xref: /linux/fs/iomap/buffered-io.c (revision 6fa4bf3dce0668a96faca0024e382f4489a9cc9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2023 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	spinlock_t		state_lock;
33 	unsigned int		read_bytes_pending;
34 	atomic_t		write_bytes_pending;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static bool ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 
68 	bitmap_set(ifs->state, first_blk, nr_blks);
69 	return ifs_is_fully_uptodate(folio, ifs);
70 }
71 
72 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
73 		size_t len)
74 {
75 	struct iomap_folio_state *ifs = folio->private;
76 	unsigned long flags;
77 	bool uptodate = true;
78 
79 	if (ifs) {
80 		spin_lock_irqsave(&ifs->state_lock, flags);
81 		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
82 		spin_unlock_irqrestore(&ifs->state_lock, flags);
83 	}
84 
85 	if (uptodate)
86 		folio_mark_uptodate(folio);
87 }
88 
89 static inline bool ifs_block_is_dirty(struct folio *folio,
90 		struct iomap_folio_state *ifs, int block)
91 {
92 	struct inode *inode = folio->mapping->host;
93 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
94 
95 	return test_bit(block + blks_per_folio, ifs->state);
96 }
97 
98 static unsigned ifs_find_dirty_range(struct folio *folio,
99 		struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
100 {
101 	struct inode *inode = folio->mapping->host;
102 	unsigned start_blk =
103 		offset_in_folio(folio, *range_start) >> inode->i_blkbits;
104 	unsigned end_blk = min_not_zero(
105 		offset_in_folio(folio, range_end) >> inode->i_blkbits,
106 		i_blocks_per_folio(inode, folio));
107 	unsigned nblks = 1;
108 
109 	while (!ifs_block_is_dirty(folio, ifs, start_blk))
110 		if (++start_blk == end_blk)
111 			return 0;
112 
113 	while (start_blk + nblks < end_blk) {
114 		if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
115 			break;
116 		nblks++;
117 	}
118 
119 	*range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
120 	return nblks << inode->i_blkbits;
121 }
122 
123 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
124 		u64 range_end)
125 {
126 	struct iomap_folio_state *ifs = folio->private;
127 
128 	if (*range_start >= range_end)
129 		return 0;
130 
131 	if (ifs)
132 		return ifs_find_dirty_range(folio, ifs, range_start, range_end);
133 	return range_end - *range_start;
134 }
135 
136 static void ifs_clear_range_dirty(struct folio *folio,
137 		struct iomap_folio_state *ifs, size_t off, size_t len)
138 {
139 	struct inode *inode = folio->mapping->host;
140 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
141 	unsigned int first_blk = (off >> inode->i_blkbits);
142 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
143 	unsigned int nr_blks = last_blk - first_blk + 1;
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&ifs->state_lock, flags);
147 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
148 	spin_unlock_irqrestore(&ifs->state_lock, flags);
149 }
150 
151 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
152 {
153 	struct iomap_folio_state *ifs = folio->private;
154 
155 	if (ifs)
156 		ifs_clear_range_dirty(folio, ifs, off, len);
157 }
158 
159 static void ifs_set_range_dirty(struct folio *folio,
160 		struct iomap_folio_state *ifs, size_t off, size_t len)
161 {
162 	struct inode *inode = folio->mapping->host;
163 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
164 	unsigned int first_blk = (off >> inode->i_blkbits);
165 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
166 	unsigned int nr_blks = last_blk - first_blk + 1;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&ifs->state_lock, flags);
170 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
171 	spin_unlock_irqrestore(&ifs->state_lock, flags);
172 }
173 
174 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
175 {
176 	struct iomap_folio_state *ifs = folio->private;
177 
178 	if (ifs)
179 		ifs_set_range_dirty(folio, ifs, off, len);
180 }
181 
182 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
183 		struct folio *folio, unsigned int flags)
184 {
185 	struct iomap_folio_state *ifs = folio->private;
186 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
187 	gfp_t gfp;
188 
189 	if (ifs || nr_blocks <= 1)
190 		return ifs;
191 
192 	if (flags & IOMAP_NOWAIT)
193 		gfp = GFP_NOWAIT;
194 	else
195 		gfp = GFP_NOFS | __GFP_NOFAIL;
196 
197 	/*
198 	 * ifs->state tracks two sets of state flags when the
199 	 * filesystem block size is smaller than the folio size.
200 	 * The first state tracks per-block uptodate and the
201 	 * second tracks per-block dirty state.
202 	 */
203 	ifs = kzalloc(struct_size(ifs, state,
204 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
205 	if (!ifs)
206 		return ifs;
207 
208 	spin_lock_init(&ifs->state_lock);
209 	if (folio_test_uptodate(folio))
210 		bitmap_set(ifs->state, 0, nr_blocks);
211 	if (folio_test_dirty(folio))
212 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
213 	folio_attach_private(folio, ifs);
214 
215 	return ifs;
216 }
217 
218 static void ifs_free(struct folio *folio)
219 {
220 	struct iomap_folio_state *ifs = folio_detach_private(folio);
221 
222 	if (!ifs)
223 		return;
224 	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
225 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
226 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
227 			folio_test_uptodate(folio));
228 	kfree(ifs);
229 }
230 
231 /*
232  * Calculate the range inside the folio that we actually need to read.
233  */
234 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
235 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
236 {
237 	struct iomap_folio_state *ifs = folio->private;
238 	loff_t orig_pos = *pos;
239 	loff_t isize = i_size_read(inode);
240 	unsigned block_bits = inode->i_blkbits;
241 	unsigned block_size = (1 << block_bits);
242 	size_t poff = offset_in_folio(folio, *pos);
243 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
244 	size_t orig_plen = plen;
245 	unsigned first = poff >> block_bits;
246 	unsigned last = (poff + plen - 1) >> block_bits;
247 
248 	/*
249 	 * If the block size is smaller than the page size, we need to check the
250 	 * per-block uptodate status and adjust the offset and length if needed
251 	 * to avoid reading in already uptodate ranges.
252 	 */
253 	if (ifs) {
254 		unsigned int i;
255 
256 		/* move forward for each leading block marked uptodate */
257 		for (i = first; i <= last; i++) {
258 			if (!ifs_block_is_uptodate(ifs, i))
259 				break;
260 			*pos += block_size;
261 			poff += block_size;
262 			plen -= block_size;
263 			first++;
264 		}
265 
266 		/* truncate len if we find any trailing uptodate block(s) */
267 		for ( ; i <= last; i++) {
268 			if (ifs_block_is_uptodate(ifs, i)) {
269 				plen -= (last - i + 1) * block_size;
270 				last = i - 1;
271 				break;
272 			}
273 		}
274 	}
275 
276 	/*
277 	 * If the extent spans the block that contains the i_size, we need to
278 	 * handle both halves separately so that we properly zero data in the
279 	 * page cache for blocks that are entirely outside of i_size.
280 	 */
281 	if (orig_pos <= isize && orig_pos + orig_plen > isize) {
282 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
283 
284 		if (first <= end && last > end)
285 			plen -= (last - end) * block_size;
286 	}
287 
288 	*offp = poff;
289 	*lenp = plen;
290 }
291 
292 static void iomap_finish_folio_read(struct folio *folio, size_t off,
293 		size_t len, int error)
294 {
295 	struct iomap_folio_state *ifs = folio->private;
296 	bool uptodate = !error;
297 	bool finished = true;
298 
299 	if (ifs) {
300 		unsigned long flags;
301 
302 		spin_lock_irqsave(&ifs->state_lock, flags);
303 		if (!error)
304 			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
305 		ifs->read_bytes_pending -= len;
306 		finished = !ifs->read_bytes_pending;
307 		spin_unlock_irqrestore(&ifs->state_lock, flags);
308 	}
309 
310 	if (error)
311 		folio_set_error(folio);
312 	if (finished)
313 		folio_end_read(folio, uptodate);
314 }
315 
316 static void iomap_read_end_io(struct bio *bio)
317 {
318 	int error = blk_status_to_errno(bio->bi_status);
319 	struct folio_iter fi;
320 
321 	bio_for_each_folio_all(fi, bio)
322 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
323 	bio_put(bio);
324 }
325 
326 struct iomap_readpage_ctx {
327 	struct folio		*cur_folio;
328 	bool			cur_folio_in_bio;
329 	struct bio		*bio;
330 	struct readahead_control *rac;
331 };
332 
333 /**
334  * iomap_read_inline_data - copy inline data into the page cache
335  * @iter: iteration structure
336  * @folio: folio to copy to
337  *
338  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
339  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
340  * Returns zero for success to complete the read, or the usual negative errno.
341  */
342 static int iomap_read_inline_data(const struct iomap_iter *iter,
343 		struct folio *folio)
344 {
345 	const struct iomap *iomap = iomap_iter_srcmap(iter);
346 	size_t size = i_size_read(iter->inode) - iomap->offset;
347 	size_t offset = offset_in_folio(folio, iomap->offset);
348 
349 	if (folio_test_uptodate(folio))
350 		return 0;
351 
352 	if (WARN_ON_ONCE(size > iomap->length))
353 		return -EIO;
354 	if (offset > 0)
355 		ifs_alloc(iter->inode, folio, iter->flags);
356 
357 	folio_fill_tail(folio, offset, iomap->inline_data, size);
358 	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
359 	return 0;
360 }
361 
362 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
363 		loff_t pos)
364 {
365 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
366 
367 	return srcmap->type != IOMAP_MAPPED ||
368 		(srcmap->flags & IOMAP_F_NEW) ||
369 		pos >= i_size_read(iter->inode);
370 }
371 
372 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
373 		struct iomap_readpage_ctx *ctx, loff_t offset)
374 {
375 	const struct iomap *iomap = &iter->iomap;
376 	loff_t pos = iter->pos + offset;
377 	loff_t length = iomap_length(iter) - offset;
378 	struct folio *folio = ctx->cur_folio;
379 	struct iomap_folio_state *ifs;
380 	loff_t orig_pos = pos;
381 	size_t poff, plen;
382 	sector_t sector;
383 
384 	if (iomap->type == IOMAP_INLINE)
385 		return iomap_read_inline_data(iter, folio);
386 
387 	/* zero post-eof blocks as the page may be mapped */
388 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
389 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
390 	if (plen == 0)
391 		goto done;
392 
393 	if (iomap_block_needs_zeroing(iter, pos)) {
394 		folio_zero_range(folio, poff, plen);
395 		iomap_set_range_uptodate(folio, poff, plen);
396 		goto done;
397 	}
398 
399 	ctx->cur_folio_in_bio = true;
400 	if (ifs) {
401 		spin_lock_irq(&ifs->state_lock);
402 		ifs->read_bytes_pending += plen;
403 		spin_unlock_irq(&ifs->state_lock);
404 	}
405 
406 	sector = iomap_sector(iomap, pos);
407 	if (!ctx->bio ||
408 	    bio_end_sector(ctx->bio) != sector ||
409 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
410 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
411 		gfp_t orig_gfp = gfp;
412 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
413 
414 		if (ctx->bio)
415 			submit_bio(ctx->bio);
416 
417 		if (ctx->rac) /* same as readahead_gfp_mask */
418 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
419 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
420 				     REQ_OP_READ, gfp);
421 		/*
422 		 * If the bio_alloc fails, try it again for a single page to
423 		 * avoid having to deal with partial page reads.  This emulates
424 		 * what do_mpage_read_folio does.
425 		 */
426 		if (!ctx->bio) {
427 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
428 					     orig_gfp);
429 		}
430 		if (ctx->rac)
431 			ctx->bio->bi_opf |= REQ_RAHEAD;
432 		ctx->bio->bi_iter.bi_sector = sector;
433 		ctx->bio->bi_end_io = iomap_read_end_io;
434 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
435 	}
436 
437 done:
438 	/*
439 	 * Move the caller beyond our range so that it keeps making progress.
440 	 * For that, we have to include any leading non-uptodate ranges, but
441 	 * we can skip trailing ones as they will be handled in the next
442 	 * iteration.
443 	 */
444 	return pos - orig_pos + plen;
445 }
446 
447 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
448 {
449 	struct iomap_iter iter = {
450 		.inode		= folio->mapping->host,
451 		.pos		= folio_pos(folio),
452 		.len		= folio_size(folio),
453 	};
454 	struct iomap_readpage_ctx ctx = {
455 		.cur_folio	= folio,
456 	};
457 	int ret;
458 
459 	trace_iomap_readpage(iter.inode, 1);
460 
461 	while ((ret = iomap_iter(&iter, ops)) > 0)
462 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
463 
464 	if (ret < 0)
465 		folio_set_error(folio);
466 
467 	if (ctx.bio) {
468 		submit_bio(ctx.bio);
469 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
470 	} else {
471 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
472 		folio_unlock(folio);
473 	}
474 
475 	/*
476 	 * Just like mpage_readahead and block_read_full_folio, we always
477 	 * return 0 and just set the folio error flag on errors.  This
478 	 * should be cleaned up throughout the stack eventually.
479 	 */
480 	return 0;
481 }
482 EXPORT_SYMBOL_GPL(iomap_read_folio);
483 
484 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
485 		struct iomap_readpage_ctx *ctx)
486 {
487 	loff_t length = iomap_length(iter);
488 	loff_t done, ret;
489 
490 	for (done = 0; done < length; done += ret) {
491 		if (ctx->cur_folio &&
492 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
493 			if (!ctx->cur_folio_in_bio)
494 				folio_unlock(ctx->cur_folio);
495 			ctx->cur_folio = NULL;
496 		}
497 		if (!ctx->cur_folio) {
498 			ctx->cur_folio = readahead_folio(ctx->rac);
499 			ctx->cur_folio_in_bio = false;
500 		}
501 		ret = iomap_readpage_iter(iter, ctx, done);
502 		if (ret <= 0)
503 			return ret;
504 	}
505 
506 	return done;
507 }
508 
509 /**
510  * iomap_readahead - Attempt to read pages from a file.
511  * @rac: Describes the pages to be read.
512  * @ops: The operations vector for the filesystem.
513  *
514  * This function is for filesystems to call to implement their readahead
515  * address_space operation.
516  *
517  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
518  * blocks from disc), and may wait for it.  The caller may be trying to
519  * access a different page, and so sleeping excessively should be avoided.
520  * It may allocate memory, but should avoid costly allocations.  This
521  * function is called with memalloc_nofs set, so allocations will not cause
522  * the filesystem to be reentered.
523  */
524 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
525 {
526 	struct iomap_iter iter = {
527 		.inode	= rac->mapping->host,
528 		.pos	= readahead_pos(rac),
529 		.len	= readahead_length(rac),
530 	};
531 	struct iomap_readpage_ctx ctx = {
532 		.rac	= rac,
533 	};
534 
535 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
536 
537 	while (iomap_iter(&iter, ops) > 0)
538 		iter.processed = iomap_readahead_iter(&iter, &ctx);
539 
540 	if (ctx.bio)
541 		submit_bio(ctx.bio);
542 	if (ctx.cur_folio) {
543 		if (!ctx.cur_folio_in_bio)
544 			folio_unlock(ctx.cur_folio);
545 	}
546 }
547 EXPORT_SYMBOL_GPL(iomap_readahead);
548 
549 /*
550  * iomap_is_partially_uptodate checks whether blocks within a folio are
551  * uptodate or not.
552  *
553  * Returns true if all blocks which correspond to the specified part
554  * of the folio are uptodate.
555  */
556 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
557 {
558 	struct iomap_folio_state *ifs = folio->private;
559 	struct inode *inode = folio->mapping->host;
560 	unsigned first, last, i;
561 
562 	if (!ifs)
563 		return false;
564 
565 	/* Caller's range may extend past the end of this folio */
566 	count = min(folio_size(folio) - from, count);
567 
568 	/* First and last blocks in range within folio */
569 	first = from >> inode->i_blkbits;
570 	last = (from + count - 1) >> inode->i_blkbits;
571 
572 	for (i = first; i <= last; i++)
573 		if (!ifs_block_is_uptodate(ifs, i))
574 			return false;
575 	return true;
576 }
577 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
578 
579 /**
580  * iomap_get_folio - get a folio reference for writing
581  * @iter: iteration structure
582  * @pos: start offset of write
583  * @len: Suggested size of folio to create.
584  *
585  * Returns a locked reference to the folio at @pos, or an error pointer if the
586  * folio could not be obtained.
587  */
588 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
589 {
590 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
591 
592 	if (iter->flags & IOMAP_NOWAIT)
593 		fgp |= FGP_NOWAIT;
594 	fgp |= fgf_set_order(len);
595 
596 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
597 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
598 }
599 EXPORT_SYMBOL_GPL(iomap_get_folio);
600 
601 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
602 {
603 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
604 			folio_size(folio));
605 
606 	/*
607 	 * If the folio is dirty, we refuse to release our metadata because
608 	 * it may be partially dirty.  Once we track per-block dirty state,
609 	 * we can release the metadata if every block is dirty.
610 	 */
611 	if (folio_test_dirty(folio))
612 		return false;
613 	ifs_free(folio);
614 	return true;
615 }
616 EXPORT_SYMBOL_GPL(iomap_release_folio);
617 
618 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
619 {
620 	trace_iomap_invalidate_folio(folio->mapping->host,
621 					folio_pos(folio) + offset, len);
622 
623 	/*
624 	 * If we're invalidating the entire folio, clear the dirty state
625 	 * from it and release it to avoid unnecessary buildup of the LRU.
626 	 */
627 	if (offset == 0 && len == folio_size(folio)) {
628 		WARN_ON_ONCE(folio_test_writeback(folio));
629 		folio_cancel_dirty(folio);
630 		ifs_free(folio);
631 	}
632 }
633 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
634 
635 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
636 {
637 	struct inode *inode = mapping->host;
638 	size_t len = folio_size(folio);
639 
640 	ifs_alloc(inode, folio, 0);
641 	iomap_set_range_dirty(folio, 0, len);
642 	return filemap_dirty_folio(mapping, folio);
643 }
644 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
645 
646 static void
647 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
648 {
649 	loff_t i_size = i_size_read(inode);
650 
651 	/*
652 	 * Only truncate newly allocated pages beyoned EOF, even if the
653 	 * write started inside the existing inode size.
654 	 */
655 	if (pos + len > i_size)
656 		truncate_pagecache_range(inode, max(pos, i_size),
657 					 pos + len - 1);
658 }
659 
660 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
661 		size_t poff, size_t plen, const struct iomap *iomap)
662 {
663 	struct bio_vec bvec;
664 	struct bio bio;
665 
666 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
667 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
668 	bio_add_folio_nofail(&bio, folio, plen, poff);
669 	return submit_bio_wait(&bio);
670 }
671 
672 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
673 		size_t len, struct folio *folio)
674 {
675 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
676 	struct iomap_folio_state *ifs;
677 	loff_t block_size = i_blocksize(iter->inode);
678 	loff_t block_start = round_down(pos, block_size);
679 	loff_t block_end = round_up(pos + len, block_size);
680 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
681 	size_t from = offset_in_folio(folio, pos), to = from + len;
682 	size_t poff, plen;
683 
684 	/*
685 	 * If the write or zeroing completely overlaps the current folio, then
686 	 * entire folio will be dirtied so there is no need for
687 	 * per-block state tracking structures to be attached to this folio.
688 	 * For the unshare case, we must read in the ondisk contents because we
689 	 * are not changing pagecache contents.
690 	 */
691 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
692 	    pos + len >= folio_pos(folio) + folio_size(folio))
693 		return 0;
694 
695 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
696 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
697 		return -EAGAIN;
698 
699 	if (folio_test_uptodate(folio))
700 		return 0;
701 	folio_clear_error(folio);
702 
703 	do {
704 		iomap_adjust_read_range(iter->inode, folio, &block_start,
705 				block_end - block_start, &poff, &plen);
706 		if (plen == 0)
707 			break;
708 
709 		if (!(iter->flags & IOMAP_UNSHARE) &&
710 		    (from <= poff || from >= poff + plen) &&
711 		    (to <= poff || to >= poff + plen))
712 			continue;
713 
714 		if (iomap_block_needs_zeroing(iter, block_start)) {
715 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
716 				return -EIO;
717 			folio_zero_segments(folio, poff, from, to, poff + plen);
718 		} else {
719 			int status;
720 
721 			if (iter->flags & IOMAP_NOWAIT)
722 				return -EAGAIN;
723 
724 			status = iomap_read_folio_sync(block_start, folio,
725 					poff, plen, srcmap);
726 			if (status)
727 				return status;
728 		}
729 		iomap_set_range_uptodate(folio, poff, plen);
730 	} while ((block_start += plen) < block_end);
731 
732 	return 0;
733 }
734 
735 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
736 		size_t len)
737 {
738 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
739 
740 	if (folio_ops && folio_ops->get_folio)
741 		return folio_ops->get_folio(iter, pos, len);
742 	else
743 		return iomap_get_folio(iter, pos, len);
744 }
745 
746 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
747 		struct folio *folio)
748 {
749 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
750 
751 	if (folio_ops && folio_ops->put_folio) {
752 		folio_ops->put_folio(iter->inode, pos, ret, folio);
753 	} else {
754 		folio_unlock(folio);
755 		folio_put(folio);
756 	}
757 }
758 
759 static int iomap_write_begin_inline(const struct iomap_iter *iter,
760 		struct folio *folio)
761 {
762 	/* needs more work for the tailpacking case; disable for now */
763 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
764 		return -EIO;
765 	return iomap_read_inline_data(iter, folio);
766 }
767 
768 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
769 		size_t len, struct folio **foliop)
770 {
771 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
772 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
773 	struct folio *folio;
774 	int status = 0;
775 
776 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
777 	if (srcmap != &iter->iomap)
778 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
779 
780 	if (fatal_signal_pending(current))
781 		return -EINTR;
782 
783 	if (!mapping_large_folio_support(iter->inode->i_mapping))
784 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
785 
786 	folio = __iomap_get_folio(iter, pos, len);
787 	if (IS_ERR(folio))
788 		return PTR_ERR(folio);
789 
790 	/*
791 	 * Now we have a locked folio, before we do anything with it we need to
792 	 * check that the iomap we have cached is not stale. The inode extent
793 	 * mapping can change due to concurrent IO in flight (e.g.
794 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
795 	 * reclaimed a previously partially written page at this index after IO
796 	 * completion before this write reaches this file offset) and hence we
797 	 * could do the wrong thing here (zero a page range incorrectly or fail
798 	 * to zero) and corrupt data.
799 	 */
800 	if (folio_ops && folio_ops->iomap_valid) {
801 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
802 							 &iter->iomap);
803 		if (!iomap_valid) {
804 			iter->iomap.flags |= IOMAP_F_STALE;
805 			status = 0;
806 			goto out_unlock;
807 		}
808 	}
809 
810 	if (pos + len > folio_pos(folio) + folio_size(folio))
811 		len = folio_pos(folio) + folio_size(folio) - pos;
812 
813 	if (srcmap->type == IOMAP_INLINE)
814 		status = iomap_write_begin_inline(iter, folio);
815 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
816 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
817 	else
818 		status = __iomap_write_begin(iter, pos, len, folio);
819 
820 	if (unlikely(status))
821 		goto out_unlock;
822 
823 	*foliop = folio;
824 	return 0;
825 
826 out_unlock:
827 	__iomap_put_folio(iter, pos, 0, folio);
828 
829 	return status;
830 }
831 
832 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
833 		size_t copied, struct folio *folio)
834 {
835 	flush_dcache_folio(folio);
836 
837 	/*
838 	 * The blocks that were entirely written will now be uptodate, so we
839 	 * don't have to worry about a read_folio reading them and overwriting a
840 	 * partial write.  However, if we've encountered a short write and only
841 	 * partially written into a block, it will not be marked uptodate, so a
842 	 * read_folio might come in and destroy our partial write.
843 	 *
844 	 * Do the simplest thing and just treat any short write to a
845 	 * non-uptodate page as a zero-length write, and force the caller to
846 	 * redo the whole thing.
847 	 */
848 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
849 		return false;
850 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
851 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
852 	filemap_dirty_folio(inode->i_mapping, folio);
853 	return true;
854 }
855 
856 static void iomap_write_end_inline(const struct iomap_iter *iter,
857 		struct folio *folio, loff_t pos, size_t copied)
858 {
859 	const struct iomap *iomap = &iter->iomap;
860 	void *addr;
861 
862 	WARN_ON_ONCE(!folio_test_uptodate(folio));
863 	BUG_ON(!iomap_inline_data_valid(iomap));
864 
865 	flush_dcache_folio(folio);
866 	addr = kmap_local_folio(folio, pos);
867 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
868 	kunmap_local(addr);
869 
870 	mark_inode_dirty(iter->inode);
871 }
872 
873 /*
874  * Returns true if all copied bytes have been written to the pagecache,
875  * otherwise return false.
876  */
877 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
878 		size_t copied, struct folio *folio)
879 {
880 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
881 	loff_t old_size = iter->inode->i_size;
882 	size_t written;
883 
884 	if (srcmap->type == IOMAP_INLINE) {
885 		iomap_write_end_inline(iter, folio, pos, copied);
886 		written = copied;
887 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
888 		written = block_write_end(NULL, iter->inode->i_mapping, pos,
889 					len, copied, &folio->page, NULL);
890 		WARN_ON_ONCE(written != copied && written != 0);
891 	} else {
892 		written = __iomap_write_end(iter->inode, pos, len, copied,
893 					    folio) ? copied : 0;
894 	}
895 
896 	/*
897 	 * Update the in-memory inode size after copying the data into the page
898 	 * cache.  It's up to the file system to write the updated size to disk,
899 	 * preferably after I/O completion so that no stale data is exposed.
900 	 * Only once that's done can we unlock and release the folio.
901 	 */
902 	if (pos + written > old_size) {
903 		i_size_write(iter->inode, pos + written);
904 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
905 	}
906 	__iomap_put_folio(iter, pos, written, folio);
907 
908 	if (old_size < pos)
909 		pagecache_isize_extended(iter->inode, old_size, pos);
910 
911 	return written == copied;
912 }
913 
914 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
915 {
916 	loff_t length = iomap_length(iter);
917 	loff_t pos = iter->pos;
918 	ssize_t total_written = 0;
919 	long status = 0;
920 	struct address_space *mapping = iter->inode->i_mapping;
921 	size_t chunk = mapping_max_folio_size(mapping);
922 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
923 
924 	do {
925 		struct folio *folio;
926 		size_t offset;		/* Offset into folio */
927 		size_t bytes;		/* Bytes to write to folio */
928 		size_t copied;		/* Bytes copied from user */
929 		size_t written;		/* Bytes have been written */
930 
931 		bytes = iov_iter_count(i);
932 retry:
933 		offset = pos & (chunk - 1);
934 		bytes = min(chunk - offset, bytes);
935 		status = balance_dirty_pages_ratelimited_flags(mapping,
936 							       bdp_flags);
937 		if (unlikely(status))
938 			break;
939 
940 		if (bytes > length)
941 			bytes = length;
942 
943 		/*
944 		 * Bring in the user page that we'll copy from _first_.
945 		 * Otherwise there's a nasty deadlock on copying from the
946 		 * same page as we're writing to, without it being marked
947 		 * up-to-date.
948 		 *
949 		 * For async buffered writes the assumption is that the user
950 		 * page has already been faulted in. This can be optimized by
951 		 * faulting the user page.
952 		 */
953 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
954 			status = -EFAULT;
955 			break;
956 		}
957 
958 		status = iomap_write_begin(iter, pos, bytes, &folio);
959 		if (unlikely(status)) {
960 			iomap_write_failed(iter->inode, pos, bytes);
961 			break;
962 		}
963 		if (iter->iomap.flags & IOMAP_F_STALE)
964 			break;
965 
966 		offset = offset_in_folio(folio, pos);
967 		if (bytes > folio_size(folio) - offset)
968 			bytes = folio_size(folio) - offset;
969 
970 		if (mapping_writably_mapped(mapping))
971 			flush_dcache_folio(folio);
972 
973 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
974 		written = iomap_write_end(iter, pos, bytes, copied, folio) ?
975 			  copied : 0;
976 
977 		cond_resched();
978 		if (unlikely(written == 0)) {
979 			/*
980 			 * A short copy made iomap_write_end() reject the
981 			 * thing entirely.  Might be memory poisoning
982 			 * halfway through, might be a race with munmap,
983 			 * might be severe memory pressure.
984 			 */
985 			iomap_write_failed(iter->inode, pos, bytes);
986 			iov_iter_revert(i, copied);
987 
988 			if (chunk > PAGE_SIZE)
989 				chunk /= 2;
990 			if (copied) {
991 				bytes = copied;
992 				goto retry;
993 			}
994 		} else {
995 			pos += written;
996 			total_written += written;
997 			length -= written;
998 		}
999 	} while (iov_iter_count(i) && length);
1000 
1001 	if (status == -EAGAIN) {
1002 		iov_iter_revert(i, total_written);
1003 		return -EAGAIN;
1004 	}
1005 	return total_written ? total_written : status;
1006 }
1007 
1008 ssize_t
1009 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1010 		const struct iomap_ops *ops)
1011 {
1012 	struct iomap_iter iter = {
1013 		.inode		= iocb->ki_filp->f_mapping->host,
1014 		.pos		= iocb->ki_pos,
1015 		.len		= iov_iter_count(i),
1016 		.flags		= IOMAP_WRITE,
1017 	};
1018 	ssize_t ret;
1019 
1020 	if (iocb->ki_flags & IOCB_NOWAIT)
1021 		iter.flags |= IOMAP_NOWAIT;
1022 
1023 	while ((ret = iomap_iter(&iter, ops)) > 0)
1024 		iter.processed = iomap_write_iter(&iter, i);
1025 
1026 	if (unlikely(iter.pos == iocb->ki_pos))
1027 		return ret;
1028 	ret = iter.pos - iocb->ki_pos;
1029 	iocb->ki_pos = iter.pos;
1030 	return ret;
1031 }
1032 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1033 
1034 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
1035 		struct folio *folio, loff_t start_byte, loff_t end_byte,
1036 		iomap_punch_t punch)
1037 {
1038 	unsigned int first_blk, last_blk, i;
1039 	loff_t last_byte;
1040 	u8 blkbits = inode->i_blkbits;
1041 	struct iomap_folio_state *ifs;
1042 	int ret = 0;
1043 
1044 	/*
1045 	 * When we have per-block dirty tracking, there can be
1046 	 * blocks within a folio which are marked uptodate
1047 	 * but not dirty. In that case it is necessary to punch
1048 	 * out such blocks to avoid leaking any delalloc blocks.
1049 	 */
1050 	ifs = folio->private;
1051 	if (!ifs)
1052 		return ret;
1053 
1054 	last_byte = min_t(loff_t, end_byte - 1,
1055 			folio_pos(folio) + folio_size(folio) - 1);
1056 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1057 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1058 	for (i = first_blk; i <= last_blk; i++) {
1059 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1060 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1061 				    1 << blkbits);
1062 			if (ret)
1063 				return ret;
1064 		}
1065 	}
1066 
1067 	return ret;
1068 }
1069 
1070 
1071 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1072 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1073 		iomap_punch_t punch)
1074 {
1075 	int ret = 0;
1076 
1077 	if (!folio_test_dirty(folio))
1078 		return ret;
1079 
1080 	/* if dirty, punch up to offset */
1081 	if (start_byte > *punch_start_byte) {
1082 		ret = punch(inode, *punch_start_byte,
1083 				start_byte - *punch_start_byte);
1084 		if (ret)
1085 			return ret;
1086 	}
1087 
1088 	/* Punch non-dirty blocks within folio */
1089 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1090 			end_byte, punch);
1091 	if (ret)
1092 		return ret;
1093 
1094 	/*
1095 	 * Make sure the next punch start is correctly bound to
1096 	 * the end of this data range, not the end of the folio.
1097 	 */
1098 	*punch_start_byte = min_t(loff_t, end_byte,
1099 				folio_pos(folio) + folio_size(folio));
1100 
1101 	return ret;
1102 }
1103 
1104 /*
1105  * Scan the data range passed to us for dirty page cache folios. If we find a
1106  * dirty folio, punch out the preceding range and update the offset from which
1107  * the next punch will start from.
1108  *
1109  * We can punch out storage reservations under clean pages because they either
1110  * contain data that has been written back - in which case the delalloc punch
1111  * over that range is a no-op - or they have been read faults in which case they
1112  * contain zeroes and we can remove the delalloc backing range and any new
1113  * writes to those pages will do the normal hole filling operation...
1114  *
1115  * This makes the logic simple: we only need to keep the delalloc extents only
1116  * over the dirty ranges of the page cache.
1117  *
1118  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1119  * simplify range iterations.
1120  */
1121 static int iomap_write_delalloc_scan(struct inode *inode,
1122 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1123 		iomap_punch_t punch)
1124 {
1125 	while (start_byte < end_byte) {
1126 		struct folio	*folio;
1127 		int ret;
1128 
1129 		/* grab locked page */
1130 		folio = filemap_lock_folio(inode->i_mapping,
1131 				start_byte >> PAGE_SHIFT);
1132 		if (IS_ERR(folio)) {
1133 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1134 					PAGE_SIZE;
1135 			continue;
1136 		}
1137 
1138 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1139 						 start_byte, end_byte, punch);
1140 		if (ret) {
1141 			folio_unlock(folio);
1142 			folio_put(folio);
1143 			return ret;
1144 		}
1145 
1146 		/* move offset to start of next folio in range */
1147 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1148 		folio_unlock(folio);
1149 		folio_put(folio);
1150 	}
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Punch out all the delalloc blocks in the range given except for those that
1156  * have dirty data still pending in the page cache - those are going to be
1157  * written and so must still retain the delalloc backing for writeback.
1158  *
1159  * As we are scanning the page cache for data, we don't need to reimplement the
1160  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1161  * start and end of data ranges correctly even for sub-folio block sizes. This
1162  * byte range based iteration is especially convenient because it means we
1163  * don't have to care about variable size folios, nor where the start or end of
1164  * the data range lies within a folio, if they lie within the same folio or even
1165  * if there are multiple discontiguous data ranges within the folio.
1166  *
1167  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1168  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1169  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1170  * date. A write page fault can then mark it dirty. If we then fail a write()
1171  * beyond EOF into that up to date cached range, we allocate a delalloc block
1172  * beyond EOF and then have to punch it out. Because the range is up to date,
1173  * mapping_seek_hole_data() will return it, and we will skip the punch because
1174  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1175  * beyond EOF in this case as writeback will never write back and covert that
1176  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1177  * resulting in always punching out the range from the EOF to the end of the
1178  * range the iomap spans.
1179  *
1180  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1181  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1182  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1183  * returns the end of the data range (data_end). Using closed intervals would
1184  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1185  * the code to subtle off-by-one bugs....
1186  */
1187 static int iomap_write_delalloc_release(struct inode *inode,
1188 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1189 {
1190 	loff_t punch_start_byte = start_byte;
1191 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1192 	int error = 0;
1193 
1194 	/*
1195 	 * Lock the mapping to avoid races with page faults re-instantiating
1196 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1197 	 * cache and perform delalloc extent removal. Failing to do this can
1198 	 * leave dirty pages with no space reservation in the cache.
1199 	 */
1200 	filemap_invalidate_lock(inode->i_mapping);
1201 	while (start_byte < scan_end_byte) {
1202 		loff_t		data_end;
1203 
1204 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1205 				start_byte, scan_end_byte, SEEK_DATA);
1206 		/*
1207 		 * If there is no more data to scan, all that is left is to
1208 		 * punch out the remaining range.
1209 		 */
1210 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1211 			break;
1212 		if (start_byte < 0) {
1213 			error = start_byte;
1214 			goto out_unlock;
1215 		}
1216 		WARN_ON_ONCE(start_byte < punch_start_byte);
1217 		WARN_ON_ONCE(start_byte > scan_end_byte);
1218 
1219 		/*
1220 		 * We find the end of this contiguous cached data range by
1221 		 * seeking from start_byte to the beginning of the next hole.
1222 		 */
1223 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1224 				scan_end_byte, SEEK_HOLE);
1225 		if (data_end < 0) {
1226 			error = data_end;
1227 			goto out_unlock;
1228 		}
1229 		WARN_ON_ONCE(data_end <= start_byte);
1230 		WARN_ON_ONCE(data_end > scan_end_byte);
1231 
1232 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1233 				start_byte, data_end, punch);
1234 		if (error)
1235 			goto out_unlock;
1236 
1237 		/* The next data search starts at the end of this one. */
1238 		start_byte = data_end;
1239 	}
1240 
1241 	if (punch_start_byte < end_byte)
1242 		error = punch(inode, punch_start_byte,
1243 				end_byte - punch_start_byte);
1244 out_unlock:
1245 	filemap_invalidate_unlock(inode->i_mapping);
1246 	return error;
1247 }
1248 
1249 /*
1250  * When a short write occurs, the filesystem may need to remove reserved space
1251  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1252  * filesystems that use delayed allocation, we need to punch out delalloc
1253  * extents from the range that are not dirty in the page cache. As the write can
1254  * race with page faults, there can be dirty pages over the delalloc extent
1255  * outside the range of a short write but still within the delalloc extent
1256  * allocated for this iomap.
1257  *
1258  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1259  * simplify range iterations.
1260  *
1261  * The punch() callback *must* only punch delalloc extents in the range passed
1262  * to it. It must skip over all other types of extents in the range and leave
1263  * them completely unchanged. It must do this punch atomically with respect to
1264  * other extent modifications.
1265  *
1266  * The punch() callback may be called with a folio locked to prevent writeback
1267  * extent allocation racing at the edge of the range we are currently punching.
1268  * The locked folio may or may not cover the range being punched, so it is not
1269  * safe for the punch() callback to lock folios itself.
1270  *
1271  * Lock order is:
1272  *
1273  * inode->i_rwsem (shared or exclusive)
1274  *   inode->i_mapping->invalidate_lock (exclusive)
1275  *     folio_lock()
1276  *       ->punch
1277  *         internal filesystem allocation lock
1278  */
1279 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1280 		struct iomap *iomap, loff_t pos, loff_t length,
1281 		ssize_t written, iomap_punch_t punch)
1282 {
1283 	loff_t			start_byte;
1284 	loff_t			end_byte;
1285 	unsigned int		blocksize = i_blocksize(inode);
1286 
1287 	if (iomap->type != IOMAP_DELALLOC)
1288 		return 0;
1289 
1290 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1291 	if (!(iomap->flags & IOMAP_F_NEW))
1292 		return 0;
1293 
1294 	/*
1295 	 * start_byte refers to the first unused block after a short write. If
1296 	 * nothing was written, round offset down to point at the first block in
1297 	 * the range.
1298 	 */
1299 	if (unlikely(!written))
1300 		start_byte = round_down(pos, blocksize);
1301 	else
1302 		start_byte = round_up(pos + written, blocksize);
1303 	end_byte = round_up(pos + length, blocksize);
1304 
1305 	/* Nothing to do if we've written the entire delalloc extent */
1306 	if (start_byte >= end_byte)
1307 		return 0;
1308 
1309 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1310 					punch);
1311 }
1312 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1313 
1314 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1315 {
1316 	struct iomap *iomap = &iter->iomap;
1317 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1318 	loff_t pos = iter->pos;
1319 	loff_t length = iomap_length(iter);
1320 	loff_t written = 0;
1321 
1322 	/* don't bother with blocks that are not shared to start with */
1323 	if (!(iomap->flags & IOMAP_F_SHARED))
1324 		return length;
1325 	/* don't bother with holes or unwritten extents */
1326 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1327 		return length;
1328 
1329 	do {
1330 		struct folio *folio;
1331 		int status;
1332 		size_t offset;
1333 		size_t bytes = min_t(u64, SIZE_MAX, length);
1334 		bool ret;
1335 
1336 		status = iomap_write_begin(iter, pos, bytes, &folio);
1337 		if (unlikely(status))
1338 			return status;
1339 		if (iomap->flags & IOMAP_F_STALE)
1340 			break;
1341 
1342 		offset = offset_in_folio(folio, pos);
1343 		if (bytes > folio_size(folio) - offset)
1344 			bytes = folio_size(folio) - offset;
1345 
1346 		ret = iomap_write_end(iter, pos, bytes, bytes, folio);
1347 		if (WARN_ON_ONCE(!ret))
1348 			return -EIO;
1349 
1350 		cond_resched();
1351 
1352 		pos += bytes;
1353 		written += bytes;
1354 		length -= bytes;
1355 
1356 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1357 	} while (length > 0);
1358 
1359 	return written;
1360 }
1361 
1362 int
1363 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1364 		const struct iomap_ops *ops)
1365 {
1366 	struct iomap_iter iter = {
1367 		.inode		= inode,
1368 		.pos		= pos,
1369 		.len		= len,
1370 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1371 	};
1372 	int ret;
1373 
1374 	while ((ret = iomap_iter(&iter, ops)) > 0)
1375 		iter.processed = iomap_unshare_iter(&iter);
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1379 
1380 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1381 {
1382 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1383 	loff_t pos = iter->pos;
1384 	loff_t length = iomap_length(iter);
1385 	loff_t written = 0;
1386 
1387 	/* already zeroed?  we're done. */
1388 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1389 		return length;
1390 
1391 	do {
1392 		struct folio *folio;
1393 		int status;
1394 		size_t offset;
1395 		size_t bytes = min_t(u64, SIZE_MAX, length);
1396 		bool ret;
1397 
1398 		status = iomap_write_begin(iter, pos, bytes, &folio);
1399 		if (status)
1400 			return status;
1401 		if (iter->iomap.flags & IOMAP_F_STALE)
1402 			break;
1403 
1404 		offset = offset_in_folio(folio, pos);
1405 		if (bytes > folio_size(folio) - offset)
1406 			bytes = folio_size(folio) - offset;
1407 
1408 		folio_zero_range(folio, offset, bytes);
1409 		folio_mark_accessed(folio);
1410 
1411 		ret = iomap_write_end(iter, pos, bytes, bytes, folio);
1412 		if (WARN_ON_ONCE(!ret))
1413 			return -EIO;
1414 
1415 		pos += bytes;
1416 		length -= bytes;
1417 		written += bytes;
1418 	} while (length > 0);
1419 
1420 	if (did_zero)
1421 		*did_zero = true;
1422 	return written;
1423 }
1424 
1425 int
1426 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1427 		const struct iomap_ops *ops)
1428 {
1429 	struct iomap_iter iter = {
1430 		.inode		= inode,
1431 		.pos		= pos,
1432 		.len		= len,
1433 		.flags		= IOMAP_ZERO,
1434 	};
1435 	int ret;
1436 
1437 	while ((ret = iomap_iter(&iter, ops)) > 0)
1438 		iter.processed = iomap_zero_iter(&iter, did_zero);
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(iomap_zero_range);
1442 
1443 int
1444 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1445 		const struct iomap_ops *ops)
1446 {
1447 	unsigned int blocksize = i_blocksize(inode);
1448 	unsigned int off = pos & (blocksize - 1);
1449 
1450 	/* Block boundary? Nothing to do */
1451 	if (!off)
1452 		return 0;
1453 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1454 }
1455 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1456 
1457 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1458 		struct folio *folio)
1459 {
1460 	loff_t length = iomap_length(iter);
1461 	int ret;
1462 
1463 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1464 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1465 					      &iter->iomap);
1466 		if (ret)
1467 			return ret;
1468 		block_commit_write(&folio->page, 0, length);
1469 	} else {
1470 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1471 		folio_mark_dirty(folio);
1472 	}
1473 
1474 	return length;
1475 }
1476 
1477 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1478 {
1479 	struct iomap_iter iter = {
1480 		.inode		= file_inode(vmf->vma->vm_file),
1481 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1482 	};
1483 	struct folio *folio = page_folio(vmf->page);
1484 	ssize_t ret;
1485 
1486 	folio_lock(folio);
1487 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1488 	if (ret < 0)
1489 		goto out_unlock;
1490 	iter.pos = folio_pos(folio);
1491 	iter.len = ret;
1492 	while ((ret = iomap_iter(&iter, ops)) > 0)
1493 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1494 
1495 	if (ret < 0)
1496 		goto out_unlock;
1497 	folio_wait_stable(folio);
1498 	return VM_FAULT_LOCKED;
1499 out_unlock:
1500 	folio_unlock(folio);
1501 	return vmf_fs_error(ret);
1502 }
1503 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1504 
1505 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1506 		size_t len)
1507 {
1508 	struct iomap_folio_state *ifs = folio->private;
1509 
1510 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1511 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1512 
1513 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1514 		folio_end_writeback(folio);
1515 }
1516 
1517 /*
1518  * We're now finished for good with this ioend structure.  Update the page
1519  * state, release holds on bios, and finally free up memory.  Do not use the
1520  * ioend after this.
1521  */
1522 static u32
1523 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1524 {
1525 	struct inode *inode = ioend->io_inode;
1526 	struct bio *bio = &ioend->io_bio;
1527 	struct folio_iter fi;
1528 	u32 folio_count = 0;
1529 
1530 	if (error) {
1531 		mapping_set_error(inode->i_mapping, error);
1532 		if (!bio_flagged(bio, BIO_QUIET)) {
1533 			pr_err_ratelimited(
1534 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1535 				inode->i_sb->s_id, inode->i_ino,
1536 				ioend->io_offset, ioend->io_sector);
1537 		}
1538 	}
1539 
1540 	/* walk all folios in bio, ending page IO on them */
1541 	bio_for_each_folio_all(fi, bio) {
1542 		if (error)
1543 			folio_set_error(fi.folio);
1544 		iomap_finish_folio_write(inode, fi.folio, fi.length);
1545 		folio_count++;
1546 	}
1547 
1548 	bio_put(bio);	/* frees the ioend */
1549 	return folio_count;
1550 }
1551 
1552 /*
1553  * Ioend completion routine for merged bios. This can only be called from task
1554  * contexts as merged ioends can be of unbound length. Hence we have to break up
1555  * the writeback completions into manageable chunks to avoid long scheduler
1556  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1557  * good batch processing throughput without creating adverse scheduler latency
1558  * conditions.
1559  */
1560 void
1561 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1562 {
1563 	struct list_head tmp;
1564 	u32 completions;
1565 
1566 	might_sleep();
1567 
1568 	list_replace_init(&ioend->io_list, &tmp);
1569 	completions = iomap_finish_ioend(ioend, error);
1570 
1571 	while (!list_empty(&tmp)) {
1572 		if (completions > IOEND_BATCH_SIZE * 8) {
1573 			cond_resched();
1574 			completions = 0;
1575 		}
1576 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1577 		list_del_init(&ioend->io_list);
1578 		completions += iomap_finish_ioend(ioend, error);
1579 	}
1580 }
1581 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1582 
1583 /*
1584  * We can merge two adjacent ioends if they have the same set of work to do.
1585  */
1586 static bool
1587 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1588 {
1589 	if (ioend->io_bio.bi_status != next->io_bio.bi_status)
1590 		return false;
1591 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1592 	    (next->io_flags & IOMAP_F_SHARED))
1593 		return false;
1594 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1595 	    (next->io_type == IOMAP_UNWRITTEN))
1596 		return false;
1597 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1598 		return false;
1599 	/*
1600 	 * Do not merge physically discontiguous ioends. The filesystem
1601 	 * completion functions will have to iterate the physical
1602 	 * discontiguities even if we merge the ioends at a logical level, so
1603 	 * we don't gain anything by merging physical discontiguities here.
1604 	 *
1605 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1606 	 * submission so does not point to the start sector of the bio at
1607 	 * completion.
1608 	 */
1609 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1610 		return false;
1611 	return true;
1612 }
1613 
1614 void
1615 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1616 {
1617 	struct iomap_ioend *next;
1618 
1619 	INIT_LIST_HEAD(&ioend->io_list);
1620 
1621 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1622 			io_list))) {
1623 		if (!iomap_ioend_can_merge(ioend, next))
1624 			break;
1625 		list_move_tail(&next->io_list, &ioend->io_list);
1626 		ioend->io_size += next->io_size;
1627 	}
1628 }
1629 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1630 
1631 static int
1632 iomap_ioend_compare(void *priv, const struct list_head *a,
1633 		const struct list_head *b)
1634 {
1635 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1636 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1637 
1638 	if (ia->io_offset < ib->io_offset)
1639 		return -1;
1640 	if (ia->io_offset > ib->io_offset)
1641 		return 1;
1642 	return 0;
1643 }
1644 
1645 void
1646 iomap_sort_ioends(struct list_head *ioend_list)
1647 {
1648 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1649 }
1650 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1651 
1652 static void iomap_writepage_end_bio(struct bio *bio)
1653 {
1654 	iomap_finish_ioend(iomap_ioend_from_bio(bio),
1655 			blk_status_to_errno(bio->bi_status));
1656 }
1657 
1658 /*
1659  * Submit the final bio for an ioend.
1660  *
1661  * If @error is non-zero, it means that we have a situation where some part of
1662  * the submission process has failed after we've marked pages for writeback.
1663  * We cannot cancel ioend directly in that case, so call the bio end I/O handler
1664  * with the error status here to run the normal I/O completion handler to clear
1665  * the writeback bit and let the file system proess the errors.
1666  */
1667 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error)
1668 {
1669 	if (!wpc->ioend)
1670 		return error;
1671 
1672 	/*
1673 	 * Let the file systems prepare the I/O submission and hook in an I/O
1674 	 * comletion handler.  This also needs to happen in case after a
1675 	 * failure happened so that the file system end I/O handler gets called
1676 	 * to clean up.
1677 	 */
1678 	if (wpc->ops->prepare_ioend)
1679 		error = wpc->ops->prepare_ioend(wpc->ioend, error);
1680 
1681 	if (error) {
1682 		wpc->ioend->io_bio.bi_status = errno_to_blk_status(error);
1683 		bio_endio(&wpc->ioend->io_bio);
1684 	} else {
1685 		submit_bio(&wpc->ioend->io_bio);
1686 	}
1687 
1688 	wpc->ioend = NULL;
1689 	return error;
1690 }
1691 
1692 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc,
1693 		struct writeback_control *wbc, struct inode *inode, loff_t pos)
1694 {
1695 	struct iomap_ioend *ioend;
1696 	struct bio *bio;
1697 
1698 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1699 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1700 			       GFP_NOFS, &iomap_ioend_bioset);
1701 	bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos);
1702 	bio->bi_end_io = iomap_writepage_end_bio;
1703 	wbc_init_bio(wbc, bio);
1704 	bio->bi_write_hint = inode->i_write_hint;
1705 
1706 	ioend = iomap_ioend_from_bio(bio);
1707 	INIT_LIST_HEAD(&ioend->io_list);
1708 	ioend->io_type = wpc->iomap.type;
1709 	ioend->io_flags = wpc->iomap.flags;
1710 	ioend->io_inode = inode;
1711 	ioend->io_size = 0;
1712 	ioend->io_offset = pos;
1713 	ioend->io_sector = bio->bi_iter.bi_sector;
1714 
1715 	wpc->nr_folios = 0;
1716 	return ioend;
1717 }
1718 
1719 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos)
1720 {
1721 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1722 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1723 		return false;
1724 	if (wpc->iomap.type != wpc->ioend->io_type)
1725 		return false;
1726 	if (pos != wpc->ioend->io_offset + wpc->ioend->io_size)
1727 		return false;
1728 	if (iomap_sector(&wpc->iomap, pos) !=
1729 	    bio_end_sector(&wpc->ioend->io_bio))
1730 		return false;
1731 	/*
1732 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1733 	 * also prevents long tight loops ending page writeback on all the
1734 	 * folios in the ioend.
1735 	 */
1736 	if (wpc->nr_folios >= IOEND_BATCH_SIZE)
1737 		return false;
1738 	return true;
1739 }
1740 
1741 /*
1742  * Test to see if we have an existing ioend structure that we could append to
1743  * first; otherwise finish off the current ioend and start another.
1744  *
1745  * If a new ioend is created and cached, the old ioend is submitted to the block
1746  * layer instantly.  Batching optimisations are provided by higher level block
1747  * plugging.
1748  *
1749  * At the end of a writeback pass, there will be a cached ioend remaining on the
1750  * writepage context that the caller will need to submit.
1751  */
1752 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc,
1753 		struct writeback_control *wbc, struct folio *folio,
1754 		struct inode *inode, loff_t pos, unsigned len)
1755 {
1756 	struct iomap_folio_state *ifs = folio->private;
1757 	size_t poff = offset_in_folio(folio, pos);
1758 	int error;
1759 
1760 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) {
1761 new_ioend:
1762 		error = iomap_submit_ioend(wpc, 0);
1763 		if (error)
1764 			return error;
1765 		wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos);
1766 	}
1767 
1768 	if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff))
1769 		goto new_ioend;
1770 
1771 	if (ifs)
1772 		atomic_add(len, &ifs->write_bytes_pending);
1773 	wpc->ioend->io_size += len;
1774 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1775 	return 0;
1776 }
1777 
1778 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc,
1779 		struct writeback_control *wbc, struct folio *folio,
1780 		struct inode *inode, u64 pos, unsigned dirty_len,
1781 		unsigned *count)
1782 {
1783 	int error;
1784 
1785 	do {
1786 		unsigned map_len;
1787 
1788 		error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len);
1789 		if (error)
1790 			break;
1791 		trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap);
1792 
1793 		map_len = min_t(u64, dirty_len,
1794 			wpc->iomap.offset + wpc->iomap.length - pos);
1795 		WARN_ON_ONCE(!folio->private && map_len < dirty_len);
1796 
1797 		switch (wpc->iomap.type) {
1798 		case IOMAP_INLINE:
1799 			WARN_ON_ONCE(1);
1800 			error = -EIO;
1801 			break;
1802 		case IOMAP_HOLE:
1803 			break;
1804 		default:
1805 			error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos,
1806 					map_len);
1807 			if (!error)
1808 				(*count)++;
1809 			break;
1810 		}
1811 		dirty_len -= map_len;
1812 		pos += map_len;
1813 	} while (dirty_len && !error);
1814 
1815 	/*
1816 	 * We cannot cancel the ioend directly here on error.  We may have
1817 	 * already set other pages under writeback and hence we have to run I/O
1818 	 * completion to mark the error state of the pages under writeback
1819 	 * appropriately.
1820 	 *
1821 	 * Just let the file system know what portion of the folio failed to
1822 	 * map.
1823 	 */
1824 	if (error && wpc->ops->discard_folio)
1825 		wpc->ops->discard_folio(folio, pos);
1826 	return error;
1827 }
1828 
1829 /*
1830  * Check interaction of the folio with the file end.
1831  *
1832  * If the folio is entirely beyond i_size, return false.  If it straddles
1833  * i_size, adjust end_pos and zero all data beyond i_size.
1834  */
1835 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode,
1836 		u64 *end_pos)
1837 {
1838 	u64 isize = i_size_read(inode);
1839 
1840 	if (*end_pos > isize) {
1841 		size_t poff = offset_in_folio(folio, isize);
1842 		pgoff_t end_index = isize >> PAGE_SHIFT;
1843 
1844 		/*
1845 		 * If the folio is entirely ouside of i_size, skip it.
1846 		 *
1847 		 * This can happen due to a truncate operation that is in
1848 		 * progress and in that case truncate will finish it off once
1849 		 * we've dropped the folio lock.
1850 		 *
1851 		 * Note that the pgoff_t used for end_index is an unsigned long.
1852 		 * If the given offset is greater than 16TB on a 32-bit system,
1853 		 * then if we checked if the folio is fully outside i_size with
1854 		 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1855 		 * overflow and evaluate to 0.  Hence this folio would be
1856 		 * redirtied and written out repeatedly, which would result in
1857 		 * an infinite loop; the user program performing this operation
1858 		 * would hang.  Instead, we can detect this situation by
1859 		 * checking if the folio is totally beyond i_size or if its
1860 		 * offset is just equal to the EOF.
1861 		 */
1862 		if (folio->index > end_index ||
1863 		    (folio->index == end_index && poff == 0))
1864 			return false;
1865 
1866 		/*
1867 		 * The folio straddles i_size.
1868 		 *
1869 		 * It must be zeroed out on each and every writepage invocation
1870 		 * because it may be mmapped:
1871 		 *
1872 		 *    A file is mapped in multiples of the page size.  For a
1873 		 *    file that is not a multiple of the page size, the
1874 		 *    remaining memory is zeroed when mapped, and writes to that
1875 		 *    region are not written out to the file.
1876 		 *
1877 		 * Also adjust the writeback range to skip all blocks entirely
1878 		 * beyond i_size.
1879 		 */
1880 		folio_zero_segment(folio, poff, folio_size(folio));
1881 		*end_pos = round_up(isize, i_blocksize(inode));
1882 	}
1883 
1884 	return true;
1885 }
1886 
1887 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1888 		struct writeback_control *wbc, struct folio *folio)
1889 {
1890 	struct iomap_folio_state *ifs = folio->private;
1891 	struct inode *inode = folio->mapping->host;
1892 	u64 pos = folio_pos(folio);
1893 	u64 end_pos = pos + folio_size(folio);
1894 	unsigned count = 0;
1895 	int error = 0;
1896 	u32 rlen;
1897 
1898 	WARN_ON_ONCE(!folio_test_locked(folio));
1899 	WARN_ON_ONCE(folio_test_dirty(folio));
1900 	WARN_ON_ONCE(folio_test_writeback(folio));
1901 
1902 	trace_iomap_writepage(inode, pos, folio_size(folio));
1903 
1904 	if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) {
1905 		folio_unlock(folio);
1906 		return 0;
1907 	}
1908 	WARN_ON_ONCE(end_pos <= pos);
1909 
1910 	if (i_blocks_per_folio(inode, folio) > 1) {
1911 		if (!ifs) {
1912 			ifs = ifs_alloc(inode, folio, 0);
1913 			iomap_set_range_dirty(folio, 0, end_pos - pos);
1914 		}
1915 
1916 		/*
1917 		 * Keep the I/O completion handler from clearing the writeback
1918 		 * bit until we have submitted all blocks by adding a bias to
1919 		 * ifs->write_bytes_pending, which is dropped after submitting
1920 		 * all blocks.
1921 		 */
1922 		WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1923 		atomic_inc(&ifs->write_bytes_pending);
1924 	}
1925 
1926 	/*
1927 	 * Set the writeback bit ASAP, as the I/O completion for the single
1928 	 * block per folio case happen hit as soon as we're submitting the bio.
1929 	 */
1930 	folio_start_writeback(folio);
1931 
1932 	/*
1933 	 * Walk through the folio to find dirty areas to write back.
1934 	 */
1935 	while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) {
1936 		error = iomap_writepage_map_blocks(wpc, wbc, folio, inode,
1937 				pos, rlen, &count);
1938 		if (error)
1939 			break;
1940 		pos += rlen;
1941 	}
1942 
1943 	if (count)
1944 		wpc->nr_folios++;
1945 
1946 	/*
1947 	 * We can have dirty bits set past end of file in page_mkwrite path
1948 	 * while mapping the last partial folio. Hence it's better to clear
1949 	 * all the dirty bits in the folio here.
1950 	 */
1951 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1952 
1953 	/*
1954 	 * Usually the writeback bit is cleared by the I/O completion handler.
1955 	 * But we may end up either not actually writing any blocks, or (when
1956 	 * there are multiple blocks in a folio) all I/O might have finished
1957 	 * already at this point.  In that case we need to clear the writeback
1958 	 * bit ourselves right after unlocking the page.
1959 	 */
1960 	folio_unlock(folio);
1961 	if (ifs) {
1962 		if (atomic_dec_and_test(&ifs->write_bytes_pending))
1963 			folio_end_writeback(folio);
1964 	} else {
1965 		if (!count)
1966 			folio_end_writeback(folio);
1967 	}
1968 	mapping_set_error(inode->i_mapping, error);
1969 	return error;
1970 }
1971 
1972 int
1973 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1974 		struct iomap_writepage_ctx *wpc,
1975 		const struct iomap_writeback_ops *ops)
1976 {
1977 	struct folio *folio = NULL;
1978 	int error;
1979 
1980 	/*
1981 	 * Writeback from reclaim context should never happen except in the case
1982 	 * of a VM regression so warn about it and refuse to write the data.
1983 	 */
1984 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1985 			PF_MEMALLOC))
1986 		return -EIO;
1987 
1988 	wpc->ops = ops;
1989 	while ((folio = writeback_iter(mapping, wbc, folio, &error)))
1990 		error = iomap_writepage_map(wpc, wbc, folio);
1991 	return iomap_submit_ioend(wpc, error);
1992 }
1993 EXPORT_SYMBOL_GPL(iomap_writepages);
1994 
1995 static int __init iomap_init(void)
1996 {
1997 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1998 			   offsetof(struct iomap_ioend, io_bio),
1999 			   BIOSET_NEED_BVECS);
2000 }
2001 fs_initcall(iomap_init);
2002