust the writeback range to skip all blocks entirely 1867 * beyond i_size. 1868 */ 1869 folio_zero_segment(folio, poff, folio_size(folio)); 1870 *end_pos = round_up(isize, i_blocksize(inode)); 1871 } 1872 1873 return true; 1874 } 1875 1876 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1877 struct writeback_control *wbc, struct folio *folio) 1878 { 1879 struct iomap_folio_state *ifs = folio->private; 1880 struct inode *inode = folio->mapping->host; 1881 u64 pos = folio_pos(folio); 1882 u64 end_pos = pos + folio_size(folio); 1883 unsigned count = 0; 1884 int error = 0; 1885 u32 rlen; 1886 1887 WARN_ON_ONCE(!folio_test_locked(folio)); 1888 WARN_ON_ONCE(folio_test_dirty(folio)); 1889 WARN_ON_ONCE(folio_test_writeback(folio)); 1890 1891 trace_iomap_writepage(inode, pos, folio_size(folio)); 1892 1893 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1894 folio_unlock(folio); 1895 return 0; 1896 } 1897 WARN_ON_ONCE(end_pos <= pos); 1898 1899 if (i_blocks_per_folio(inode, folio) > 1) { 1900 if (!ifs) { 1901 ifs = ifs_alloc(inode, folio, 0); 1902 iomap_set_range_dirty(folio, 0, end_pos - pos); 1903 } 1904 1905 /* 1906 * Keep the I/O completion handler from clearing the writeback 1907 * bit until we have submitted all blocks by adding a bias to 1908 * ifs->write_bytes_pending, which is dropped after submitting 1909 * all blocks. 1910 */ 1911 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1912 atomic_inc(&ifs->write_bytes_pending); 1913 } 1914 1915 /* 1916 * Set the writeback bit ASAP, as the I/O completion for the single 1917 * block per folio case happen hit as soon as we're submitting the bio. 1918 */ 1919 folio_start_writeback(folio); 1920 1921 /* 1922 * Walk through the folio to find dirty areas to write back. 1923 */ 1924 while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) { 1925 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1926 pos, rlen, &count); 1927 if (error) 1928 break; 1929 pos += rlen; 1930 } 1931 1932 if (count) 1933 wpc->nr_folios++; 1934 1935 /* 1936 * We can have dirty bits set past end of file in page_mkwrite path 1937 * while mapping the last partial folio. Hence it's better to clear 1938 * all the dirty bits in the folio here. 1939 */ 1940 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1941 1942 /* 1943 * Usually the writeback bit is cleared by the I/O completion handler. 1944 * But we may end up either not actually writing any blocks, or (when 1945 * there are multiple blocks in a folio) all I/O might have finished 1946 * already at this point. In that case we need to clear the writeback 1947 * bit ourselves right after unlocking the page. 1948 */ 1949 folio_unlock(folio); 1950 if (ifs) { 1951 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1952 folio_end_writeback(folio); 1953 } else { 1954 if (!count) 1955 folio_end_writeback(folio); 1956 } 1957 mapping_set_error(inode->i_mapping, error); 1958 return error; 1959 } 1960 1961 static int iomap_do_writepage(struct folio *folio, 1962 struct writeback_control *wbc, void *data) 1963 { 1964 return iomap_writepage_map(data, wbc, folio); 1965 } 1966 1967 int 1968 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1969 struct iomap_writepage_ctx *wpc, 1970 const struct iomap_writeback_ops *ops) 1971 { 1972 int ret; 1973 1974 /* 1975 * Writeback from reclaim context should never happen except in the case 1976 * of a VM regression so warn about it and refuse to write the data. 1977 */ 1978 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1979 PF_MEMALLOC)) 1980 return -EIO; 1981 1982 wpc->ops = ops; 1983 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1984 return iomap_submit_ioend(wpc, ret); 1985 } 1986 EXPORT_SYMBOL_GPL(iomap_writepages); 1987 1988 static int __init iomap_init(void) 1989 { 1990 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1991 offsetof(struct iomap_ioend, io_bio), 1992 BIOSET_NEED_BVECS); 1993 } 1994 fs_initcall(iomap_init); 1995