xref: /linux/fs/iomap/buffered-io.c (revision 4b96679170c63be361d1b0fdeb81bb0ef207dbcb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 /*
27  * Structure allocated for each folio when block size < folio size
28  * to track sub-folio uptodate status and I/O completions.
29  */
30 struct iomap_page {
31 	atomic_t		read_bytes_pending;
32 	atomic_t		write_bytes_pending;
33 	spinlock_t		uptodate_lock;
34 	unsigned long		uptodate[];
35 };
36 
37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 	if (folio_test_private(folio))
40 		return folio_get_private(folio);
41 	return NULL;
42 }
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static struct iomap_page *
47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags)
48 {
49 	struct iomap_page *iop = to_iomap_page(folio);
50 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 	gfp_t gfp;
52 
53 	if (iop || nr_blocks <= 1)
54 		return iop;
55 
56 	if (flags & IOMAP_NOWAIT)
57 		gfp = GFP_NOWAIT;
58 	else
59 		gfp = GFP_NOFS | __GFP_NOFAIL;
60 
61 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
62 		      gfp);
63 	if (iop) {
64 		spin_lock_init(&iop->uptodate_lock);
65 		if (folio_test_uptodate(folio))
66 			bitmap_fill(iop->uptodate, nr_blocks);
67 		folio_attach_private(folio, iop);
68 	}
69 	return iop;
70 }
71 
72 static void iomap_page_release(struct folio *folio)
73 {
74 	struct iomap_page *iop = folio_detach_private(folio);
75 	struct inode *inode = folio->mapping->host;
76 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
77 
78 	if (!iop)
79 		return;
80 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
81 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
82 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
83 			folio_test_uptodate(folio));
84 	kfree(iop);
85 }
86 
87 /*
88  * Calculate the range inside the folio that we actually need to read.
89  */
90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
91 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
92 {
93 	struct iomap_page *iop = to_iomap_page(folio);
94 	loff_t orig_pos = *pos;
95 	loff_t isize = i_size_read(inode);
96 	unsigned block_bits = inode->i_blkbits;
97 	unsigned block_size = (1 << block_bits);
98 	size_t poff = offset_in_folio(folio, *pos);
99 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
100 	unsigned first = poff >> block_bits;
101 	unsigned last = (poff + plen - 1) >> block_bits;
102 
103 	/*
104 	 * If the block size is smaller than the page size, we need to check the
105 	 * per-block uptodate status and adjust the offset and length if needed
106 	 * to avoid reading in already uptodate ranges.
107 	 */
108 	if (iop) {
109 		unsigned int i;
110 
111 		/* move forward for each leading block marked uptodate */
112 		for (i = first; i <= last; i++) {
113 			if (!test_bit(i, iop->uptodate))
114 				break;
115 			*pos += block_size;
116 			poff += block_size;
117 			plen -= block_size;
118 			first++;
119 		}
120 
121 		/* truncate len if we find any trailing uptodate block(s) */
122 		for ( ; i <= last; i++) {
123 			if (test_bit(i, iop->uptodate)) {
124 				plen -= (last - i + 1) * block_size;
125 				last = i - 1;
126 				break;
127 			}
128 		}
129 	}
130 
131 	/*
132 	 * If the extent spans the block that contains the i_size, we need to
133 	 * handle both halves separately so that we properly zero data in the
134 	 * page cache for blocks that are entirely outside of i_size.
135 	 */
136 	if (orig_pos <= isize && orig_pos + length > isize) {
137 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
138 
139 		if (first <= end && last > end)
140 			plen -= (last - end) * block_size;
141 	}
142 
143 	*offp = poff;
144 	*lenp = plen;
145 }
146 
147 static void iomap_iop_set_range_uptodate(struct folio *folio,
148 		struct iomap_page *iop, size_t off, size_t len)
149 {
150 	struct inode *inode = folio->mapping->host;
151 	unsigned first = off >> inode->i_blkbits;
152 	unsigned last = (off + len - 1) >> inode->i_blkbits;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&iop->uptodate_lock, flags);
156 	bitmap_set(iop->uptodate, first, last - first + 1);
157 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
158 		folio_mark_uptodate(folio);
159 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
160 }
161 
162 static void iomap_set_range_uptodate(struct folio *folio,
163 		struct iomap_page *iop, size_t off, size_t len)
164 {
165 	if (iop)
166 		iomap_iop_set_range_uptodate(folio, iop, off, len);
167 	else
168 		folio_mark_uptodate(folio);
169 }
170 
171 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
172 		size_t len, int error)
173 {
174 	struct iomap_page *iop = to_iomap_page(folio);
175 
176 	if (unlikely(error)) {
177 		folio_clear_uptodate(folio);
178 		folio_set_error(folio);
179 	} else {
180 		iomap_set_range_uptodate(folio, iop, offset, len);
181 	}
182 
183 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
184 		folio_unlock(folio);
185 }
186 
187 static void iomap_read_end_io(struct bio *bio)
188 {
189 	int error = blk_status_to_errno(bio->bi_status);
190 	struct folio_iter fi;
191 
192 	bio_for_each_folio_all(fi, bio)
193 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
194 	bio_put(bio);
195 }
196 
197 struct iomap_readpage_ctx {
198 	struct folio		*cur_folio;
199 	bool			cur_folio_in_bio;
200 	struct bio		*bio;
201 	struct readahead_control *rac;
202 };
203 
204 /**
205  * iomap_read_inline_data - copy inline data into the page cache
206  * @iter: iteration structure
207  * @folio: folio to copy to
208  *
209  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
210  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
211  * Returns zero for success to complete the read, or the usual negative errno.
212  */
213 static int iomap_read_inline_data(const struct iomap_iter *iter,
214 		struct folio *folio)
215 {
216 	struct iomap_page *iop;
217 	const struct iomap *iomap = iomap_iter_srcmap(iter);
218 	size_t size = i_size_read(iter->inode) - iomap->offset;
219 	size_t poff = offset_in_page(iomap->offset);
220 	size_t offset = offset_in_folio(folio, iomap->offset);
221 	void *addr;
222 
223 	if (folio_test_uptodate(folio))
224 		return 0;
225 
226 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
227 		return -EIO;
228 	if (WARN_ON_ONCE(size > PAGE_SIZE -
229 			 offset_in_page(iomap->inline_data)))
230 		return -EIO;
231 	if (WARN_ON_ONCE(size > iomap->length))
232 		return -EIO;
233 	if (offset > 0)
234 		iop = iomap_page_create(iter->inode, folio, iter->flags);
235 	else
236 		iop = to_iomap_page(folio);
237 
238 	addr = kmap_local_folio(folio, offset);
239 	memcpy(addr, iomap->inline_data, size);
240 	memset(addr + size, 0, PAGE_SIZE - poff - size);
241 	kunmap_local(addr);
242 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
243 	return 0;
244 }
245 
246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
247 		loff_t pos)
248 {
249 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
250 
251 	return srcmap->type != IOMAP_MAPPED ||
252 		(srcmap->flags & IOMAP_F_NEW) ||
253 		pos >= i_size_read(iter->inode);
254 }
255 
256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
257 		struct iomap_readpage_ctx *ctx, loff_t offset)
258 {
259 	const struct iomap *iomap = &iter->iomap;
260 	loff_t pos = iter->pos + offset;
261 	loff_t length = iomap_length(iter) - offset;
262 	struct folio *folio = ctx->cur_folio;
263 	struct iomap_page *iop;
264 	loff_t orig_pos = pos;
265 	size_t poff, plen;
266 	sector_t sector;
267 
268 	if (iomap->type == IOMAP_INLINE)
269 		return iomap_read_inline_data(iter, folio);
270 
271 	/* zero post-eof blocks as the page may be mapped */
272 	iop = iomap_page_create(iter->inode, folio, iter->flags);
273 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
274 	if (plen == 0)
275 		goto done;
276 
277 	if (iomap_block_needs_zeroing(iter, pos)) {
278 		folio_zero_range(folio, poff, plen);
279 		iomap_set_range_uptodate(folio, iop, poff, plen);
280 		goto done;
281 	}
282 
283 	ctx->cur_folio_in_bio = true;
284 	if (iop)
285 		atomic_add(plen, &iop->read_bytes_pending);
286 
287 	sector = iomap_sector(iomap, pos);
288 	if (!ctx->bio ||
289 	    bio_end_sector(ctx->bio) != sector ||
290 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
291 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
292 		gfp_t orig_gfp = gfp;
293 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
294 
295 		if (ctx->bio)
296 			submit_bio(ctx->bio);
297 
298 		if (ctx->rac) /* same as readahead_gfp_mask */
299 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
300 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
301 				     REQ_OP_READ, gfp);
302 		/*
303 		 * If the bio_alloc fails, try it again for a single page to
304 		 * avoid having to deal with partial page reads.  This emulates
305 		 * what do_mpage_read_folio does.
306 		 */
307 		if (!ctx->bio) {
308 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
309 					     orig_gfp);
310 		}
311 		if (ctx->rac)
312 			ctx->bio->bi_opf |= REQ_RAHEAD;
313 		ctx->bio->bi_iter.bi_sector = sector;
314 		ctx->bio->bi_end_io = iomap_read_end_io;
315 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
316 	}
317 
318 done:
319 	/*
320 	 * Move the caller beyond our range so that it keeps making progress.
321 	 * For that, we have to include any leading non-uptodate ranges, but
322 	 * we can skip trailing ones as they will be handled in the next
323 	 * iteration.
324 	 */
325 	return pos - orig_pos + plen;
326 }
327 
328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
329 {
330 	struct iomap_iter iter = {
331 		.inode		= folio->mapping->host,
332 		.pos		= folio_pos(folio),
333 		.len		= folio_size(folio),
334 	};
335 	struct iomap_readpage_ctx ctx = {
336 		.cur_folio	= folio,
337 	};
338 	int ret;
339 
340 	trace_iomap_readpage(iter.inode, 1);
341 
342 	while ((ret = iomap_iter(&iter, ops)) > 0)
343 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
344 
345 	if (ret < 0)
346 		folio_set_error(folio);
347 
348 	if (ctx.bio) {
349 		submit_bio(ctx.bio);
350 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
351 	} else {
352 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
353 		folio_unlock(folio);
354 	}
355 
356 	/*
357 	 * Just like mpage_readahead and block_read_full_folio, we always
358 	 * return 0 and just set the folio error flag on errors.  This
359 	 * should be cleaned up throughout the stack eventually.
360 	 */
361 	return 0;
362 }
363 EXPORT_SYMBOL_GPL(iomap_read_folio);
364 
365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
366 		struct iomap_readpage_ctx *ctx)
367 {
368 	loff_t length = iomap_length(iter);
369 	loff_t done, ret;
370 
371 	for (done = 0; done < length; done += ret) {
372 		if (ctx->cur_folio &&
373 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
374 			if (!ctx->cur_folio_in_bio)
375 				folio_unlock(ctx->cur_folio);
376 			ctx->cur_folio = NULL;
377 		}
378 		if (!ctx->cur_folio) {
379 			ctx->cur_folio = readahead_folio(ctx->rac);
380 			ctx->cur_folio_in_bio = false;
381 		}
382 		ret = iomap_readpage_iter(iter, ctx, done);
383 		if (ret <= 0)
384 			return ret;
385 	}
386 
387 	return done;
388 }
389 
390 /**
391  * iomap_readahead - Attempt to read pages from a file.
392  * @rac: Describes the pages to be read.
393  * @ops: The operations vector for the filesystem.
394  *
395  * This function is for filesystems to call to implement their readahead
396  * address_space operation.
397  *
398  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
399  * blocks from disc), and may wait for it.  The caller may be trying to
400  * access a different page, and so sleeping excessively should be avoided.
401  * It may allocate memory, but should avoid costly allocations.  This
402  * function is called with memalloc_nofs set, so allocations will not cause
403  * the filesystem to be reentered.
404  */
405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
406 {
407 	struct iomap_iter iter = {
408 		.inode	= rac->mapping->host,
409 		.pos	= readahead_pos(rac),
410 		.len	= readahead_length(rac),
411 	};
412 	struct iomap_readpage_ctx ctx = {
413 		.rac	= rac,
414 	};
415 
416 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
417 
418 	while (iomap_iter(&iter, ops) > 0)
419 		iter.processed = iomap_readahead_iter(&iter, &ctx);
420 
421 	if (ctx.bio)
422 		submit_bio(ctx.bio);
423 	if (ctx.cur_folio) {
424 		if (!ctx.cur_folio_in_bio)
425 			folio_unlock(ctx.cur_folio);
426 	}
427 }
428 EXPORT_SYMBOL_GPL(iomap_readahead);
429 
430 /*
431  * iomap_is_partially_uptodate checks whether blocks within a folio are
432  * uptodate or not.
433  *
434  * Returns true if all blocks which correspond to the specified part
435  * of the folio are uptodate.
436  */
437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
438 {
439 	struct iomap_page *iop = to_iomap_page(folio);
440 	struct inode *inode = folio->mapping->host;
441 	unsigned first, last, i;
442 
443 	if (!iop)
444 		return false;
445 
446 	/* Caller's range may extend past the end of this folio */
447 	count = min(folio_size(folio) - from, count);
448 
449 	/* First and last blocks in range within folio */
450 	first = from >> inode->i_blkbits;
451 	last = (from + count - 1) >> inode->i_blkbits;
452 
453 	for (i = first; i <= last; i++)
454 		if (!test_bit(i, iop->uptodate))
455 			return false;
456 	return true;
457 }
458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
459 
460 /**
461  * iomap_get_folio - get a folio reference for writing
462  * @iter: iteration structure
463  * @pos: start offset of write
464  *
465  * Returns a locked reference to the folio at @pos, or an error pointer if the
466  * folio could not be obtained.
467  */
468 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos)
469 {
470 	unsigned fgp = FGP_WRITEBEGIN | FGP_NOFS;
471 
472 	if (iter->flags & IOMAP_NOWAIT)
473 		fgp |= FGP_NOWAIT;
474 
475 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
476 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
477 }
478 EXPORT_SYMBOL_GPL(iomap_get_folio);
479 
480 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
481 {
482 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
483 			folio_size(folio));
484 
485 	/*
486 	 * mm accommodates an old ext3 case where clean folios might
487 	 * not have had the dirty bit cleared.  Thus, it can send actual
488 	 * dirty folios to ->release_folio() via shrink_active_list();
489 	 * skip those here.
490 	 */
491 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
492 		return false;
493 	iomap_page_release(folio);
494 	return true;
495 }
496 EXPORT_SYMBOL_GPL(iomap_release_folio);
497 
498 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
499 {
500 	trace_iomap_invalidate_folio(folio->mapping->host,
501 					folio_pos(folio) + offset, len);
502 
503 	/*
504 	 * If we're invalidating the entire folio, clear the dirty state
505 	 * from it and release it to avoid unnecessary buildup of the LRU.
506 	 */
507 	if (offset == 0 && len == folio_size(folio)) {
508 		WARN_ON_ONCE(folio_test_writeback(folio));
509 		folio_cancel_dirty(folio);
510 		iomap_page_release(folio);
511 	} else if (folio_test_large(folio)) {
512 		/* Must release the iop so the page can be split */
513 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
514 			     folio_test_dirty(folio));
515 		iomap_page_release(folio);
516 	}
517 }
518 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
519 
520 static void
521 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
522 {
523 	loff_t i_size = i_size_read(inode);
524 
525 	/*
526 	 * Only truncate newly allocated pages beyoned EOF, even if the
527 	 * write started inside the existing inode size.
528 	 */
529 	if (pos + len > i_size)
530 		truncate_pagecache_range(inode, max(pos, i_size),
531 					 pos + len - 1);
532 }
533 
534 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
535 		size_t poff, size_t plen, const struct iomap *iomap)
536 {
537 	struct bio_vec bvec;
538 	struct bio bio;
539 
540 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
541 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
542 	bio_add_folio_nofail(&bio, folio, plen, poff);
543 	return submit_bio_wait(&bio);
544 }
545 
546 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
547 		size_t len, struct folio *folio)
548 {
549 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
550 	struct iomap_page *iop;
551 	loff_t block_size = i_blocksize(iter->inode);
552 	loff_t block_start = round_down(pos, block_size);
553 	loff_t block_end = round_up(pos + len, block_size);
554 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
555 	size_t from = offset_in_folio(folio, pos), to = from + len;
556 	size_t poff, plen;
557 
558 	if (folio_test_uptodate(folio))
559 		return 0;
560 	folio_clear_error(folio);
561 
562 	iop = iomap_page_create(iter->inode, folio, iter->flags);
563 	if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1)
564 		return -EAGAIN;
565 
566 	do {
567 		iomap_adjust_read_range(iter->inode, folio, &block_start,
568 				block_end - block_start, &poff, &plen);
569 		if (plen == 0)
570 			break;
571 
572 		if (!(iter->flags & IOMAP_UNSHARE) &&
573 		    (from <= poff || from >= poff + plen) &&
574 		    (to <= poff || to >= poff + plen))
575 			continue;
576 
577 		if (iomap_block_needs_zeroing(iter, block_start)) {
578 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
579 				return -EIO;
580 			folio_zero_segments(folio, poff, from, to, poff + plen);
581 		} else {
582 			int status;
583 
584 			if (iter->flags & IOMAP_NOWAIT)
585 				return -EAGAIN;
586 
587 			status = iomap_read_folio_sync(block_start, folio,
588 					poff, plen, srcmap);
589 			if (status)
590 				return status;
591 		}
592 		iomap_set_range_uptodate(folio, iop, poff, plen);
593 	} while ((block_start += plen) < block_end);
594 
595 	return 0;
596 }
597 
598 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
599 		size_t len)
600 {
601 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
602 
603 	if (folio_ops && folio_ops->get_folio)
604 		return folio_ops->get_folio(iter, pos, len);
605 	else
606 		return iomap_get_folio(iter, pos);
607 }
608 
609 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
610 		struct folio *folio)
611 {
612 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
613 
614 	if (folio_ops && folio_ops->put_folio) {
615 		folio_ops->put_folio(iter->inode, pos, ret, folio);
616 	} else {
617 		folio_unlock(folio);
618 		folio_put(folio);
619 	}
620 }
621 
622 static int iomap_write_begin_inline(const struct iomap_iter *iter,
623 		struct folio *folio)
624 {
625 	/* needs more work for the tailpacking case; disable for now */
626 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
627 		return -EIO;
628 	return iomap_read_inline_data(iter, folio);
629 }
630 
631 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
632 		size_t len, struct folio **foliop)
633 {
634 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
635 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
636 	struct folio *folio;
637 	int status = 0;
638 
639 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
640 	if (srcmap != &iter->iomap)
641 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
642 
643 	if (fatal_signal_pending(current))
644 		return -EINTR;
645 
646 	if (!mapping_large_folio_support(iter->inode->i_mapping))
647 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
648 
649 	folio = __iomap_get_folio(iter, pos, len);
650 	if (IS_ERR(folio))
651 		return PTR_ERR(folio);
652 
653 	/*
654 	 * Now we have a locked folio, before we do anything with it we need to
655 	 * check that the iomap we have cached is not stale. The inode extent
656 	 * mapping can change due to concurrent IO in flight (e.g.
657 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
658 	 * reclaimed a previously partially written page at this index after IO
659 	 * completion before this write reaches this file offset) and hence we
660 	 * could do the wrong thing here (zero a page range incorrectly or fail
661 	 * to zero) and corrupt data.
662 	 */
663 	if (folio_ops && folio_ops->iomap_valid) {
664 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
665 							 &iter->iomap);
666 		if (!iomap_valid) {
667 			iter->iomap.flags |= IOMAP_F_STALE;
668 			status = 0;
669 			goto out_unlock;
670 		}
671 	}
672 
673 	if (pos + len > folio_pos(folio) + folio_size(folio))
674 		len = folio_pos(folio) + folio_size(folio) - pos;
675 
676 	if (srcmap->type == IOMAP_INLINE)
677 		status = iomap_write_begin_inline(iter, folio);
678 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
679 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
680 	else
681 		status = __iomap_write_begin(iter, pos, len, folio);
682 
683 	if (unlikely(status))
684 		goto out_unlock;
685 
686 	*foliop = folio;
687 	return 0;
688 
689 out_unlock:
690 	__iomap_put_folio(iter, pos, 0, folio);
691 	iomap_write_failed(iter->inode, pos, len);
692 
693 	return status;
694 }
695 
696 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
697 		size_t copied, struct folio *folio)
698 {
699 	struct iomap_page *iop = to_iomap_page(folio);
700 	flush_dcache_folio(folio);
701 
702 	/*
703 	 * The blocks that were entirely written will now be uptodate, so we
704 	 * don't have to worry about a read_folio reading them and overwriting a
705 	 * partial write.  However, if we've encountered a short write and only
706 	 * partially written into a block, it will not be marked uptodate, so a
707 	 * read_folio might come in and destroy our partial write.
708 	 *
709 	 * Do the simplest thing and just treat any short write to a
710 	 * non-uptodate page as a zero-length write, and force the caller to
711 	 * redo the whole thing.
712 	 */
713 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
714 		return 0;
715 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
716 	filemap_dirty_folio(inode->i_mapping, folio);
717 	return copied;
718 }
719 
720 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
721 		struct folio *folio, loff_t pos, size_t copied)
722 {
723 	const struct iomap *iomap = &iter->iomap;
724 	void *addr;
725 
726 	WARN_ON_ONCE(!folio_test_uptodate(folio));
727 	BUG_ON(!iomap_inline_data_valid(iomap));
728 
729 	flush_dcache_folio(folio);
730 	addr = kmap_local_folio(folio, pos);
731 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
732 	kunmap_local(addr);
733 
734 	mark_inode_dirty(iter->inode);
735 	return copied;
736 }
737 
738 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
739 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
740 		size_t copied, struct folio *folio)
741 {
742 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
743 	loff_t old_size = iter->inode->i_size;
744 	size_t ret;
745 
746 	if (srcmap->type == IOMAP_INLINE) {
747 		ret = iomap_write_end_inline(iter, folio, pos, copied);
748 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
749 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
750 				copied, &folio->page, NULL);
751 	} else {
752 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
753 	}
754 
755 	/*
756 	 * Update the in-memory inode size after copying the data into the page
757 	 * cache.  It's up to the file system to write the updated size to disk,
758 	 * preferably after I/O completion so that no stale data is exposed.
759 	 */
760 	if (pos + ret > old_size) {
761 		i_size_write(iter->inode, pos + ret);
762 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
763 	}
764 	__iomap_put_folio(iter, pos, ret, folio);
765 
766 	if (old_size < pos)
767 		pagecache_isize_extended(iter->inode, old_size, pos);
768 	if (ret < len)
769 		iomap_write_failed(iter->inode, pos + ret, len - ret);
770 	return ret;
771 }
772 
773 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
774 {
775 	loff_t length = iomap_length(iter);
776 	loff_t pos = iter->pos;
777 	ssize_t written = 0;
778 	long status = 0;
779 	struct address_space *mapping = iter->inode->i_mapping;
780 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
781 
782 	do {
783 		struct folio *folio;
784 		struct page *page;
785 		unsigned long offset;	/* Offset into pagecache page */
786 		unsigned long bytes;	/* Bytes to write to page */
787 		size_t copied;		/* Bytes copied from user */
788 
789 		offset = offset_in_page(pos);
790 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
791 						iov_iter_count(i));
792 again:
793 		status = balance_dirty_pages_ratelimited_flags(mapping,
794 							       bdp_flags);
795 		if (unlikely(status))
796 			break;
797 
798 		if (bytes > length)
799 			bytes = length;
800 
801 		/*
802 		 * Bring in the user page that we'll copy from _first_.
803 		 * Otherwise there's a nasty deadlock on copying from the
804 		 * same page as we're writing to, without it being marked
805 		 * up-to-date.
806 		 *
807 		 * For async buffered writes the assumption is that the user
808 		 * page has already been faulted in. This can be optimized by
809 		 * faulting the user page.
810 		 */
811 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
812 			status = -EFAULT;
813 			break;
814 		}
815 
816 		status = iomap_write_begin(iter, pos, bytes, &folio);
817 		if (unlikely(status))
818 			break;
819 		if (iter->iomap.flags & IOMAP_F_STALE)
820 			break;
821 
822 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
823 		if (mapping_writably_mapped(mapping))
824 			flush_dcache_page(page);
825 
826 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
827 
828 		status = iomap_write_end(iter, pos, bytes, copied, folio);
829 
830 		if (unlikely(copied != status))
831 			iov_iter_revert(i, copied - status);
832 
833 		cond_resched();
834 		if (unlikely(status == 0)) {
835 			/*
836 			 * A short copy made iomap_write_end() reject the
837 			 * thing entirely.  Might be memory poisoning
838 			 * halfway through, might be a race with munmap,
839 			 * might be severe memory pressure.
840 			 */
841 			if (copied)
842 				bytes = copied;
843 			goto again;
844 		}
845 		pos += status;
846 		written += status;
847 		length -= status;
848 	} while (iov_iter_count(i) && length);
849 
850 	if (status == -EAGAIN) {
851 		iov_iter_revert(i, written);
852 		return -EAGAIN;
853 	}
854 	return written ? written : status;
855 }
856 
857 ssize_t
858 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
859 		const struct iomap_ops *ops)
860 {
861 	struct iomap_iter iter = {
862 		.inode		= iocb->ki_filp->f_mapping->host,
863 		.pos		= iocb->ki_pos,
864 		.len		= iov_iter_count(i),
865 		.flags		= IOMAP_WRITE,
866 	};
867 	ssize_t ret;
868 
869 	if (iocb->ki_flags & IOCB_NOWAIT)
870 		iter.flags |= IOMAP_NOWAIT;
871 
872 	while ((ret = iomap_iter(&iter, ops)) > 0)
873 		iter.processed = iomap_write_iter(&iter, i);
874 
875 	if (unlikely(ret < 0))
876 		return ret;
877 	ret = iter.pos - iocb->ki_pos;
878 	iocb->ki_pos += ret;
879 	return ret;
880 }
881 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
882 
883 /*
884  * Scan the data range passed to us for dirty page cache folios. If we find a
885  * dirty folio, punch out the preceeding range and update the offset from which
886  * the next punch will start from.
887  *
888  * We can punch out storage reservations under clean pages because they either
889  * contain data that has been written back - in which case the delalloc punch
890  * over that range is a no-op - or they have been read faults in which case they
891  * contain zeroes and we can remove the delalloc backing range and any new
892  * writes to those pages will do the normal hole filling operation...
893  *
894  * This makes the logic simple: we only need to keep the delalloc extents only
895  * over the dirty ranges of the page cache.
896  *
897  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
898  * simplify range iterations.
899  */
900 static int iomap_write_delalloc_scan(struct inode *inode,
901 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
902 		int (*punch)(struct inode *inode, loff_t offset, loff_t length))
903 {
904 	while (start_byte < end_byte) {
905 		struct folio	*folio;
906 
907 		/* grab locked page */
908 		folio = filemap_lock_folio(inode->i_mapping,
909 				start_byte >> PAGE_SHIFT);
910 		if (IS_ERR(folio)) {
911 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
912 					PAGE_SIZE;
913 			continue;
914 		}
915 
916 		/* if dirty, punch up to offset */
917 		if (folio_test_dirty(folio)) {
918 			if (start_byte > *punch_start_byte) {
919 				int	error;
920 
921 				error = punch(inode, *punch_start_byte,
922 						start_byte - *punch_start_byte);
923 				if (error) {
924 					folio_unlock(folio);
925 					folio_put(folio);
926 					return error;
927 				}
928 			}
929 
930 			/*
931 			 * Make sure the next punch start is correctly bound to
932 			 * the end of this data range, not the end of the folio.
933 			 */
934 			*punch_start_byte = min_t(loff_t, end_byte,
935 					folio_next_index(folio) << PAGE_SHIFT);
936 		}
937 
938 		/* move offset to start of next folio in range */
939 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
940 		folio_unlock(folio);
941 		folio_put(folio);
942 	}
943 	return 0;
944 }
945 
946 /*
947  * Punch out all the delalloc blocks in the range given except for those that
948  * have dirty data still pending in the page cache - those are going to be
949  * written and so must still retain the delalloc backing for writeback.
950  *
951  * As we are scanning the page cache for data, we don't need to reimplement the
952  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
953  * start and end of data ranges correctly even for sub-folio block sizes. This
954  * byte range based iteration is especially convenient because it means we
955  * don't have to care about variable size folios, nor where the start or end of
956  * the data range lies within a folio, if they lie within the same folio or even
957  * if there are multiple discontiguous data ranges within the folio.
958  *
959  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
960  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
961  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
962  * date. A write page fault can then mark it dirty. If we then fail a write()
963  * beyond EOF into that up to date cached range, we allocate a delalloc block
964  * beyond EOF and then have to punch it out. Because the range is up to date,
965  * mapping_seek_hole_data() will return it, and we will skip the punch because
966  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
967  * beyond EOF in this case as writeback will never write back and covert that
968  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
969  * resulting in always punching out the range from the EOF to the end of the
970  * range the iomap spans.
971  *
972  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
973  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
974  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
975  * returns the end of the data range (data_end). Using closed intervals would
976  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
977  * the code to subtle off-by-one bugs....
978  */
979 static int iomap_write_delalloc_release(struct inode *inode,
980 		loff_t start_byte, loff_t end_byte,
981 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
982 {
983 	loff_t punch_start_byte = start_byte;
984 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
985 	int error = 0;
986 
987 	/*
988 	 * Lock the mapping to avoid races with page faults re-instantiating
989 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
990 	 * cache and perform delalloc extent removal. Failing to do this can
991 	 * leave dirty pages with no space reservation in the cache.
992 	 */
993 	filemap_invalidate_lock(inode->i_mapping);
994 	while (start_byte < scan_end_byte) {
995 		loff_t		data_end;
996 
997 		start_byte = mapping_seek_hole_data(inode->i_mapping,
998 				start_byte, scan_end_byte, SEEK_DATA);
999 		/*
1000 		 * If there is no more data to scan, all that is left is to
1001 		 * punch out the remaining range.
1002 		 */
1003 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1004 			break;
1005 		if (start_byte < 0) {
1006 			error = start_byte;
1007 			goto out_unlock;
1008 		}
1009 		WARN_ON_ONCE(start_byte < punch_start_byte);
1010 		WARN_ON_ONCE(start_byte > scan_end_byte);
1011 
1012 		/*
1013 		 * We find the end of this contiguous cached data range by
1014 		 * seeking from start_byte to the beginning of the next hole.
1015 		 */
1016 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1017 				scan_end_byte, SEEK_HOLE);
1018 		if (data_end < 0) {
1019 			error = data_end;
1020 			goto out_unlock;
1021 		}
1022 		WARN_ON_ONCE(data_end <= start_byte);
1023 		WARN_ON_ONCE(data_end > scan_end_byte);
1024 
1025 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1026 				start_byte, data_end, punch);
1027 		if (error)
1028 			goto out_unlock;
1029 
1030 		/* The next data search starts at the end of this one. */
1031 		start_byte = data_end;
1032 	}
1033 
1034 	if (punch_start_byte < end_byte)
1035 		error = punch(inode, punch_start_byte,
1036 				end_byte - punch_start_byte);
1037 out_unlock:
1038 	filemap_invalidate_unlock(inode->i_mapping);
1039 	return error;
1040 }
1041 
1042 /*
1043  * When a short write occurs, the filesystem may need to remove reserved space
1044  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1045  * filesystems that use delayed allocation, we need to punch out delalloc
1046  * extents from the range that are not dirty in the page cache. As the write can
1047  * race with page faults, there can be dirty pages over the delalloc extent
1048  * outside the range of a short write but still within the delalloc extent
1049  * allocated for this iomap.
1050  *
1051  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1052  * simplify range iterations.
1053  *
1054  * The punch() callback *must* only punch delalloc extents in the range passed
1055  * to it. It must skip over all other types of extents in the range and leave
1056  * them completely unchanged. It must do this punch atomically with respect to
1057  * other extent modifications.
1058  *
1059  * The punch() callback may be called with a folio locked to prevent writeback
1060  * extent allocation racing at the edge of the range we are currently punching.
1061  * The locked folio may or may not cover the range being punched, so it is not
1062  * safe for the punch() callback to lock folios itself.
1063  *
1064  * Lock order is:
1065  *
1066  * inode->i_rwsem (shared or exclusive)
1067  *   inode->i_mapping->invalidate_lock (exclusive)
1068  *     folio_lock()
1069  *       ->punch
1070  *         internal filesystem allocation lock
1071  */
1072 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1073 		struct iomap *iomap, loff_t pos, loff_t length,
1074 		ssize_t written,
1075 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
1076 {
1077 	loff_t			start_byte;
1078 	loff_t			end_byte;
1079 	unsigned int		blocksize = i_blocksize(inode);
1080 
1081 	if (iomap->type != IOMAP_DELALLOC)
1082 		return 0;
1083 
1084 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1085 	if (!(iomap->flags & IOMAP_F_NEW))
1086 		return 0;
1087 
1088 	/*
1089 	 * start_byte refers to the first unused block after a short write. If
1090 	 * nothing was written, round offset down to point at the first block in
1091 	 * the range.
1092 	 */
1093 	if (unlikely(!written))
1094 		start_byte = round_down(pos, blocksize);
1095 	else
1096 		start_byte = round_up(pos + written, blocksize);
1097 	end_byte = round_up(pos + length, blocksize);
1098 
1099 	/* Nothing to do if we've written the entire delalloc extent */
1100 	if (start_byte >= end_byte)
1101 		return 0;
1102 
1103 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1104 					punch);
1105 }
1106 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1107 
1108 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1109 {
1110 	struct iomap *iomap = &iter->iomap;
1111 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1112 	loff_t pos = iter->pos;
1113 	loff_t length = iomap_length(iter);
1114 	long status = 0;
1115 	loff_t written = 0;
1116 
1117 	/* don't bother with blocks that are not shared to start with */
1118 	if (!(iomap->flags & IOMAP_F_SHARED))
1119 		return length;
1120 	/* don't bother with holes or unwritten extents */
1121 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1122 		return length;
1123 
1124 	do {
1125 		unsigned long offset = offset_in_page(pos);
1126 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
1127 		struct folio *folio;
1128 
1129 		status = iomap_write_begin(iter, pos, bytes, &folio);
1130 		if (unlikely(status))
1131 			return status;
1132 		if (iter->iomap.flags & IOMAP_F_STALE)
1133 			break;
1134 
1135 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
1136 		if (WARN_ON_ONCE(status == 0))
1137 			return -EIO;
1138 
1139 		cond_resched();
1140 
1141 		pos += status;
1142 		written += status;
1143 		length -= status;
1144 
1145 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1146 	} while (length);
1147 
1148 	return written;
1149 }
1150 
1151 int
1152 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1153 		const struct iomap_ops *ops)
1154 {
1155 	struct iomap_iter iter = {
1156 		.inode		= inode,
1157 		.pos		= pos,
1158 		.len		= len,
1159 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1160 	};
1161 	int ret;
1162 
1163 	while ((ret = iomap_iter(&iter, ops)) > 0)
1164 		iter.processed = iomap_unshare_iter(&iter);
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1168 
1169 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1170 {
1171 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1172 	loff_t pos = iter->pos;
1173 	loff_t length = iomap_length(iter);
1174 	loff_t written = 0;
1175 
1176 	/* already zeroed?  we're done. */
1177 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1178 		return length;
1179 
1180 	do {
1181 		struct folio *folio;
1182 		int status;
1183 		size_t offset;
1184 		size_t bytes = min_t(u64, SIZE_MAX, length);
1185 
1186 		status = iomap_write_begin(iter, pos, bytes, &folio);
1187 		if (status)
1188 			return status;
1189 		if (iter->iomap.flags & IOMAP_F_STALE)
1190 			break;
1191 
1192 		offset = offset_in_folio(folio, pos);
1193 		if (bytes > folio_size(folio) - offset)
1194 			bytes = folio_size(folio) - offset;
1195 
1196 		folio_zero_range(folio, offset, bytes);
1197 		folio_mark_accessed(folio);
1198 
1199 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1200 		if (WARN_ON_ONCE(bytes == 0))
1201 			return -EIO;
1202 
1203 		pos += bytes;
1204 		length -= bytes;
1205 		written += bytes;
1206 	} while (length > 0);
1207 
1208 	if (did_zero)
1209 		*did_zero = true;
1210 	return written;
1211 }
1212 
1213 int
1214 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1215 		const struct iomap_ops *ops)
1216 {
1217 	struct iomap_iter iter = {
1218 		.inode		= inode,
1219 		.pos		= pos,
1220 		.len		= len,
1221 		.flags		= IOMAP_ZERO,
1222 	};
1223 	int ret;
1224 
1225 	while ((ret = iomap_iter(&iter, ops)) > 0)
1226 		iter.processed = iomap_zero_iter(&iter, did_zero);
1227 	return ret;
1228 }
1229 EXPORT_SYMBOL_GPL(iomap_zero_range);
1230 
1231 int
1232 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1233 		const struct iomap_ops *ops)
1234 {
1235 	unsigned int blocksize = i_blocksize(inode);
1236 	unsigned int off = pos & (blocksize - 1);
1237 
1238 	/* Block boundary? Nothing to do */
1239 	if (!off)
1240 		return 0;
1241 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1242 }
1243 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1244 
1245 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1246 		struct folio *folio)
1247 {
1248 	loff_t length = iomap_length(iter);
1249 	int ret;
1250 
1251 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1252 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1253 					      &iter->iomap);
1254 		if (ret)
1255 			return ret;
1256 		block_commit_write(&folio->page, 0, length);
1257 	} else {
1258 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1259 		folio_mark_dirty(folio);
1260 	}
1261 
1262 	return length;
1263 }
1264 
1265 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1266 {
1267 	struct iomap_iter iter = {
1268 		.inode		= file_inode(vmf->vma->vm_file),
1269 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1270 	};
1271 	struct folio *folio = page_folio(vmf->page);
1272 	ssize_t ret;
1273 
1274 	folio_lock(folio);
1275 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1276 	if (ret < 0)
1277 		goto out_unlock;
1278 	iter.pos = folio_pos(folio);
1279 	iter.len = ret;
1280 	while ((ret = iomap_iter(&iter, ops)) > 0)
1281 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1282 
1283 	if (ret < 0)
1284 		goto out_unlock;
1285 	folio_wait_stable(folio);
1286 	return VM_FAULT_LOCKED;
1287 out_unlock:
1288 	folio_unlock(folio);
1289 	return block_page_mkwrite_return(ret);
1290 }
1291 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1292 
1293 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1294 		size_t len, int error)
1295 {
1296 	struct iomap_page *iop = to_iomap_page(folio);
1297 
1298 	if (error) {
1299 		folio_set_error(folio);
1300 		mapping_set_error(inode->i_mapping, error);
1301 	}
1302 
1303 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1304 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1305 
1306 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1307 		folio_end_writeback(folio);
1308 }
1309 
1310 /*
1311  * We're now finished for good with this ioend structure.  Update the page
1312  * state, release holds on bios, and finally free up memory.  Do not use the
1313  * ioend after this.
1314  */
1315 static u32
1316 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1317 {
1318 	struct inode *inode = ioend->io_inode;
1319 	struct bio *bio = &ioend->io_inline_bio;
1320 	struct bio *last = ioend->io_bio, *next;
1321 	u64 start = bio->bi_iter.bi_sector;
1322 	loff_t offset = ioend->io_offset;
1323 	bool quiet = bio_flagged(bio, BIO_QUIET);
1324 	u32 folio_count = 0;
1325 
1326 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1327 		struct folio_iter fi;
1328 
1329 		/*
1330 		 * For the last bio, bi_private points to the ioend, so we
1331 		 * need to explicitly end the iteration here.
1332 		 */
1333 		if (bio == last)
1334 			next = NULL;
1335 		else
1336 			next = bio->bi_private;
1337 
1338 		/* walk all folios in bio, ending page IO on them */
1339 		bio_for_each_folio_all(fi, bio) {
1340 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1341 					error);
1342 			folio_count++;
1343 		}
1344 		bio_put(bio);
1345 	}
1346 	/* The ioend has been freed by bio_put() */
1347 
1348 	if (unlikely(error && !quiet)) {
1349 		printk_ratelimited(KERN_ERR
1350 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1351 			inode->i_sb->s_id, inode->i_ino, offset, start);
1352 	}
1353 	return folio_count;
1354 }
1355 
1356 /*
1357  * Ioend completion routine for merged bios. This can only be called from task
1358  * contexts as merged ioends can be of unbound length. Hence we have to break up
1359  * the writeback completions into manageable chunks to avoid long scheduler
1360  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1361  * good batch processing throughput without creating adverse scheduler latency
1362  * conditions.
1363  */
1364 void
1365 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1366 {
1367 	struct list_head tmp;
1368 	u32 completions;
1369 
1370 	might_sleep();
1371 
1372 	list_replace_init(&ioend->io_list, &tmp);
1373 	completions = iomap_finish_ioend(ioend, error);
1374 
1375 	while (!list_empty(&tmp)) {
1376 		if (completions > IOEND_BATCH_SIZE * 8) {
1377 			cond_resched();
1378 			completions = 0;
1379 		}
1380 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1381 		list_del_init(&ioend->io_list);
1382 		completions += iomap_finish_ioend(ioend, error);
1383 	}
1384 }
1385 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1386 
1387 /*
1388  * We can merge two adjacent ioends if they have the same set of work to do.
1389  */
1390 static bool
1391 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1392 {
1393 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1394 		return false;
1395 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1396 	    (next->io_flags & IOMAP_F_SHARED))
1397 		return false;
1398 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1399 	    (next->io_type == IOMAP_UNWRITTEN))
1400 		return false;
1401 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1402 		return false;
1403 	/*
1404 	 * Do not merge physically discontiguous ioends. The filesystem
1405 	 * completion functions will have to iterate the physical
1406 	 * discontiguities even if we merge the ioends at a logical level, so
1407 	 * we don't gain anything by merging physical discontiguities here.
1408 	 *
1409 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1410 	 * submission so does not point to the start sector of the bio at
1411 	 * completion.
1412 	 */
1413 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1414 		return false;
1415 	return true;
1416 }
1417 
1418 void
1419 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1420 {
1421 	struct iomap_ioend *next;
1422 
1423 	INIT_LIST_HEAD(&ioend->io_list);
1424 
1425 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1426 			io_list))) {
1427 		if (!iomap_ioend_can_merge(ioend, next))
1428 			break;
1429 		list_move_tail(&next->io_list, &ioend->io_list);
1430 		ioend->io_size += next->io_size;
1431 	}
1432 }
1433 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1434 
1435 static int
1436 iomap_ioend_compare(void *priv, const struct list_head *a,
1437 		const struct list_head *b)
1438 {
1439 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1440 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1441 
1442 	if (ia->io_offset < ib->io_offset)
1443 		return -1;
1444 	if (ia->io_offset > ib->io_offset)
1445 		return 1;
1446 	return 0;
1447 }
1448 
1449 void
1450 iomap_sort_ioends(struct list_head *ioend_list)
1451 {
1452 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1453 }
1454 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1455 
1456 static void iomap_writepage_end_bio(struct bio *bio)
1457 {
1458 	struct iomap_ioend *ioend = bio->bi_private;
1459 
1460 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1461 }
1462 
1463 /*
1464  * Submit the final bio for an ioend.
1465  *
1466  * If @error is non-zero, it means that we have a situation where some part of
1467  * the submission process has failed after we've marked pages for writeback
1468  * and unlocked them.  In this situation, we need to fail the bio instead of
1469  * submitting it.  This typically only happens on a filesystem shutdown.
1470  */
1471 static int
1472 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1473 		int error)
1474 {
1475 	ioend->io_bio->bi_private = ioend;
1476 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1477 
1478 	if (wpc->ops->prepare_ioend)
1479 		error = wpc->ops->prepare_ioend(ioend, error);
1480 	if (error) {
1481 		/*
1482 		 * If we're failing the IO now, just mark the ioend with an
1483 		 * error and finish it.  This will run IO completion immediately
1484 		 * as there is only one reference to the ioend at this point in
1485 		 * time.
1486 		 */
1487 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1488 		bio_endio(ioend->io_bio);
1489 		return error;
1490 	}
1491 
1492 	submit_bio(ioend->io_bio);
1493 	return 0;
1494 }
1495 
1496 static struct iomap_ioend *
1497 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1498 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1499 {
1500 	struct iomap_ioend *ioend;
1501 	struct bio *bio;
1502 
1503 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1504 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1505 			       GFP_NOFS, &iomap_ioend_bioset);
1506 	bio->bi_iter.bi_sector = sector;
1507 	wbc_init_bio(wbc, bio);
1508 
1509 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1510 	INIT_LIST_HEAD(&ioend->io_list);
1511 	ioend->io_type = wpc->iomap.type;
1512 	ioend->io_flags = wpc->iomap.flags;
1513 	ioend->io_inode = inode;
1514 	ioend->io_size = 0;
1515 	ioend->io_folios = 0;
1516 	ioend->io_offset = offset;
1517 	ioend->io_bio = bio;
1518 	ioend->io_sector = sector;
1519 	return ioend;
1520 }
1521 
1522 /*
1523  * Allocate a new bio, and chain the old bio to the new one.
1524  *
1525  * Note that we have to perform the chaining in this unintuitive order
1526  * so that the bi_private linkage is set up in the right direction for the
1527  * traversal in iomap_finish_ioend().
1528  */
1529 static struct bio *
1530 iomap_chain_bio(struct bio *prev)
1531 {
1532 	struct bio *new;
1533 
1534 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1535 	bio_clone_blkg_association(new, prev);
1536 	new->bi_iter.bi_sector = bio_end_sector(prev);
1537 
1538 	bio_chain(prev, new);
1539 	bio_get(prev);		/* for iomap_finish_ioend */
1540 	submit_bio(prev);
1541 	return new;
1542 }
1543 
1544 static bool
1545 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1546 		sector_t sector)
1547 {
1548 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1549 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1550 		return false;
1551 	if (wpc->iomap.type != wpc->ioend->io_type)
1552 		return false;
1553 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1554 		return false;
1555 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1556 		return false;
1557 	/*
1558 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1559 	 * also prevents long tight loops ending page writeback on all the
1560 	 * folios in the ioend.
1561 	 */
1562 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1563 		return false;
1564 	return true;
1565 }
1566 
1567 /*
1568  * Test to see if we have an existing ioend structure that we could append to
1569  * first; otherwise finish off the current ioend and start another.
1570  */
1571 static void
1572 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1573 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1574 		struct writeback_control *wbc, struct list_head *iolist)
1575 {
1576 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1577 	unsigned len = i_blocksize(inode);
1578 	size_t poff = offset_in_folio(folio, pos);
1579 
1580 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1581 		if (wpc->ioend)
1582 			list_add(&wpc->ioend->io_list, iolist);
1583 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1584 	}
1585 
1586 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1587 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1588 		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1589 	}
1590 
1591 	if (iop)
1592 		atomic_add(len, &iop->write_bytes_pending);
1593 	wpc->ioend->io_size += len;
1594 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1595 }
1596 
1597 /*
1598  * We implement an immediate ioend submission policy here to avoid needing to
1599  * chain multiple ioends and hence nest mempool allocations which can violate
1600  * the forward progress guarantees we need to provide. The current ioend we're
1601  * adding blocks to is cached in the writepage context, and if the new block
1602  * doesn't append to the cached ioend, it will create a new ioend and cache that
1603  * instead.
1604  *
1605  * If a new ioend is created and cached, the old ioend is returned and queued
1606  * locally for submission once the entire page is processed or an error has been
1607  * detected.  While ioends are submitted immediately after they are completed,
1608  * batching optimisations are provided by higher level block plugging.
1609  *
1610  * At the end of a writeback pass, there will be a cached ioend remaining on the
1611  * writepage context that the caller will need to submit.
1612  */
1613 static int
1614 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1615 		struct writeback_control *wbc, struct inode *inode,
1616 		struct folio *folio, u64 end_pos)
1617 {
1618 	struct iomap_page *iop = iomap_page_create(inode, folio, 0);
1619 	struct iomap_ioend *ioend, *next;
1620 	unsigned len = i_blocksize(inode);
1621 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1622 	u64 pos = folio_pos(folio);
1623 	int error = 0, count = 0, i;
1624 	LIST_HEAD(submit_list);
1625 
1626 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1627 
1628 	/*
1629 	 * Walk through the folio to find areas to write back. If we
1630 	 * run off the end of the current map or find the current map
1631 	 * invalid, grab a new one.
1632 	 */
1633 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1634 		if (iop && !test_bit(i, iop->uptodate))
1635 			continue;
1636 
1637 		error = wpc->ops->map_blocks(wpc, inode, pos);
1638 		if (error)
1639 			break;
1640 		trace_iomap_writepage_map(inode, &wpc->iomap);
1641 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1642 			continue;
1643 		if (wpc->iomap.type == IOMAP_HOLE)
1644 			continue;
1645 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1646 				 &submit_list);
1647 		count++;
1648 	}
1649 	if (count)
1650 		wpc->ioend->io_folios++;
1651 
1652 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1653 	WARN_ON_ONCE(!folio_test_locked(folio));
1654 	WARN_ON_ONCE(folio_test_writeback(folio));
1655 	WARN_ON_ONCE(folio_test_dirty(folio));
1656 
1657 	/*
1658 	 * We cannot cancel the ioend directly here on error.  We may have
1659 	 * already set other pages under writeback and hence we have to run I/O
1660 	 * completion to mark the error state of the pages under writeback
1661 	 * appropriately.
1662 	 */
1663 	if (unlikely(error)) {
1664 		/*
1665 		 * Let the filesystem know what portion of the current page
1666 		 * failed to map. If the page hasn't been added to ioend, it
1667 		 * won't be affected by I/O completion and we must unlock it
1668 		 * now.
1669 		 */
1670 		if (wpc->ops->discard_folio)
1671 			wpc->ops->discard_folio(folio, pos);
1672 		if (!count) {
1673 			folio_unlock(folio);
1674 			goto done;
1675 		}
1676 	}
1677 
1678 	folio_start_writeback(folio);
1679 	folio_unlock(folio);
1680 
1681 	/*
1682 	 * Preserve the original error if there was one; catch
1683 	 * submission errors here and propagate into subsequent ioend
1684 	 * submissions.
1685 	 */
1686 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1687 		int error2;
1688 
1689 		list_del_init(&ioend->io_list);
1690 		error2 = iomap_submit_ioend(wpc, ioend, error);
1691 		if (error2 && !error)
1692 			error = error2;
1693 	}
1694 
1695 	/*
1696 	 * We can end up here with no error and nothing to write only if we race
1697 	 * with a partial page truncate on a sub-page block sized filesystem.
1698 	 */
1699 	if (!count)
1700 		folio_end_writeback(folio);
1701 done:
1702 	mapping_set_error(inode->i_mapping, error);
1703 	return error;
1704 }
1705 
1706 /*
1707  * Write out a dirty page.
1708  *
1709  * For delalloc space on the page, we need to allocate space and flush it.
1710  * For unwritten space on the page, we need to start the conversion to
1711  * regular allocated space.
1712  */
1713 static int iomap_do_writepage(struct folio *folio,
1714 		struct writeback_control *wbc, void *data)
1715 {
1716 	struct iomap_writepage_ctx *wpc = data;
1717 	struct inode *inode = folio->mapping->host;
1718 	u64 end_pos, isize;
1719 
1720 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1721 
1722 	/*
1723 	 * Refuse to write the folio out if we're called from reclaim context.
1724 	 *
1725 	 * This avoids stack overflows when called from deeply used stacks in
1726 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1727 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1728 	 *
1729 	 * This should never happen except in the case of a VM regression so
1730 	 * warn about it.
1731 	 */
1732 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1733 			PF_MEMALLOC))
1734 		goto redirty;
1735 
1736 	/*
1737 	 * Is this folio beyond the end of the file?
1738 	 *
1739 	 * The folio index is less than the end_index, adjust the end_pos
1740 	 * to the highest offset that this folio should represent.
1741 	 * -----------------------------------------------------
1742 	 * |			file mapping	       | <EOF> |
1743 	 * -----------------------------------------------------
1744 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1745 	 * ^--------------------------------^----------|--------
1746 	 * |     desired writeback range    |      see else    |
1747 	 * ---------------------------------^------------------|
1748 	 */
1749 	isize = i_size_read(inode);
1750 	end_pos = folio_pos(folio) + folio_size(folio);
1751 	if (end_pos > isize) {
1752 		/*
1753 		 * Check whether the page to write out is beyond or straddles
1754 		 * i_size or not.
1755 		 * -------------------------------------------------------
1756 		 * |		file mapping		        | <EOF>  |
1757 		 * -------------------------------------------------------
1758 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1759 		 * ^--------------------------------^-----------|---------
1760 		 * |				    |      Straddles     |
1761 		 * ---------------------------------^-----------|--------|
1762 		 */
1763 		size_t poff = offset_in_folio(folio, isize);
1764 		pgoff_t end_index = isize >> PAGE_SHIFT;
1765 
1766 		/*
1767 		 * Skip the page if it's fully outside i_size, e.g.
1768 		 * due to a truncate operation that's in progress.  We've
1769 		 * cleaned this page and truncate will finish things off for
1770 		 * us.
1771 		 *
1772 		 * Note that the end_index is unsigned long.  If the given
1773 		 * offset is greater than 16TB on a 32-bit system then if we
1774 		 * checked if the page is fully outside i_size with
1775 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1776 		 * overflow and evaluate to 0.  Hence this page would be
1777 		 * redirtied and written out repeatedly, which would result in
1778 		 * an infinite loop; the user program performing this operation
1779 		 * would hang.  Instead, we can detect this situation by
1780 		 * checking if the page is totally beyond i_size or if its
1781 		 * offset is just equal to the EOF.
1782 		 */
1783 		if (folio->index > end_index ||
1784 		    (folio->index == end_index && poff == 0))
1785 			goto unlock;
1786 
1787 		/*
1788 		 * The page straddles i_size.  It must be zeroed out on each
1789 		 * and every writepage invocation because it may be mmapped.
1790 		 * "A file is mapped in multiples of the page size.  For a file
1791 		 * that is not a multiple of the page size, the remaining
1792 		 * memory is zeroed when mapped, and writes to that region are
1793 		 * not written out to the file."
1794 		 */
1795 		folio_zero_segment(folio, poff, folio_size(folio));
1796 		end_pos = isize;
1797 	}
1798 
1799 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1800 
1801 redirty:
1802 	folio_redirty_for_writepage(wbc, folio);
1803 unlock:
1804 	folio_unlock(folio);
1805 	return 0;
1806 }
1807 
1808 int
1809 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1810 		struct iomap_writepage_ctx *wpc,
1811 		const struct iomap_writeback_ops *ops)
1812 {
1813 	int			ret;
1814 
1815 	wpc->ops = ops;
1816 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1817 	if (!wpc->ioend)
1818 		return ret;
1819 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1820 }
1821 EXPORT_SYMBOL_GPL(iomap_writepages);
1822 
1823 static int __init iomap_init(void)
1824 {
1825 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1826 			   offsetof(struct iomap_ioend, io_inline_bio),
1827 			   BIOSET_NEED_BVECS);
1828 }
1829 fs_initcall(iomap_init);
1830