xref: /linux/fs/iomap/buffered-io.c (revision 497e6b37b0099dc415578488287fd84fb74433eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 /*
27  * Structure allocated for each folio when block size < folio size
28  * to track sub-folio uptodate status and I/O completions.
29  */
30 struct iomap_page {
31 	atomic_t		read_bytes_pending;
32 	atomic_t		write_bytes_pending;
33 	spinlock_t		uptodate_lock;
34 	unsigned long		uptodate[];
35 };
36 
37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 	if (folio_test_private(folio))
40 		return folio_get_private(folio);
41 	return NULL;
42 }
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static struct iomap_page *
47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags)
48 {
49 	struct iomap_page *iop = to_iomap_page(folio);
50 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 	gfp_t gfp;
52 
53 	if (iop || nr_blocks <= 1)
54 		return iop;
55 
56 	if (flags & IOMAP_NOWAIT)
57 		gfp = GFP_NOWAIT;
58 	else
59 		gfp = GFP_NOFS | __GFP_NOFAIL;
60 
61 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
62 		      gfp);
63 	if (iop) {
64 		spin_lock_init(&iop->uptodate_lock);
65 		if (folio_test_uptodate(folio))
66 			bitmap_fill(iop->uptodate, nr_blocks);
67 		folio_attach_private(folio, iop);
68 	}
69 	return iop;
70 }
71 
72 static void iomap_page_release(struct folio *folio)
73 {
74 	struct iomap_page *iop = folio_detach_private(folio);
75 	struct inode *inode = folio->mapping->host;
76 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
77 
78 	if (!iop)
79 		return;
80 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
81 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
82 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
83 			folio_test_uptodate(folio));
84 	kfree(iop);
85 }
86 
87 /*
88  * Calculate the range inside the folio that we actually need to read.
89  */
90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
91 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
92 {
93 	struct iomap_page *iop = to_iomap_page(folio);
94 	loff_t orig_pos = *pos;
95 	loff_t isize = i_size_read(inode);
96 	unsigned block_bits = inode->i_blkbits;
97 	unsigned block_size = (1 << block_bits);
98 	size_t poff = offset_in_folio(folio, *pos);
99 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
100 	unsigned first = poff >> block_bits;
101 	unsigned last = (poff + plen - 1) >> block_bits;
102 
103 	/*
104 	 * If the block size is smaller than the page size, we need to check the
105 	 * per-block uptodate status and adjust the offset and length if needed
106 	 * to avoid reading in already uptodate ranges.
107 	 */
108 	if (iop) {
109 		unsigned int i;
110 
111 		/* move forward for each leading block marked uptodate */
112 		for (i = first; i <= last; i++) {
113 			if (!test_bit(i, iop->uptodate))
114 				break;
115 			*pos += block_size;
116 			poff += block_size;
117 			plen -= block_size;
118 			first++;
119 		}
120 
121 		/* truncate len if we find any trailing uptodate block(s) */
122 		for ( ; i <= last; i++) {
123 			if (test_bit(i, iop->uptodate)) {
124 				plen -= (last - i + 1) * block_size;
125 				last = i - 1;
126 				break;
127 			}
128 		}
129 	}
130 
131 	/*
132 	 * If the extent spans the block that contains the i_size, we need to
133 	 * handle both halves separately so that we properly zero data in the
134 	 * page cache for blocks that are entirely outside of i_size.
135 	 */
136 	if (orig_pos <= isize && orig_pos + length > isize) {
137 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
138 
139 		if (first <= end && last > end)
140 			plen -= (last - end) * block_size;
141 	}
142 
143 	*offp = poff;
144 	*lenp = plen;
145 }
146 
147 static void iomap_iop_set_range_uptodate(struct folio *folio,
148 		struct iomap_page *iop, size_t off, size_t len)
149 {
150 	struct inode *inode = folio->mapping->host;
151 	unsigned first = off >> inode->i_blkbits;
152 	unsigned last = (off + len - 1) >> inode->i_blkbits;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&iop->uptodate_lock, flags);
156 	bitmap_set(iop->uptodate, first, last - first + 1);
157 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
158 		folio_mark_uptodate(folio);
159 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
160 }
161 
162 static void iomap_set_range_uptodate(struct folio *folio,
163 		struct iomap_page *iop, size_t off, size_t len)
164 {
165 	if (iop)
166 		iomap_iop_set_range_uptodate(folio, iop, off, len);
167 	else
168 		folio_mark_uptodate(folio);
169 }
170 
171 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
172 		size_t len, int error)
173 {
174 	struct iomap_page *iop = to_iomap_page(folio);
175 
176 	if (unlikely(error)) {
177 		folio_clear_uptodate(folio);
178 		folio_set_error(folio);
179 	} else {
180 		iomap_set_range_uptodate(folio, iop, offset, len);
181 	}
182 
183 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
184 		folio_unlock(folio);
185 }
186 
187 static void iomap_read_end_io(struct bio *bio)
188 {
189 	int error = blk_status_to_errno(bio->bi_status);
190 	struct folio_iter fi;
191 
192 	bio_for_each_folio_all(fi, bio)
193 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
194 	bio_put(bio);
195 }
196 
197 struct iomap_readpage_ctx {
198 	struct folio		*cur_folio;
199 	bool			cur_folio_in_bio;
200 	struct bio		*bio;
201 	struct readahead_control *rac;
202 };
203 
204 /**
205  * iomap_read_inline_data - copy inline data into the page cache
206  * @iter: iteration structure
207  * @folio: folio to copy to
208  *
209  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
210  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
211  * Returns zero for success to complete the read, or the usual negative errno.
212  */
213 static int iomap_read_inline_data(const struct iomap_iter *iter,
214 		struct folio *folio)
215 {
216 	struct iomap_page *iop;
217 	const struct iomap *iomap = iomap_iter_srcmap(iter);
218 	size_t size = i_size_read(iter->inode) - iomap->offset;
219 	size_t poff = offset_in_page(iomap->offset);
220 	size_t offset = offset_in_folio(folio, iomap->offset);
221 	void *addr;
222 
223 	if (folio_test_uptodate(folio))
224 		return 0;
225 
226 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
227 		return -EIO;
228 	if (WARN_ON_ONCE(size > PAGE_SIZE -
229 			 offset_in_page(iomap->inline_data)))
230 		return -EIO;
231 	if (WARN_ON_ONCE(size > iomap->length))
232 		return -EIO;
233 	if (offset > 0)
234 		iop = iomap_page_create(iter->inode, folio, iter->flags);
235 	else
236 		iop = to_iomap_page(folio);
237 
238 	addr = kmap_local_folio(folio, offset);
239 	memcpy(addr, iomap->inline_data, size);
240 	memset(addr + size, 0, PAGE_SIZE - poff - size);
241 	kunmap_local(addr);
242 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
243 	return 0;
244 }
245 
246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
247 		loff_t pos)
248 {
249 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
250 
251 	return srcmap->type != IOMAP_MAPPED ||
252 		(srcmap->flags & IOMAP_F_NEW) ||
253 		pos >= i_size_read(iter->inode);
254 }
255 
256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
257 		struct iomap_readpage_ctx *ctx, loff_t offset)
258 {
259 	const struct iomap *iomap = &iter->iomap;
260 	loff_t pos = iter->pos + offset;
261 	loff_t length = iomap_length(iter) - offset;
262 	struct folio *folio = ctx->cur_folio;
263 	struct iomap_page *iop;
264 	loff_t orig_pos = pos;
265 	size_t poff, plen;
266 	sector_t sector;
267 
268 	if (iomap->type == IOMAP_INLINE)
269 		return iomap_read_inline_data(iter, folio);
270 
271 	/* zero post-eof blocks as the page may be mapped */
272 	iop = iomap_page_create(iter->inode, folio, iter->flags);
273 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
274 	if (plen == 0)
275 		goto done;
276 
277 	if (iomap_block_needs_zeroing(iter, pos)) {
278 		folio_zero_range(folio, poff, plen);
279 		iomap_set_range_uptodate(folio, iop, poff, plen);
280 		goto done;
281 	}
282 
283 	ctx->cur_folio_in_bio = true;
284 	if (iop)
285 		atomic_add(plen, &iop->read_bytes_pending);
286 
287 	sector = iomap_sector(iomap, pos);
288 	if (!ctx->bio ||
289 	    bio_end_sector(ctx->bio) != sector ||
290 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
291 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
292 		gfp_t orig_gfp = gfp;
293 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
294 
295 		if (ctx->bio)
296 			submit_bio(ctx->bio);
297 
298 		if (ctx->rac) /* same as readahead_gfp_mask */
299 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
300 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
301 				     REQ_OP_READ, gfp);
302 		/*
303 		 * If the bio_alloc fails, try it again for a single page to
304 		 * avoid having to deal with partial page reads.  This emulates
305 		 * what do_mpage_read_folio does.
306 		 */
307 		if (!ctx->bio) {
308 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
309 					     orig_gfp);
310 		}
311 		if (ctx->rac)
312 			ctx->bio->bi_opf |= REQ_RAHEAD;
313 		ctx->bio->bi_iter.bi_sector = sector;
314 		ctx->bio->bi_end_io = iomap_read_end_io;
315 		bio_add_folio(ctx->bio, folio, plen, poff);
316 	}
317 
318 done:
319 	/*
320 	 * Move the caller beyond our range so that it keeps making progress.
321 	 * For that, we have to include any leading non-uptodate ranges, but
322 	 * we can skip trailing ones as they will be handled in the next
323 	 * iteration.
324 	 */
325 	return pos - orig_pos + plen;
326 }
327 
328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
329 {
330 	struct iomap_iter iter = {
331 		.inode		= folio->mapping->host,
332 		.pos		= folio_pos(folio),
333 		.len		= folio_size(folio),
334 	};
335 	struct iomap_readpage_ctx ctx = {
336 		.cur_folio	= folio,
337 	};
338 	int ret;
339 
340 	trace_iomap_readpage(iter.inode, 1);
341 
342 	while ((ret = iomap_iter(&iter, ops)) > 0)
343 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
344 
345 	if (ret < 0)
346 		folio_set_error(folio);
347 
348 	if (ctx.bio) {
349 		submit_bio(ctx.bio);
350 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
351 	} else {
352 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
353 		folio_unlock(folio);
354 	}
355 
356 	/*
357 	 * Just like mpage_readahead and block_read_full_folio, we always
358 	 * return 0 and just set the folio error flag on errors.  This
359 	 * should be cleaned up throughout the stack eventually.
360 	 */
361 	return 0;
362 }
363 EXPORT_SYMBOL_GPL(iomap_read_folio);
364 
365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
366 		struct iomap_readpage_ctx *ctx)
367 {
368 	loff_t length = iomap_length(iter);
369 	loff_t done, ret;
370 
371 	for (done = 0; done < length; done += ret) {
372 		if (ctx->cur_folio &&
373 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
374 			if (!ctx->cur_folio_in_bio)
375 				folio_unlock(ctx->cur_folio);
376 			ctx->cur_folio = NULL;
377 		}
378 		if (!ctx->cur_folio) {
379 			ctx->cur_folio = readahead_folio(ctx->rac);
380 			ctx->cur_folio_in_bio = false;
381 		}
382 		ret = iomap_readpage_iter(iter, ctx, done);
383 		if (ret <= 0)
384 			return ret;
385 	}
386 
387 	return done;
388 }
389 
390 /**
391  * iomap_readahead - Attempt to read pages from a file.
392  * @rac: Describes the pages to be read.
393  * @ops: The operations vector for the filesystem.
394  *
395  * This function is for filesystems to call to implement their readahead
396  * address_space operation.
397  *
398  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
399  * blocks from disc), and may wait for it.  The caller may be trying to
400  * access a different page, and so sleeping excessively should be avoided.
401  * It may allocate memory, but should avoid costly allocations.  This
402  * function is called with memalloc_nofs set, so allocations will not cause
403  * the filesystem to be reentered.
404  */
405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
406 {
407 	struct iomap_iter iter = {
408 		.inode	= rac->mapping->host,
409 		.pos	= readahead_pos(rac),
410 		.len	= readahead_length(rac),
411 	};
412 	struct iomap_readpage_ctx ctx = {
413 		.rac	= rac,
414 	};
415 
416 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
417 
418 	while (iomap_iter(&iter, ops) > 0)
419 		iter.processed = iomap_readahead_iter(&iter, &ctx);
420 
421 	if (ctx.bio)
422 		submit_bio(ctx.bio);
423 	if (ctx.cur_folio) {
424 		if (!ctx.cur_folio_in_bio)
425 			folio_unlock(ctx.cur_folio);
426 	}
427 }
428 EXPORT_SYMBOL_GPL(iomap_readahead);
429 
430 /*
431  * iomap_is_partially_uptodate checks whether blocks within a folio are
432  * uptodate or not.
433  *
434  * Returns true if all blocks which correspond to the specified part
435  * of the folio are uptodate.
436  */
437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
438 {
439 	struct iomap_page *iop = to_iomap_page(folio);
440 	struct inode *inode = folio->mapping->host;
441 	unsigned first, last, i;
442 
443 	if (!iop)
444 		return false;
445 
446 	/* Caller's range may extend past the end of this folio */
447 	count = min(folio_size(folio) - from, count);
448 
449 	/* First and last blocks in range within folio */
450 	first = from >> inode->i_blkbits;
451 	last = (from + count - 1) >> inode->i_blkbits;
452 
453 	for (i = first; i <= last; i++)
454 		if (!test_bit(i, iop->uptodate))
455 			return false;
456 	return true;
457 }
458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
459 
460 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
461 {
462 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
463 			folio_size(folio));
464 
465 	/*
466 	 * mm accommodates an old ext3 case where clean folios might
467 	 * not have had the dirty bit cleared.  Thus, it can send actual
468 	 * dirty folios to ->release_folio() via shrink_active_list();
469 	 * skip those here.
470 	 */
471 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
472 		return false;
473 	iomap_page_release(folio);
474 	return true;
475 }
476 EXPORT_SYMBOL_GPL(iomap_release_folio);
477 
478 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
479 {
480 	trace_iomap_invalidate_folio(folio->mapping->host,
481 					folio_pos(folio) + offset, len);
482 
483 	/*
484 	 * If we're invalidating the entire folio, clear the dirty state
485 	 * from it and release it to avoid unnecessary buildup of the LRU.
486 	 */
487 	if (offset == 0 && len == folio_size(folio)) {
488 		WARN_ON_ONCE(folio_test_writeback(folio));
489 		folio_cancel_dirty(folio);
490 		iomap_page_release(folio);
491 	} else if (folio_test_large(folio)) {
492 		/* Must release the iop so the page can be split */
493 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
494 			     folio_test_dirty(folio));
495 		iomap_page_release(folio);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
499 
500 static void
501 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
502 {
503 	loff_t i_size = i_size_read(inode);
504 
505 	/*
506 	 * Only truncate newly allocated pages beyoned EOF, even if the
507 	 * write started inside the existing inode size.
508 	 */
509 	if (pos + len > i_size)
510 		truncate_pagecache_range(inode, max(pos, i_size),
511 					 pos + len - 1);
512 }
513 
514 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
515 		size_t poff, size_t plen, const struct iomap *iomap)
516 {
517 	struct bio_vec bvec;
518 	struct bio bio;
519 
520 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
521 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
522 	bio_add_folio(&bio, folio, plen, poff);
523 	return submit_bio_wait(&bio);
524 }
525 
526 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
527 		size_t len, struct folio *folio)
528 {
529 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
530 	struct iomap_page *iop;
531 	loff_t block_size = i_blocksize(iter->inode);
532 	loff_t block_start = round_down(pos, block_size);
533 	loff_t block_end = round_up(pos + len, block_size);
534 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
535 	size_t from = offset_in_folio(folio, pos), to = from + len;
536 	size_t poff, plen;
537 
538 	if (folio_test_uptodate(folio))
539 		return 0;
540 	folio_clear_error(folio);
541 
542 	iop = iomap_page_create(iter->inode, folio, iter->flags);
543 	if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1)
544 		return -EAGAIN;
545 
546 	do {
547 		iomap_adjust_read_range(iter->inode, folio, &block_start,
548 				block_end - block_start, &poff, &plen);
549 		if (plen == 0)
550 			break;
551 
552 		if (!(iter->flags & IOMAP_UNSHARE) &&
553 		    (from <= poff || from >= poff + plen) &&
554 		    (to <= poff || to >= poff + plen))
555 			continue;
556 
557 		if (iomap_block_needs_zeroing(iter, block_start)) {
558 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
559 				return -EIO;
560 			folio_zero_segments(folio, poff, from, to, poff + plen);
561 		} else {
562 			int status;
563 
564 			if (iter->flags & IOMAP_NOWAIT)
565 				return -EAGAIN;
566 
567 			status = iomap_read_folio_sync(block_start, folio,
568 					poff, plen, srcmap);
569 			if (status)
570 				return status;
571 		}
572 		iomap_set_range_uptodate(folio, iop, poff, plen);
573 	} while ((block_start += plen) < block_end);
574 
575 	return 0;
576 }
577 
578 static int iomap_write_begin_inline(const struct iomap_iter *iter,
579 		struct folio *folio)
580 {
581 	/* needs more work for the tailpacking case; disable for now */
582 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
583 		return -EIO;
584 	return iomap_read_inline_data(iter, folio);
585 }
586 
587 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
588 		size_t len, struct folio **foliop)
589 {
590 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
591 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
592 	struct folio *folio;
593 	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
594 	int status = 0;
595 
596 	if (iter->flags & IOMAP_NOWAIT)
597 		fgp |= FGP_NOWAIT;
598 
599 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
600 	if (srcmap != &iter->iomap)
601 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
602 
603 	if (fatal_signal_pending(current))
604 		return -EINTR;
605 
606 	if (!mapping_large_folio_support(iter->inode->i_mapping))
607 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
608 
609 	if (page_ops && page_ops->page_prepare) {
610 		status = page_ops->page_prepare(iter->inode, pos, len);
611 		if (status)
612 			return status;
613 	}
614 
615 	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
616 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
617 	if (!folio) {
618 		status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM;
619 		goto out_no_page;
620 	}
621 
622 	/*
623 	 * Now we have a locked folio, before we do anything with it we need to
624 	 * check that the iomap we have cached is not stale. The inode extent
625 	 * mapping can change due to concurrent IO in flight (e.g.
626 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
627 	 * reclaimed a previously partially written page at this index after IO
628 	 * completion before this write reaches this file offset) and hence we
629 	 * could do the wrong thing here (zero a page range incorrectly or fail
630 	 * to zero) and corrupt data.
631 	 */
632 	if (page_ops && page_ops->iomap_valid) {
633 		bool iomap_valid = page_ops->iomap_valid(iter->inode,
634 							&iter->iomap);
635 		if (!iomap_valid) {
636 			iter->iomap.flags |= IOMAP_F_STALE;
637 			status = 0;
638 			goto out_unlock;
639 		}
640 	}
641 
642 	if (pos + len > folio_pos(folio) + folio_size(folio))
643 		len = folio_pos(folio) + folio_size(folio) - pos;
644 
645 	if (srcmap->type == IOMAP_INLINE)
646 		status = iomap_write_begin_inline(iter, folio);
647 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
648 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
649 	else
650 		status = __iomap_write_begin(iter, pos, len, folio);
651 
652 	if (unlikely(status))
653 		goto out_unlock;
654 
655 	*foliop = folio;
656 	return 0;
657 
658 out_unlock:
659 	folio_unlock(folio);
660 	folio_put(folio);
661 	iomap_write_failed(iter->inode, pos, len);
662 
663 out_no_page:
664 	if (page_ops && page_ops->page_done)
665 		page_ops->page_done(iter->inode, pos, 0, NULL);
666 	return status;
667 }
668 
669 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
670 		size_t copied, struct folio *folio)
671 {
672 	struct iomap_page *iop = to_iomap_page(folio);
673 	flush_dcache_folio(folio);
674 
675 	/*
676 	 * The blocks that were entirely written will now be uptodate, so we
677 	 * don't have to worry about a read_folio reading them and overwriting a
678 	 * partial write.  However, if we've encountered a short write and only
679 	 * partially written into a block, it will not be marked uptodate, so a
680 	 * read_folio might come in and destroy our partial write.
681 	 *
682 	 * Do the simplest thing and just treat any short write to a
683 	 * non-uptodate page as a zero-length write, and force the caller to
684 	 * redo the whole thing.
685 	 */
686 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
687 		return 0;
688 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
689 	filemap_dirty_folio(inode->i_mapping, folio);
690 	return copied;
691 }
692 
693 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
694 		struct folio *folio, loff_t pos, size_t copied)
695 {
696 	const struct iomap *iomap = &iter->iomap;
697 	void *addr;
698 
699 	WARN_ON_ONCE(!folio_test_uptodate(folio));
700 	BUG_ON(!iomap_inline_data_valid(iomap));
701 
702 	flush_dcache_folio(folio);
703 	addr = kmap_local_folio(folio, pos);
704 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
705 	kunmap_local(addr);
706 
707 	mark_inode_dirty(iter->inode);
708 	return copied;
709 }
710 
711 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
712 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
713 		size_t copied, struct folio *folio)
714 {
715 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
716 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
717 	loff_t old_size = iter->inode->i_size;
718 	size_t ret;
719 
720 	if (srcmap->type == IOMAP_INLINE) {
721 		ret = iomap_write_end_inline(iter, folio, pos, copied);
722 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
723 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
724 				copied, &folio->page, NULL);
725 	} else {
726 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
727 	}
728 
729 	/*
730 	 * Update the in-memory inode size after copying the data into the page
731 	 * cache.  It's up to the file system to write the updated size to disk,
732 	 * preferably after I/O completion so that no stale data is exposed.
733 	 */
734 	if (pos + ret > old_size) {
735 		i_size_write(iter->inode, pos + ret);
736 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
737 	}
738 	folio_unlock(folio);
739 
740 	if (old_size < pos)
741 		pagecache_isize_extended(iter->inode, old_size, pos);
742 	if (page_ops && page_ops->page_done)
743 		page_ops->page_done(iter->inode, pos, ret, &folio->page);
744 	folio_put(folio);
745 
746 	if (ret < len)
747 		iomap_write_failed(iter->inode, pos + ret, len - ret);
748 	return ret;
749 }
750 
751 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
752 {
753 	loff_t length = iomap_length(iter);
754 	loff_t pos = iter->pos;
755 	ssize_t written = 0;
756 	long status = 0;
757 	struct address_space *mapping = iter->inode->i_mapping;
758 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
759 
760 	do {
761 		struct folio *folio;
762 		struct page *page;
763 		unsigned long offset;	/* Offset into pagecache page */
764 		unsigned long bytes;	/* Bytes to write to page */
765 		size_t copied;		/* Bytes copied from user */
766 
767 		offset = offset_in_page(pos);
768 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
769 						iov_iter_count(i));
770 again:
771 		status = balance_dirty_pages_ratelimited_flags(mapping,
772 							       bdp_flags);
773 		if (unlikely(status))
774 			break;
775 
776 		if (bytes > length)
777 			bytes = length;
778 
779 		/*
780 		 * Bring in the user page that we'll copy from _first_.
781 		 * Otherwise there's a nasty deadlock on copying from the
782 		 * same page as we're writing to, without it being marked
783 		 * up-to-date.
784 		 *
785 		 * For async buffered writes the assumption is that the user
786 		 * page has already been faulted in. This can be optimized by
787 		 * faulting the user page.
788 		 */
789 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
790 			status = -EFAULT;
791 			break;
792 		}
793 
794 		status = iomap_write_begin(iter, pos, bytes, &folio);
795 		if (unlikely(status))
796 			break;
797 		if (iter->iomap.flags & IOMAP_F_STALE)
798 			break;
799 
800 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
801 		if (mapping_writably_mapped(mapping))
802 			flush_dcache_page(page);
803 
804 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
805 
806 		status = iomap_write_end(iter, pos, bytes, copied, folio);
807 
808 		if (unlikely(copied != status))
809 			iov_iter_revert(i, copied - status);
810 
811 		cond_resched();
812 		if (unlikely(status == 0)) {
813 			/*
814 			 * A short copy made iomap_write_end() reject the
815 			 * thing entirely.  Might be memory poisoning
816 			 * halfway through, might be a race with munmap,
817 			 * might be severe memory pressure.
818 			 */
819 			if (copied)
820 				bytes = copied;
821 			goto again;
822 		}
823 		pos += status;
824 		written += status;
825 		length -= status;
826 	} while (iov_iter_count(i) && length);
827 
828 	if (status == -EAGAIN) {
829 		iov_iter_revert(i, written);
830 		return -EAGAIN;
831 	}
832 	return written ? written : status;
833 }
834 
835 ssize_t
836 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
837 		const struct iomap_ops *ops)
838 {
839 	struct iomap_iter iter = {
840 		.inode		= iocb->ki_filp->f_mapping->host,
841 		.pos		= iocb->ki_pos,
842 		.len		= iov_iter_count(i),
843 		.flags		= IOMAP_WRITE,
844 	};
845 	int ret;
846 
847 	if (iocb->ki_flags & IOCB_NOWAIT)
848 		iter.flags |= IOMAP_NOWAIT;
849 
850 	while ((ret = iomap_iter(&iter, ops)) > 0)
851 		iter.processed = iomap_write_iter(&iter, i);
852 	if (iter.pos == iocb->ki_pos)
853 		return ret;
854 	return iter.pos - iocb->ki_pos;
855 }
856 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
857 
858 /*
859  * Scan the data range passed to us for dirty page cache folios. If we find a
860  * dirty folio, punch out the preceeding range and update the offset from which
861  * the next punch will start from.
862  *
863  * We can punch out storage reservations under clean pages because they either
864  * contain data that has been written back - in which case the delalloc punch
865  * over that range is a no-op - or they have been read faults in which case they
866  * contain zeroes and we can remove the delalloc backing range and any new
867  * writes to those pages will do the normal hole filling operation...
868  *
869  * This makes the logic simple: we only need to keep the delalloc extents only
870  * over the dirty ranges of the page cache.
871  *
872  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
873  * simplify range iterations.
874  */
875 static int iomap_write_delalloc_scan(struct inode *inode,
876 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
877 		int (*punch)(struct inode *inode, loff_t offset, loff_t length))
878 {
879 	while (start_byte < end_byte) {
880 		struct folio	*folio;
881 
882 		/* grab locked page */
883 		folio = filemap_lock_folio(inode->i_mapping,
884 				start_byte >> PAGE_SHIFT);
885 		if (!folio) {
886 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
887 					PAGE_SIZE;
888 			continue;
889 		}
890 
891 		/* if dirty, punch up to offset */
892 		if (folio_test_dirty(folio)) {
893 			if (start_byte > *punch_start_byte) {
894 				int	error;
895 
896 				error = punch(inode, *punch_start_byte,
897 						start_byte - *punch_start_byte);
898 				if (error) {
899 					folio_unlock(folio);
900 					folio_put(folio);
901 					return error;
902 				}
903 			}
904 
905 			/*
906 			 * Make sure the next punch start is correctly bound to
907 			 * the end of this data range, not the end of the folio.
908 			 */
909 			*punch_start_byte = min_t(loff_t, end_byte,
910 					folio_next_index(folio) << PAGE_SHIFT);
911 		}
912 
913 		/* move offset to start of next folio in range */
914 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
915 		folio_unlock(folio);
916 		folio_put(folio);
917 	}
918 	return 0;
919 }
920 
921 /*
922  * Punch out all the delalloc blocks in the range given except for those that
923  * have dirty data still pending in the page cache - those are going to be
924  * written and so must still retain the delalloc backing for writeback.
925  *
926  * As we are scanning the page cache for data, we don't need to reimplement the
927  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
928  * start and end of data ranges correctly even for sub-folio block sizes. This
929  * byte range based iteration is especially convenient because it means we
930  * don't have to care about variable size folios, nor where the start or end of
931  * the data range lies within a folio, if they lie within the same folio or even
932  * if there are multiple discontiguous data ranges within the folio.
933  *
934  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
935  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
936  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
937  * date. A write page fault can then mark it dirty. If we then fail a write()
938  * beyond EOF into that up to date cached range, we allocate a delalloc block
939  * beyond EOF and then have to punch it out. Because the range is up to date,
940  * mapping_seek_hole_data() will return it, and we will skip the punch because
941  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
942  * beyond EOF in this case as writeback will never write back and covert that
943  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
944  * resulting in always punching out the range from the EOF to the end of the
945  * range the iomap spans.
946  *
947  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
948  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
949  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
950  * returns the end of the data range (data_end). Using closed intervals would
951  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
952  * the code to subtle off-by-one bugs....
953  */
954 static int iomap_write_delalloc_release(struct inode *inode,
955 		loff_t start_byte, loff_t end_byte,
956 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
957 {
958 	loff_t punch_start_byte = start_byte;
959 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
960 	int error = 0;
961 
962 	/*
963 	 * Lock the mapping to avoid races with page faults re-instantiating
964 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
965 	 * cache and perform delalloc extent removal. Failing to do this can
966 	 * leave dirty pages with no space reservation in the cache.
967 	 */
968 	filemap_invalidate_lock(inode->i_mapping);
969 	while (start_byte < scan_end_byte) {
970 		loff_t		data_end;
971 
972 		start_byte = mapping_seek_hole_data(inode->i_mapping,
973 				start_byte, scan_end_byte, SEEK_DATA);
974 		/*
975 		 * If there is no more data to scan, all that is left is to
976 		 * punch out the remaining range.
977 		 */
978 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
979 			break;
980 		if (start_byte < 0) {
981 			error = start_byte;
982 			goto out_unlock;
983 		}
984 		WARN_ON_ONCE(start_byte < punch_start_byte);
985 		WARN_ON_ONCE(start_byte > scan_end_byte);
986 
987 		/*
988 		 * We find the end of this contiguous cached data range by
989 		 * seeking from start_byte to the beginning of the next hole.
990 		 */
991 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
992 				scan_end_byte, SEEK_HOLE);
993 		if (data_end < 0) {
994 			error = data_end;
995 			goto out_unlock;
996 		}
997 		WARN_ON_ONCE(data_end <= start_byte);
998 		WARN_ON_ONCE(data_end > scan_end_byte);
999 
1000 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1001 				start_byte, data_end, punch);
1002 		if (error)
1003 			goto out_unlock;
1004 
1005 		/* The next data search starts at the end of this one. */
1006 		start_byte = data_end;
1007 	}
1008 
1009 	if (punch_start_byte < end_byte)
1010 		error = punch(inode, punch_start_byte,
1011 				end_byte - punch_start_byte);
1012 out_unlock:
1013 	filemap_invalidate_unlock(inode->i_mapping);
1014 	return error;
1015 }
1016 
1017 /*
1018  * When a short write occurs, the filesystem may need to remove reserved space
1019  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1020  * filesystems that use delayed allocation, we need to punch out delalloc
1021  * extents from the range that are not dirty in the page cache. As the write can
1022  * race with page faults, there can be dirty pages over the delalloc extent
1023  * outside the range of a short write but still within the delalloc extent
1024  * allocated for this iomap.
1025  *
1026  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1027  * simplify range iterations.
1028  *
1029  * The punch() callback *must* only punch delalloc extents in the range passed
1030  * to it. It must skip over all other types of extents in the range and leave
1031  * them completely unchanged. It must do this punch atomically with respect to
1032  * other extent modifications.
1033  *
1034  * The punch() callback may be called with a folio locked to prevent writeback
1035  * extent allocation racing at the edge of the range we are currently punching.
1036  * The locked folio may or may not cover the range being punched, so it is not
1037  * safe for the punch() callback to lock folios itself.
1038  *
1039  * Lock order is:
1040  *
1041  * inode->i_rwsem (shared or exclusive)
1042  *   inode->i_mapping->invalidate_lock (exclusive)
1043  *     folio_lock()
1044  *       ->punch
1045  *         internal filesystem allocation lock
1046  */
1047 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1048 		struct iomap *iomap, loff_t pos, loff_t length,
1049 		ssize_t written,
1050 		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
1051 {
1052 	loff_t			start_byte;
1053 	loff_t			end_byte;
1054 	int			blocksize = i_blocksize(inode);
1055 
1056 	if (iomap->type != IOMAP_DELALLOC)
1057 		return 0;
1058 
1059 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1060 	if (!(iomap->flags & IOMAP_F_NEW))
1061 		return 0;
1062 
1063 	/*
1064 	 * start_byte refers to the first unused block after a short write. If
1065 	 * nothing was written, round offset down to point at the first block in
1066 	 * the range.
1067 	 */
1068 	if (unlikely(!written))
1069 		start_byte = round_down(pos, blocksize);
1070 	else
1071 		start_byte = round_up(pos + written, blocksize);
1072 	end_byte = round_up(pos + length, blocksize);
1073 
1074 	/* Nothing to do if we've written the entire delalloc extent */
1075 	if (start_byte >= end_byte)
1076 		return 0;
1077 
1078 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1079 					punch);
1080 }
1081 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1082 
1083 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1084 {
1085 	struct iomap *iomap = &iter->iomap;
1086 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1087 	loff_t pos = iter->pos;
1088 	loff_t length = iomap_length(iter);
1089 	long status = 0;
1090 	loff_t written = 0;
1091 
1092 	/* don't bother with blocks that are not shared to start with */
1093 	if (!(iomap->flags & IOMAP_F_SHARED))
1094 		return length;
1095 	/* don't bother with holes or unwritten extents */
1096 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1097 		return length;
1098 
1099 	do {
1100 		unsigned long offset = offset_in_page(pos);
1101 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
1102 		struct folio *folio;
1103 
1104 		status = iomap_write_begin(iter, pos, bytes, &folio);
1105 		if (unlikely(status))
1106 			return status;
1107 		if (iter->iomap.flags & IOMAP_F_STALE)
1108 			break;
1109 
1110 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
1111 		if (WARN_ON_ONCE(status == 0))
1112 			return -EIO;
1113 
1114 		cond_resched();
1115 
1116 		pos += status;
1117 		written += status;
1118 		length -= status;
1119 
1120 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1121 	} while (length);
1122 
1123 	return written;
1124 }
1125 
1126 int
1127 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1128 		const struct iomap_ops *ops)
1129 {
1130 	struct iomap_iter iter = {
1131 		.inode		= inode,
1132 		.pos		= pos,
1133 		.len		= len,
1134 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1135 	};
1136 	int ret;
1137 
1138 	while ((ret = iomap_iter(&iter, ops)) > 0)
1139 		iter.processed = iomap_unshare_iter(&iter);
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1143 
1144 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1145 {
1146 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1147 	loff_t pos = iter->pos;
1148 	loff_t length = iomap_length(iter);
1149 	loff_t written = 0;
1150 
1151 	/* already zeroed?  we're done. */
1152 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1153 		return length;
1154 
1155 	do {
1156 		struct folio *folio;
1157 		int status;
1158 		size_t offset;
1159 		size_t bytes = min_t(u64, SIZE_MAX, length);
1160 
1161 		status = iomap_write_begin(iter, pos, bytes, &folio);
1162 		if (status)
1163 			return status;
1164 		if (iter->iomap.flags & IOMAP_F_STALE)
1165 			break;
1166 
1167 		offset = offset_in_folio(folio, pos);
1168 		if (bytes > folio_size(folio) - offset)
1169 			bytes = folio_size(folio) - offset;
1170 
1171 		folio_zero_range(folio, offset, bytes);
1172 		folio_mark_accessed(folio);
1173 
1174 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1175 		if (WARN_ON_ONCE(bytes == 0))
1176 			return -EIO;
1177 
1178 		pos += bytes;
1179 		length -= bytes;
1180 		written += bytes;
1181 	} while (length > 0);
1182 
1183 	if (did_zero)
1184 		*did_zero = true;
1185 	return written;
1186 }
1187 
1188 int
1189 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1190 		const struct iomap_ops *ops)
1191 {
1192 	struct iomap_iter iter = {
1193 		.inode		= inode,
1194 		.pos		= pos,
1195 		.len		= len,
1196 		.flags		= IOMAP_ZERO,
1197 	};
1198 	int ret;
1199 
1200 	while ((ret = iomap_iter(&iter, ops)) > 0)
1201 		iter.processed = iomap_zero_iter(&iter, did_zero);
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL_GPL(iomap_zero_range);
1205 
1206 int
1207 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1208 		const struct iomap_ops *ops)
1209 {
1210 	unsigned int blocksize = i_blocksize(inode);
1211 	unsigned int off = pos & (blocksize - 1);
1212 
1213 	/* Block boundary? Nothing to do */
1214 	if (!off)
1215 		return 0;
1216 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1217 }
1218 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1219 
1220 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1221 		struct folio *folio)
1222 {
1223 	loff_t length = iomap_length(iter);
1224 	int ret;
1225 
1226 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1227 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1228 					      &iter->iomap);
1229 		if (ret)
1230 			return ret;
1231 		block_commit_write(&folio->page, 0, length);
1232 	} else {
1233 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1234 		folio_mark_dirty(folio);
1235 	}
1236 
1237 	return length;
1238 }
1239 
1240 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1241 {
1242 	struct iomap_iter iter = {
1243 		.inode		= file_inode(vmf->vma->vm_file),
1244 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1245 	};
1246 	struct folio *folio = page_folio(vmf->page);
1247 	ssize_t ret;
1248 
1249 	folio_lock(folio);
1250 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1251 	if (ret < 0)
1252 		goto out_unlock;
1253 	iter.pos = folio_pos(folio);
1254 	iter.len = ret;
1255 	while ((ret = iomap_iter(&iter, ops)) > 0)
1256 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1257 
1258 	if (ret < 0)
1259 		goto out_unlock;
1260 	folio_wait_stable(folio);
1261 	return VM_FAULT_LOCKED;
1262 out_unlock:
1263 	folio_unlock(folio);
1264 	return block_page_mkwrite_return(ret);
1265 }
1266 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1267 
1268 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1269 		size_t len, int error)
1270 {
1271 	struct iomap_page *iop = to_iomap_page(folio);
1272 
1273 	if (error) {
1274 		folio_set_error(folio);
1275 		mapping_set_error(inode->i_mapping, error);
1276 	}
1277 
1278 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1279 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1280 
1281 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1282 		folio_end_writeback(folio);
1283 }
1284 
1285 /*
1286  * We're now finished for good with this ioend structure.  Update the page
1287  * state, release holds on bios, and finally free up memory.  Do not use the
1288  * ioend after this.
1289  */
1290 static u32
1291 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1292 {
1293 	struct inode *inode = ioend->io_inode;
1294 	struct bio *bio = &ioend->io_inline_bio;
1295 	struct bio *last = ioend->io_bio, *next;
1296 	u64 start = bio->bi_iter.bi_sector;
1297 	loff_t offset = ioend->io_offset;
1298 	bool quiet = bio_flagged(bio, BIO_QUIET);
1299 	u32 folio_count = 0;
1300 
1301 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1302 		struct folio_iter fi;
1303 
1304 		/*
1305 		 * For the last bio, bi_private points to the ioend, so we
1306 		 * need to explicitly end the iteration here.
1307 		 */
1308 		if (bio == last)
1309 			next = NULL;
1310 		else
1311 			next = bio->bi_private;
1312 
1313 		/* walk all folios in bio, ending page IO on them */
1314 		bio_for_each_folio_all(fi, bio) {
1315 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1316 					error);
1317 			folio_count++;
1318 		}
1319 		bio_put(bio);
1320 	}
1321 	/* The ioend has been freed by bio_put() */
1322 
1323 	if (unlikely(error && !quiet)) {
1324 		printk_ratelimited(KERN_ERR
1325 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1326 			inode->i_sb->s_id, inode->i_ino, offset, start);
1327 	}
1328 	return folio_count;
1329 }
1330 
1331 /*
1332  * Ioend completion routine for merged bios. This can only be called from task
1333  * contexts as merged ioends can be of unbound length. Hence we have to break up
1334  * the writeback completions into manageable chunks to avoid long scheduler
1335  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1336  * good batch processing throughput without creating adverse scheduler latency
1337  * conditions.
1338  */
1339 void
1340 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1341 {
1342 	struct list_head tmp;
1343 	u32 completions;
1344 
1345 	might_sleep();
1346 
1347 	list_replace_init(&ioend->io_list, &tmp);
1348 	completions = iomap_finish_ioend(ioend, error);
1349 
1350 	while (!list_empty(&tmp)) {
1351 		if (completions > IOEND_BATCH_SIZE * 8) {
1352 			cond_resched();
1353 			completions = 0;
1354 		}
1355 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1356 		list_del_init(&ioend->io_list);
1357 		completions += iomap_finish_ioend(ioend, error);
1358 	}
1359 }
1360 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1361 
1362 /*
1363  * We can merge two adjacent ioends if they have the same set of work to do.
1364  */
1365 static bool
1366 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1367 {
1368 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1369 		return false;
1370 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1371 	    (next->io_flags & IOMAP_F_SHARED))
1372 		return false;
1373 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1374 	    (next->io_type == IOMAP_UNWRITTEN))
1375 		return false;
1376 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1377 		return false;
1378 	/*
1379 	 * Do not merge physically discontiguous ioends. The filesystem
1380 	 * completion functions will have to iterate the physical
1381 	 * discontiguities even if we merge the ioends at a logical level, so
1382 	 * we don't gain anything by merging physical discontiguities here.
1383 	 *
1384 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1385 	 * submission so does not point to the start sector of the bio at
1386 	 * completion.
1387 	 */
1388 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1389 		return false;
1390 	return true;
1391 }
1392 
1393 void
1394 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1395 {
1396 	struct iomap_ioend *next;
1397 
1398 	INIT_LIST_HEAD(&ioend->io_list);
1399 
1400 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1401 			io_list))) {
1402 		if (!iomap_ioend_can_merge(ioend, next))
1403 			break;
1404 		list_move_tail(&next->io_list, &ioend->io_list);
1405 		ioend->io_size += next->io_size;
1406 	}
1407 }
1408 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1409 
1410 static int
1411 iomap_ioend_compare(void *priv, const struct list_head *a,
1412 		const struct list_head *b)
1413 {
1414 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1415 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1416 
1417 	if (ia->io_offset < ib->io_offset)
1418 		return -1;
1419 	if (ia->io_offset > ib->io_offset)
1420 		return 1;
1421 	return 0;
1422 }
1423 
1424 void
1425 iomap_sort_ioends(struct list_head *ioend_list)
1426 {
1427 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1428 }
1429 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1430 
1431 static void iomap_writepage_end_bio(struct bio *bio)
1432 {
1433 	struct iomap_ioend *ioend = bio->bi_private;
1434 
1435 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1436 }
1437 
1438 /*
1439  * Submit the final bio for an ioend.
1440  *
1441  * If @error is non-zero, it means that we have a situation where some part of
1442  * the submission process has failed after we've marked pages for writeback
1443  * and unlocked them.  In this situation, we need to fail the bio instead of
1444  * submitting it.  This typically only happens on a filesystem shutdown.
1445  */
1446 static int
1447 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1448 		int error)
1449 {
1450 	ioend->io_bio->bi_private = ioend;
1451 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1452 
1453 	if (wpc->ops->prepare_ioend)
1454 		error = wpc->ops->prepare_ioend(ioend, error);
1455 	if (error) {
1456 		/*
1457 		 * If we're failing the IO now, just mark the ioend with an
1458 		 * error and finish it.  This will run IO completion immediately
1459 		 * as there is only one reference to the ioend at this point in
1460 		 * time.
1461 		 */
1462 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1463 		bio_endio(ioend->io_bio);
1464 		return error;
1465 	}
1466 
1467 	submit_bio(ioend->io_bio);
1468 	return 0;
1469 }
1470 
1471 static struct iomap_ioend *
1472 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1473 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1474 {
1475 	struct iomap_ioend *ioend;
1476 	struct bio *bio;
1477 
1478 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1479 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1480 			       GFP_NOFS, &iomap_ioend_bioset);
1481 	bio->bi_iter.bi_sector = sector;
1482 	wbc_init_bio(wbc, bio);
1483 
1484 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1485 	INIT_LIST_HEAD(&ioend->io_list);
1486 	ioend->io_type = wpc->iomap.type;
1487 	ioend->io_flags = wpc->iomap.flags;
1488 	ioend->io_inode = inode;
1489 	ioend->io_size = 0;
1490 	ioend->io_folios = 0;
1491 	ioend->io_offset = offset;
1492 	ioend->io_bio = bio;
1493 	ioend->io_sector = sector;
1494 	return ioend;
1495 }
1496 
1497 /*
1498  * Allocate a new bio, and chain the old bio to the new one.
1499  *
1500  * Note that we have to perform the chaining in this unintuitive order
1501  * so that the bi_private linkage is set up in the right direction for the
1502  * traversal in iomap_finish_ioend().
1503  */
1504 static struct bio *
1505 iomap_chain_bio(struct bio *prev)
1506 {
1507 	struct bio *new;
1508 
1509 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1510 	bio_clone_blkg_association(new, prev);
1511 	new->bi_iter.bi_sector = bio_end_sector(prev);
1512 
1513 	bio_chain(prev, new);
1514 	bio_get(prev);		/* for iomap_finish_ioend */
1515 	submit_bio(prev);
1516 	return new;
1517 }
1518 
1519 static bool
1520 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1521 		sector_t sector)
1522 {
1523 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1524 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1525 		return false;
1526 	if (wpc->iomap.type != wpc->ioend->io_type)
1527 		return false;
1528 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1529 		return false;
1530 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1531 		return false;
1532 	/*
1533 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1534 	 * also prevents long tight loops ending page writeback on all the
1535 	 * folios in the ioend.
1536 	 */
1537 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1538 		return false;
1539 	return true;
1540 }
1541 
1542 /*
1543  * Test to see if we have an existing ioend structure that we could append to
1544  * first; otherwise finish off the current ioend and start another.
1545  */
1546 static void
1547 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1548 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1549 		struct writeback_control *wbc, struct list_head *iolist)
1550 {
1551 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1552 	unsigned len = i_blocksize(inode);
1553 	size_t poff = offset_in_folio(folio, pos);
1554 
1555 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1556 		if (wpc->ioend)
1557 			list_add(&wpc->ioend->io_list, iolist);
1558 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1559 	}
1560 
1561 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1562 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1563 		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1564 	}
1565 
1566 	if (iop)
1567 		atomic_add(len, &iop->write_bytes_pending);
1568 	wpc->ioend->io_size += len;
1569 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1570 }
1571 
1572 /*
1573  * We implement an immediate ioend submission policy here to avoid needing to
1574  * chain multiple ioends and hence nest mempool allocations which can violate
1575  * the forward progress guarantees we need to provide. The current ioend we're
1576  * adding blocks to is cached in the writepage context, and if the new block
1577  * doesn't append to the cached ioend, it will create a new ioend and cache that
1578  * instead.
1579  *
1580  * If a new ioend is created and cached, the old ioend is returned and queued
1581  * locally for submission once the entire page is processed or an error has been
1582  * detected.  While ioends are submitted immediately after they are completed,
1583  * batching optimisations are provided by higher level block plugging.
1584  *
1585  * At the end of a writeback pass, there will be a cached ioend remaining on the
1586  * writepage context that the caller will need to submit.
1587  */
1588 static int
1589 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1590 		struct writeback_control *wbc, struct inode *inode,
1591 		struct folio *folio, u64 end_pos)
1592 {
1593 	struct iomap_page *iop = iomap_page_create(inode, folio, 0);
1594 	struct iomap_ioend *ioend, *next;
1595 	unsigned len = i_blocksize(inode);
1596 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1597 	u64 pos = folio_pos(folio);
1598 	int error = 0, count = 0, i;
1599 	LIST_HEAD(submit_list);
1600 
1601 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1602 
1603 	/*
1604 	 * Walk through the folio to find areas to write back. If we
1605 	 * run off the end of the current map or find the current map
1606 	 * invalid, grab a new one.
1607 	 */
1608 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1609 		if (iop && !test_bit(i, iop->uptodate))
1610 			continue;
1611 
1612 		error = wpc->ops->map_blocks(wpc, inode, pos);
1613 		if (error)
1614 			break;
1615 		trace_iomap_writepage_map(inode, &wpc->iomap);
1616 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1617 			continue;
1618 		if (wpc->iomap.type == IOMAP_HOLE)
1619 			continue;
1620 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1621 				 &submit_list);
1622 		count++;
1623 	}
1624 	if (count)
1625 		wpc->ioend->io_folios++;
1626 
1627 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1628 	WARN_ON_ONCE(!folio_test_locked(folio));
1629 	WARN_ON_ONCE(folio_test_writeback(folio));
1630 	WARN_ON_ONCE(folio_test_dirty(folio));
1631 
1632 	/*
1633 	 * We cannot cancel the ioend directly here on error.  We may have
1634 	 * already set other pages under writeback and hence we have to run I/O
1635 	 * completion to mark the error state of the pages under writeback
1636 	 * appropriately.
1637 	 */
1638 	if (unlikely(error)) {
1639 		/*
1640 		 * Let the filesystem know what portion of the current page
1641 		 * failed to map. If the page hasn't been added to ioend, it
1642 		 * won't be affected by I/O completion and we must unlock it
1643 		 * now.
1644 		 */
1645 		if (wpc->ops->discard_folio)
1646 			wpc->ops->discard_folio(folio, pos);
1647 		if (!count) {
1648 			folio_unlock(folio);
1649 			goto done;
1650 		}
1651 	}
1652 
1653 	folio_start_writeback(folio);
1654 	folio_unlock(folio);
1655 
1656 	/*
1657 	 * Preserve the original error if there was one; catch
1658 	 * submission errors here and propagate into subsequent ioend
1659 	 * submissions.
1660 	 */
1661 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1662 		int error2;
1663 
1664 		list_del_init(&ioend->io_list);
1665 		error2 = iomap_submit_ioend(wpc, ioend, error);
1666 		if (error2 && !error)
1667 			error = error2;
1668 	}
1669 
1670 	/*
1671 	 * We can end up here with no error and nothing to write only if we race
1672 	 * with a partial page truncate on a sub-page block sized filesystem.
1673 	 */
1674 	if (!count)
1675 		folio_end_writeback(folio);
1676 done:
1677 	mapping_set_error(inode->i_mapping, error);
1678 	return error;
1679 }
1680 
1681 /*
1682  * Write out a dirty page.
1683  *
1684  * For delalloc space on the page, we need to allocate space and flush it.
1685  * For unwritten space on the page, we need to start the conversion to
1686  * regular allocated space.
1687  */
1688 static int
1689 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1690 {
1691 	struct folio *folio = page_folio(page);
1692 	struct iomap_writepage_ctx *wpc = data;
1693 	struct inode *inode = folio->mapping->host;
1694 	u64 end_pos, isize;
1695 
1696 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1697 
1698 	/*
1699 	 * Refuse to write the folio out if we're called from reclaim context.
1700 	 *
1701 	 * This avoids stack overflows when called from deeply used stacks in
1702 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1703 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1704 	 *
1705 	 * This should never happen except in the case of a VM regression so
1706 	 * warn about it.
1707 	 */
1708 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1709 			PF_MEMALLOC))
1710 		goto redirty;
1711 
1712 	/*
1713 	 * Is this folio beyond the end of the file?
1714 	 *
1715 	 * The folio index is less than the end_index, adjust the end_pos
1716 	 * to the highest offset that this folio should represent.
1717 	 * -----------------------------------------------------
1718 	 * |			file mapping	       | <EOF> |
1719 	 * -----------------------------------------------------
1720 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1721 	 * ^--------------------------------^----------|--------
1722 	 * |     desired writeback range    |      see else    |
1723 	 * ---------------------------------^------------------|
1724 	 */
1725 	isize = i_size_read(inode);
1726 	end_pos = folio_pos(folio) + folio_size(folio);
1727 	if (end_pos > isize) {
1728 		/*
1729 		 * Check whether the page to write out is beyond or straddles
1730 		 * i_size or not.
1731 		 * -------------------------------------------------------
1732 		 * |		file mapping		        | <EOF>  |
1733 		 * -------------------------------------------------------
1734 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1735 		 * ^--------------------------------^-----------|---------
1736 		 * |				    |      Straddles     |
1737 		 * ---------------------------------^-----------|--------|
1738 		 */
1739 		size_t poff = offset_in_folio(folio, isize);
1740 		pgoff_t end_index = isize >> PAGE_SHIFT;
1741 
1742 		/*
1743 		 * Skip the page if it's fully outside i_size, e.g.
1744 		 * due to a truncate operation that's in progress.  We've
1745 		 * cleaned this page and truncate will finish things off for
1746 		 * us.
1747 		 *
1748 		 * Note that the end_index is unsigned long.  If the given
1749 		 * offset is greater than 16TB on a 32-bit system then if we
1750 		 * checked if the page is fully outside i_size with
1751 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1752 		 * overflow and evaluate to 0.  Hence this page would be
1753 		 * redirtied and written out repeatedly, which would result in
1754 		 * an infinite loop; the user program performing this operation
1755 		 * would hang.  Instead, we can detect this situation by
1756 		 * checking if the page is totally beyond i_size or if its
1757 		 * offset is just equal to the EOF.
1758 		 */
1759 		if (folio->index > end_index ||
1760 		    (folio->index == end_index && poff == 0))
1761 			goto unlock;
1762 
1763 		/*
1764 		 * The page straddles i_size.  It must be zeroed out on each
1765 		 * and every writepage invocation because it may be mmapped.
1766 		 * "A file is mapped in multiples of the page size.  For a file
1767 		 * that is not a multiple of the page size, the remaining
1768 		 * memory is zeroed when mapped, and writes to that region are
1769 		 * not written out to the file."
1770 		 */
1771 		folio_zero_segment(folio, poff, folio_size(folio));
1772 		end_pos = isize;
1773 	}
1774 
1775 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1776 
1777 redirty:
1778 	folio_redirty_for_writepage(wbc, folio);
1779 unlock:
1780 	folio_unlock(folio);
1781 	return 0;
1782 }
1783 
1784 int
1785 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1786 		struct iomap_writepage_ctx *wpc,
1787 		const struct iomap_writeback_ops *ops)
1788 {
1789 	int			ret;
1790 
1791 	wpc->ops = ops;
1792 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1793 	if (!wpc->ioend)
1794 		return ret;
1795 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1796 }
1797 EXPORT_SYMBOL_GPL(iomap_writepages);
1798 
1799 static int __init iomap_init(void)
1800 {
1801 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1802 			   offsetof(struct iomap_ioend, io_inline_bio),
1803 			   BIOSET_NEED_BVECS);
1804 }
1805 fs_initcall(iomap_init);
1806