1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 spinlock_t state_lock; 33 unsigned int read_bytes_pending; 34 atomic_t write_bytes_pending; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static bool ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 68 bitmap_set(ifs->state, first_blk, nr_blks); 69 return ifs_is_fully_uptodate(folio, ifs); 70 } 71 72 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 73 size_t len) 74 { 75 struct iomap_folio_state *ifs = folio->private; 76 unsigned long flags; 77 bool uptodate = true; 78 79 if (ifs) { 80 spin_lock_irqsave(&ifs->state_lock, flags); 81 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 82 spin_unlock_irqrestore(&ifs->state_lock, flags); 83 } 84 85 if (uptodate) 86 folio_mark_uptodate(folio); 87 } 88 89 static inline bool ifs_block_is_dirty(struct folio *folio, 90 struct iomap_folio_state *ifs, int block) 91 { 92 struct inode *inode = folio->mapping->host; 93 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 94 95 return test_bit(block + blks_per_folio, ifs->state); 96 } 97 98 static unsigned ifs_find_dirty_range(struct folio *folio, 99 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 100 { 101 struct inode *inode = folio->mapping->host; 102 unsigned start_blk = 103 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 104 unsigned end_blk = min_not_zero( 105 offset_in_folio(folio, range_end) >> inode->i_blkbits, 106 i_blocks_per_folio(inode, folio)); 107 unsigned nblks = 1; 108 109 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 110 if (++start_blk == end_blk) 111 return 0; 112 113 while (start_blk + nblks < end_blk) { 114 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 115 break; 116 nblks++; 117 } 118 119 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 120 return nblks << inode->i_blkbits; 121 } 122 123 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 124 u64 range_end) 125 { 126 struct iomap_folio_state *ifs = folio->private; 127 128 if (*range_start >= range_end) 129 return 0; 130 131 if (ifs) 132 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 133 return range_end - *range_start; 134 } 135 136 static void ifs_clear_range_dirty(struct folio *folio, 137 struct iomap_folio_state *ifs, size_t off, size_t len) 138 { 139 struct inode *inode = folio->mapping->host; 140 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 141 unsigned int first_blk = (off >> inode->i_blkbits); 142 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 143 unsigned int nr_blks = last_blk - first_blk + 1; 144 unsigned long flags; 145 146 spin_lock_irqsave(&ifs->state_lock, flags); 147 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 148 spin_unlock_irqrestore(&ifs->state_lock, flags); 149 } 150 151 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 152 { 153 struct iomap_folio_state *ifs = folio->private; 154 155 if (ifs) 156 ifs_clear_range_dirty(folio, ifs, off, len); 157 } 158 159 static void ifs_set_range_dirty(struct folio *folio, 160 struct iomap_folio_state *ifs, size_t off, size_t len) 161 { 162 struct inode *inode = folio->mapping->host; 163 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 164 unsigned int first_blk = (off >> inode->i_blkbits); 165 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 166 unsigned int nr_blks = last_blk - first_blk + 1; 167 unsigned long flags; 168 169 spin_lock_irqsave(&ifs->state_lock, flags); 170 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 171 spin_unlock_irqrestore(&ifs->state_lock, flags); 172 } 173 174 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 175 { 176 struct iomap_folio_state *ifs = folio->private; 177 178 if (ifs) 179 ifs_set_range_dirty(folio, ifs, off, len); 180 } 181 182 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 183 struct folio *folio, unsigned int flags) 184 { 185 struct iomap_folio_state *ifs = folio->private; 186 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 187 gfp_t gfp; 188 189 if (ifs || nr_blocks <= 1) 190 return ifs; 191 192 if (flags & IOMAP_NOWAIT) 193 gfp = GFP_NOWAIT; 194 else 195 gfp = GFP_NOFS | __GFP_NOFAIL; 196 197 /* 198 * ifs->state tracks two sets of state flags when the 199 * filesystem block size is smaller than the folio size. 200 * The first state tracks per-block uptodate and the 201 * second tracks per-block dirty state. 202 */ 203 ifs = kzalloc(struct_size(ifs, state, 204 BITS_TO_LONGS(2 * nr_blocks)), gfp); 205 if (!ifs) 206 return ifs; 207 208 spin_lock_init(&ifs->state_lock); 209 if (folio_test_uptodate(folio)) 210 bitmap_set(ifs->state, 0, nr_blocks); 211 if (folio_test_dirty(folio)) 212 bitmap_set(ifs->state, nr_blocks, nr_blocks); 213 folio_attach_private(folio, ifs); 214 215 return ifs; 216 } 217 218 static void ifs_free(struct folio *folio) 219 { 220 struct iomap_folio_state *ifs = folio_detach_private(folio); 221 222 if (!ifs) 223 return; 224 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 225 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 226 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 227 folio_test_uptodate(folio)); 228 kfree(ifs); 229 } 230 231 /* 232 * Calculate the range inside the folio that we actually need to read. 233 */ 234 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 235 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 236 { 237 struct iomap_folio_state *ifs = folio->private; 238 loff_t orig_pos = *pos; 239 loff_t isize = i_size_read(inode); 240 unsigned block_bits = inode->i_blkbits; 241 unsigned block_size = (1 << block_bits); 242 size_t poff = offset_in_folio(folio, *pos); 243 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 244 size_t orig_plen = plen; 245 unsigned first = poff >> block_bits; 246 unsigned last = (poff + plen - 1) >> block_bits; 247 248 /* 249 * If the block size is smaller than the page size, we need to check the 250 * per-block uptodate status and adjust the offset and length if needed 251 * to avoid reading in already uptodate ranges. 252 */ 253 if (ifs) { 254 unsigned int i; 255 256 /* move forward for each leading block marked uptodate */ 257 for (i = first; i <= last; i++) { 258 if (!ifs_block_is_uptodate(ifs, i)) 259 break; 260 *pos += block_size; 261 poff += block_size; 262 plen -= block_size; 263 first++; 264 } 265 266 /* truncate len if we find any trailing uptodate block(s) */ 267 for ( ; i <= last; i++) { 268 if (ifs_block_is_uptodate(ifs, i)) { 269 plen -= (last - i + 1) * block_size; 270 last = i - 1; 271 break; 272 } 273 } 274 } 275 276 /* 277 * If the extent spans the block that contains the i_size, we need to 278 * handle both halves separately so that we properly zero data in the 279 * page cache for blocks that are entirely outside of i_size. 280 */ 281 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 282 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 283 284 if (first <= end && last > end) 285 plen -= (last - end) * block_size; 286 } 287 288 *offp = poff; 289 *lenp = plen; 290 } 291 292 static void iomap_finish_folio_read(struct folio *folio, size_t off, 293 size_t len, int error) 294 { 295 struct iomap_folio_state *ifs = folio->private; 296 bool uptodate = !error; 297 bool finished = true; 298 299 if (ifs) { 300 unsigned long flags; 301 302 spin_lock_irqsave(&ifs->state_lock, flags); 303 if (!error) 304 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 305 ifs->read_bytes_pending -= len; 306 finished = !ifs->read_bytes_pending; 307 spin_unlock_irqrestore(&ifs->state_lock, flags); 308 } 309 310 if (error) 311 folio_set_error(folio); 312 if (finished) 313 folio_end_read(folio, uptodate); 314 } 315 316 static void iomap_read_end_io(struct bio *bio) 317 { 318 int error = blk_status_to_errno(bio->bi_status); 319 struct folio_iter fi; 320 321 bio_for_each_folio_all(fi, bio) 322 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 323 bio_put(bio); 324 } 325 326 struct iomap_readpage_ctx { 327 struct folio *cur_folio; 328 bool cur_folio_in_bio; 329 struct bio *bio; 330 struct readahead_control *rac; 331 }; 332 333 /** 334 * iomap_read_inline_data - copy inline data into the page cache 335 * @iter: iteration structure 336 * @folio: folio to copy to 337 * 338 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 339 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 340 * Returns zero for success to complete the read, or the usual negative errno. 341 */ 342 static int iomap_read_inline_data(const struct iomap_iter *iter, 343 struct folio *folio) 344 { 345 const struct iomap *iomap = iomap_iter_srcmap(iter); 346 size_t size = i_size_read(iter->inode) - iomap->offset; 347 size_t offset = offset_in_folio(folio, iomap->offset); 348 349 if (folio_test_uptodate(folio)) 350 return 0; 351 352 if (WARN_ON_ONCE(size > iomap->length)) 353 return -EIO; 354 if (offset > 0) 355 ifs_alloc(iter->inode, folio, iter->flags); 356 357 folio_fill_tail(folio, offset, iomap->inline_data, size); 358 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 359 return 0; 360 } 361 362 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 363 loff_t pos) 364 { 365 const struct iomap *srcmap = iomap_iter_srcmap(iter); 366 367 return srcmap->type != IOMAP_MAPPED || 368 (srcmap->flags & IOMAP_F_NEW) || 369 pos >= i_size_read(iter->inode); 370 } 371 372 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 373 struct iomap_readpage_ctx *ctx, loff_t offset) 374 { 375 const struct iomap *iomap = &iter->iomap; 376 loff_t pos = iter->pos + offset; 377 loff_t length = iomap_length(iter) - offset; 378 struct folio *folio = ctx->cur_folio; 379 struct iomap_folio_state *ifs; 380 loff_t orig_pos = pos; 381 size_t poff, plen; 382 sector_t sector; 383 384 if (iomap->type == IOMAP_INLINE) 385 return iomap_read_inline_data(iter, folio); 386 387 /* zero post-eof blocks as the page may be mapped */ 388 ifs = ifs_alloc(iter->inode, folio, iter->flags); 389 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 390 if (plen == 0) 391 goto done; 392 393 if (iomap_block_needs_zeroing(iter, pos)) { 394 folio_zero_range(folio, poff, plen); 395 iomap_set_range_uptodate(folio, poff, plen); 396 goto done; 397 } 398 399 ctx->cur_folio_in_bio = true; 400 if (ifs) { 401 spin_lock_irq(&ifs->state_lock); 402 ifs->read_bytes_pending += plen; 403 spin_unlock_irq(&ifs->state_lock); 404 } 405 406 sector = iomap_sector(iomap, pos); 407 if (!ctx->bio || 408 bio_end_sector(ctx->bio) != sector || 409 !bio_add_folio(ctx->bio, folio, plen, poff)) { 410 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 411 gfp_t orig_gfp = gfp; 412 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 413 414 if (ctx->bio) 415 submit_bio(ctx->bio); 416 417 if (ctx->rac) /* same as readahead_gfp_mask */ 418 gfp |= __GFP_NORETRY | __GFP_NOWARN; 419 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 420 REQ_OP_READ, gfp); 421 /* 422 * If the bio_alloc fails, try it again for a single page to 423 * avoid having to deal with partial page reads. This emulates 424 * what do_mpage_read_folio does. 425 */ 426 if (!ctx->bio) { 427 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 428 orig_gfp); 429 } 430 if (ctx->rac) 431 ctx->bio->bi_opf |= REQ_RAHEAD; 432 ctx->bio->bi_iter.bi_sector = sector; 433 ctx->bio->bi_end_io = iomap_read_end_io; 434 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 435 } 436 437 done: 438 /* 439 * Move the caller beyond our range so that it keeps making progress. 440 * For that, we have to include any leading non-uptodate ranges, but 441 * we can skip trailing ones as they will be handled in the next 442 * iteration. 443 */ 444 return pos - orig_pos + plen; 445 } 446 447 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 448 { 449 struct iomap_iter iter = { 450 .inode = folio->mapping->host, 451 .pos = folio_pos(folio), 452 .len = folio_size(folio), 453 }; 454 struct iomap_readpage_ctx ctx = { 455 .cur_folio = folio, 456 }; 457 int ret; 458 459 trace_iomap_readpage(iter.inode, 1); 460 461 while ((ret = iomap_iter(&iter, ops)) > 0) 462 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 463 464 if (ret < 0) 465 folio_set_error(folio); 466 467 if (ctx.bio) { 468 submit_bio(ctx.bio); 469 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 470 } else { 471 WARN_ON_ONCE(ctx.cur_folio_in_bio); 472 folio_unlock(folio); 473 } 474 475 /* 476 * Just like mpage_readahead and block_read_full_folio, we always 477 * return 0 and just set the folio error flag on errors. This 478 * should be cleaned up throughout the stack eventually. 479 */ 480 return 0; 481 } 482 EXPORT_SYMBOL_GPL(iomap_read_folio); 483 484 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 485 struct iomap_readpage_ctx *ctx) 486 { 487 loff_t length = iomap_length(iter); 488 loff_t done, ret; 489 490 for (done = 0; done < length; done += ret) { 491 if (ctx->cur_folio && 492 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 493 if (!ctx->cur_folio_in_bio) 494 folio_unlock(ctx->cur_folio); 495 ctx->cur_folio = NULL; 496 } 497 if (!ctx->cur_folio) { 498 ctx->cur_folio = readahead_folio(ctx->rac); 499 ctx->cur_folio_in_bio = false; 500 } 501 ret = iomap_readpage_iter(iter, ctx, done); 502 if (ret <= 0) 503 return ret; 504 } 505 506 return done; 507 } 508 509 /** 510 * iomap_readahead - Attempt to read pages from a file. 511 * @rac: Describes the pages to be read. 512 * @ops: The operations vector for the filesystem. 513 * 514 * This function is for filesystems to call to implement their readahead 515 * address_space operation. 516 * 517 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 518 * blocks from disc), and may wait for it. The caller may be trying to 519 * access a different page, and so sleeping excessively should be avoided. 520 * It may allocate memory, but should avoid costly allocations. This 521 * function is called with memalloc_nofs set, so allocations will not cause 522 * the filesystem to be reentered. 523 */ 524 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 525 { 526 struct iomap_iter iter = { 527 .inode = rac->mapping->host, 528 .pos = readahead_pos(rac), 529 .len = readahead_length(rac), 530 }; 531 struct iomap_readpage_ctx ctx = { 532 .rac = rac, 533 }; 534 535 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 536 537 while (iomap_iter(&iter, ops) > 0) 538 iter.processed = iomap_readahead_iter(&iter, &ctx); 539 540 if (ctx.bio) 541 submit_bio(ctx.bio); 542 if (ctx.cur_folio) { 543 if (!ctx.cur_folio_in_bio) 544 folio_unlock(ctx.cur_folio); 545 } 546 } 547 EXPORT_SYMBOL_GPL(iomap_readahead); 548 549 /* 550 * iomap_is_partially_uptodate checks whether blocks within a folio are 551 * uptodate or not. 552 * 553 * Returns true if all blocks which correspond to the specified part 554 * of the folio are uptodate. 555 */ 556 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 557 { 558 struct iomap_folio_state *ifs = folio->private; 559 struct inode *inode = folio->mapping->host; 560 unsigned first, last, i; 561 562 if (!ifs) 563 return false; 564 565 /* Caller's range may extend past the end of this folio */ 566 count = min(folio_size(folio) - from, count); 567 568 /* First and last blocks in range within folio */ 569 first = from >> inode->i_blkbits; 570 last = (from + count - 1) >> inode->i_blkbits; 571 572 for (i = first; i <= last; i++) 573 if (!ifs_block_is_uptodate(ifs, i)) 574 return false; 575 return true; 576 } 577 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 578 579 /** 580 * iomap_get_folio - get a folio reference for writing 581 * @iter: iteration structure 582 * @pos: start offset of write 583 * @len: Suggested size of folio to create. 584 * 585 * Returns a locked reference to the folio at @pos, or an error pointer if the 586 * folio could not be obtained. 587 */ 588 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 589 { 590 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 591 592 if (iter->flags & IOMAP_NOWAIT) 593 fgp |= FGP_NOWAIT; 594 fgp |= fgf_set_order(len); 595 596 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 597 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 598 } 599 EXPORT_SYMBOL_GPL(iomap_get_folio); 600 601 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 602 { 603 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 604 folio_size(folio)); 605 606 /* 607 * If the folio is dirty, we refuse to release our metadata because 608 * it may be partially dirty. Once we track per-block dirty state, 609 * we can release the metadata if every block is dirty. 610 */ 611 if (folio_test_dirty(folio)) 612 return false; 613 ifs_free(folio); 614 return true; 615 } 616 EXPORT_SYMBOL_GPL(iomap_release_folio); 617 618 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 619 { 620 trace_iomap_invalidate_folio(folio->mapping->host, 621 folio_pos(folio) + offset, len); 622 623 /* 624 * If we're invalidating the entire folio, clear the dirty state 625 * from it and release it to avoid unnecessary buildup of the LRU. 626 */ 627 if (offset == 0 && len == folio_size(folio)) { 628 WARN_ON_ONCE(folio_test_writeback(folio)); 629 folio_cancel_dirty(folio); 630 ifs_free(folio); 631 } 632 } 633 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 634 635 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 636 { 637 struct inode *inode = mapping->host; 638 size_t len = folio_size(folio); 639 640 ifs_alloc(inode, folio, 0); 641 iomap_set_range_dirty(folio, 0, len); 642 return filemap_dirty_folio(mapping, folio); 643 } 644 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 645 646 static void 647 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 648 { 649 loff_t i_size = i_size_read(inode); 650 651 /* 652 * Only truncate newly allocated pages beyoned EOF, even if the 653 * write started inside the existing inode size. 654 */ 655 if (pos + len > i_size) 656 truncate_pagecache_range(inode, max(pos, i_size), 657 pos + len - 1); 658 } 659 660 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 661 size_t poff, size_t plen, const struct iomap *iomap) 662 { 663 struct bio_vec bvec; 664 struct bio bio; 665 666 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 667 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 668 bio_add_folio_nofail(&bio, folio, plen, poff); 669 return submit_bio_wait(&bio); 670 } 671 672 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 673 size_t len, struct folio *folio) 674 { 675 const struct iomap *srcmap = iomap_iter_srcmap(iter); 676 struct iomap_folio_state *ifs; 677 loff_t block_size = i_blocksize(iter->inode); 678 loff_t block_start = round_down(pos, block_size); 679 loff_t block_end = round_up(pos + len, block_size); 680 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 681 size_t from = offset_in_folio(folio, pos), to = from + len; 682 size_t poff, plen; 683 684 /* 685 * If the write or zeroing completely overlaps the current folio, then 686 * entire folio will be dirtied so there is no need for 687 * per-block state tracking structures to be attached to this folio. 688 * For the unshare case, we must read in the ondisk contents because we 689 * are not changing pagecache contents. 690 */ 691 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 692 pos + len >= folio_pos(folio) + folio_size(folio)) 693 return 0; 694 695 ifs = ifs_alloc(iter->inode, folio, iter->flags); 696 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 697 return -EAGAIN; 698 699 if (folio_test_uptodate(folio)) 700 return 0; 701 folio_clear_error(folio); 702 703 do { 704 iomap_adjust_read_range(iter->inode, folio, &block_start, 705 block_end - block_start, &poff, &plen); 706 if (plen == 0) 707 break; 708 709 if (!(iter->flags & IOMAP_UNSHARE) && 710 (from <= poff || from >= poff + plen) && 711 (to <= poff || to >= poff + plen)) 712 continue; 713 714 if (iomap_block_needs_zeroing(iter, block_start)) { 715 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 716 return -EIO; 717 folio_zero_segments(folio, poff, from, to, poff + plen); 718 } else { 719 int status; 720 721 if (iter->flags & IOMAP_NOWAIT) 722 return -EAGAIN; 723 724 status = iomap_read_folio_sync(block_start, folio, 725 poff, plen, srcmap); 726 if (status) 727 return status; 728 } 729 iomap_set_range_uptodate(folio, poff, plen); 730 } while ((block_start += plen) < block_end); 731 732 return 0; 733 } 734 735 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 736 size_t len) 737 { 738 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 739 740 if (folio_ops && folio_ops->get_folio) 741 return folio_ops->get_folio(iter, pos, len); 742 else 743 return iomap_get_folio(iter, pos, len); 744 } 745 746 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 747 struct folio *folio) 748 { 749 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 750 751 if (folio_ops && folio_ops->put_folio) { 752 folio_ops->put_folio(iter->inode, pos, ret, folio); 753 } else { 754 folio_unlock(folio); 755 folio_put(folio); 756 } 757 } 758 759 static int iomap_write_begin_inline(const struct iomap_iter *iter, 760 struct folio *folio) 761 { 762 /* needs more work for the tailpacking case; disable for now */ 763 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 764 return -EIO; 765 return iomap_read_inline_data(iter, folio); 766 } 767 768 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 769 size_t len, struct folio **foliop) 770 { 771 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 772 const struct iomap *srcmap = iomap_iter_srcmap(iter); 773 struct folio *folio; 774 int status = 0; 775 776 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 777 if (srcmap != &iter->iomap) 778 BUG_ON(pos + len > srcmap->offset + srcmap->length); 779 780 if (fatal_signal_pending(current)) 781 return -EINTR; 782 783 if (!mapping_large_folio_support(iter->inode->i_mapping)) 784 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 785 786 folio = __iomap_get_folio(iter, pos, len); 787 if (IS_ERR(folio)) 788 return PTR_ERR(folio); 789 790 /* 791 * Now we have a locked folio, before we do anything with it we need to 792 * check that the iomap we have cached is not stale. The inode extent 793 * mapping can change due to concurrent IO in flight (e.g. 794 * IOMAP_UNWRITTEN state can change and memory reclaim could have 795 * reclaimed a previously partially written page at this index after IO 796 * completion before this write reaches this file offset) and hence we 797 * could do the wrong thing here (zero a page range incorrectly or fail 798 * to zero) and corrupt data. 799 */ 800 if (folio_ops && folio_ops->iomap_valid) { 801 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 802 &iter->iomap); 803 if (!iomap_valid) { 804 iter->iomap.flags |= IOMAP_F_STALE; 805 status = 0; 806 goto out_unlock; 807 } 808 } 809 810 if (pos + len > folio_pos(folio) + folio_size(folio)) 811 len = folio_pos(folio) + folio_size(folio) - pos; 812 813 if (srcmap->type == IOMAP_INLINE) 814 status = iomap_write_begin_inline(iter, folio); 815 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 816 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 817 else 818 status = __iomap_write_begin(iter, pos, len, folio); 819 820 if (unlikely(status)) 821 goto out_unlock; 822 823 *foliop = folio; 824 return 0; 825 826 out_unlock: 827 __iomap_put_folio(iter, pos, 0, folio); 828 829 return status; 830 } 831 832 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 833 size_t copied, struct folio *folio) 834 { 835 flush_dcache_folio(folio); 836 837 /* 838 * The blocks that were entirely written will now be uptodate, so we 839 * don't have to worry about a read_folio reading them and overwriting a 840 * partial write. However, if we've encountered a short write and only 841 * partially written into a block, it will not be marked uptodate, so a 842 * read_folio might come in and destroy our partial write. 843 * 844 * Do the simplest thing and just treat any short write to a 845 * non-uptodate page as a zero-length write, and force the caller to 846 * redo the whole thing. 847 */ 848 if (unlikely(copied < len && !folio_test_uptodate(folio))) 849 return false; 850 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 851 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 852 filemap_dirty_folio(inode->i_mapping, folio); 853 return true; 854 } 855 856 static void iomap_write_end_inline(const struct iomap_iter *iter, 857 struct folio *folio, loff_t pos, size_t copied) 858 { 859 const struct iomap *iomap = &iter->iomap; 860 void *addr; 861 862 WARN_ON_ONCE(!folio_test_uptodate(folio)); 863 BUG_ON(!iomap_inline_data_valid(iomap)); 864 865 flush_dcache_folio(folio); 866 addr = kmap_local_folio(folio, pos); 867 memcpy(iomap_inline_data(iomap, pos), addr, copied); 868 kunmap_local(addr); 869 870 mark_inode_dirty(iter->inode); 871 } 872 873 /* 874 * Returns true if all copied bytes have been written to the pagecache, 875 * otherwise return false. 876 */ 877 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 878 size_t copied, struct folio *folio) 879 { 880 const struct iomap *srcmap = iomap_iter_srcmap(iter); 881 loff_t old_size = iter->inode->i_size; 882 size_t written; 883 884 if (srcmap->type == IOMAP_INLINE) { 885 iomap_write_end_inline(iter, folio, pos, copied); 886 written = copied; 887 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 888 written = block_write_end(NULL, iter->inode->i_mapping, pos, 889 len, copied, &folio->page, NULL); 890 WARN_ON_ONCE(written != copied && written != 0); 891 } else { 892 written = __iomap_write_end(iter->inode, pos, len, copied, 893 folio) ? copied : 0; 894 } 895 896 /* 897 * Update the in-memory inode size after copying the data into the page 898 * cache. It's up to the file system to write the updated size to disk, 899 * preferably after I/O completion so that no stale data is exposed. 900 * Only once that's done can we unlock and release the folio. 901 */ 902 if (pos + written > old_size) { 903 i_size_write(iter->inode, pos + written); 904 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 905 } 906 __iomap_put_folio(iter, pos, written, folio); 907 908 if (old_size < pos) 909 pagecache_isize_extended(iter->inode, old_size, pos); 910 911 return written == copied; 912 } 913 914 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 915 { 916 loff_t length = iomap_length(iter); 917 loff_t pos = iter->pos; 918 ssize_t total_written = 0; 919 long status = 0; 920 struct address_space *mapping = iter->inode->i_mapping; 921 size_t chunk = mapping_max_folio_size(mapping); 922 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 923 924 do { 925 struct folio *folio; 926 size_t offset; /* Offset into folio */ 927 size_t bytes; /* Bytes to write to folio */ 928 size_t copied; /* Bytes copied from user */ 929 size_t written; /* Bytes have been written */ 930 931 bytes = iov_iter_count(i); 932 retry: 933 offset = pos & (chunk - 1); 934 bytes = min(chunk - offset, bytes); 935 status = balance_dirty_pages_ratelimited_flags(mapping, 936 bdp_flags); 937 if (unlikely(status)) 938 break; 939 940 if (bytes > length) 941 bytes = length; 942 943 /* 944 * Bring in the user page that we'll copy from _first_. 945 * Otherwise there's a nasty deadlock on copying from the 946 * same page as we're writing to, without it being marked 947 * up-to-date. 948 * 949 * For async buffered writes the assumption is that the user 950 * page has already been faulted in. This can be optimized by 951 * faulting the user page. 952 */ 953 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 954 status = -EFAULT; 955 break; 956 } 957 958 status = iomap_write_begin(iter, pos, bytes, &folio); 959 if (unlikely(status)) { 960 iomap_write_failed(iter->inode, pos, bytes); 961 break; 962 } 963 if (iter->iomap.flags & IOMAP_F_STALE) 964 break; 965 966 offset = offset_in_folio(folio, pos); 967 if (bytes > folio_size(folio) - offset) 968 bytes = folio_size(folio) - offset; 969 970 if (mapping_writably_mapped(mapping)) 971 flush_dcache_folio(folio); 972 973 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 974 written = iomap_write_end(iter, pos, bytes, copied, folio) ? 975 copied : 0; 976 977 cond_resched(); 978 if (unlikely(written == 0)) { 979 /* 980 * A short copy made iomap_write_end() reject the 981 * thing entirely. Might be memory poisoning 982 * halfway through, might be a race with munmap, 983 * might be severe memory pressure. 984 */ 985 iomap_write_failed(iter->inode, pos, bytes); 986 iov_iter_revert(i, copied); 987 988 if (chunk > PAGE_SIZE) 989 chunk /= 2; 990 if (copied) { 991 bytes = copied; 992 goto retry; 993 } 994 } else { 995 pos += written; 996 total_written += written; 997 length -= written; 998 } 999 } while (iov_iter_count(i) && length); 1000 1001 if (status == -EAGAIN) { 1002 iov_iter_revert(i, total_written); 1003 return -EAGAIN; 1004 } 1005 return total_written ? total_written : status; 1006 } 1007 1008 ssize_t 1009 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1010 const struct iomap_ops *ops) 1011 { 1012 struct iomap_iter iter = { 1013 .inode = iocb->ki_filp->f_mapping->host, 1014 .pos = iocb->ki_pos, 1015 .len = iov_iter_count(i), 1016 .flags = IOMAP_WRITE, 1017 }; 1018 ssize_t ret; 1019 1020 if (iocb->ki_flags & IOCB_NOWAIT) 1021 iter.flags |= IOMAP_NOWAIT; 1022 1023 while ((ret = iomap_iter(&iter, ops)) > 0) 1024 iter.processed = iomap_write_iter(&iter, i); 1025 1026 if (unlikely(iter.pos == iocb->ki_pos)) 1027 return ret; 1028 ret = iter.pos - iocb->ki_pos; 1029 iocb->ki_pos = iter.pos; 1030 return ret; 1031 } 1032 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1033 1034 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 1035 struct folio *folio, loff_t start_byte, loff_t end_byte, 1036 iomap_punch_t punch) 1037 { 1038 unsigned int first_blk, last_blk, i; 1039 loff_t last_byte; 1040 u8 blkbits = inode->i_blkbits; 1041 struct iomap_folio_state *ifs; 1042 int ret = 0; 1043 1044 /* 1045 * When we have per-block dirty tracking, there can be 1046 * blocks within a folio which are marked uptodate 1047 * but not dirty. In that case it is necessary to punch 1048 * out such blocks to avoid leaking any delalloc blocks. 1049 */ 1050 ifs = folio->private; 1051 if (!ifs) 1052 return ret; 1053 1054 last_byte = min_t(loff_t, end_byte - 1, 1055 folio_pos(folio) + folio_size(folio) - 1); 1056 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1057 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1058 for (i = first_blk; i <= last_blk; i++) { 1059 if (!ifs_block_is_dirty(folio, ifs, i)) { 1060 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1061 1 << blkbits); 1062 if (ret) 1063 return ret; 1064 } 1065 } 1066 1067 return ret; 1068 } 1069 1070 1071 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1072 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1073 iomap_punch_t punch) 1074 { 1075 int ret = 0; 1076 1077 if (!folio_test_dirty(folio)) 1078 return ret; 1079 1080 /* if dirty, punch up to offset */ 1081 if (start_byte > *punch_start_byte) { 1082 ret = punch(inode, *punch_start_byte, 1083 start_byte - *punch_start_byte); 1084 if (ret) 1085 return ret; 1086 } 1087 1088 /* Punch non-dirty blocks within folio */ 1089 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1090 end_byte, punch); 1091 if (ret) 1092 return ret; 1093 1094 /* 1095 * Make sure the next punch start is correctly bound to 1096 * the end of this data range, not the end of the folio. 1097 */ 1098 *punch_start_byte = min_t(loff_t, end_byte, 1099 folio_pos(folio) + folio_size(folio)); 1100 1101 return ret; 1102 } 1103 1104 /* 1105 * Scan the data range passed to us for dirty page cache folios. If we find a 1106 * dirty folio, punch out the preceding range and update the offset from which 1107 * the next punch will start from. 1108 * 1109 * We can punch out storage reservations under clean pages because they either 1110 * contain data that has been written back - in which case the delalloc punch 1111 * over that range is a no-op - or they have been read faults in which case they 1112 * contain zeroes and we can remove the delalloc backing range and any new 1113 * writes to those pages will do the normal hole filling operation... 1114 * 1115 * This makes the logic simple: we only need to keep the delalloc extents only 1116 * over the dirty ranges of the page cache. 1117 * 1118 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1119 * simplify range iterations. 1120 */ 1121 static int iomap_write_delalloc_scan(struct inode *inode, 1122 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1123 iomap_punch_t punch) 1124 { 1125 while (start_byte < end_byte) { 1126 struct folio *folio; 1127 int ret; 1128 1129 /* grab locked page */ 1130 folio = filemap_lock_folio(inode->i_mapping, 1131 start_byte >> PAGE_SHIFT); 1132 if (IS_ERR(folio)) { 1133 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1134 PAGE_SIZE; 1135 continue; 1136 } 1137 1138 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1139 start_byte, end_byte, punch); 1140 if (ret) { 1141 folio_unlock(folio); 1142 folio_put(folio); 1143 return ret; 1144 } 1145 1146 /* move offset to start of next folio in range */ 1147 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1148 folio_unlock(folio); 1149 folio_put(folio); 1150 } 1151 return 0; 1152 } 1153 1154 /* 1155 * Punch out all the delalloc blocks in the range given except for those that 1156 * have dirty data still pending in the page cache - those are going to be 1157 * written and so must still retain the delalloc backing for writeback. 1158 * 1159 * As we are scanning the page cache for data, we don't need to reimplement the 1160 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1161 * start and end of data ranges correctly even for sub-folio block sizes. This 1162 * byte range based iteration is especially convenient because it means we 1163 * don't have to care about variable size folios, nor where the start or end of 1164 * the data range lies within a folio, if they lie within the same folio or even 1165 * if there are multiple discontiguous data ranges within the folio. 1166 * 1167 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1168 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1169 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1170 * date. A write page fault can then mark it dirty. If we then fail a write() 1171 * beyond EOF into that up to date cached range, we allocate a delalloc block 1172 * beyond EOF and then have to punch it out. Because the range is up to date, 1173 * mapping_seek_hole_data() will return it, and we will skip the punch because 1174 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1175 * beyond EOF in this case as writeback will never write back and covert that 1176 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1177 * resulting in always punching out the range from the EOF to the end of the 1178 * range the iomap spans. 1179 * 1180 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1181 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1182 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1183 * returns the end of the data range (data_end). Using closed intervals would 1184 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1185 * the code to subtle off-by-one bugs.... 1186 */ 1187 static int iomap_write_delalloc_release(struct inode *inode, 1188 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1189 { 1190 loff_t punch_start_byte = start_byte; 1191 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1192 int error = 0; 1193 1194 /* 1195 * Lock the mapping to avoid races with page faults re-instantiating 1196 * folios and dirtying them via ->page_mkwrite whilst we walk the 1197 * cache and perform delalloc extent removal. Failing to do this can 1198 * leave dirty pages with no space reservation in the cache. 1199 */ 1200 filemap_invalidate_lock(inode->i_mapping); 1201 while (start_byte < scan_end_byte) { 1202 loff_t data_end; 1203 1204 start_byte = mapping_seek_hole_data(inode->i_mapping, 1205 start_byte, scan_end_byte, SEEK_DATA); 1206 /* 1207 * If there is no more data to scan, all that is left is to 1208 * punch out the remaining range. 1209 */ 1210 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1211 break; 1212 if (start_byte < 0) { 1213 error = start_byte; 1214 goto out_unlock; 1215 } 1216 WARN_ON_ONCE(start_byte < punch_start_byte); 1217 WARN_ON_ONCE(start_byte > scan_end_byte); 1218 1219 /* 1220 * We find the end of this contiguous cached data range by 1221 * seeking from start_byte to the beginning of the next hole. 1222 */ 1223 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1224 scan_end_byte, SEEK_HOLE); 1225 if (data_end < 0) { 1226 error = data_end; 1227 goto out_unlock; 1228 } 1229 WARN_ON_ONCE(data_end <= start_byte); 1230 WARN_ON_ONCE(data_end > scan_end_byte); 1231 1232 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1233 start_byte, data_end, punch); 1234 if (error) 1235 goto out_unlock; 1236 1237 /* The next data search starts at the end of this one. */ 1238 start_byte = data_end; 1239 } 1240 1241 if (punch_start_byte < end_byte) 1242 error = punch(inode, punch_start_byte, 1243 end_byte - punch_start_byte); 1244 out_unlock: 1245 filemap_invalidate_unlock(inode->i_mapping); 1246 return error; 1247 } 1248 1249 /* 1250 * When a short write occurs, the filesystem may need to remove reserved space 1251 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1252 * filesystems that use delayed allocation, we need to punch out delalloc 1253 * extents from the range that are not dirty in the page cache. As the write can 1254 * race with page faults, there can be dirty pages over the delalloc extent 1255 * outside the range of a short write but still within the delalloc extent 1256 * allocated for this iomap. 1257 * 1258 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1259 * simplify range iterations. 1260 * 1261 * The punch() callback *must* only punch delalloc extents in the range passed 1262 * to it. It must skip over all other types of extents in the range and leave 1263 * them completely unchanged. It must do this punch atomically with respect to 1264 * other extent modifications. 1265 * 1266 * The punch() callback may be called with a folio locked to prevent writeback 1267 * extent allocation racing at the edge of the range we are currently punching. 1268 * The locked folio may or may not cover the range being punched, so it is not 1269 * safe for the punch() callback to lock folios itself. 1270 * 1271 * Lock order is: 1272 * 1273 * inode->i_rwsem (shared or exclusive) 1274 * inode->i_mapping->invalidate_lock (exclusive) 1275 * folio_lock() 1276 * ->punch 1277 * internal filesystem allocation lock 1278 */ 1279 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1280 struct iomap *iomap, loff_t pos, loff_t length, 1281 ssize_t written, iomap_punch_t punch) 1282 { 1283 loff_t start_byte; 1284 loff_t end_byte; 1285 unsigned int blocksize = i_blocksize(inode); 1286 1287 if (iomap->type != IOMAP_DELALLOC) 1288 return 0; 1289 1290 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1291 if (!(iomap->flags & IOMAP_F_NEW)) 1292 return 0; 1293 1294 /* 1295 * start_byte refers to the first unused block after a short write. If 1296 * nothing was written, round offset down to point at the first block in 1297 * the range. 1298 */ 1299 if (unlikely(!written)) 1300 start_byte = round_down(pos, blocksize); 1301 else 1302 start_byte = round_up(pos + written, blocksize); 1303 end_byte = round_up(pos + length, blocksize); 1304 1305 /* Nothing to do if we've written the entire delalloc extent */ 1306 if (start_byte >= end_byte) 1307 return 0; 1308 1309 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1310 punch); 1311 } 1312 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1313 1314 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1315 { 1316 struct iomap *iomap = &iter->iomap; 1317 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1318 loff_t pos = iter->pos; 1319 loff_t length = iomap_length(iter); 1320 loff_t written = 0; 1321 1322 /* don't bother with blocks that are not shared to start with */ 1323 if (!(iomap->flags & IOMAP_F_SHARED)) 1324 return length; 1325 /* don't bother with holes or unwritten extents */ 1326 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1327 return length; 1328 1329 do { 1330 struct folio *folio; 1331 int status; 1332 size_t offset; 1333 size_t bytes = min_t(u64, SIZE_MAX, length); 1334 bool ret; 1335 1336 status = iomap_write_begin(iter, pos, bytes, &folio); 1337 if (unlikely(status)) 1338 return status; 1339 if (iomap->flags & IOMAP_F_STALE) 1340 break; 1341 1342 offset = offset_in_folio(folio, pos); 1343 if (bytes > folio_size(folio) - offset) 1344 bytes = folio_size(folio) - offset; 1345 1346 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1347 if (WARN_ON_ONCE(!ret)) 1348 return -EIO; 1349 1350 cond_resched(); 1351 1352 pos += bytes; 1353 written += bytes; 1354 length -= bytes; 1355 1356 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1357 } while (length > 0); 1358 1359 return written; 1360 } 1361 1362 int 1363 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1364 const struct iomap_ops *ops) 1365 { 1366 struct iomap_iter iter = { 1367 .inode = inode, 1368 .pos = pos, 1369 .len = len, 1370 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1371 }; 1372 int ret; 1373 1374 while ((ret = iomap_iter(&iter, ops)) > 0) 1375 iter.processed = iomap_unshare_iter(&iter); 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1379 1380 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1381 { 1382 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1383 loff_t pos = iter->pos; 1384 loff_t length = iomap_length(iter); 1385 loff_t written = 0; 1386 1387 /* already zeroed? we're done. */ 1388 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1389 return length; 1390 1391 do { 1392 struct folio *folio; 1393 int status; 1394 size_t offset; 1395 size_t bytes = min_t(u64, SIZE_MAX, length); 1396 bool ret; 1397 1398 status = iomap_write_begin(iter, pos, bytes, &folio); 1399 if (status) 1400 return status; 1401 if (iter->iomap.flags & IOMAP_F_STALE) 1402 break; 1403 1404 offset = offset_in_folio(folio, pos); 1405 if (bytes > folio_size(folio) - offset) 1406 bytes = folio_size(folio) - offset; 1407 1408 folio_zero_range(folio, offset, bytes); 1409 folio_mark_accessed(folio); 1410 1411 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1412 if (WARN_ON_ONCE(!ret)) 1413 return -EIO; 1414 1415 pos += bytes; 1416 length -= bytes; 1417 written += bytes; 1418 } while (length > 0); 1419 1420 if (did_zero) 1421 *did_zero = true; 1422 return written; 1423 } 1424 1425 int 1426 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1427 const struct iomap_ops *ops) 1428 { 1429 struct iomap_iter iter = { 1430 .inode = inode, 1431 .pos = pos, 1432 .len = len, 1433 .flags = IOMAP_ZERO, 1434 }; 1435 int ret; 1436 1437 while ((ret = iomap_iter(&iter, ops)) > 0) 1438 iter.processed = iomap_zero_iter(&iter, did_zero); 1439 return ret; 1440 } 1441 EXPORT_SYMBOL_GPL(iomap_zero_range); 1442 1443 int 1444 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1445 const struct iomap_ops *ops) 1446 { 1447 unsigned int blocksize = i_blocksize(inode); 1448 unsigned int off = pos & (blocksize - 1); 1449 1450 /* Block boundary? Nothing to do */ 1451 if (!off) 1452 return 0; 1453 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1454 } 1455 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1456 1457 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1458 struct folio *folio) 1459 { 1460 loff_t length = iomap_length(iter); 1461 int ret; 1462 1463 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1464 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1465 &iter->iomap); 1466 if (ret) 1467 return ret; 1468 block_commit_write(&folio->page, 0, length); 1469 } else { 1470 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1471 folio_mark_dirty(folio); 1472 } 1473 1474 return length; 1475 } 1476 1477 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1478 { 1479 struct iomap_iter iter = { 1480 .inode = file_inode(vmf->vma->vm_file), 1481 .flags = IOMAP_WRITE | IOMAP_FAULT, 1482 }; 1483 struct folio *folio = page_folio(vmf->page); 1484 ssize_t ret; 1485 1486 folio_lock(folio); 1487 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1488 if (ret < 0) 1489 goto out_unlock; 1490 iter.pos = folio_pos(folio); 1491 iter.len = ret; 1492 while ((ret = iomap_iter(&iter, ops)) > 0) 1493 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1494 1495 if (ret < 0) 1496 goto out_unlock; 1497 folio_wait_stable(folio); 1498 return VM_FAULT_LOCKED; 1499 out_unlock: 1500 folio_unlock(folio); 1501 return vmf_fs_error(ret); 1502 } 1503 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1504 1505 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1506 size_t len) 1507 { 1508 struct iomap_folio_state *ifs = folio->private; 1509 1510 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1511 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1512 1513 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1514 folio_end_writeback(folio); 1515 } 1516 1517 /* 1518 * We're now finished for good with this ioend structure. Update the page 1519 * state, release holds on bios, and finally free up memory. Do not use the 1520 * ioend after this. 1521 */ 1522 static u32 1523 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1524 { 1525 struct inode *inode = ioend->io_inode; 1526 struct bio *bio = &ioend->io_bio; 1527 struct folio_iter fi; 1528 u32 folio_count = 0; 1529 1530 if (error) { 1531 mapping_set_error(inode->i_mapping, error); 1532 if (!bio_flagged(bio, BIO_QUIET)) { 1533 pr_err_ratelimited( 1534 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1535 inode->i_sb->s_id, inode->i_ino, 1536 ioend->io_offset, ioend->io_sector); 1537 } 1538 } 1539 1540 /* walk all folios in bio, ending page IO on them */ 1541 bio_for_each_folio_all(fi, bio) { 1542 if (error) 1543 folio_set_error(fi.folio); 1544 iomap_finish_folio_write(inode, fi.folio, fi.length); 1545 folio_count++; 1546 } 1547 1548 bio_put(bio); /* frees the ioend */ 1549 return folio_count; 1550 } 1551 1552 /* 1553 * Ioend completion routine for merged bios. This can only be called from task 1554 * contexts as merged ioends can be of unbound length. Hence we have to break up 1555 * the writeback completions into manageable chunks to avoid long scheduler 1556 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1557 * good batch processing throughput without creating adverse scheduler latency 1558 * conditions. 1559 */ 1560 void 1561 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1562 { 1563 struct list_head tmp; 1564 u32 completions; 1565 1566 might_sleep(); 1567 1568 list_replace_init(&ioend->io_list, &tmp); 1569 completions = iomap_finish_ioend(ioend, error); 1570 1571 while (!list_empty(&tmp)) { 1572 if (completions > IOEND_BATCH_SIZE * 8) { 1573 cond_resched(); 1574 completions = 0; 1575 } 1576 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1577 list_del_init(&ioend->io_list); 1578 completions += iomap_finish_ioend(ioend, error); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1582 1583 /* 1584 * We can merge two adjacent ioends if they have the same set of work to do. 1585 */ 1586 static bool 1587 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1588 { 1589 if (ioend->io_bio.bi_status != next->io_bio.bi_status) 1590 return false; 1591 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1592 (next->io_flags & IOMAP_F_SHARED)) 1593 return false; 1594 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1595 (next->io_type == IOMAP_UNWRITTEN)) 1596 return false; 1597 if (ioend->io_offset + ioend->io_size != next->io_offset) 1598 return false; 1599 /* 1600 * Do not merge physically discontiguous ioends. The filesystem 1601 * completion functions will have to iterate the physical 1602 * discontiguities even if we merge the ioends at a logical level, so 1603 * we don't gain anything by merging physical discontiguities here. 1604 * 1605 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1606 * submission so does not point to the start sector of the bio at 1607 * completion. 1608 */ 1609 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1610 return false; 1611 return true; 1612 } 1613 1614 void 1615 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1616 { 1617 struct iomap_ioend *next; 1618 1619 INIT_LIST_HEAD(&ioend->io_list); 1620 1621 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1622 io_list))) { 1623 if (!iomap_ioend_can_merge(ioend, next)) 1624 break; 1625 list_move_tail(&next->io_list, &ioend->io_list); 1626 ioend->io_size += next->io_size; 1627 } 1628 } 1629 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1630 1631 static int 1632 iomap_ioend_compare(void *priv, const struct list_head *a, 1633 const struct list_head *b) 1634 { 1635 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1636 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1637 1638 if (ia->io_offset < ib->io_offset) 1639 return -1; 1640 if (ia->io_offset > ib->io_offset) 1641 return 1; 1642 return 0; 1643 } 1644 1645 void 1646 iomap_sort_ioends(struct list_head *ioend_list) 1647 { 1648 list_sort(NULL, ioend_list, iomap_ioend_compare); 1649 } 1650 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1651 1652 static void iomap_writepage_end_bio(struct bio *bio) 1653 { 1654 iomap_finish_ioend(iomap_ioend_from_bio(bio), 1655 blk_status_to_errno(bio->bi_status)); 1656 } 1657 1658 /* 1659 * Submit the final bio for an ioend. 1660 * 1661 * If @error is non-zero, it means that we have a situation where some part of 1662 * the submission process has failed after we've marked pages for writeback. 1663 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1664 * with the error status here to run the normal I/O completion handler to clear 1665 * the writeback bit and let the file system proess the errors. 1666 */ 1667 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1668 { 1669 if (!wpc->ioend) 1670 return error; 1671 1672 /* 1673 * Let the file systems prepare the I/O submission and hook in an I/O 1674 * comletion handler. This also needs to happen in case after a 1675 * failure happened so that the file system end I/O handler gets called 1676 * to clean up. 1677 */ 1678 if (wpc->ops->prepare_ioend) 1679 error = wpc->ops->prepare_ioend(wpc->ioend, error); 1680 1681 if (error) { 1682 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1683 bio_endio(&wpc->ioend->io_bio); 1684 } else { 1685 submit_bio(&wpc->ioend->io_bio); 1686 } 1687 1688 wpc->ioend = NULL; 1689 return error; 1690 } 1691 1692 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1693 struct writeback_control *wbc, struct inode *inode, loff_t pos) 1694 { 1695 struct iomap_ioend *ioend; 1696 struct bio *bio; 1697 1698 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1699 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1700 GFP_NOFS, &iomap_ioend_bioset); 1701 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1702 bio->bi_end_io = iomap_writepage_end_bio; 1703 wbc_init_bio(wbc, bio); 1704 bio->bi_write_hint = inode->i_write_hint; 1705 1706 ioend = iomap_ioend_from_bio(bio); 1707 INIT_LIST_HEAD(&ioend->io_list); 1708 ioend->io_type = wpc->iomap.type; 1709 ioend->io_flags = wpc->iomap.flags; 1710 ioend->io_inode = inode; 1711 ioend->io_size = 0; 1712 ioend->io_offset = pos; 1713 ioend->io_sector = bio->bi_iter.bi_sector; 1714 1715 wpc->nr_folios = 0; 1716 return ioend; 1717 } 1718 1719 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos) 1720 { 1721 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1722 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1723 return false; 1724 if (wpc->iomap.type != wpc->ioend->io_type) 1725 return false; 1726 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1727 return false; 1728 if (iomap_sector(&wpc->iomap, pos) != 1729 bio_end_sector(&wpc->ioend->io_bio)) 1730 return false; 1731 /* 1732 * Limit ioend bio chain lengths to minimise IO completion latency. This 1733 * also prevents long tight loops ending page writeback on all the 1734 * folios in the ioend. 1735 */ 1736 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1737 return false; 1738 return true; 1739 } 1740 1741 /* 1742 * Test to see if we have an existing ioend structure that we could append to 1743 * first; otherwise finish off the current ioend and start another. 1744 * 1745 * If a new ioend is created and cached, the old ioend is submitted to the block 1746 * layer instantly. Batching optimisations are provided by higher level block 1747 * plugging. 1748 * 1749 * At the end of a writeback pass, there will be a cached ioend remaining on the 1750 * writepage context that the caller will need to submit. 1751 */ 1752 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1753 struct writeback_control *wbc, struct folio *folio, 1754 struct inode *inode, loff_t pos, unsigned len) 1755 { 1756 struct iomap_folio_state *ifs = folio->private; 1757 size_t poff = offset_in_folio(folio, pos); 1758 int error; 1759 1760 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) { 1761 new_ioend: 1762 error = iomap_submit_ioend(wpc, 0); 1763 if (error) 1764 return error; 1765 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos); 1766 } 1767 1768 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1769 goto new_ioend; 1770 1771 if (ifs) 1772 atomic_add(len, &ifs->write_bytes_pending); 1773 wpc->ioend->io_size += len; 1774 wbc_account_cgroup_owner(wbc, &folio->page, len); 1775 return 0; 1776 } 1777 1778 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1779 struct writeback_control *wbc, struct folio *folio, 1780 struct inode *inode, u64 pos, unsigned dirty_len, 1781 unsigned *count) 1782 { 1783 int error; 1784 1785 do { 1786 unsigned map_len; 1787 1788 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1789 if (error) 1790 break; 1791 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1792 1793 map_len = min_t(u64, dirty_len, 1794 wpc->iomap.offset + wpc->iomap.length - pos); 1795 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1796 1797 switch (wpc->iomap.type) { 1798 case IOMAP_INLINE: 1799 WARN_ON_ONCE(1); 1800 error = -EIO; 1801 break; 1802 case IOMAP_HOLE: 1803 break; 1804 default: 1805 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1806 map_len); 1807 if (!error) 1808 (*count)++; 1809 break; 1810 } 1811 dirty_len -= map_len; 1812 pos += map_len; 1813 } while (dirty_len && !error); 1814 1815 /* 1816 * We cannot cancel the ioend directly here on error. We may have 1817 * already set other pages under writeback and hence we have to run I/O 1818 * completion to mark the error state of the pages under writeback 1819 * appropriately. 1820 * 1821 * Just let the file system know what portion of the folio failed to 1822 * map. 1823 */ 1824 if (error && wpc->ops->discard_folio) 1825 wpc->ops->discard_folio(folio, pos); 1826 return error; 1827 } 1828 1829 /* 1830 * Check interaction of the folio with the file end. 1831 * 1832 * If the folio is entirely beyond i_size, return false. If it straddles 1833 * i_size, adjust end_pos and zero all data beyond i_size. 1834 */ 1835 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1836 u64 *end_pos) 1837 { 1838 u64 isize = i_size_read(inode); 1839 1840 if (*end_pos > isize) { 1841 size_t poff = offset_in_folio(folio, isize); 1842 pgoff_t end_index = isize >> PAGE_SHIFT; 1843 1844 /* 1845 * If the folio is entirely ouside of i_size, skip it. 1846 * 1847 * This can happen due to a truncate operation that is in 1848 * progress and in that case truncate will finish it off once 1849 * we've dropped the folio lock. 1850 * 1851 * Note that the pgoff_t used for end_index is an unsigned long. 1852 * If the given offset is greater than 16TB on a 32-bit system, 1853 * then if we checked if the folio is fully outside i_size with 1854 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1855 * overflow and evaluate to 0. Hence this folio would be 1856 * redirtied and written out repeatedly, which would result in 1857 * an infinite loop; the user program performing this operation 1858 * would hang. Instead, we can detect this situation by 1859 * checking if the folio is totally beyond i_size or if its 1860 * offset is just equal to the EOF. 1861 */ 1862 if (folio->index > end_index || 1863 (folio->index == end_index && poff == 0)) 1864 return false; 1865 1866 /* 1867 * The folio straddles i_size. 1868 * 1869 * It must be zeroed out on each and every writepage invocation 1870 * because it may be mmapped: 1871 * 1872 * A file is mapped in multiples of the page size. For a 1873 * file that is not a multiple of the page size, the 1874 * remaining memory is zeroed when mapped, and writes to that 1875 * region are not written out to the file. 1876 * 1877 * Also adjust the writeback range to skip all blocks entirely 1878 * beyond i_size. 1879 */ 1880 folio_zero_segment(folio, poff, folio_size(folio)); 1881 *end_pos = round_up(isize, i_blocksize(inode)); 1882 } 1883 1884 return true; 1885 } 1886 1887 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1888 struct writeback_control *wbc, struct folio *folio) 1889 { 1890 struct iomap_folio_state *ifs = folio->private; 1891 struct inode *inode = folio->mapping->host; 1892 u64 pos = folio_pos(folio); 1893 u64 end_pos = pos + folio_size(folio); 1894 unsigned count = 0; 1895 int error = 0; 1896 u32 rlen; 1897 1898 WARN_ON_ONCE(!folio_test_locked(folio)); 1899 WARN_ON_ONCE(folio_test_dirty(folio)); 1900 WARN_ON_ONCE(folio_test_writeback(folio)); 1901 1902 trace_iomap_writepage(inode, pos, folio_size(folio)); 1903 1904 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1905 folio_unlock(folio); 1906 return 0; 1907 } 1908 WARN_ON_ONCE(end_pos <= pos); 1909 1910 if (i_blocks_per_folio(inode, folio) > 1) { 1911 if (!ifs) { 1912 ifs = ifs_alloc(inode, folio, 0); 1913 iomap_set_range_dirty(folio, 0, end_pos - pos); 1914 } 1915 1916 /* 1917 * Keep the I/O completion handler from clearing the writeback 1918 * bit until we have submitted all blocks by adding a bias to 1919 * ifs->write_bytes_pending, which is dropped after submitting 1920 * all blocks. 1921 */ 1922 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1923 atomic_inc(&ifs->write_bytes_pending); 1924 } 1925 1926 /* 1927 * Set the writeback bit ASAP, as the I/O completion for the single 1928 * block per folio case happen hit as soon as we're submitting the bio. 1929 */ 1930 folio_start_writeback(folio); 1931 1932 /* 1933 * Walk through the folio to find dirty areas to write back. 1934 */ 1935 while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) { 1936 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1937 pos, rlen, &count); 1938 if (error) 1939 break; 1940 pos += rlen; 1941 } 1942 1943 if (count) 1944 wpc->nr_folios++; 1945 1946 /* 1947 * We can have dirty bits set past end of file in page_mkwrite path 1948 * while mapping the last partial folio. Hence it's better to clear 1949 * all the dirty bits in the folio here. 1950 */ 1951 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1952 1953 /* 1954 * Usually the writeback bit is cleared by the I/O completion handler. 1955 * But we may end up either not actually writing any blocks, or (when 1956 * there are multiple blocks in a folio) all I/O might have finished 1957 * already at this point. In that case we need to clear the writeback 1958 * bit ourselves right after unlocking the page. 1959 */ 1960 folio_unlock(folio); 1961 if (ifs) { 1962 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1963 folio_end_writeback(folio); 1964 } else { 1965 if (!count) 1966 folio_end_writeback(folio); 1967 } 1968 mapping_set_error(inode->i_mapping, error); 1969 return error; 1970 } 1971 1972 int 1973 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1974 struct iomap_writepage_ctx *wpc, 1975 const struct iomap_writeback_ops *ops) 1976 { 1977 struct folio *folio = NULL; 1978 int error; 1979 1980 /* 1981 * Writeback from reclaim context should never happen except in the case 1982 * of a VM regression so warn about it and refuse to write the data. 1983 */ 1984 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1985 PF_MEMALLOC)) 1986 return -EIO; 1987 1988 wpc->ops = ops; 1989 while ((folio = writeback_iter(mapping, wbc, folio, &error))) 1990 error = iomap_writepage_map(wpc, wbc, folio); 1991 return iomap_submit_ioend(wpc, error); 1992 } 1993 EXPORT_SYMBOL_GPL(iomap_writepages); 1994 1995 static int __init iomap_init(void) 1996 { 1997 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1998 offsetof(struct iomap_ioend, io_bio), 1999 BIOSET_NEED_BVECS); 2000 } 2001 fs_initcall(iomap_init); 2002