xref: /linux/fs/iomap/buffered-io.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 /*
27  * Structure allocated for each folio when block size < folio size
28  * to track sub-folio uptodate status and I/O completions.
29  */
30 struct iomap_page {
31 	atomic_t		read_bytes_pending;
32 	atomic_t		write_bytes_pending;
33 	spinlock_t		uptodate_lock;
34 	unsigned long		uptodate[];
35 };
36 
37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 	if (folio_test_private(folio))
40 		return folio_get_private(folio);
41 	return NULL;
42 }
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static struct iomap_page *
47 iomap_page_create(struct inode *inode, struct folio *folio)
48 {
49 	struct iomap_page *iop = to_iomap_page(folio);
50 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 
52 	if (iop || nr_blocks <= 1)
53 		return iop;
54 
55 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
56 			GFP_NOFS | __GFP_NOFAIL);
57 	spin_lock_init(&iop->uptodate_lock);
58 	if (folio_test_uptodate(folio))
59 		bitmap_fill(iop->uptodate, nr_blocks);
60 	folio_attach_private(folio, iop);
61 	return iop;
62 }
63 
64 static void iomap_page_release(struct folio *folio)
65 {
66 	struct iomap_page *iop = folio_detach_private(folio);
67 	struct inode *inode = folio->mapping->host;
68 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
69 
70 	if (!iop)
71 		return;
72 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
73 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
74 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
75 			folio_test_uptodate(folio));
76 	kfree(iop);
77 }
78 
79 /*
80  * Calculate the range inside the folio that we actually need to read.
81  */
82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
83 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
84 {
85 	struct iomap_page *iop = to_iomap_page(folio);
86 	loff_t orig_pos = *pos;
87 	loff_t isize = i_size_read(inode);
88 	unsigned block_bits = inode->i_blkbits;
89 	unsigned block_size = (1 << block_bits);
90 	size_t poff = offset_in_folio(folio, *pos);
91 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
92 	unsigned first = poff >> block_bits;
93 	unsigned last = (poff + plen - 1) >> block_bits;
94 
95 	/*
96 	 * If the block size is smaller than the page size, we need to check the
97 	 * per-block uptodate status and adjust the offset and length if needed
98 	 * to avoid reading in already uptodate ranges.
99 	 */
100 	if (iop) {
101 		unsigned int i;
102 
103 		/* move forward for each leading block marked uptodate */
104 		for (i = first; i <= last; i++) {
105 			if (!test_bit(i, iop->uptodate))
106 				break;
107 			*pos += block_size;
108 			poff += block_size;
109 			plen -= block_size;
110 			first++;
111 		}
112 
113 		/* truncate len if we find any trailing uptodate block(s) */
114 		for ( ; i <= last; i++) {
115 			if (test_bit(i, iop->uptodate)) {
116 				plen -= (last - i + 1) * block_size;
117 				last = i - 1;
118 				break;
119 			}
120 		}
121 	}
122 
123 	/*
124 	 * If the extent spans the block that contains the i_size, we need to
125 	 * handle both halves separately so that we properly zero data in the
126 	 * page cache for blocks that are entirely outside of i_size.
127 	 */
128 	if (orig_pos <= isize && orig_pos + length > isize) {
129 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
130 
131 		if (first <= end && last > end)
132 			plen -= (last - end) * block_size;
133 	}
134 
135 	*offp = poff;
136 	*lenp = plen;
137 }
138 
139 static void iomap_iop_set_range_uptodate(struct folio *folio,
140 		struct iomap_page *iop, size_t off, size_t len)
141 {
142 	struct inode *inode = folio->mapping->host;
143 	unsigned first = off >> inode->i_blkbits;
144 	unsigned last = (off + len - 1) >> inode->i_blkbits;
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(&iop->uptodate_lock, flags);
148 	bitmap_set(iop->uptodate, first, last - first + 1);
149 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
150 		folio_mark_uptodate(folio);
151 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
152 }
153 
154 static void iomap_set_range_uptodate(struct folio *folio,
155 		struct iomap_page *iop, size_t off, size_t len)
156 {
157 	if (folio_test_error(folio))
158 		return;
159 
160 	if (iop)
161 		iomap_iop_set_range_uptodate(folio, iop, off, len);
162 	else
163 		folio_mark_uptodate(folio);
164 }
165 
166 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
167 		size_t len, int error)
168 {
169 	struct iomap_page *iop = to_iomap_page(folio);
170 
171 	if (unlikely(error)) {
172 		folio_clear_uptodate(folio);
173 		folio_set_error(folio);
174 	} else {
175 		iomap_set_range_uptodate(folio, iop, offset, len);
176 	}
177 
178 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
179 		folio_unlock(folio);
180 }
181 
182 static void iomap_read_end_io(struct bio *bio)
183 {
184 	int error = blk_status_to_errno(bio->bi_status);
185 	struct folio_iter fi;
186 
187 	bio_for_each_folio_all(fi, bio)
188 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
189 	bio_put(bio);
190 }
191 
192 struct iomap_readpage_ctx {
193 	struct folio		*cur_folio;
194 	bool			cur_folio_in_bio;
195 	struct bio		*bio;
196 	struct readahead_control *rac;
197 };
198 
199 /**
200  * iomap_read_inline_data - copy inline data into the page cache
201  * @iter: iteration structure
202  * @folio: folio to copy to
203  *
204  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
205  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
206  * Returns zero for success to complete the read, or the usual negative errno.
207  */
208 static int iomap_read_inline_data(const struct iomap_iter *iter,
209 		struct folio *folio)
210 {
211 	struct iomap_page *iop;
212 	const struct iomap *iomap = iomap_iter_srcmap(iter);
213 	size_t size = i_size_read(iter->inode) - iomap->offset;
214 	size_t poff = offset_in_page(iomap->offset);
215 	size_t offset = offset_in_folio(folio, iomap->offset);
216 	void *addr;
217 
218 	if (folio_test_uptodate(folio))
219 		return 0;
220 
221 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
222 		return -EIO;
223 	if (WARN_ON_ONCE(size > PAGE_SIZE -
224 			 offset_in_page(iomap->inline_data)))
225 		return -EIO;
226 	if (WARN_ON_ONCE(size > iomap->length))
227 		return -EIO;
228 	if (offset > 0)
229 		iop = iomap_page_create(iter->inode, folio);
230 	else
231 		iop = to_iomap_page(folio);
232 
233 	addr = kmap_local_folio(folio, offset);
234 	memcpy(addr, iomap->inline_data, size);
235 	memset(addr + size, 0, PAGE_SIZE - poff - size);
236 	kunmap_local(addr);
237 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
238 	return 0;
239 }
240 
241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
242 		loff_t pos)
243 {
244 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
245 
246 	return srcmap->type != IOMAP_MAPPED ||
247 		(srcmap->flags & IOMAP_F_NEW) ||
248 		pos >= i_size_read(iter->inode);
249 }
250 
251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
252 		struct iomap_readpage_ctx *ctx, loff_t offset)
253 {
254 	const struct iomap *iomap = &iter->iomap;
255 	loff_t pos = iter->pos + offset;
256 	loff_t length = iomap_length(iter) - offset;
257 	struct folio *folio = ctx->cur_folio;
258 	struct iomap_page *iop;
259 	loff_t orig_pos = pos;
260 	size_t poff, plen;
261 	sector_t sector;
262 
263 	if (iomap->type == IOMAP_INLINE)
264 		return iomap_read_inline_data(iter, folio);
265 
266 	/* zero post-eof blocks as the page may be mapped */
267 	iop = iomap_page_create(iter->inode, folio);
268 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
269 	if (plen == 0)
270 		goto done;
271 
272 	if (iomap_block_needs_zeroing(iter, pos)) {
273 		folio_zero_range(folio, poff, plen);
274 		iomap_set_range_uptodate(folio, iop, poff, plen);
275 		goto done;
276 	}
277 
278 	ctx->cur_folio_in_bio = true;
279 	if (iop)
280 		atomic_add(plen, &iop->read_bytes_pending);
281 
282 	sector = iomap_sector(iomap, pos);
283 	if (!ctx->bio ||
284 	    bio_end_sector(ctx->bio) != sector ||
285 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
286 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
287 		gfp_t orig_gfp = gfp;
288 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
289 
290 		if (ctx->bio)
291 			submit_bio(ctx->bio);
292 
293 		if (ctx->rac) /* same as readahead_gfp_mask */
294 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
295 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
296 				     REQ_OP_READ, gfp);
297 		/*
298 		 * If the bio_alloc fails, try it again for a single page to
299 		 * avoid having to deal with partial page reads.  This emulates
300 		 * what do_mpage_read_folio does.
301 		 */
302 		if (!ctx->bio) {
303 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
304 					     orig_gfp);
305 		}
306 		if (ctx->rac)
307 			ctx->bio->bi_opf |= REQ_RAHEAD;
308 		ctx->bio->bi_iter.bi_sector = sector;
309 		ctx->bio->bi_end_io = iomap_read_end_io;
310 		bio_add_folio(ctx->bio, folio, plen, poff);
311 	}
312 
313 done:
314 	/*
315 	 * Move the caller beyond our range so that it keeps making progress.
316 	 * For that, we have to include any leading non-uptodate ranges, but
317 	 * we can skip trailing ones as they will be handled in the next
318 	 * iteration.
319 	 */
320 	return pos - orig_pos + plen;
321 }
322 
323 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
324 {
325 	struct iomap_iter iter = {
326 		.inode		= folio->mapping->host,
327 		.pos		= folio_pos(folio),
328 		.len		= folio_size(folio),
329 	};
330 	struct iomap_readpage_ctx ctx = {
331 		.cur_folio	= folio,
332 	};
333 	int ret;
334 
335 	trace_iomap_readpage(iter.inode, 1);
336 
337 	while ((ret = iomap_iter(&iter, ops)) > 0)
338 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
339 
340 	if (ret < 0)
341 		folio_set_error(folio);
342 
343 	if (ctx.bio) {
344 		submit_bio(ctx.bio);
345 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
346 	} else {
347 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
348 		folio_unlock(folio);
349 	}
350 
351 	/*
352 	 * Just like mpage_readahead and block_read_full_folio, we always
353 	 * return 0 and just set the folio error flag on errors.  This
354 	 * should be cleaned up throughout the stack eventually.
355 	 */
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(iomap_read_folio);
359 
360 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
361 		struct iomap_readpage_ctx *ctx)
362 {
363 	loff_t length = iomap_length(iter);
364 	loff_t done, ret;
365 
366 	for (done = 0; done < length; done += ret) {
367 		if (ctx->cur_folio &&
368 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
369 			if (!ctx->cur_folio_in_bio)
370 				folio_unlock(ctx->cur_folio);
371 			ctx->cur_folio = NULL;
372 		}
373 		if (!ctx->cur_folio) {
374 			ctx->cur_folio = readahead_folio(ctx->rac);
375 			ctx->cur_folio_in_bio = false;
376 		}
377 		ret = iomap_readpage_iter(iter, ctx, done);
378 		if (ret <= 0)
379 			return ret;
380 	}
381 
382 	return done;
383 }
384 
385 /**
386  * iomap_readahead - Attempt to read pages from a file.
387  * @rac: Describes the pages to be read.
388  * @ops: The operations vector for the filesystem.
389  *
390  * This function is for filesystems to call to implement their readahead
391  * address_space operation.
392  *
393  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
394  * blocks from disc), and may wait for it.  The caller may be trying to
395  * access a different page, and so sleeping excessively should be avoided.
396  * It may allocate memory, but should avoid costly allocations.  This
397  * function is called with memalloc_nofs set, so allocations will not cause
398  * the filesystem to be reentered.
399  */
400 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
401 {
402 	struct iomap_iter iter = {
403 		.inode	= rac->mapping->host,
404 		.pos	= readahead_pos(rac),
405 		.len	= readahead_length(rac),
406 	};
407 	struct iomap_readpage_ctx ctx = {
408 		.rac	= rac,
409 	};
410 
411 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
412 
413 	while (iomap_iter(&iter, ops) > 0)
414 		iter.processed = iomap_readahead_iter(&iter, &ctx);
415 
416 	if (ctx.bio)
417 		submit_bio(ctx.bio);
418 	if (ctx.cur_folio) {
419 		if (!ctx.cur_folio_in_bio)
420 			folio_unlock(ctx.cur_folio);
421 	}
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424 
425 /*
426  * iomap_is_partially_uptodate checks whether blocks within a folio are
427  * uptodate or not.
428  *
429  * Returns true if all blocks which correspond to the specified part
430  * of the folio are uptodate.
431  */
432 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
433 {
434 	struct iomap_page *iop = to_iomap_page(folio);
435 	struct inode *inode = folio->mapping->host;
436 	unsigned first, last, i;
437 
438 	if (!iop)
439 		return false;
440 
441 	/* Caller's range may extend past the end of this folio */
442 	count = min(folio_size(folio) - from, count);
443 
444 	/* First and last blocks in range within folio */
445 	first = from >> inode->i_blkbits;
446 	last = (from + count - 1) >> inode->i_blkbits;
447 
448 	for (i = first; i <= last; i++)
449 		if (!test_bit(i, iop->uptodate))
450 			return false;
451 	return true;
452 }
453 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
454 
455 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
456 {
457 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
458 			folio_size(folio));
459 
460 	/*
461 	 * mm accommodates an old ext3 case where clean folios might
462 	 * not have had the dirty bit cleared.  Thus, it can send actual
463 	 * dirty folios to ->release_folio() via shrink_active_list();
464 	 * skip those here.
465 	 */
466 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
467 		return false;
468 	iomap_page_release(folio);
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(iomap_release_folio);
472 
473 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
474 {
475 	trace_iomap_invalidate_folio(folio->mapping->host,
476 					folio_pos(folio) + offset, len);
477 
478 	/*
479 	 * If we're invalidating the entire folio, clear the dirty state
480 	 * from it and release it to avoid unnecessary buildup of the LRU.
481 	 */
482 	if (offset == 0 && len == folio_size(folio)) {
483 		WARN_ON_ONCE(folio_test_writeback(folio));
484 		folio_cancel_dirty(folio);
485 		iomap_page_release(folio);
486 	} else if (folio_test_large(folio)) {
487 		/* Must release the iop so the page can be split */
488 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
489 			     folio_test_dirty(folio));
490 		iomap_page_release(folio);
491 	}
492 }
493 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
494 
495 #ifdef CONFIG_MIGRATION
496 int
497 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
498 		struct page *page, enum migrate_mode mode)
499 {
500 	struct folio *folio = page_folio(page);
501 	struct folio *newfolio = page_folio(newpage);
502 	int ret;
503 
504 	ret = folio_migrate_mapping(mapping, newfolio, folio, 0);
505 	if (ret != MIGRATEPAGE_SUCCESS)
506 		return ret;
507 
508 	if (folio_test_private(folio))
509 		folio_attach_private(newfolio, folio_detach_private(folio));
510 
511 	if (mode != MIGRATE_SYNC_NO_COPY)
512 		folio_migrate_copy(newfolio, folio);
513 	else
514 		folio_migrate_flags(newfolio, folio);
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL_GPL(iomap_migrate_page);
518 #endif /* CONFIG_MIGRATION */
519 
520 static void
521 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
522 {
523 	loff_t i_size = i_size_read(inode);
524 
525 	/*
526 	 * Only truncate newly allocated pages beyoned EOF, even if the
527 	 * write started inside the existing inode size.
528 	 */
529 	if (pos + len > i_size)
530 		truncate_pagecache_range(inode, max(pos, i_size),
531 					 pos + len - 1);
532 }
533 
534 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
535 		size_t poff, size_t plen, const struct iomap *iomap)
536 {
537 	struct bio_vec bvec;
538 	struct bio bio;
539 
540 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
541 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
542 	bio_add_folio(&bio, folio, plen, poff);
543 	return submit_bio_wait(&bio);
544 }
545 
546 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
547 		size_t len, struct folio *folio)
548 {
549 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
550 	struct iomap_page *iop = iomap_page_create(iter->inode, folio);
551 	loff_t block_size = i_blocksize(iter->inode);
552 	loff_t block_start = round_down(pos, block_size);
553 	loff_t block_end = round_up(pos + len, block_size);
554 	size_t from = offset_in_folio(folio, pos), to = from + len;
555 	size_t poff, plen;
556 
557 	if (folio_test_uptodate(folio))
558 		return 0;
559 	folio_clear_error(folio);
560 
561 	do {
562 		iomap_adjust_read_range(iter->inode, folio, &block_start,
563 				block_end - block_start, &poff, &plen);
564 		if (plen == 0)
565 			break;
566 
567 		if (!(iter->flags & IOMAP_UNSHARE) &&
568 		    (from <= poff || from >= poff + plen) &&
569 		    (to <= poff || to >= poff + plen))
570 			continue;
571 
572 		if (iomap_block_needs_zeroing(iter, block_start)) {
573 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
574 				return -EIO;
575 			folio_zero_segments(folio, poff, from, to, poff + plen);
576 		} else {
577 			int status = iomap_read_folio_sync(block_start, folio,
578 					poff, plen, srcmap);
579 			if (status)
580 				return status;
581 		}
582 		iomap_set_range_uptodate(folio, iop, poff, plen);
583 	} while ((block_start += plen) < block_end);
584 
585 	return 0;
586 }
587 
588 static int iomap_write_begin_inline(const struct iomap_iter *iter,
589 		struct folio *folio)
590 {
591 	/* needs more work for the tailpacking case; disable for now */
592 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
593 		return -EIO;
594 	return iomap_read_inline_data(iter, folio);
595 }
596 
597 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
598 		size_t len, struct folio **foliop)
599 {
600 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
601 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
602 	struct folio *folio;
603 	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
604 	int status = 0;
605 
606 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
607 	if (srcmap != &iter->iomap)
608 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
609 
610 	if (fatal_signal_pending(current))
611 		return -EINTR;
612 
613 	if (!mapping_large_folio_support(iter->inode->i_mapping))
614 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
615 
616 	if (page_ops && page_ops->page_prepare) {
617 		status = page_ops->page_prepare(iter->inode, pos, len);
618 		if (status)
619 			return status;
620 	}
621 
622 	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
623 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
624 	if (!folio) {
625 		status = -ENOMEM;
626 		goto out_no_page;
627 	}
628 	if (pos + len > folio_pos(folio) + folio_size(folio))
629 		len = folio_pos(folio) + folio_size(folio) - pos;
630 
631 	if (srcmap->type == IOMAP_INLINE)
632 		status = iomap_write_begin_inline(iter, folio);
633 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
634 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
635 	else
636 		status = __iomap_write_begin(iter, pos, len, folio);
637 
638 	if (unlikely(status))
639 		goto out_unlock;
640 
641 	*foliop = folio;
642 	return 0;
643 
644 out_unlock:
645 	folio_unlock(folio);
646 	folio_put(folio);
647 	iomap_write_failed(iter->inode, pos, len);
648 
649 out_no_page:
650 	if (page_ops && page_ops->page_done)
651 		page_ops->page_done(iter->inode, pos, 0, NULL);
652 	return status;
653 }
654 
655 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
656 		size_t copied, struct folio *folio)
657 {
658 	struct iomap_page *iop = to_iomap_page(folio);
659 	flush_dcache_folio(folio);
660 
661 	/*
662 	 * The blocks that were entirely written will now be uptodate, so we
663 	 * don't have to worry about a read_folio reading them and overwriting a
664 	 * partial write.  However, if we've encountered a short write and only
665 	 * partially written into a block, it will not be marked uptodate, so a
666 	 * read_folio might come in and destroy our partial write.
667 	 *
668 	 * Do the simplest thing and just treat any short write to a
669 	 * non-uptodate page as a zero-length write, and force the caller to
670 	 * redo the whole thing.
671 	 */
672 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
673 		return 0;
674 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
675 	filemap_dirty_folio(inode->i_mapping, folio);
676 	return copied;
677 }
678 
679 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
680 		struct folio *folio, loff_t pos, size_t copied)
681 {
682 	const struct iomap *iomap = &iter->iomap;
683 	void *addr;
684 
685 	WARN_ON_ONCE(!folio_test_uptodate(folio));
686 	BUG_ON(!iomap_inline_data_valid(iomap));
687 
688 	flush_dcache_folio(folio);
689 	addr = kmap_local_folio(folio, pos);
690 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
691 	kunmap_local(addr);
692 
693 	mark_inode_dirty(iter->inode);
694 	return copied;
695 }
696 
697 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
698 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
699 		size_t copied, struct folio *folio)
700 {
701 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
702 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
703 	loff_t old_size = iter->inode->i_size;
704 	size_t ret;
705 
706 	if (srcmap->type == IOMAP_INLINE) {
707 		ret = iomap_write_end_inline(iter, folio, pos, copied);
708 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
709 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
710 				copied, &folio->page, NULL);
711 	} else {
712 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
713 	}
714 
715 	/*
716 	 * Update the in-memory inode size after copying the data into the page
717 	 * cache.  It's up to the file system to write the updated size to disk,
718 	 * preferably after I/O completion so that no stale data is exposed.
719 	 */
720 	if (pos + ret > old_size) {
721 		i_size_write(iter->inode, pos + ret);
722 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
723 	}
724 	folio_unlock(folio);
725 
726 	if (old_size < pos)
727 		pagecache_isize_extended(iter->inode, old_size, pos);
728 	if (page_ops && page_ops->page_done)
729 		page_ops->page_done(iter->inode, pos, ret, &folio->page);
730 	folio_put(folio);
731 
732 	if (ret < len)
733 		iomap_write_failed(iter->inode, pos + ret, len - ret);
734 	return ret;
735 }
736 
737 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
738 {
739 	loff_t length = iomap_length(iter);
740 	loff_t pos = iter->pos;
741 	ssize_t written = 0;
742 	long status = 0;
743 
744 	do {
745 		struct folio *folio;
746 		struct page *page;
747 		unsigned long offset;	/* Offset into pagecache page */
748 		unsigned long bytes;	/* Bytes to write to page */
749 		size_t copied;		/* Bytes copied from user */
750 
751 		offset = offset_in_page(pos);
752 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
753 						iov_iter_count(i));
754 again:
755 		if (bytes > length)
756 			bytes = length;
757 
758 		/*
759 		 * Bring in the user page that we'll copy from _first_.
760 		 * Otherwise there's a nasty deadlock on copying from the
761 		 * same page as we're writing to, without it being marked
762 		 * up-to-date.
763 		 */
764 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
765 			status = -EFAULT;
766 			break;
767 		}
768 
769 		status = iomap_write_begin(iter, pos, bytes, &folio);
770 		if (unlikely(status))
771 			break;
772 
773 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
774 		if (mapping_writably_mapped(iter->inode->i_mapping))
775 			flush_dcache_page(page);
776 
777 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
778 
779 		status = iomap_write_end(iter, pos, bytes, copied, folio);
780 
781 		if (unlikely(copied != status))
782 			iov_iter_revert(i, copied - status);
783 
784 		cond_resched();
785 		if (unlikely(status == 0)) {
786 			/*
787 			 * A short copy made iomap_write_end() reject the
788 			 * thing entirely.  Might be memory poisoning
789 			 * halfway through, might be a race with munmap,
790 			 * might be severe memory pressure.
791 			 */
792 			if (copied)
793 				bytes = copied;
794 			goto again;
795 		}
796 		pos += status;
797 		written += status;
798 		length -= status;
799 
800 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
801 	} while (iov_iter_count(i) && length);
802 
803 	return written ? written : status;
804 }
805 
806 ssize_t
807 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
808 		const struct iomap_ops *ops)
809 {
810 	struct iomap_iter iter = {
811 		.inode		= iocb->ki_filp->f_mapping->host,
812 		.pos		= iocb->ki_pos,
813 		.len		= iov_iter_count(i),
814 		.flags		= IOMAP_WRITE,
815 	};
816 	int ret;
817 
818 	while ((ret = iomap_iter(&iter, ops)) > 0)
819 		iter.processed = iomap_write_iter(&iter, i);
820 	if (iter.pos == iocb->ki_pos)
821 		return ret;
822 	return iter.pos - iocb->ki_pos;
823 }
824 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
825 
826 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
827 {
828 	struct iomap *iomap = &iter->iomap;
829 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
830 	loff_t pos = iter->pos;
831 	loff_t length = iomap_length(iter);
832 	long status = 0;
833 	loff_t written = 0;
834 
835 	/* don't bother with blocks that are not shared to start with */
836 	if (!(iomap->flags & IOMAP_F_SHARED))
837 		return length;
838 	/* don't bother with holes or unwritten extents */
839 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
840 		return length;
841 
842 	do {
843 		unsigned long offset = offset_in_page(pos);
844 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
845 		struct folio *folio;
846 
847 		status = iomap_write_begin(iter, pos, bytes, &folio);
848 		if (unlikely(status))
849 			return status;
850 
851 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
852 		if (WARN_ON_ONCE(status == 0))
853 			return -EIO;
854 
855 		cond_resched();
856 
857 		pos += status;
858 		written += status;
859 		length -= status;
860 
861 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
862 	} while (length);
863 
864 	return written;
865 }
866 
867 int
868 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
869 		const struct iomap_ops *ops)
870 {
871 	struct iomap_iter iter = {
872 		.inode		= inode,
873 		.pos		= pos,
874 		.len		= len,
875 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
876 	};
877 	int ret;
878 
879 	while ((ret = iomap_iter(&iter, ops)) > 0)
880 		iter.processed = iomap_unshare_iter(&iter);
881 	return ret;
882 }
883 EXPORT_SYMBOL_GPL(iomap_file_unshare);
884 
885 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
886 {
887 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
888 	loff_t pos = iter->pos;
889 	loff_t length = iomap_length(iter);
890 	loff_t written = 0;
891 
892 	/* already zeroed?  we're done. */
893 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
894 		return length;
895 
896 	do {
897 		struct folio *folio;
898 		int status;
899 		size_t offset;
900 		size_t bytes = min_t(u64, SIZE_MAX, length);
901 
902 		status = iomap_write_begin(iter, pos, bytes, &folio);
903 		if (status)
904 			return status;
905 
906 		offset = offset_in_folio(folio, pos);
907 		if (bytes > folio_size(folio) - offset)
908 			bytes = folio_size(folio) - offset;
909 
910 		folio_zero_range(folio, offset, bytes);
911 		folio_mark_accessed(folio);
912 
913 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
914 		if (WARN_ON_ONCE(bytes == 0))
915 			return -EIO;
916 
917 		pos += bytes;
918 		length -= bytes;
919 		written += bytes;
920 		if (did_zero)
921 			*did_zero = true;
922 	} while (length > 0);
923 
924 	return written;
925 }
926 
927 int
928 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
929 		const struct iomap_ops *ops)
930 {
931 	struct iomap_iter iter = {
932 		.inode		= inode,
933 		.pos		= pos,
934 		.len		= len,
935 		.flags		= IOMAP_ZERO,
936 	};
937 	int ret;
938 
939 	while ((ret = iomap_iter(&iter, ops)) > 0)
940 		iter.processed = iomap_zero_iter(&iter, did_zero);
941 	return ret;
942 }
943 EXPORT_SYMBOL_GPL(iomap_zero_range);
944 
945 int
946 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
947 		const struct iomap_ops *ops)
948 {
949 	unsigned int blocksize = i_blocksize(inode);
950 	unsigned int off = pos & (blocksize - 1);
951 
952 	/* Block boundary? Nothing to do */
953 	if (!off)
954 		return 0;
955 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
956 }
957 EXPORT_SYMBOL_GPL(iomap_truncate_page);
958 
959 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
960 		struct folio *folio)
961 {
962 	loff_t length = iomap_length(iter);
963 	int ret;
964 
965 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
966 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
967 					      &iter->iomap);
968 		if (ret)
969 			return ret;
970 		block_commit_write(&folio->page, 0, length);
971 	} else {
972 		WARN_ON_ONCE(!folio_test_uptodate(folio));
973 		folio_mark_dirty(folio);
974 	}
975 
976 	return length;
977 }
978 
979 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
980 {
981 	struct iomap_iter iter = {
982 		.inode		= file_inode(vmf->vma->vm_file),
983 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
984 	};
985 	struct folio *folio = page_folio(vmf->page);
986 	ssize_t ret;
987 
988 	folio_lock(folio);
989 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
990 	if (ret < 0)
991 		goto out_unlock;
992 	iter.pos = folio_pos(folio);
993 	iter.len = ret;
994 	while ((ret = iomap_iter(&iter, ops)) > 0)
995 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
996 
997 	if (ret < 0)
998 		goto out_unlock;
999 	folio_wait_stable(folio);
1000 	return VM_FAULT_LOCKED;
1001 out_unlock:
1002 	folio_unlock(folio);
1003 	return block_page_mkwrite_return(ret);
1004 }
1005 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1006 
1007 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1008 		size_t len, int error)
1009 {
1010 	struct iomap_page *iop = to_iomap_page(folio);
1011 
1012 	if (error) {
1013 		folio_set_error(folio);
1014 		mapping_set_error(inode->i_mapping, error);
1015 	}
1016 
1017 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1018 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1019 
1020 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1021 		folio_end_writeback(folio);
1022 }
1023 
1024 /*
1025  * We're now finished for good with this ioend structure.  Update the page
1026  * state, release holds on bios, and finally free up memory.  Do not use the
1027  * ioend after this.
1028  */
1029 static u32
1030 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1031 {
1032 	struct inode *inode = ioend->io_inode;
1033 	struct bio *bio = &ioend->io_inline_bio;
1034 	struct bio *last = ioend->io_bio, *next;
1035 	u64 start = bio->bi_iter.bi_sector;
1036 	loff_t offset = ioend->io_offset;
1037 	bool quiet = bio_flagged(bio, BIO_QUIET);
1038 	u32 folio_count = 0;
1039 
1040 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1041 		struct folio_iter fi;
1042 
1043 		/*
1044 		 * For the last bio, bi_private points to the ioend, so we
1045 		 * need to explicitly end the iteration here.
1046 		 */
1047 		if (bio == last)
1048 			next = NULL;
1049 		else
1050 			next = bio->bi_private;
1051 
1052 		/* walk all folios in bio, ending page IO on them */
1053 		bio_for_each_folio_all(fi, bio) {
1054 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1055 					error);
1056 			folio_count++;
1057 		}
1058 		bio_put(bio);
1059 	}
1060 	/* The ioend has been freed by bio_put() */
1061 
1062 	if (unlikely(error && !quiet)) {
1063 		printk_ratelimited(KERN_ERR
1064 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1065 			inode->i_sb->s_id, inode->i_ino, offset, start);
1066 	}
1067 	return folio_count;
1068 }
1069 
1070 /*
1071  * Ioend completion routine for merged bios. This can only be called from task
1072  * contexts as merged ioends can be of unbound length. Hence we have to break up
1073  * the writeback completions into manageable chunks to avoid long scheduler
1074  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1075  * good batch processing throughput without creating adverse scheduler latency
1076  * conditions.
1077  */
1078 void
1079 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1080 {
1081 	struct list_head tmp;
1082 	u32 completions;
1083 
1084 	might_sleep();
1085 
1086 	list_replace_init(&ioend->io_list, &tmp);
1087 	completions = iomap_finish_ioend(ioend, error);
1088 
1089 	while (!list_empty(&tmp)) {
1090 		if (completions > IOEND_BATCH_SIZE * 8) {
1091 			cond_resched();
1092 			completions = 0;
1093 		}
1094 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1095 		list_del_init(&ioend->io_list);
1096 		completions += iomap_finish_ioend(ioend, error);
1097 	}
1098 }
1099 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1100 
1101 /*
1102  * We can merge two adjacent ioends if they have the same set of work to do.
1103  */
1104 static bool
1105 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1106 {
1107 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1108 		return false;
1109 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1110 	    (next->io_flags & IOMAP_F_SHARED))
1111 		return false;
1112 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1113 	    (next->io_type == IOMAP_UNWRITTEN))
1114 		return false;
1115 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1116 		return false;
1117 	/*
1118 	 * Do not merge physically discontiguous ioends. The filesystem
1119 	 * completion functions will have to iterate the physical
1120 	 * discontiguities even if we merge the ioends at a logical level, so
1121 	 * we don't gain anything by merging physical discontiguities here.
1122 	 *
1123 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1124 	 * submission so does not point to the start sector of the bio at
1125 	 * completion.
1126 	 */
1127 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1128 		return false;
1129 	return true;
1130 }
1131 
1132 void
1133 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1134 {
1135 	struct iomap_ioend *next;
1136 
1137 	INIT_LIST_HEAD(&ioend->io_list);
1138 
1139 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1140 			io_list))) {
1141 		if (!iomap_ioend_can_merge(ioend, next))
1142 			break;
1143 		list_move_tail(&next->io_list, &ioend->io_list);
1144 		ioend->io_size += next->io_size;
1145 	}
1146 }
1147 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1148 
1149 static int
1150 iomap_ioend_compare(void *priv, const struct list_head *a,
1151 		const struct list_head *b)
1152 {
1153 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1154 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1155 
1156 	if (ia->io_offset < ib->io_offset)
1157 		return -1;
1158 	if (ia->io_offset > ib->io_offset)
1159 		return 1;
1160 	return 0;
1161 }
1162 
1163 void
1164 iomap_sort_ioends(struct list_head *ioend_list)
1165 {
1166 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1167 }
1168 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1169 
1170 static void iomap_writepage_end_bio(struct bio *bio)
1171 {
1172 	struct iomap_ioend *ioend = bio->bi_private;
1173 
1174 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1175 }
1176 
1177 /*
1178  * Submit the final bio for an ioend.
1179  *
1180  * If @error is non-zero, it means that we have a situation where some part of
1181  * the submission process has failed after we've marked pages for writeback
1182  * and unlocked them.  In this situation, we need to fail the bio instead of
1183  * submitting it.  This typically only happens on a filesystem shutdown.
1184  */
1185 static int
1186 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1187 		int error)
1188 {
1189 	ioend->io_bio->bi_private = ioend;
1190 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1191 
1192 	if (wpc->ops->prepare_ioend)
1193 		error = wpc->ops->prepare_ioend(ioend, error);
1194 	if (error) {
1195 		/*
1196 		 * If we're failing the IO now, just mark the ioend with an
1197 		 * error and finish it.  This will run IO completion immediately
1198 		 * as there is only one reference to the ioend at this point in
1199 		 * time.
1200 		 */
1201 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1202 		bio_endio(ioend->io_bio);
1203 		return error;
1204 	}
1205 
1206 	submit_bio(ioend->io_bio);
1207 	return 0;
1208 }
1209 
1210 static struct iomap_ioend *
1211 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1212 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1213 {
1214 	struct iomap_ioend *ioend;
1215 	struct bio *bio;
1216 
1217 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1218 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1219 			       GFP_NOFS, &iomap_ioend_bioset);
1220 	bio->bi_iter.bi_sector = sector;
1221 	wbc_init_bio(wbc, bio);
1222 
1223 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1224 	INIT_LIST_HEAD(&ioend->io_list);
1225 	ioend->io_type = wpc->iomap.type;
1226 	ioend->io_flags = wpc->iomap.flags;
1227 	ioend->io_inode = inode;
1228 	ioend->io_size = 0;
1229 	ioend->io_folios = 0;
1230 	ioend->io_offset = offset;
1231 	ioend->io_bio = bio;
1232 	ioend->io_sector = sector;
1233 	return ioend;
1234 }
1235 
1236 /*
1237  * Allocate a new bio, and chain the old bio to the new one.
1238  *
1239  * Note that we have to perform the chaining in this unintuitive order
1240  * so that the bi_private linkage is set up in the right direction for the
1241  * traversal in iomap_finish_ioend().
1242  */
1243 static struct bio *
1244 iomap_chain_bio(struct bio *prev)
1245 {
1246 	struct bio *new;
1247 
1248 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1249 	bio_clone_blkg_association(new, prev);
1250 	new->bi_iter.bi_sector = bio_end_sector(prev);
1251 
1252 	bio_chain(prev, new);
1253 	bio_get(prev);		/* for iomap_finish_ioend */
1254 	submit_bio(prev);
1255 	return new;
1256 }
1257 
1258 static bool
1259 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1260 		sector_t sector)
1261 {
1262 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1263 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1264 		return false;
1265 	if (wpc->iomap.type != wpc->ioend->io_type)
1266 		return false;
1267 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1268 		return false;
1269 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1270 		return false;
1271 	/*
1272 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1273 	 * also prevents long tight loops ending page writeback on all the
1274 	 * folios in the ioend.
1275 	 */
1276 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1277 		return false;
1278 	return true;
1279 }
1280 
1281 /*
1282  * Test to see if we have an existing ioend structure that we could append to
1283  * first; otherwise finish off the current ioend and start another.
1284  */
1285 static void
1286 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1287 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1288 		struct writeback_control *wbc, struct list_head *iolist)
1289 {
1290 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1291 	unsigned len = i_blocksize(inode);
1292 	size_t poff = offset_in_folio(folio, pos);
1293 
1294 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1295 		if (wpc->ioend)
1296 			list_add(&wpc->ioend->io_list, iolist);
1297 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1298 	}
1299 
1300 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1301 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1302 		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1303 	}
1304 
1305 	if (iop)
1306 		atomic_add(len, &iop->write_bytes_pending);
1307 	wpc->ioend->io_size += len;
1308 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1309 }
1310 
1311 /*
1312  * We implement an immediate ioend submission policy here to avoid needing to
1313  * chain multiple ioends and hence nest mempool allocations which can violate
1314  * the forward progress guarantees we need to provide. The current ioend we're
1315  * adding blocks to is cached in the writepage context, and if the new block
1316  * doesn't append to the cached ioend, it will create a new ioend and cache that
1317  * instead.
1318  *
1319  * If a new ioend is created and cached, the old ioend is returned and queued
1320  * locally for submission once the entire page is processed or an error has been
1321  * detected.  While ioends are submitted immediately after they are completed,
1322  * batching optimisations are provided by higher level block plugging.
1323  *
1324  * At the end of a writeback pass, there will be a cached ioend remaining on the
1325  * writepage context that the caller will need to submit.
1326  */
1327 static int
1328 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1329 		struct writeback_control *wbc, struct inode *inode,
1330 		struct folio *folio, u64 end_pos)
1331 {
1332 	struct iomap_page *iop = iomap_page_create(inode, folio);
1333 	struct iomap_ioend *ioend, *next;
1334 	unsigned len = i_blocksize(inode);
1335 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1336 	u64 pos = folio_pos(folio);
1337 	int error = 0, count = 0, i;
1338 	LIST_HEAD(submit_list);
1339 
1340 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1341 
1342 	/*
1343 	 * Walk through the folio to find areas to write back. If we
1344 	 * run off the end of the current map or find the current map
1345 	 * invalid, grab a new one.
1346 	 */
1347 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1348 		if (iop && !test_bit(i, iop->uptodate))
1349 			continue;
1350 
1351 		error = wpc->ops->map_blocks(wpc, inode, pos);
1352 		if (error)
1353 			break;
1354 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1355 			continue;
1356 		if (wpc->iomap.type == IOMAP_HOLE)
1357 			continue;
1358 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1359 				 &submit_list);
1360 		count++;
1361 	}
1362 	if (count)
1363 		wpc->ioend->io_folios++;
1364 
1365 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1366 	WARN_ON_ONCE(!folio_test_locked(folio));
1367 	WARN_ON_ONCE(folio_test_writeback(folio));
1368 	WARN_ON_ONCE(folio_test_dirty(folio));
1369 
1370 	/*
1371 	 * We cannot cancel the ioend directly here on error.  We may have
1372 	 * already set other pages under writeback and hence we have to run I/O
1373 	 * completion to mark the error state of the pages under writeback
1374 	 * appropriately.
1375 	 */
1376 	if (unlikely(error)) {
1377 		/*
1378 		 * Let the filesystem know what portion of the current page
1379 		 * failed to map. If the page hasn't been added to ioend, it
1380 		 * won't be affected by I/O completion and we must unlock it
1381 		 * now.
1382 		 */
1383 		if (wpc->ops->discard_folio)
1384 			wpc->ops->discard_folio(folio, pos);
1385 		if (!count) {
1386 			folio_unlock(folio);
1387 			goto done;
1388 		}
1389 	}
1390 
1391 	folio_start_writeback(folio);
1392 	folio_unlock(folio);
1393 
1394 	/*
1395 	 * Preserve the original error if there was one; catch
1396 	 * submission errors here and propagate into subsequent ioend
1397 	 * submissions.
1398 	 */
1399 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1400 		int error2;
1401 
1402 		list_del_init(&ioend->io_list);
1403 		error2 = iomap_submit_ioend(wpc, ioend, error);
1404 		if (error2 && !error)
1405 			error = error2;
1406 	}
1407 
1408 	/*
1409 	 * We can end up here with no error and nothing to write only if we race
1410 	 * with a partial page truncate on a sub-page block sized filesystem.
1411 	 */
1412 	if (!count)
1413 		folio_end_writeback(folio);
1414 done:
1415 	mapping_set_error(folio->mapping, error);
1416 	return error;
1417 }
1418 
1419 /*
1420  * Write out a dirty page.
1421  *
1422  * For delalloc space on the page, we need to allocate space and flush it.
1423  * For unwritten space on the page, we need to start the conversion to
1424  * regular allocated space.
1425  */
1426 static int
1427 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1428 {
1429 	struct folio *folio = page_folio(page);
1430 	struct iomap_writepage_ctx *wpc = data;
1431 	struct inode *inode = folio->mapping->host;
1432 	u64 end_pos, isize;
1433 
1434 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1435 
1436 	/*
1437 	 * Refuse to write the folio out if we're called from reclaim context.
1438 	 *
1439 	 * This avoids stack overflows when called from deeply used stacks in
1440 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1441 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1442 	 *
1443 	 * This should never happen except in the case of a VM regression so
1444 	 * warn about it.
1445 	 */
1446 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1447 			PF_MEMALLOC))
1448 		goto redirty;
1449 
1450 	/*
1451 	 * Is this folio beyond the end of the file?
1452 	 *
1453 	 * The folio index is less than the end_index, adjust the end_pos
1454 	 * to the highest offset that this folio should represent.
1455 	 * -----------------------------------------------------
1456 	 * |			file mapping	       | <EOF> |
1457 	 * -----------------------------------------------------
1458 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1459 	 * ^--------------------------------^----------|--------
1460 	 * |     desired writeback range    |      see else    |
1461 	 * ---------------------------------^------------------|
1462 	 */
1463 	isize = i_size_read(inode);
1464 	end_pos = folio_pos(folio) + folio_size(folio);
1465 	if (end_pos > isize) {
1466 		/*
1467 		 * Check whether the page to write out is beyond or straddles
1468 		 * i_size or not.
1469 		 * -------------------------------------------------------
1470 		 * |		file mapping		        | <EOF>  |
1471 		 * -------------------------------------------------------
1472 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1473 		 * ^--------------------------------^-----------|---------
1474 		 * |				    |      Straddles     |
1475 		 * ---------------------------------^-----------|--------|
1476 		 */
1477 		size_t poff = offset_in_folio(folio, isize);
1478 		pgoff_t end_index = isize >> PAGE_SHIFT;
1479 
1480 		/*
1481 		 * Skip the page if it's fully outside i_size, e.g. due to a
1482 		 * truncate operation that's in progress. We must redirty the
1483 		 * page so that reclaim stops reclaiming it. Otherwise
1484 		 * iomap_release_folio() is called on it and gets confused.
1485 		 *
1486 		 * Note that the end_index is unsigned long.  If the given
1487 		 * offset is greater than 16TB on a 32-bit system then if we
1488 		 * checked if the page is fully outside i_size with
1489 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1490 		 * overflow and evaluate to 0.  Hence this page would be
1491 		 * redirtied and written out repeatedly, which would result in
1492 		 * an infinite loop; the user program performing this operation
1493 		 * would hang.  Instead, we can detect this situation by
1494 		 * checking if the page is totally beyond i_size or if its
1495 		 * offset is just equal to the EOF.
1496 		 */
1497 		if (folio->index > end_index ||
1498 		    (folio->index == end_index && poff == 0))
1499 			goto redirty;
1500 
1501 		/*
1502 		 * The page straddles i_size.  It must be zeroed out on each
1503 		 * and every writepage invocation because it may be mmapped.
1504 		 * "A file is mapped in multiples of the page size.  For a file
1505 		 * that is not a multiple of the page size, the remaining
1506 		 * memory is zeroed when mapped, and writes to that region are
1507 		 * not written out to the file."
1508 		 */
1509 		folio_zero_segment(folio, poff, folio_size(folio));
1510 		end_pos = isize;
1511 	}
1512 
1513 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1514 
1515 redirty:
1516 	folio_redirty_for_writepage(wbc, folio);
1517 	folio_unlock(folio);
1518 	return 0;
1519 }
1520 
1521 int
1522 iomap_writepage(struct page *page, struct writeback_control *wbc,
1523 		struct iomap_writepage_ctx *wpc,
1524 		const struct iomap_writeback_ops *ops)
1525 {
1526 	int ret;
1527 
1528 	wpc->ops = ops;
1529 	ret = iomap_do_writepage(page, wbc, wpc);
1530 	if (!wpc->ioend)
1531 		return ret;
1532 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1533 }
1534 EXPORT_SYMBOL_GPL(iomap_writepage);
1535 
1536 int
1537 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1538 		struct iomap_writepage_ctx *wpc,
1539 		const struct iomap_writeback_ops *ops)
1540 {
1541 	int			ret;
1542 
1543 	wpc->ops = ops;
1544 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1545 	if (!wpc->ioend)
1546 		return ret;
1547 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1548 }
1549 EXPORT_SYMBOL_GPL(iomap_writepages);
1550 
1551 static int __init iomap_init(void)
1552 {
1553 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1554 			   offsetof(struct iomap_ioend, io_inline_bio),
1555 			   BIOSET_NEED_BVECS);
1556 }
1557 fs_initcall(iomap_init);
1558