xref: /linux/fs/iomap/buffered-io.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	spinlock_t		state_lock;
33 	unsigned int		read_bytes_pending;
34 	atomic_t		write_bytes_pending;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static bool ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 
68 	bitmap_set(ifs->state, first_blk, nr_blks);
69 	return ifs_is_fully_uptodate(folio, ifs);
70 }
71 
72 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
73 		size_t len)
74 {
75 	struct iomap_folio_state *ifs = folio->private;
76 	unsigned long flags;
77 	bool uptodate = true;
78 
79 	if (ifs) {
80 		spin_lock_irqsave(&ifs->state_lock, flags);
81 		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
82 		spin_unlock_irqrestore(&ifs->state_lock, flags);
83 	}
84 
85 	if (uptodate)
86 		folio_mark_uptodate(folio);
87 }
88 
89 static inline bool ifs_block_is_dirty(struct folio *folio,
90 		struct iomap_folio_state *ifs, int block)
91 {
92 	struct inode *inode = folio->mapping->host;
93 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
94 
95 	return test_bit(block + blks_per_folio, ifs->state);
96 }
97 
98 static void ifs_clear_range_dirty(struct folio *folio,
99 		struct iomap_folio_state *ifs, size_t off, size_t len)
100 {
101 	struct inode *inode = folio->mapping->host;
102 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
103 	unsigned int first_blk = (off >> inode->i_blkbits);
104 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
105 	unsigned int nr_blks = last_blk - first_blk + 1;
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&ifs->state_lock, flags);
109 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
110 	spin_unlock_irqrestore(&ifs->state_lock, flags);
111 }
112 
113 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
114 {
115 	struct iomap_folio_state *ifs = folio->private;
116 
117 	if (ifs)
118 		ifs_clear_range_dirty(folio, ifs, off, len);
119 }
120 
121 static void ifs_set_range_dirty(struct folio *folio,
122 		struct iomap_folio_state *ifs, size_t off, size_t len)
123 {
124 	struct inode *inode = folio->mapping->host;
125 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
126 	unsigned int first_blk = (off >> inode->i_blkbits);
127 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
128 	unsigned int nr_blks = last_blk - first_blk + 1;
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&ifs->state_lock, flags);
132 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
133 	spin_unlock_irqrestore(&ifs->state_lock, flags);
134 }
135 
136 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
137 {
138 	struct iomap_folio_state *ifs = folio->private;
139 
140 	if (ifs)
141 		ifs_set_range_dirty(folio, ifs, off, len);
142 }
143 
144 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
145 		struct folio *folio, unsigned int flags)
146 {
147 	struct iomap_folio_state *ifs = folio->private;
148 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
149 	gfp_t gfp;
150 
151 	if (ifs || nr_blocks <= 1)
152 		return ifs;
153 
154 	if (flags & IOMAP_NOWAIT)
155 		gfp = GFP_NOWAIT;
156 	else
157 		gfp = GFP_NOFS | __GFP_NOFAIL;
158 
159 	/*
160 	 * ifs->state tracks two sets of state flags when the
161 	 * filesystem block size is smaller than the folio size.
162 	 * The first state tracks per-block uptodate and the
163 	 * second tracks per-block dirty state.
164 	 */
165 	ifs = kzalloc(struct_size(ifs, state,
166 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
167 	if (!ifs)
168 		return ifs;
169 
170 	spin_lock_init(&ifs->state_lock);
171 	if (folio_test_uptodate(folio))
172 		bitmap_set(ifs->state, 0, nr_blocks);
173 	if (folio_test_dirty(folio))
174 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
175 	folio_attach_private(folio, ifs);
176 
177 	return ifs;
178 }
179 
180 static void ifs_free(struct folio *folio)
181 {
182 	struct iomap_folio_state *ifs = folio_detach_private(folio);
183 
184 	if (!ifs)
185 		return;
186 	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
187 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
188 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
189 			folio_test_uptodate(folio));
190 	kfree(ifs);
191 }
192 
193 /*
194  * Calculate the range inside the folio that we actually need to read.
195  */
196 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
197 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
198 {
199 	struct iomap_folio_state *ifs = folio->private;
200 	loff_t orig_pos = *pos;
201 	loff_t isize = i_size_read(inode);
202 	unsigned block_bits = inode->i_blkbits;
203 	unsigned block_size = (1 << block_bits);
204 	size_t poff = offset_in_folio(folio, *pos);
205 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
206 	unsigned first = poff >> block_bits;
207 	unsigned last = (poff + plen - 1) >> block_bits;
208 
209 	/*
210 	 * If the block size is smaller than the page size, we need to check the
211 	 * per-block uptodate status and adjust the offset and length if needed
212 	 * to avoid reading in already uptodate ranges.
213 	 */
214 	if (ifs) {
215 		unsigned int i;
216 
217 		/* move forward for each leading block marked uptodate */
218 		for (i = first; i <= last; i++) {
219 			if (!ifs_block_is_uptodate(ifs, i))
220 				break;
221 			*pos += block_size;
222 			poff += block_size;
223 			plen -= block_size;
224 			first++;
225 		}
226 
227 		/* truncate len if we find any trailing uptodate block(s) */
228 		for ( ; i <= last; i++) {
229 			if (ifs_block_is_uptodate(ifs, i)) {
230 				plen -= (last - i + 1) * block_size;
231 				last = i - 1;
232 				break;
233 			}
234 		}
235 	}
236 
237 	/*
238 	 * If the extent spans the block that contains the i_size, we need to
239 	 * handle both halves separately so that we properly zero data in the
240 	 * page cache for blocks that are entirely outside of i_size.
241 	 */
242 	if (orig_pos <= isize && orig_pos + length > isize) {
243 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
244 
245 		if (first <= end && last > end)
246 			plen -= (last - end) * block_size;
247 	}
248 
249 	*offp = poff;
250 	*lenp = plen;
251 }
252 
253 static void iomap_finish_folio_read(struct folio *folio, size_t off,
254 		size_t len, int error)
255 {
256 	struct iomap_folio_state *ifs = folio->private;
257 	bool uptodate = !error;
258 	bool finished = true;
259 
260 	if (ifs) {
261 		unsigned long flags;
262 
263 		spin_lock_irqsave(&ifs->state_lock, flags);
264 		if (!error)
265 			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
266 		ifs->read_bytes_pending -= len;
267 		finished = !ifs->read_bytes_pending;
268 		spin_unlock_irqrestore(&ifs->state_lock, flags);
269 	}
270 
271 	if (error)
272 		folio_set_error(folio);
273 	if (finished)
274 		folio_end_read(folio, uptodate);
275 }
276 
277 static void iomap_read_end_io(struct bio *bio)
278 {
279 	int error = blk_status_to_errno(bio->bi_status);
280 	struct folio_iter fi;
281 
282 	bio_for_each_folio_all(fi, bio)
283 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
284 	bio_put(bio);
285 }
286 
287 struct iomap_readpage_ctx {
288 	struct folio		*cur_folio;
289 	bool			cur_folio_in_bio;
290 	struct bio		*bio;
291 	struct readahead_control *rac;
292 };
293 
294 /**
295  * iomap_read_inline_data - copy inline data into the page cache
296  * @iter: iteration structure
297  * @folio: folio to copy to
298  *
299  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
300  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
301  * Returns zero for success to complete the read, or the usual negative errno.
302  */
303 static int iomap_read_inline_data(const struct iomap_iter *iter,
304 		struct folio *folio)
305 {
306 	const struct iomap *iomap = iomap_iter_srcmap(iter);
307 	size_t size = i_size_read(iter->inode) - iomap->offset;
308 	size_t offset = offset_in_folio(folio, iomap->offset);
309 
310 	if (folio_test_uptodate(folio))
311 		return 0;
312 
313 	if (WARN_ON_ONCE(size > iomap->length))
314 		return -EIO;
315 	if (offset > 0)
316 		ifs_alloc(iter->inode, folio, iter->flags);
317 
318 	folio_fill_tail(folio, offset, iomap->inline_data, size);
319 	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
320 	return 0;
321 }
322 
323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
324 		loff_t pos)
325 {
326 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
327 
328 	return srcmap->type != IOMAP_MAPPED ||
329 		(srcmap->flags & IOMAP_F_NEW) ||
330 		pos >= i_size_read(iter->inode);
331 }
332 
333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
334 		struct iomap_readpage_ctx *ctx, loff_t offset)
335 {
336 	const struct iomap *iomap = &iter->iomap;
337 	loff_t pos = iter->pos + offset;
338 	loff_t length = iomap_length(iter) - offset;
339 	struct folio *folio = ctx->cur_folio;
340 	struct iomap_folio_state *ifs;
341 	loff_t orig_pos = pos;
342 	size_t poff, plen;
343 	sector_t sector;
344 
345 	if (iomap->type == IOMAP_INLINE)
346 		return iomap_read_inline_data(iter, folio);
347 
348 	/* zero post-eof blocks as the page may be mapped */
349 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
350 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
351 	if (plen == 0)
352 		goto done;
353 
354 	if (iomap_block_needs_zeroing(iter, pos)) {
355 		folio_zero_range(folio, poff, plen);
356 		iomap_set_range_uptodate(folio, poff, plen);
357 		goto done;
358 	}
359 
360 	ctx->cur_folio_in_bio = true;
361 	if (ifs) {
362 		spin_lock_irq(&ifs->state_lock);
363 		ifs->read_bytes_pending += plen;
364 		spin_unlock_irq(&ifs->state_lock);
365 	}
366 
367 	sector = iomap_sector(iomap, pos);
368 	if (!ctx->bio ||
369 	    bio_end_sector(ctx->bio) != sector ||
370 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
371 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
372 		gfp_t orig_gfp = gfp;
373 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
374 
375 		if (ctx->bio)
376 			submit_bio(ctx->bio);
377 
378 		if (ctx->rac) /* same as readahead_gfp_mask */
379 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
380 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
381 				     REQ_OP_READ, gfp);
382 		/*
383 		 * If the bio_alloc fails, try it again for a single page to
384 		 * avoid having to deal with partial page reads.  This emulates
385 		 * what do_mpage_read_folio does.
386 		 */
387 		if (!ctx->bio) {
388 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
389 					     orig_gfp);
390 		}
391 		if (ctx->rac)
392 			ctx->bio->bi_opf |= REQ_RAHEAD;
393 		ctx->bio->bi_iter.bi_sector = sector;
394 		ctx->bio->bi_end_io = iomap_read_end_io;
395 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
396 	}
397 
398 done:
399 	/*
400 	 * Move the caller beyond our range so that it keeps making progress.
401 	 * For that, we have to include any leading non-uptodate ranges, but
402 	 * we can skip trailing ones as they will be handled in the next
403 	 * iteration.
404 	 */
405 	return pos - orig_pos + plen;
406 }
407 
408 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
409 {
410 	struct iomap_iter iter = {
411 		.inode		= folio->mapping->host,
412 		.pos		= folio_pos(folio),
413 		.len		= folio_size(folio),
414 	};
415 	struct iomap_readpage_ctx ctx = {
416 		.cur_folio	= folio,
417 	};
418 	int ret;
419 
420 	trace_iomap_readpage(iter.inode, 1);
421 
422 	while ((ret = iomap_iter(&iter, ops)) > 0)
423 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
424 
425 	if (ret < 0)
426 		folio_set_error(folio);
427 
428 	if (ctx.bio) {
429 		submit_bio(ctx.bio);
430 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
431 	} else {
432 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
433 		folio_unlock(folio);
434 	}
435 
436 	/*
437 	 * Just like mpage_readahead and block_read_full_folio, we always
438 	 * return 0 and just set the folio error flag on errors.  This
439 	 * should be cleaned up throughout the stack eventually.
440 	 */
441 	return 0;
442 }
443 EXPORT_SYMBOL_GPL(iomap_read_folio);
444 
445 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
446 		struct iomap_readpage_ctx *ctx)
447 {
448 	loff_t length = iomap_length(iter);
449 	loff_t done, ret;
450 
451 	for (done = 0; done < length; done += ret) {
452 		if (ctx->cur_folio &&
453 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
454 			if (!ctx->cur_folio_in_bio)
455 				folio_unlock(ctx->cur_folio);
456 			ctx->cur_folio = NULL;
457 		}
458 		if (!ctx->cur_folio) {
459 			ctx->cur_folio = readahead_folio(ctx->rac);
460 			ctx->cur_folio_in_bio = false;
461 		}
462 		ret = iomap_readpage_iter(iter, ctx, done);
463 		if (ret <= 0)
464 			return ret;
465 	}
466 
467 	return done;
468 }
469 
470 /**
471  * iomap_readahead - Attempt to read pages from a file.
472  * @rac: Describes the pages to be read.
473  * @ops: The operations vector for the filesystem.
474  *
475  * This function is for filesystems to call to implement their readahead
476  * address_space operation.
477  *
478  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
479  * blocks from disc), and may wait for it.  The caller may be trying to
480  * access a different page, and so sleeping excessively should be avoided.
481  * It may allocate memory, but should avoid costly allocations.  This
482  * function is called with memalloc_nofs set, so allocations will not cause
483  * the filesystem to be reentered.
484  */
485 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
486 {
487 	struct iomap_iter iter = {
488 		.inode	= rac->mapping->host,
489 		.pos	= readahead_pos(rac),
490 		.len	= readahead_length(rac),
491 	};
492 	struct iomap_readpage_ctx ctx = {
493 		.rac	= rac,
494 	};
495 
496 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
497 
498 	while (iomap_iter(&iter, ops) > 0)
499 		iter.processed = iomap_readahead_iter(&iter, &ctx);
500 
501 	if (ctx.bio)
502 		submit_bio(ctx.bio);
503 	if (ctx.cur_folio) {
504 		if (!ctx.cur_folio_in_bio)
505 			folio_unlock(ctx.cur_folio);
506 	}
507 }
508 EXPORT_SYMBOL_GPL(iomap_readahead);
509 
510 /*
511  * iomap_is_partially_uptodate checks whether blocks within a folio are
512  * uptodate or not.
513  *
514  * Returns true if all blocks which correspond to the specified part
515  * of the folio are uptodate.
516  */
517 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
518 {
519 	struct iomap_folio_state *ifs = folio->private;
520 	struct inode *inode = folio->mapping->host;
521 	unsigned first, last, i;
522 
523 	if (!ifs)
524 		return false;
525 
526 	/* Caller's range may extend past the end of this folio */
527 	count = min(folio_size(folio) - from, count);
528 
529 	/* First and last blocks in range within folio */
530 	first = from >> inode->i_blkbits;
531 	last = (from + count - 1) >> inode->i_blkbits;
532 
533 	for (i = first; i <= last; i++)
534 		if (!ifs_block_is_uptodate(ifs, i))
535 			return false;
536 	return true;
537 }
538 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
539 
540 /**
541  * iomap_get_folio - get a folio reference for writing
542  * @iter: iteration structure
543  * @pos: start offset of write
544  * @len: Suggested size of folio to create.
545  *
546  * Returns a locked reference to the folio at @pos, or an error pointer if the
547  * folio could not be obtained.
548  */
549 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
550 {
551 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
552 
553 	if (iter->flags & IOMAP_NOWAIT)
554 		fgp |= FGP_NOWAIT;
555 	fgp |= fgf_set_order(len);
556 
557 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
558 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
559 }
560 EXPORT_SYMBOL_GPL(iomap_get_folio);
561 
562 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
563 {
564 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
565 			folio_size(folio));
566 
567 	/*
568 	 * If the folio is dirty, we refuse to release our metadata because
569 	 * it may be partially dirty.  Once we track per-block dirty state,
570 	 * we can release the metadata if every block is dirty.
571 	 */
572 	if (folio_test_dirty(folio))
573 		return false;
574 	ifs_free(folio);
575 	return true;
576 }
577 EXPORT_SYMBOL_GPL(iomap_release_folio);
578 
579 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
580 {
581 	trace_iomap_invalidate_folio(folio->mapping->host,
582 					folio_pos(folio) + offset, len);
583 
584 	/*
585 	 * If we're invalidating the entire folio, clear the dirty state
586 	 * from it and release it to avoid unnecessary buildup of the LRU.
587 	 */
588 	if (offset == 0 && len == folio_size(folio)) {
589 		WARN_ON_ONCE(folio_test_writeback(folio));
590 		folio_cancel_dirty(folio);
591 		ifs_free(folio);
592 	}
593 }
594 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
595 
596 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
597 {
598 	struct inode *inode = mapping->host;
599 	size_t len = folio_size(folio);
600 
601 	ifs_alloc(inode, folio, 0);
602 	iomap_set_range_dirty(folio, 0, len);
603 	return filemap_dirty_folio(mapping, folio);
604 }
605 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
606 
607 static void
608 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
609 {
610 	loff_t i_size = i_size_read(inode);
611 
612 	/*
613 	 * Only truncate newly allocated pages beyoned EOF, even if the
614 	 * write started inside the existing inode size.
615 	 */
616 	if (pos + len > i_size)
617 		truncate_pagecache_range(inode, max(pos, i_size),
618 					 pos + len - 1);
619 }
620 
621 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
622 		size_t poff, size_t plen, const struct iomap *iomap)
623 {
624 	struct bio_vec bvec;
625 	struct bio bio;
626 
627 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
628 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
629 	bio_add_folio_nofail(&bio, folio, plen, poff);
630 	return submit_bio_wait(&bio);
631 }
632 
633 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
634 		size_t len, struct folio *folio)
635 {
636 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
637 	struct iomap_folio_state *ifs;
638 	loff_t block_size = i_blocksize(iter->inode);
639 	loff_t block_start = round_down(pos, block_size);
640 	loff_t block_end = round_up(pos + len, block_size);
641 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
642 	size_t from = offset_in_folio(folio, pos), to = from + len;
643 	size_t poff, plen;
644 
645 	/*
646 	 * If the write or zeroing completely overlaps the current folio, then
647 	 * entire folio will be dirtied so there is no need for
648 	 * per-block state tracking structures to be attached to this folio.
649 	 * For the unshare case, we must read in the ondisk contents because we
650 	 * are not changing pagecache contents.
651 	 */
652 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
653 	    pos + len >= folio_pos(folio) + folio_size(folio))
654 		return 0;
655 
656 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
657 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
658 		return -EAGAIN;
659 
660 	if (folio_test_uptodate(folio))
661 		return 0;
662 	folio_clear_error(folio);
663 
664 	do {
665 		iomap_adjust_read_range(iter->inode, folio, &block_start,
666 				block_end - block_start, &poff, &plen);
667 		if (plen == 0)
668 			break;
669 
670 		if (!(iter->flags & IOMAP_UNSHARE) &&
671 		    (from <= poff || from >= poff + plen) &&
672 		    (to <= poff || to >= poff + plen))
673 			continue;
674 
675 		if (iomap_block_needs_zeroing(iter, block_start)) {
676 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
677 				return -EIO;
678 			folio_zero_segments(folio, poff, from, to, poff + plen);
679 		} else {
680 			int status;
681 
682 			if (iter->flags & IOMAP_NOWAIT)
683 				return -EAGAIN;
684 
685 			status = iomap_read_folio_sync(block_start, folio,
686 					poff, plen, srcmap);
687 			if (status)
688 				return status;
689 		}
690 		iomap_set_range_uptodate(folio, poff, plen);
691 	} while ((block_start += plen) < block_end);
692 
693 	return 0;
694 }
695 
696 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
697 		size_t len)
698 {
699 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
700 
701 	if (folio_ops && folio_ops->get_folio)
702 		return folio_ops->get_folio(iter, pos, len);
703 	else
704 		return iomap_get_folio(iter, pos, len);
705 }
706 
707 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
708 		struct folio *folio)
709 {
710 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
711 
712 	if (folio_ops && folio_ops->put_folio) {
713 		folio_ops->put_folio(iter->inode, pos, ret, folio);
714 	} else {
715 		folio_unlock(folio);
716 		folio_put(folio);
717 	}
718 }
719 
720 static int iomap_write_begin_inline(const struct iomap_iter *iter,
721 		struct folio *folio)
722 {
723 	/* needs more work for the tailpacking case; disable for now */
724 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
725 		return -EIO;
726 	return iomap_read_inline_data(iter, folio);
727 }
728 
729 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
730 		size_t len, struct folio **foliop)
731 {
732 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
733 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
734 	struct folio *folio;
735 	int status = 0;
736 
737 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
738 	if (srcmap != &iter->iomap)
739 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
740 
741 	if (fatal_signal_pending(current))
742 		return -EINTR;
743 
744 	if (!mapping_large_folio_support(iter->inode->i_mapping))
745 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
746 
747 	folio = __iomap_get_folio(iter, pos, len);
748 	if (IS_ERR(folio))
749 		return PTR_ERR(folio);
750 
751 	/*
752 	 * Now we have a locked folio, before we do anything with it we need to
753 	 * check that the iomap we have cached is not stale. The inode extent
754 	 * mapping can change due to concurrent IO in flight (e.g.
755 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
756 	 * reclaimed a previously partially written page at this index after IO
757 	 * completion before this write reaches this file offset) and hence we
758 	 * could do the wrong thing here (zero a page range incorrectly or fail
759 	 * to zero) and corrupt data.
760 	 */
761 	if (folio_ops && folio_ops->iomap_valid) {
762 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
763 							 &iter->iomap);
764 		if (!iomap_valid) {
765 			iter->iomap.flags |= IOMAP_F_STALE;
766 			status = 0;
767 			goto out_unlock;
768 		}
769 	}
770 
771 	if (pos + len > folio_pos(folio) + folio_size(folio))
772 		len = folio_pos(folio) + folio_size(folio) - pos;
773 
774 	if (srcmap->type == IOMAP_INLINE)
775 		status = iomap_write_begin_inline(iter, folio);
776 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
777 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
778 	else
779 		status = __iomap_write_begin(iter, pos, len, folio);
780 
781 	if (unlikely(status))
782 		goto out_unlock;
783 
784 	*foliop = folio;
785 	return 0;
786 
787 out_unlock:
788 	__iomap_put_folio(iter, pos, 0, folio);
789 	iomap_write_failed(iter->inode, pos, len);
790 
791 	return status;
792 }
793 
794 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
795 		size_t copied, struct folio *folio)
796 {
797 	flush_dcache_folio(folio);
798 
799 	/*
800 	 * The blocks that were entirely written will now be uptodate, so we
801 	 * don't have to worry about a read_folio reading them and overwriting a
802 	 * partial write.  However, if we've encountered a short write and only
803 	 * partially written into a block, it will not be marked uptodate, so a
804 	 * read_folio might come in and destroy our partial write.
805 	 *
806 	 * Do the simplest thing and just treat any short write to a
807 	 * non-uptodate page as a zero-length write, and force the caller to
808 	 * redo the whole thing.
809 	 */
810 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
811 		return 0;
812 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
813 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
814 	filemap_dirty_folio(inode->i_mapping, folio);
815 	return copied;
816 }
817 
818 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
819 		struct folio *folio, loff_t pos, size_t copied)
820 {
821 	const struct iomap *iomap = &iter->iomap;
822 	void *addr;
823 
824 	WARN_ON_ONCE(!folio_test_uptodate(folio));
825 	BUG_ON(!iomap_inline_data_valid(iomap));
826 
827 	flush_dcache_folio(folio);
828 	addr = kmap_local_folio(folio, pos);
829 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
830 	kunmap_local(addr);
831 
832 	mark_inode_dirty(iter->inode);
833 	return copied;
834 }
835 
836 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
837 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
838 		size_t copied, struct folio *folio)
839 {
840 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
841 	loff_t old_size = iter->inode->i_size;
842 	size_t ret;
843 
844 	if (srcmap->type == IOMAP_INLINE) {
845 		ret = iomap_write_end_inline(iter, folio, pos, copied);
846 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
847 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
848 				copied, &folio->page, NULL);
849 	} else {
850 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
851 	}
852 
853 	/*
854 	 * Update the in-memory inode size after copying the data into the page
855 	 * cache.  It's up to the file system to write the updated size to disk,
856 	 * preferably after I/O completion so that no stale data is exposed.
857 	 */
858 	if (pos + ret > old_size) {
859 		i_size_write(iter->inode, pos + ret);
860 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
861 	}
862 	__iomap_put_folio(iter, pos, ret, folio);
863 
864 	if (old_size < pos)
865 		pagecache_isize_extended(iter->inode, old_size, pos);
866 	if (ret < len)
867 		iomap_write_failed(iter->inode, pos + ret, len - ret);
868 	return ret;
869 }
870 
871 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
872 {
873 	loff_t length = iomap_length(iter);
874 	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
875 	loff_t pos = iter->pos;
876 	ssize_t written = 0;
877 	long status = 0;
878 	struct address_space *mapping = iter->inode->i_mapping;
879 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
880 
881 	do {
882 		struct folio *folio;
883 		size_t offset;		/* Offset into folio */
884 		size_t bytes;		/* Bytes to write to folio */
885 		size_t copied;		/* Bytes copied from user */
886 
887 		bytes = iov_iter_count(i);
888 retry:
889 		offset = pos & (chunk - 1);
890 		bytes = min(chunk - offset, bytes);
891 		status = balance_dirty_pages_ratelimited_flags(mapping,
892 							       bdp_flags);
893 		if (unlikely(status))
894 			break;
895 
896 		if (bytes > length)
897 			bytes = length;
898 
899 		/*
900 		 * Bring in the user page that we'll copy from _first_.
901 		 * Otherwise there's a nasty deadlock on copying from the
902 		 * same page as we're writing to, without it being marked
903 		 * up-to-date.
904 		 *
905 		 * For async buffered writes the assumption is that the user
906 		 * page has already been faulted in. This can be optimized by
907 		 * faulting the user page.
908 		 */
909 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
910 			status = -EFAULT;
911 			break;
912 		}
913 
914 		status = iomap_write_begin(iter, pos, bytes, &folio);
915 		if (unlikely(status))
916 			break;
917 		if (iter->iomap.flags & IOMAP_F_STALE)
918 			break;
919 
920 		offset = offset_in_folio(folio, pos);
921 		if (bytes > folio_size(folio) - offset)
922 			bytes = folio_size(folio) - offset;
923 
924 		if (mapping_writably_mapped(mapping))
925 			flush_dcache_folio(folio);
926 
927 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
928 		status = iomap_write_end(iter, pos, bytes, copied, folio);
929 
930 		if (unlikely(copied != status))
931 			iov_iter_revert(i, copied - status);
932 
933 		cond_resched();
934 		if (unlikely(status == 0)) {
935 			/*
936 			 * A short copy made iomap_write_end() reject the
937 			 * thing entirely.  Might be memory poisoning
938 			 * halfway through, might be a race with munmap,
939 			 * might be severe memory pressure.
940 			 */
941 			if (chunk > PAGE_SIZE)
942 				chunk /= 2;
943 			if (copied) {
944 				bytes = copied;
945 				goto retry;
946 			}
947 		} else {
948 			pos += status;
949 			written += status;
950 			length -= status;
951 		}
952 	} while (iov_iter_count(i) && length);
953 
954 	if (status == -EAGAIN) {
955 		iov_iter_revert(i, written);
956 		return -EAGAIN;
957 	}
958 	return written ? written : status;
959 }
960 
961 ssize_t
962 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
963 		const struct iomap_ops *ops)
964 {
965 	struct iomap_iter iter = {
966 		.inode		= iocb->ki_filp->f_mapping->host,
967 		.pos		= iocb->ki_pos,
968 		.len		= iov_iter_count(i),
969 		.flags		= IOMAP_WRITE,
970 	};
971 	ssize_t ret;
972 
973 	if (iocb->ki_flags & IOCB_NOWAIT)
974 		iter.flags |= IOMAP_NOWAIT;
975 
976 	while ((ret = iomap_iter(&iter, ops)) > 0)
977 		iter.processed = iomap_write_iter(&iter, i);
978 
979 	if (unlikely(iter.pos == iocb->ki_pos))
980 		return ret;
981 	ret = iter.pos - iocb->ki_pos;
982 	iocb->ki_pos = iter.pos;
983 	return ret;
984 }
985 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
986 
987 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
988 		struct folio *folio, loff_t start_byte, loff_t end_byte,
989 		iomap_punch_t punch)
990 {
991 	unsigned int first_blk, last_blk, i;
992 	loff_t last_byte;
993 	u8 blkbits = inode->i_blkbits;
994 	struct iomap_folio_state *ifs;
995 	int ret = 0;
996 
997 	/*
998 	 * When we have per-block dirty tracking, there can be
999 	 * blocks within a folio which are marked uptodate
1000 	 * but not dirty. In that case it is necessary to punch
1001 	 * out such blocks to avoid leaking any delalloc blocks.
1002 	 */
1003 	ifs = folio->private;
1004 	if (!ifs)
1005 		return ret;
1006 
1007 	last_byte = min_t(loff_t, end_byte - 1,
1008 			folio_pos(folio) + folio_size(folio) - 1);
1009 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1010 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1011 	for (i = first_blk; i <= last_blk; i++) {
1012 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1013 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1014 				    1 << blkbits);
1015 			if (ret)
1016 				return ret;
1017 		}
1018 	}
1019 
1020 	return ret;
1021 }
1022 
1023 
1024 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1025 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1026 		iomap_punch_t punch)
1027 {
1028 	int ret = 0;
1029 
1030 	if (!folio_test_dirty(folio))
1031 		return ret;
1032 
1033 	/* if dirty, punch up to offset */
1034 	if (start_byte > *punch_start_byte) {
1035 		ret = punch(inode, *punch_start_byte,
1036 				start_byte - *punch_start_byte);
1037 		if (ret)
1038 			return ret;
1039 	}
1040 
1041 	/* Punch non-dirty blocks within folio */
1042 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1043 			end_byte, punch);
1044 	if (ret)
1045 		return ret;
1046 
1047 	/*
1048 	 * Make sure the next punch start is correctly bound to
1049 	 * the end of this data range, not the end of the folio.
1050 	 */
1051 	*punch_start_byte = min_t(loff_t, end_byte,
1052 				folio_pos(folio) + folio_size(folio));
1053 
1054 	return ret;
1055 }
1056 
1057 /*
1058  * Scan the data range passed to us for dirty page cache folios. If we find a
1059  * dirty folio, punch out the preceding range and update the offset from which
1060  * the next punch will start from.
1061  *
1062  * We can punch out storage reservations under clean pages because they either
1063  * contain data that has been written back - in which case the delalloc punch
1064  * over that range is a no-op - or they have been read faults in which case they
1065  * contain zeroes and we can remove the delalloc backing range and any new
1066  * writes to those pages will do the normal hole filling operation...
1067  *
1068  * This makes the logic simple: we only need to keep the delalloc extents only
1069  * over the dirty ranges of the page cache.
1070  *
1071  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1072  * simplify range iterations.
1073  */
1074 static int iomap_write_delalloc_scan(struct inode *inode,
1075 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1076 		iomap_punch_t punch)
1077 {
1078 	while (start_byte < end_byte) {
1079 		struct folio	*folio;
1080 		int ret;
1081 
1082 		/* grab locked page */
1083 		folio = filemap_lock_folio(inode->i_mapping,
1084 				start_byte >> PAGE_SHIFT);
1085 		if (IS_ERR(folio)) {
1086 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1087 					PAGE_SIZE;
1088 			continue;
1089 		}
1090 
1091 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1092 						 start_byte, end_byte, punch);
1093 		if (ret) {
1094 			folio_unlock(folio);
1095 			folio_put(folio);
1096 			return ret;
1097 		}
1098 
1099 		/* move offset to start of next folio in range */
1100 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1101 		folio_unlock(folio);
1102 		folio_put(folio);
1103 	}
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Punch out all the delalloc blocks in the range given except for those that
1109  * have dirty data still pending in the page cache - those are going to be
1110  * written and so must still retain the delalloc backing for writeback.
1111  *
1112  * As we are scanning the page cache for data, we don't need to reimplement the
1113  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1114  * start and end of data ranges correctly even for sub-folio block sizes. This
1115  * byte range based iteration is especially convenient because it means we
1116  * don't have to care about variable size folios, nor where the start or end of
1117  * the data range lies within a folio, if they lie within the same folio or even
1118  * if there are multiple discontiguous data ranges within the folio.
1119  *
1120  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1121  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1122  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1123  * date. A write page fault can then mark it dirty. If we then fail a write()
1124  * beyond EOF into that up to date cached range, we allocate a delalloc block
1125  * beyond EOF and then have to punch it out. Because the range is up to date,
1126  * mapping_seek_hole_data() will return it, and we will skip the punch because
1127  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1128  * beyond EOF in this case as writeback will never write back and covert that
1129  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1130  * resulting in always punching out the range from the EOF to the end of the
1131  * range the iomap spans.
1132  *
1133  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1134  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1135  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1136  * returns the end of the data range (data_end). Using closed intervals would
1137  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1138  * the code to subtle off-by-one bugs....
1139  */
1140 static int iomap_write_delalloc_release(struct inode *inode,
1141 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1142 {
1143 	loff_t punch_start_byte = start_byte;
1144 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1145 	int error = 0;
1146 
1147 	/*
1148 	 * Lock the mapping to avoid races with page faults re-instantiating
1149 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1150 	 * cache and perform delalloc extent removal. Failing to do this can
1151 	 * leave dirty pages with no space reservation in the cache.
1152 	 */
1153 	filemap_invalidate_lock(inode->i_mapping);
1154 	while (start_byte < scan_end_byte) {
1155 		loff_t		data_end;
1156 
1157 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1158 				start_byte, scan_end_byte, SEEK_DATA);
1159 		/*
1160 		 * If there is no more data to scan, all that is left is to
1161 		 * punch out the remaining range.
1162 		 */
1163 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1164 			break;
1165 		if (start_byte < 0) {
1166 			error = start_byte;
1167 			goto out_unlock;
1168 		}
1169 		WARN_ON_ONCE(start_byte < punch_start_byte);
1170 		WARN_ON_ONCE(start_byte > scan_end_byte);
1171 
1172 		/*
1173 		 * We find the end of this contiguous cached data range by
1174 		 * seeking from start_byte to the beginning of the next hole.
1175 		 */
1176 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1177 				scan_end_byte, SEEK_HOLE);
1178 		if (data_end < 0) {
1179 			error = data_end;
1180 			goto out_unlock;
1181 		}
1182 		WARN_ON_ONCE(data_end <= start_byte);
1183 		WARN_ON_ONCE(data_end > scan_end_byte);
1184 
1185 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1186 				start_byte, data_end, punch);
1187 		if (error)
1188 			goto out_unlock;
1189 
1190 		/* The next data search starts at the end of this one. */
1191 		start_byte = data_end;
1192 	}
1193 
1194 	if (punch_start_byte < end_byte)
1195 		error = punch(inode, punch_start_byte,
1196 				end_byte - punch_start_byte);
1197 out_unlock:
1198 	filemap_invalidate_unlock(inode->i_mapping);
1199 	return error;
1200 }
1201 
1202 /*
1203  * When a short write occurs, the filesystem may need to remove reserved space
1204  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1205  * filesystems that use delayed allocation, we need to punch out delalloc
1206  * extents from the range that are not dirty in the page cache. As the write can
1207  * race with page faults, there can be dirty pages over the delalloc extent
1208  * outside the range of a short write but still within the delalloc extent
1209  * allocated for this iomap.
1210  *
1211  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1212  * simplify range iterations.
1213  *
1214  * The punch() callback *must* only punch delalloc extents in the range passed
1215  * to it. It must skip over all other types of extents in the range and leave
1216  * them completely unchanged. It must do this punch atomically with respect to
1217  * other extent modifications.
1218  *
1219  * The punch() callback may be called with a folio locked to prevent writeback
1220  * extent allocation racing at the edge of the range we are currently punching.
1221  * The locked folio may or may not cover the range being punched, so it is not
1222  * safe for the punch() callback to lock folios itself.
1223  *
1224  * Lock order is:
1225  *
1226  * inode->i_rwsem (shared or exclusive)
1227  *   inode->i_mapping->invalidate_lock (exclusive)
1228  *     folio_lock()
1229  *       ->punch
1230  *         internal filesystem allocation lock
1231  */
1232 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1233 		struct iomap *iomap, loff_t pos, loff_t length,
1234 		ssize_t written, iomap_punch_t punch)
1235 {
1236 	loff_t			start_byte;
1237 	loff_t			end_byte;
1238 	unsigned int		blocksize = i_blocksize(inode);
1239 
1240 	if (iomap->type != IOMAP_DELALLOC)
1241 		return 0;
1242 
1243 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1244 	if (!(iomap->flags & IOMAP_F_NEW))
1245 		return 0;
1246 
1247 	/*
1248 	 * start_byte refers to the first unused block after a short write. If
1249 	 * nothing was written, round offset down to point at the first block in
1250 	 * the range.
1251 	 */
1252 	if (unlikely(!written))
1253 		start_byte = round_down(pos, blocksize);
1254 	else
1255 		start_byte = round_up(pos + written, blocksize);
1256 	end_byte = round_up(pos + length, blocksize);
1257 
1258 	/* Nothing to do if we've written the entire delalloc extent */
1259 	if (start_byte >= end_byte)
1260 		return 0;
1261 
1262 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1263 					punch);
1264 }
1265 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1266 
1267 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1268 {
1269 	struct iomap *iomap = &iter->iomap;
1270 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1271 	loff_t pos = iter->pos;
1272 	loff_t length = iomap_length(iter);
1273 	loff_t written = 0;
1274 
1275 	/* don't bother with blocks that are not shared to start with */
1276 	if (!(iomap->flags & IOMAP_F_SHARED))
1277 		return length;
1278 	/* don't bother with holes or unwritten extents */
1279 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1280 		return length;
1281 
1282 	do {
1283 		struct folio *folio;
1284 		int status;
1285 		size_t offset;
1286 		size_t bytes = min_t(u64, SIZE_MAX, length);
1287 
1288 		status = iomap_write_begin(iter, pos, bytes, &folio);
1289 		if (unlikely(status))
1290 			return status;
1291 		if (iomap->flags & IOMAP_F_STALE)
1292 			break;
1293 
1294 		offset = offset_in_folio(folio, pos);
1295 		if (bytes > folio_size(folio) - offset)
1296 			bytes = folio_size(folio) - offset;
1297 
1298 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1299 		if (WARN_ON_ONCE(bytes == 0))
1300 			return -EIO;
1301 
1302 		cond_resched();
1303 
1304 		pos += bytes;
1305 		written += bytes;
1306 		length -= bytes;
1307 
1308 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1309 	} while (length > 0);
1310 
1311 	return written;
1312 }
1313 
1314 int
1315 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1316 		const struct iomap_ops *ops)
1317 {
1318 	struct iomap_iter iter = {
1319 		.inode		= inode,
1320 		.pos		= pos,
1321 		.len		= len,
1322 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1323 	};
1324 	int ret;
1325 
1326 	while ((ret = iomap_iter(&iter, ops)) > 0)
1327 		iter.processed = iomap_unshare_iter(&iter);
1328 	return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1331 
1332 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1333 {
1334 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1335 	loff_t pos = iter->pos;
1336 	loff_t length = iomap_length(iter);
1337 	loff_t written = 0;
1338 
1339 	/* already zeroed?  we're done. */
1340 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1341 		return length;
1342 
1343 	do {
1344 		struct folio *folio;
1345 		int status;
1346 		size_t offset;
1347 		size_t bytes = min_t(u64, SIZE_MAX, length);
1348 
1349 		status = iomap_write_begin(iter, pos, bytes, &folio);
1350 		if (status)
1351 			return status;
1352 		if (iter->iomap.flags & IOMAP_F_STALE)
1353 			break;
1354 
1355 		offset = offset_in_folio(folio, pos);
1356 		if (bytes > folio_size(folio) - offset)
1357 			bytes = folio_size(folio) - offset;
1358 
1359 		folio_zero_range(folio, offset, bytes);
1360 		folio_mark_accessed(folio);
1361 
1362 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1363 		if (WARN_ON_ONCE(bytes == 0))
1364 			return -EIO;
1365 
1366 		pos += bytes;
1367 		length -= bytes;
1368 		written += bytes;
1369 	} while (length > 0);
1370 
1371 	if (did_zero)
1372 		*did_zero = true;
1373 	return written;
1374 }
1375 
1376 int
1377 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1378 		const struct iomap_ops *ops)
1379 {
1380 	struct iomap_iter iter = {
1381 		.inode		= inode,
1382 		.pos		= pos,
1383 		.len		= len,
1384 		.flags		= IOMAP_ZERO,
1385 	};
1386 	int ret;
1387 
1388 	while ((ret = iomap_iter(&iter, ops)) > 0)
1389 		iter.processed = iomap_zero_iter(&iter, did_zero);
1390 	return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(iomap_zero_range);
1393 
1394 int
1395 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1396 		const struct iomap_ops *ops)
1397 {
1398 	unsigned int blocksize = i_blocksize(inode);
1399 	unsigned int off = pos & (blocksize - 1);
1400 
1401 	/* Block boundary? Nothing to do */
1402 	if (!off)
1403 		return 0;
1404 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1405 }
1406 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1407 
1408 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1409 		struct folio *folio)
1410 {
1411 	loff_t length = iomap_length(iter);
1412 	int ret;
1413 
1414 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1415 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1416 					      &iter->iomap);
1417 		if (ret)
1418 			return ret;
1419 		block_commit_write(&folio->page, 0, length);
1420 	} else {
1421 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1422 		folio_mark_dirty(folio);
1423 	}
1424 
1425 	return length;
1426 }
1427 
1428 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1429 {
1430 	struct iomap_iter iter = {
1431 		.inode		= file_inode(vmf->vma->vm_file),
1432 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1433 	};
1434 	struct folio *folio = page_folio(vmf->page);
1435 	ssize_t ret;
1436 
1437 	folio_lock(folio);
1438 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1439 	if (ret < 0)
1440 		goto out_unlock;
1441 	iter.pos = folio_pos(folio);
1442 	iter.len = ret;
1443 	while ((ret = iomap_iter(&iter, ops)) > 0)
1444 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1445 
1446 	if (ret < 0)
1447 		goto out_unlock;
1448 	folio_wait_stable(folio);
1449 	return VM_FAULT_LOCKED;
1450 out_unlock:
1451 	folio_unlock(folio);
1452 	return vmf_fs_error(ret);
1453 }
1454 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1455 
1456 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1457 		size_t len, int error)
1458 {
1459 	struct iomap_folio_state *ifs = folio->private;
1460 
1461 	if (error) {
1462 		folio_set_error(folio);
1463 		mapping_set_error(inode->i_mapping, error);
1464 	}
1465 
1466 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1467 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1468 
1469 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1470 		folio_end_writeback(folio);
1471 }
1472 
1473 /*
1474  * We're now finished for good with this ioend structure.  Update the page
1475  * state, release holds on bios, and finally free up memory.  Do not use the
1476  * ioend after this.
1477  */
1478 static u32
1479 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1480 {
1481 	struct inode *inode = ioend->io_inode;
1482 	struct bio *bio = &ioend->io_inline_bio;
1483 	struct bio *last = ioend->io_bio, *next;
1484 	u64 start = bio->bi_iter.bi_sector;
1485 	loff_t offset = ioend->io_offset;
1486 	bool quiet = bio_flagged(bio, BIO_QUIET);
1487 	u32 folio_count = 0;
1488 
1489 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1490 		struct folio_iter fi;
1491 
1492 		/*
1493 		 * For the last bio, bi_private points to the ioend, so we
1494 		 * need to explicitly end the iteration here.
1495 		 */
1496 		if (bio == last)
1497 			next = NULL;
1498 		else
1499 			next = bio->bi_private;
1500 
1501 		/* walk all folios in bio, ending page IO on them */
1502 		bio_for_each_folio_all(fi, bio) {
1503 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1504 					error);
1505 			folio_count++;
1506 		}
1507 		bio_put(bio);
1508 	}
1509 	/* The ioend has been freed by bio_put() */
1510 
1511 	if (unlikely(error && !quiet)) {
1512 		printk_ratelimited(KERN_ERR
1513 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1514 			inode->i_sb->s_id, inode->i_ino, offset, start);
1515 	}
1516 	return folio_count;
1517 }
1518 
1519 /*
1520  * Ioend completion routine for merged bios. This can only be called from task
1521  * contexts as merged ioends can be of unbound length. Hence we have to break up
1522  * the writeback completions into manageable chunks to avoid long scheduler
1523  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1524  * good batch processing throughput without creating adverse scheduler latency
1525  * conditions.
1526  */
1527 void
1528 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1529 {
1530 	struct list_head tmp;
1531 	u32 completions;
1532 
1533 	might_sleep();
1534 
1535 	list_replace_init(&ioend->io_list, &tmp);
1536 	completions = iomap_finish_ioend(ioend, error);
1537 
1538 	while (!list_empty(&tmp)) {
1539 		if (completions > IOEND_BATCH_SIZE * 8) {
1540 			cond_resched();
1541 			completions = 0;
1542 		}
1543 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1544 		list_del_init(&ioend->io_list);
1545 		completions += iomap_finish_ioend(ioend, error);
1546 	}
1547 }
1548 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1549 
1550 /*
1551  * We can merge two adjacent ioends if they have the same set of work to do.
1552  */
1553 static bool
1554 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1555 {
1556 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1557 		return false;
1558 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1559 	    (next->io_flags & IOMAP_F_SHARED))
1560 		return false;
1561 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1562 	    (next->io_type == IOMAP_UNWRITTEN))
1563 		return false;
1564 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1565 		return false;
1566 	/*
1567 	 * Do not merge physically discontiguous ioends. The filesystem
1568 	 * completion functions will have to iterate the physical
1569 	 * discontiguities even if we merge the ioends at a logical level, so
1570 	 * we don't gain anything by merging physical discontiguities here.
1571 	 *
1572 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1573 	 * submission so does not point to the start sector of the bio at
1574 	 * completion.
1575 	 */
1576 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1577 		return false;
1578 	return true;
1579 }
1580 
1581 void
1582 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1583 {
1584 	struct iomap_ioend *next;
1585 
1586 	INIT_LIST_HEAD(&ioend->io_list);
1587 
1588 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1589 			io_list))) {
1590 		if (!iomap_ioend_can_merge(ioend, next))
1591 			break;
1592 		list_move_tail(&next->io_list, &ioend->io_list);
1593 		ioend->io_size += next->io_size;
1594 	}
1595 }
1596 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1597 
1598 static int
1599 iomap_ioend_compare(void *priv, const struct list_head *a,
1600 		const struct list_head *b)
1601 {
1602 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1603 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1604 
1605 	if (ia->io_offset < ib->io_offset)
1606 		return -1;
1607 	if (ia->io_offset > ib->io_offset)
1608 		return 1;
1609 	return 0;
1610 }
1611 
1612 void
1613 iomap_sort_ioends(struct list_head *ioend_list)
1614 {
1615 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1616 }
1617 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1618 
1619 static void iomap_writepage_end_bio(struct bio *bio)
1620 {
1621 	struct iomap_ioend *ioend = bio->bi_private;
1622 
1623 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1624 }
1625 
1626 /*
1627  * Submit the final bio for an ioend.
1628  *
1629  * If @error is non-zero, it means that we have a situation where some part of
1630  * the submission process has failed after we've marked pages for writeback
1631  * and unlocked them.  In this situation, we need to fail the bio instead of
1632  * submitting it.  This typically only happens on a filesystem shutdown.
1633  */
1634 static int
1635 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1636 		int error)
1637 {
1638 	ioend->io_bio->bi_private = ioend;
1639 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1640 
1641 	if (wpc->ops->prepare_ioend)
1642 		error = wpc->ops->prepare_ioend(ioend, error);
1643 	if (error) {
1644 		/*
1645 		 * If we're failing the IO now, just mark the ioend with an
1646 		 * error and finish it.  This will run IO completion immediately
1647 		 * as there is only one reference to the ioend at this point in
1648 		 * time.
1649 		 */
1650 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1651 		bio_endio(ioend->io_bio);
1652 		return error;
1653 	}
1654 
1655 	submit_bio(ioend->io_bio);
1656 	return 0;
1657 }
1658 
1659 static struct iomap_ioend *
1660 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1661 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1662 {
1663 	struct iomap_ioend *ioend;
1664 	struct bio *bio;
1665 
1666 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1667 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1668 			       GFP_NOFS, &iomap_ioend_bioset);
1669 	bio->bi_iter.bi_sector = sector;
1670 	wbc_init_bio(wbc, bio);
1671 
1672 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1673 	INIT_LIST_HEAD(&ioend->io_list);
1674 	ioend->io_type = wpc->iomap.type;
1675 	ioend->io_flags = wpc->iomap.flags;
1676 	ioend->io_inode = inode;
1677 	ioend->io_size = 0;
1678 	ioend->io_folios = 0;
1679 	ioend->io_offset = offset;
1680 	ioend->io_bio = bio;
1681 	ioend->io_sector = sector;
1682 	return ioend;
1683 }
1684 
1685 /*
1686  * Allocate a new bio, and chain the old bio to the new one.
1687  *
1688  * Note that we have to perform the chaining in this unintuitive order
1689  * so that the bi_private linkage is set up in the right direction for the
1690  * traversal in iomap_finish_ioend().
1691  */
1692 static struct bio *
1693 iomap_chain_bio(struct bio *prev)
1694 {
1695 	struct bio *new;
1696 
1697 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1698 	bio_clone_blkg_association(new, prev);
1699 	new->bi_iter.bi_sector = bio_end_sector(prev);
1700 
1701 	bio_chain(prev, new);
1702 	bio_get(prev);		/* for iomap_finish_ioend */
1703 	submit_bio(prev);
1704 	return new;
1705 }
1706 
1707 static bool
1708 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1709 		sector_t sector)
1710 {
1711 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1712 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1713 		return false;
1714 	if (wpc->iomap.type != wpc->ioend->io_type)
1715 		return false;
1716 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1717 		return false;
1718 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1719 		return false;
1720 	/*
1721 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1722 	 * also prevents long tight loops ending page writeback on all the
1723 	 * folios in the ioend.
1724 	 */
1725 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1726 		return false;
1727 	return true;
1728 }
1729 
1730 /*
1731  * Test to see if we have an existing ioend structure that we could append to
1732  * first; otherwise finish off the current ioend and start another.
1733  */
1734 static void
1735 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1736 		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1737 		struct writeback_control *wbc, struct list_head *iolist)
1738 {
1739 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1740 	unsigned len = i_blocksize(inode);
1741 	size_t poff = offset_in_folio(folio, pos);
1742 
1743 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1744 		if (wpc->ioend)
1745 			list_add(&wpc->ioend->io_list, iolist);
1746 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1747 	}
1748 
1749 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1750 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1751 		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1752 	}
1753 
1754 	if (ifs)
1755 		atomic_add(len, &ifs->write_bytes_pending);
1756 	wpc->ioend->io_size += len;
1757 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1758 }
1759 
1760 /*
1761  * We implement an immediate ioend submission policy here to avoid needing to
1762  * chain multiple ioends and hence nest mempool allocations which can violate
1763  * the forward progress guarantees we need to provide. The current ioend we're
1764  * adding blocks to is cached in the writepage context, and if the new block
1765  * doesn't append to the cached ioend, it will create a new ioend and cache that
1766  * instead.
1767  *
1768  * If a new ioend is created and cached, the old ioend is returned and queued
1769  * locally for submission once the entire page is processed or an error has been
1770  * detected.  While ioends are submitted immediately after they are completed,
1771  * batching optimisations are provided by higher level block plugging.
1772  *
1773  * At the end of a writeback pass, there will be a cached ioend remaining on the
1774  * writepage context that the caller will need to submit.
1775  */
1776 static int
1777 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1778 		struct writeback_control *wbc, struct inode *inode,
1779 		struct folio *folio, u64 end_pos)
1780 {
1781 	struct iomap_folio_state *ifs = folio->private;
1782 	struct iomap_ioend *ioend, *next;
1783 	unsigned len = i_blocksize(inode);
1784 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1785 	u64 pos = folio_pos(folio);
1786 	int error = 0, count = 0, i;
1787 	LIST_HEAD(submit_list);
1788 
1789 	WARN_ON_ONCE(end_pos <= pos);
1790 
1791 	if (!ifs && nblocks > 1) {
1792 		ifs = ifs_alloc(inode, folio, 0);
1793 		iomap_set_range_dirty(folio, 0, end_pos - pos);
1794 	}
1795 
1796 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1797 
1798 	/*
1799 	 * Walk through the folio to find areas to write back. If we
1800 	 * run off the end of the current map or find the current map
1801 	 * invalid, grab a new one.
1802 	 */
1803 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1804 		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1805 			continue;
1806 
1807 		error = wpc->ops->map_blocks(wpc, inode, pos);
1808 		if (error)
1809 			break;
1810 		trace_iomap_writepage_map(inode, &wpc->iomap);
1811 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1812 			continue;
1813 		if (wpc->iomap.type == IOMAP_HOLE)
1814 			continue;
1815 		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1816 				 &submit_list);
1817 		count++;
1818 	}
1819 	if (count)
1820 		wpc->ioend->io_folios++;
1821 
1822 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1823 	WARN_ON_ONCE(!folio_test_locked(folio));
1824 	WARN_ON_ONCE(folio_test_writeback(folio));
1825 	WARN_ON_ONCE(folio_test_dirty(folio));
1826 
1827 	/*
1828 	 * We cannot cancel the ioend directly here on error.  We may have
1829 	 * already set other pages under writeback and hence we have to run I/O
1830 	 * completion to mark the error state of the pages under writeback
1831 	 * appropriately.
1832 	 */
1833 	if (unlikely(error)) {
1834 		/*
1835 		 * Let the filesystem know what portion of the current page
1836 		 * failed to map. If the page hasn't been added to ioend, it
1837 		 * won't be affected by I/O completion and we must unlock it
1838 		 * now.
1839 		 */
1840 		if (wpc->ops->discard_folio)
1841 			wpc->ops->discard_folio(folio, pos);
1842 		if (!count) {
1843 			folio_unlock(folio);
1844 			goto done;
1845 		}
1846 	}
1847 
1848 	/*
1849 	 * We can have dirty bits set past end of file in page_mkwrite path
1850 	 * while mapping the last partial folio. Hence it's better to clear
1851 	 * all the dirty bits in the folio here.
1852 	 */
1853 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1854 	folio_start_writeback(folio);
1855 	folio_unlock(folio);
1856 
1857 	/*
1858 	 * Preserve the original error if there was one; catch
1859 	 * submission errors here and propagate into subsequent ioend
1860 	 * submissions.
1861 	 */
1862 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1863 		int error2;
1864 
1865 		list_del_init(&ioend->io_list);
1866 		error2 = iomap_submit_ioend(wpc, ioend, error);
1867 		if (error2 && !error)
1868 			error = error2;
1869 	}
1870 
1871 	/*
1872 	 * We can end up here with no error and nothing to write only if we race
1873 	 * with a partial page truncate on a sub-page block sized filesystem.
1874 	 */
1875 	if (!count)
1876 		folio_end_writeback(folio);
1877 done:
1878 	mapping_set_error(inode->i_mapping, error);
1879 	return error;
1880 }
1881 
1882 /*
1883  * Write out a dirty page.
1884  *
1885  * For delalloc space on the page, we need to allocate space and flush it.
1886  * For unwritten space on the page, we need to start the conversion to
1887  * regular allocated space.
1888  */
1889 static int iomap_do_writepage(struct folio *folio,
1890 		struct writeback_control *wbc, void *data)
1891 {
1892 	struct iomap_writepage_ctx *wpc = data;
1893 	struct inode *inode = folio->mapping->host;
1894 	u64 end_pos, isize;
1895 
1896 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1897 
1898 	/*
1899 	 * Refuse to write the folio out if we're called from reclaim context.
1900 	 *
1901 	 * This avoids stack overflows when called from deeply used stacks in
1902 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1903 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1904 	 *
1905 	 * This should never happen except in the case of a VM regression so
1906 	 * warn about it.
1907 	 */
1908 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1909 			PF_MEMALLOC))
1910 		goto redirty;
1911 
1912 	/*
1913 	 * Is this folio beyond the end of the file?
1914 	 *
1915 	 * The folio index is less than the end_index, adjust the end_pos
1916 	 * to the highest offset that this folio should represent.
1917 	 * -----------------------------------------------------
1918 	 * |			file mapping	       | <EOF> |
1919 	 * -----------------------------------------------------
1920 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1921 	 * ^--------------------------------^----------|--------
1922 	 * |     desired writeback range    |      see else    |
1923 	 * ---------------------------------^------------------|
1924 	 */
1925 	isize = i_size_read(inode);
1926 	end_pos = folio_pos(folio) + folio_size(folio);
1927 	if (end_pos > isize) {
1928 		/*
1929 		 * Check whether the page to write out is beyond or straddles
1930 		 * i_size or not.
1931 		 * -------------------------------------------------------
1932 		 * |		file mapping		        | <EOF>  |
1933 		 * -------------------------------------------------------
1934 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1935 		 * ^--------------------------------^-----------|---------
1936 		 * |				    |      Straddles     |
1937 		 * ---------------------------------^-----------|--------|
1938 		 */
1939 		size_t poff = offset_in_folio(folio, isize);
1940 		pgoff_t end_index = isize >> PAGE_SHIFT;
1941 
1942 		/*
1943 		 * Skip the page if it's fully outside i_size, e.g.
1944 		 * due to a truncate operation that's in progress.  We've
1945 		 * cleaned this page and truncate will finish things off for
1946 		 * us.
1947 		 *
1948 		 * Note that the end_index is unsigned long.  If the given
1949 		 * offset is greater than 16TB on a 32-bit system then if we
1950 		 * checked if the page is fully outside i_size with
1951 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1952 		 * overflow and evaluate to 0.  Hence this page would be
1953 		 * redirtied and written out repeatedly, which would result in
1954 		 * an infinite loop; the user program performing this operation
1955 		 * would hang.  Instead, we can detect this situation by
1956 		 * checking if the page is totally beyond i_size or if its
1957 		 * offset is just equal to the EOF.
1958 		 */
1959 		if (folio->index > end_index ||
1960 		    (folio->index == end_index && poff == 0))
1961 			goto unlock;
1962 
1963 		/*
1964 		 * The page straddles i_size.  It must be zeroed out on each
1965 		 * and every writepage invocation because it may be mmapped.
1966 		 * "A file is mapped in multiples of the page size.  For a file
1967 		 * that is not a multiple of the page size, the remaining
1968 		 * memory is zeroed when mapped, and writes to that region are
1969 		 * not written out to the file."
1970 		 */
1971 		folio_zero_segment(folio, poff, folio_size(folio));
1972 		end_pos = isize;
1973 	}
1974 
1975 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1976 
1977 redirty:
1978 	folio_redirty_for_writepage(wbc, folio);
1979 unlock:
1980 	folio_unlock(folio);
1981 	return 0;
1982 }
1983 
1984 int
1985 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1986 		struct iomap_writepage_ctx *wpc,
1987 		const struct iomap_writeback_ops *ops)
1988 {
1989 	int			ret;
1990 
1991 	wpc->ops = ops;
1992 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1993 	if (!wpc->ioend)
1994 		return ret;
1995 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1996 }
1997 EXPORT_SYMBOL_GPL(iomap_writepages);
1998 
1999 static int __init iomap_init(void)
2000 {
2001 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2002 			   offsetof(struct iomap_ioend, io_inline_bio),
2003 			   BIOSET_NEED_BVECS);
2004 }
2005 fs_initcall(iomap_init);
2006