1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 spinlock_t state_lock; 33 unsigned int read_bytes_pending; 34 atomic_t write_bytes_pending; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static bool ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 68 bitmap_set(ifs->state, first_blk, nr_blks); 69 return ifs_is_fully_uptodate(folio, ifs); 70 } 71 72 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 73 size_t len) 74 { 75 struct iomap_folio_state *ifs = folio->private; 76 unsigned long flags; 77 bool uptodate = true; 78 79 if (ifs) { 80 spin_lock_irqsave(&ifs->state_lock, flags); 81 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 82 spin_unlock_irqrestore(&ifs->state_lock, flags); 83 } 84 85 if (uptodate) 86 folio_mark_uptodate(folio); 87 } 88 89 static inline bool ifs_block_is_dirty(struct folio *folio, 90 struct iomap_folio_state *ifs, int block) 91 { 92 struct inode *inode = folio->mapping->host; 93 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 94 95 return test_bit(block + blks_per_folio, ifs->state); 96 } 97 98 static void ifs_clear_range_dirty(struct folio *folio, 99 struct iomap_folio_state *ifs, size_t off, size_t len) 100 { 101 struct inode *inode = folio->mapping->host; 102 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 103 unsigned int first_blk = (off >> inode->i_blkbits); 104 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 105 unsigned int nr_blks = last_blk - first_blk + 1; 106 unsigned long flags; 107 108 spin_lock_irqsave(&ifs->state_lock, flags); 109 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 110 spin_unlock_irqrestore(&ifs->state_lock, flags); 111 } 112 113 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 114 { 115 struct iomap_folio_state *ifs = folio->private; 116 117 if (ifs) 118 ifs_clear_range_dirty(folio, ifs, off, len); 119 } 120 121 static void ifs_set_range_dirty(struct folio *folio, 122 struct iomap_folio_state *ifs, size_t off, size_t len) 123 { 124 struct inode *inode = folio->mapping->host; 125 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 126 unsigned int first_blk = (off >> inode->i_blkbits); 127 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 128 unsigned int nr_blks = last_blk - first_blk + 1; 129 unsigned long flags; 130 131 spin_lock_irqsave(&ifs->state_lock, flags); 132 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 133 spin_unlock_irqrestore(&ifs->state_lock, flags); 134 } 135 136 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 137 { 138 struct iomap_folio_state *ifs = folio->private; 139 140 if (ifs) 141 ifs_set_range_dirty(folio, ifs, off, len); 142 } 143 144 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 145 struct folio *folio, unsigned int flags) 146 { 147 struct iomap_folio_state *ifs = folio->private; 148 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 149 gfp_t gfp; 150 151 if (ifs || nr_blocks <= 1) 152 return ifs; 153 154 if (flags & IOMAP_NOWAIT) 155 gfp = GFP_NOWAIT; 156 else 157 gfp = GFP_NOFS | __GFP_NOFAIL; 158 159 /* 160 * ifs->state tracks two sets of state flags when the 161 * filesystem block size is smaller than the folio size. 162 * The first state tracks per-block uptodate and the 163 * second tracks per-block dirty state. 164 */ 165 ifs = kzalloc(struct_size(ifs, state, 166 BITS_TO_LONGS(2 * nr_blocks)), gfp); 167 if (!ifs) 168 return ifs; 169 170 spin_lock_init(&ifs->state_lock); 171 if (folio_test_uptodate(folio)) 172 bitmap_set(ifs->state, 0, nr_blocks); 173 if (folio_test_dirty(folio)) 174 bitmap_set(ifs->state, nr_blocks, nr_blocks); 175 folio_attach_private(folio, ifs); 176 177 return ifs; 178 } 179 180 static void ifs_free(struct folio *folio) 181 { 182 struct iomap_folio_state *ifs = folio_detach_private(folio); 183 184 if (!ifs) 185 return; 186 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 187 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 188 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 189 folio_test_uptodate(folio)); 190 kfree(ifs); 191 } 192 193 /* 194 * Calculate the range inside the folio that we actually need to read. 195 */ 196 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 197 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 198 { 199 struct iomap_folio_state *ifs = folio->private; 200 loff_t orig_pos = *pos; 201 loff_t isize = i_size_read(inode); 202 unsigned block_bits = inode->i_blkbits; 203 unsigned block_size = (1 << block_bits); 204 size_t poff = offset_in_folio(folio, *pos); 205 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 206 unsigned first = poff >> block_bits; 207 unsigned last = (poff + plen - 1) >> block_bits; 208 209 /* 210 * If the block size is smaller than the page size, we need to check the 211 * per-block uptodate status and adjust the offset and length if needed 212 * to avoid reading in already uptodate ranges. 213 */ 214 if (ifs) { 215 unsigned int i; 216 217 /* move forward for each leading block marked uptodate */ 218 for (i = first; i <= last; i++) { 219 if (!ifs_block_is_uptodate(ifs, i)) 220 break; 221 *pos += block_size; 222 poff += block_size; 223 plen -= block_size; 224 first++; 225 } 226 227 /* truncate len if we find any trailing uptodate block(s) */ 228 for ( ; i <= last; i++) { 229 if (ifs_block_is_uptodate(ifs, i)) { 230 plen -= (last - i + 1) * block_size; 231 last = i - 1; 232 break; 233 } 234 } 235 } 236 237 /* 238 * If the extent spans the block that contains the i_size, we need to 239 * handle both halves separately so that we properly zero data in the 240 * page cache for blocks that are entirely outside of i_size. 241 */ 242 if (orig_pos <= isize && orig_pos + length > isize) { 243 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 244 245 if (first <= end && last > end) 246 plen -= (last - end) * block_size; 247 } 248 249 *offp = poff; 250 *lenp = plen; 251 } 252 253 static void iomap_finish_folio_read(struct folio *folio, size_t off, 254 size_t len, int error) 255 { 256 struct iomap_folio_state *ifs = folio->private; 257 bool uptodate = !error; 258 bool finished = true; 259 260 if (ifs) { 261 unsigned long flags; 262 263 spin_lock_irqsave(&ifs->state_lock, flags); 264 if (!error) 265 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 266 ifs->read_bytes_pending -= len; 267 finished = !ifs->read_bytes_pending; 268 spin_unlock_irqrestore(&ifs->state_lock, flags); 269 } 270 271 if (error) 272 folio_set_error(folio); 273 if (finished) 274 folio_end_read(folio, uptodate); 275 } 276 277 static void iomap_read_end_io(struct bio *bio) 278 { 279 int error = blk_status_to_errno(bio->bi_status); 280 struct folio_iter fi; 281 282 bio_for_each_folio_all(fi, bio) 283 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 284 bio_put(bio); 285 } 286 287 struct iomap_readpage_ctx { 288 struct folio *cur_folio; 289 bool cur_folio_in_bio; 290 struct bio *bio; 291 struct readahead_control *rac; 292 }; 293 294 /** 295 * iomap_read_inline_data - copy inline data into the page cache 296 * @iter: iteration structure 297 * @folio: folio to copy to 298 * 299 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 300 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 301 * Returns zero for success to complete the read, or the usual negative errno. 302 */ 303 static int iomap_read_inline_data(const struct iomap_iter *iter, 304 struct folio *folio) 305 { 306 const struct iomap *iomap = iomap_iter_srcmap(iter); 307 size_t size = i_size_read(iter->inode) - iomap->offset; 308 size_t offset = offset_in_folio(folio, iomap->offset); 309 310 if (folio_test_uptodate(folio)) 311 return 0; 312 313 if (WARN_ON_ONCE(size > iomap->length)) 314 return -EIO; 315 if (offset > 0) 316 ifs_alloc(iter->inode, folio, iter->flags); 317 318 folio_fill_tail(folio, offset, iomap->inline_data, size); 319 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 320 return 0; 321 } 322 323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 324 loff_t pos) 325 { 326 const struct iomap *srcmap = iomap_iter_srcmap(iter); 327 328 return srcmap->type != IOMAP_MAPPED || 329 (srcmap->flags & IOMAP_F_NEW) || 330 pos >= i_size_read(iter->inode); 331 } 332 333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 334 struct iomap_readpage_ctx *ctx, loff_t offset) 335 { 336 const struct iomap *iomap = &iter->iomap; 337 loff_t pos = iter->pos + offset; 338 loff_t length = iomap_length(iter) - offset; 339 struct folio *folio = ctx->cur_folio; 340 struct iomap_folio_state *ifs; 341 loff_t orig_pos = pos; 342 size_t poff, plen; 343 sector_t sector; 344 345 if (iomap->type == IOMAP_INLINE) 346 return iomap_read_inline_data(iter, folio); 347 348 /* zero post-eof blocks as the page may be mapped */ 349 ifs = ifs_alloc(iter->inode, folio, iter->flags); 350 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 351 if (plen == 0) 352 goto done; 353 354 if (iomap_block_needs_zeroing(iter, pos)) { 355 folio_zero_range(folio, poff, plen); 356 iomap_set_range_uptodate(folio, poff, plen); 357 goto done; 358 } 359 360 ctx->cur_folio_in_bio = true; 361 if (ifs) { 362 spin_lock_irq(&ifs->state_lock); 363 ifs->read_bytes_pending += plen; 364 spin_unlock_irq(&ifs->state_lock); 365 } 366 367 sector = iomap_sector(iomap, pos); 368 if (!ctx->bio || 369 bio_end_sector(ctx->bio) != sector || 370 !bio_add_folio(ctx->bio, folio, plen, poff)) { 371 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 372 gfp_t orig_gfp = gfp; 373 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 374 375 if (ctx->bio) 376 submit_bio(ctx->bio); 377 378 if (ctx->rac) /* same as readahead_gfp_mask */ 379 gfp |= __GFP_NORETRY | __GFP_NOWARN; 380 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 381 REQ_OP_READ, gfp); 382 /* 383 * If the bio_alloc fails, try it again for a single page to 384 * avoid having to deal with partial page reads. This emulates 385 * what do_mpage_read_folio does. 386 */ 387 if (!ctx->bio) { 388 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 389 orig_gfp); 390 } 391 if (ctx->rac) 392 ctx->bio->bi_opf |= REQ_RAHEAD; 393 ctx->bio->bi_iter.bi_sector = sector; 394 ctx->bio->bi_end_io = iomap_read_end_io; 395 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 396 } 397 398 done: 399 /* 400 * Move the caller beyond our range so that it keeps making progress. 401 * For that, we have to include any leading non-uptodate ranges, but 402 * we can skip trailing ones as they will be handled in the next 403 * iteration. 404 */ 405 return pos - orig_pos + plen; 406 } 407 408 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 409 { 410 struct iomap_iter iter = { 411 .inode = folio->mapping->host, 412 .pos = folio_pos(folio), 413 .len = folio_size(folio), 414 }; 415 struct iomap_readpage_ctx ctx = { 416 .cur_folio = folio, 417 }; 418 int ret; 419 420 trace_iomap_readpage(iter.inode, 1); 421 422 while ((ret = iomap_iter(&iter, ops)) > 0) 423 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 424 425 if (ret < 0) 426 folio_set_error(folio); 427 428 if (ctx.bio) { 429 submit_bio(ctx.bio); 430 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 431 } else { 432 WARN_ON_ONCE(ctx.cur_folio_in_bio); 433 folio_unlock(folio); 434 } 435 436 /* 437 * Just like mpage_readahead and block_read_full_folio, we always 438 * return 0 and just set the folio error flag on errors. This 439 * should be cleaned up throughout the stack eventually. 440 */ 441 return 0; 442 } 443 EXPORT_SYMBOL_GPL(iomap_read_folio); 444 445 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 446 struct iomap_readpage_ctx *ctx) 447 { 448 loff_t length = iomap_length(iter); 449 loff_t done, ret; 450 451 for (done = 0; done < length; done += ret) { 452 if (ctx->cur_folio && 453 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 454 if (!ctx->cur_folio_in_bio) 455 folio_unlock(ctx->cur_folio); 456 ctx->cur_folio = NULL; 457 } 458 if (!ctx->cur_folio) { 459 ctx->cur_folio = readahead_folio(ctx->rac); 460 ctx->cur_folio_in_bio = false; 461 } 462 ret = iomap_readpage_iter(iter, ctx, done); 463 if (ret <= 0) 464 return ret; 465 } 466 467 return done; 468 } 469 470 /** 471 * iomap_readahead - Attempt to read pages from a file. 472 * @rac: Describes the pages to be read. 473 * @ops: The operations vector for the filesystem. 474 * 475 * This function is for filesystems to call to implement their readahead 476 * address_space operation. 477 * 478 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 479 * blocks from disc), and may wait for it. The caller may be trying to 480 * access a different page, and so sleeping excessively should be avoided. 481 * It may allocate memory, but should avoid costly allocations. This 482 * function is called with memalloc_nofs set, so allocations will not cause 483 * the filesystem to be reentered. 484 */ 485 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 486 { 487 struct iomap_iter iter = { 488 .inode = rac->mapping->host, 489 .pos = readahead_pos(rac), 490 .len = readahead_length(rac), 491 }; 492 struct iomap_readpage_ctx ctx = { 493 .rac = rac, 494 }; 495 496 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 497 498 while (iomap_iter(&iter, ops) > 0) 499 iter.processed = iomap_readahead_iter(&iter, &ctx); 500 501 if (ctx.bio) 502 submit_bio(ctx.bio); 503 if (ctx.cur_folio) { 504 if (!ctx.cur_folio_in_bio) 505 folio_unlock(ctx.cur_folio); 506 } 507 } 508 EXPORT_SYMBOL_GPL(iomap_readahead); 509 510 /* 511 * iomap_is_partially_uptodate checks whether blocks within a folio are 512 * uptodate or not. 513 * 514 * Returns true if all blocks which correspond to the specified part 515 * of the folio are uptodate. 516 */ 517 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 518 { 519 struct iomap_folio_state *ifs = folio->private; 520 struct inode *inode = folio->mapping->host; 521 unsigned first, last, i; 522 523 if (!ifs) 524 return false; 525 526 /* Caller's range may extend past the end of this folio */ 527 count = min(folio_size(folio) - from, count); 528 529 /* First and last blocks in range within folio */ 530 first = from >> inode->i_blkbits; 531 last = (from + count - 1) >> inode->i_blkbits; 532 533 for (i = first; i <= last; i++) 534 if (!ifs_block_is_uptodate(ifs, i)) 535 return false; 536 return true; 537 } 538 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 539 540 /** 541 * iomap_get_folio - get a folio reference for writing 542 * @iter: iteration structure 543 * @pos: start offset of write 544 * @len: Suggested size of folio to create. 545 * 546 * Returns a locked reference to the folio at @pos, or an error pointer if the 547 * folio could not be obtained. 548 */ 549 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 550 { 551 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 552 553 if (iter->flags & IOMAP_NOWAIT) 554 fgp |= FGP_NOWAIT; 555 fgp |= fgf_set_order(len); 556 557 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 558 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 559 } 560 EXPORT_SYMBOL_GPL(iomap_get_folio); 561 562 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 563 { 564 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 565 folio_size(folio)); 566 567 /* 568 * If the folio is dirty, we refuse to release our metadata because 569 * it may be partially dirty. Once we track per-block dirty state, 570 * we can release the metadata if every block is dirty. 571 */ 572 if (folio_test_dirty(folio)) 573 return false; 574 ifs_free(folio); 575 return true; 576 } 577 EXPORT_SYMBOL_GPL(iomap_release_folio); 578 579 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 580 { 581 trace_iomap_invalidate_folio(folio->mapping->host, 582 folio_pos(folio) + offset, len); 583 584 /* 585 * If we're invalidating the entire folio, clear the dirty state 586 * from it and release it to avoid unnecessary buildup of the LRU. 587 */ 588 if (offset == 0 && len == folio_size(folio)) { 589 WARN_ON_ONCE(folio_test_writeback(folio)); 590 folio_cancel_dirty(folio); 591 ifs_free(folio); 592 } 593 } 594 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 595 596 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 597 { 598 struct inode *inode = mapping->host; 599 size_t len = folio_size(folio); 600 601 ifs_alloc(inode, folio, 0); 602 iomap_set_range_dirty(folio, 0, len); 603 return filemap_dirty_folio(mapping, folio); 604 } 605 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 606 607 static void 608 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 609 { 610 loff_t i_size = i_size_read(inode); 611 612 /* 613 * Only truncate newly allocated pages beyoned EOF, even if the 614 * write started inside the existing inode size. 615 */ 616 if (pos + len > i_size) 617 truncate_pagecache_range(inode, max(pos, i_size), 618 pos + len - 1); 619 } 620 621 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 622 size_t poff, size_t plen, const struct iomap *iomap) 623 { 624 struct bio_vec bvec; 625 struct bio bio; 626 627 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 628 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 629 bio_add_folio_nofail(&bio, folio, plen, poff); 630 return submit_bio_wait(&bio); 631 } 632 633 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 634 size_t len, struct folio *folio) 635 { 636 const struct iomap *srcmap = iomap_iter_srcmap(iter); 637 struct iomap_folio_state *ifs; 638 loff_t block_size = i_blocksize(iter->inode); 639 loff_t block_start = round_down(pos, block_size); 640 loff_t block_end = round_up(pos + len, block_size); 641 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 642 size_t from = offset_in_folio(folio, pos), to = from + len; 643 size_t poff, plen; 644 645 /* 646 * If the write or zeroing completely overlaps the current folio, then 647 * entire folio will be dirtied so there is no need for 648 * per-block state tracking structures to be attached to this folio. 649 * For the unshare case, we must read in the ondisk contents because we 650 * are not changing pagecache contents. 651 */ 652 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 653 pos + len >= folio_pos(folio) + folio_size(folio)) 654 return 0; 655 656 ifs = ifs_alloc(iter->inode, folio, iter->flags); 657 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 658 return -EAGAIN; 659 660 if (folio_test_uptodate(folio)) 661 return 0; 662 folio_clear_error(folio); 663 664 do { 665 iomap_adjust_read_range(iter->inode, folio, &block_start, 666 block_end - block_start, &poff, &plen); 667 if (plen == 0) 668 break; 669 670 if (!(iter->flags & IOMAP_UNSHARE) && 671 (from <= poff || from >= poff + plen) && 672 (to <= poff || to >= poff + plen)) 673 continue; 674 675 if (iomap_block_needs_zeroing(iter, block_start)) { 676 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 677 return -EIO; 678 folio_zero_segments(folio, poff, from, to, poff + plen); 679 } else { 680 int status; 681 682 if (iter->flags & IOMAP_NOWAIT) 683 return -EAGAIN; 684 685 status = iomap_read_folio_sync(block_start, folio, 686 poff, plen, srcmap); 687 if (status) 688 return status; 689 } 690 iomap_set_range_uptodate(folio, poff, plen); 691 } while ((block_start += plen) < block_end); 692 693 return 0; 694 } 695 696 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 697 size_t len) 698 { 699 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 700 701 if (folio_ops && folio_ops->get_folio) 702 return folio_ops->get_folio(iter, pos, len); 703 else 704 return iomap_get_folio(iter, pos, len); 705 } 706 707 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 708 struct folio *folio) 709 { 710 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 711 712 if (folio_ops && folio_ops->put_folio) { 713 folio_ops->put_folio(iter->inode, pos, ret, folio); 714 } else { 715 folio_unlock(folio); 716 folio_put(folio); 717 } 718 } 719 720 static int iomap_write_begin_inline(const struct iomap_iter *iter, 721 struct folio *folio) 722 { 723 /* needs more work for the tailpacking case; disable for now */ 724 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 725 return -EIO; 726 return iomap_read_inline_data(iter, folio); 727 } 728 729 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 730 size_t len, struct folio **foliop) 731 { 732 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 733 const struct iomap *srcmap = iomap_iter_srcmap(iter); 734 struct folio *folio; 735 int status = 0; 736 737 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 738 if (srcmap != &iter->iomap) 739 BUG_ON(pos + len > srcmap->offset + srcmap->length); 740 741 if (fatal_signal_pending(current)) 742 return -EINTR; 743 744 if (!mapping_large_folio_support(iter->inode->i_mapping)) 745 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 746 747 folio = __iomap_get_folio(iter, pos, len); 748 if (IS_ERR(folio)) 749 return PTR_ERR(folio); 750 751 /* 752 * Now we have a locked folio, before we do anything with it we need to 753 * check that the iomap we have cached is not stale. The inode extent 754 * mapping can change due to concurrent IO in flight (e.g. 755 * IOMAP_UNWRITTEN state can change and memory reclaim could have 756 * reclaimed a previously partially written page at this index after IO 757 * completion before this write reaches this file offset) and hence we 758 * could do the wrong thing here (zero a page range incorrectly or fail 759 * to zero) and corrupt data. 760 */ 761 if (folio_ops && folio_ops->iomap_valid) { 762 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 763 &iter->iomap); 764 if (!iomap_valid) { 765 iter->iomap.flags |= IOMAP_F_STALE; 766 status = 0; 767 goto out_unlock; 768 } 769 } 770 771 if (pos + len > folio_pos(folio) + folio_size(folio)) 772 len = folio_pos(folio) + folio_size(folio) - pos; 773 774 if (srcmap->type == IOMAP_INLINE) 775 status = iomap_write_begin_inline(iter, folio); 776 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 777 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 778 else 779 status = __iomap_write_begin(iter, pos, len, folio); 780 781 if (unlikely(status)) 782 goto out_unlock; 783 784 *foliop = folio; 785 return 0; 786 787 out_unlock: 788 __iomap_put_folio(iter, pos, 0, folio); 789 iomap_write_failed(iter->inode, pos, len); 790 791 return status; 792 } 793 794 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 795 size_t copied, struct folio *folio) 796 { 797 flush_dcache_folio(folio); 798 799 /* 800 * The blocks that were entirely written will now be uptodate, so we 801 * don't have to worry about a read_folio reading them and overwriting a 802 * partial write. However, if we've encountered a short write and only 803 * partially written into a block, it will not be marked uptodate, so a 804 * read_folio might come in and destroy our partial write. 805 * 806 * Do the simplest thing and just treat any short write to a 807 * non-uptodate page as a zero-length write, and force the caller to 808 * redo the whole thing. 809 */ 810 if (unlikely(copied < len && !folio_test_uptodate(folio))) 811 return 0; 812 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 813 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 814 filemap_dirty_folio(inode->i_mapping, folio); 815 return copied; 816 } 817 818 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 819 struct folio *folio, loff_t pos, size_t copied) 820 { 821 const struct iomap *iomap = &iter->iomap; 822 void *addr; 823 824 WARN_ON_ONCE(!folio_test_uptodate(folio)); 825 BUG_ON(!iomap_inline_data_valid(iomap)); 826 827 flush_dcache_folio(folio); 828 addr = kmap_local_folio(folio, pos); 829 memcpy(iomap_inline_data(iomap, pos), addr, copied); 830 kunmap_local(addr); 831 832 mark_inode_dirty(iter->inode); 833 return copied; 834 } 835 836 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 837 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 838 size_t copied, struct folio *folio) 839 { 840 const struct iomap *srcmap = iomap_iter_srcmap(iter); 841 loff_t old_size = iter->inode->i_size; 842 size_t ret; 843 844 if (srcmap->type == IOMAP_INLINE) { 845 ret = iomap_write_end_inline(iter, folio, pos, copied); 846 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 847 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 848 copied, &folio->page, NULL); 849 } else { 850 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 851 } 852 853 /* 854 * Update the in-memory inode size after copying the data into the page 855 * cache. It's up to the file system to write the updated size to disk, 856 * preferably after I/O completion so that no stale data is exposed. 857 */ 858 if (pos + ret > old_size) { 859 i_size_write(iter->inode, pos + ret); 860 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 861 } 862 __iomap_put_folio(iter, pos, ret, folio); 863 864 if (old_size < pos) 865 pagecache_isize_extended(iter->inode, old_size, pos); 866 if (ret < len) 867 iomap_write_failed(iter->inode, pos + ret, len - ret); 868 return ret; 869 } 870 871 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 872 { 873 loff_t length = iomap_length(iter); 874 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER; 875 loff_t pos = iter->pos; 876 ssize_t written = 0; 877 long status = 0; 878 struct address_space *mapping = iter->inode->i_mapping; 879 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 880 881 do { 882 struct folio *folio; 883 size_t offset; /* Offset into folio */ 884 size_t bytes; /* Bytes to write to folio */ 885 size_t copied; /* Bytes copied from user */ 886 887 bytes = iov_iter_count(i); 888 retry: 889 offset = pos & (chunk - 1); 890 bytes = min(chunk - offset, bytes); 891 status = balance_dirty_pages_ratelimited_flags(mapping, 892 bdp_flags); 893 if (unlikely(status)) 894 break; 895 896 if (bytes > length) 897 bytes = length; 898 899 /* 900 * Bring in the user page that we'll copy from _first_. 901 * Otherwise there's a nasty deadlock on copying from the 902 * same page as we're writing to, without it being marked 903 * up-to-date. 904 * 905 * For async buffered writes the assumption is that the user 906 * page has already been faulted in. This can be optimized by 907 * faulting the user page. 908 */ 909 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 910 status = -EFAULT; 911 break; 912 } 913 914 status = iomap_write_begin(iter, pos, bytes, &folio); 915 if (unlikely(status)) 916 break; 917 if (iter->iomap.flags & IOMAP_F_STALE) 918 break; 919 920 offset = offset_in_folio(folio, pos); 921 if (bytes > folio_size(folio) - offset) 922 bytes = folio_size(folio) - offset; 923 924 if (mapping_writably_mapped(mapping)) 925 flush_dcache_folio(folio); 926 927 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 928 status = iomap_write_end(iter, pos, bytes, copied, folio); 929 930 if (unlikely(copied != status)) 931 iov_iter_revert(i, copied - status); 932 933 cond_resched(); 934 if (unlikely(status == 0)) { 935 /* 936 * A short copy made iomap_write_end() reject the 937 * thing entirely. Might be memory poisoning 938 * halfway through, might be a race with munmap, 939 * might be severe memory pressure. 940 */ 941 if (chunk > PAGE_SIZE) 942 chunk /= 2; 943 if (copied) { 944 bytes = copied; 945 goto retry; 946 } 947 } else { 948 pos += status; 949 written += status; 950 length -= status; 951 } 952 } while (iov_iter_count(i) && length); 953 954 if (status == -EAGAIN) { 955 iov_iter_revert(i, written); 956 return -EAGAIN; 957 } 958 return written ? written : status; 959 } 960 961 ssize_t 962 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 963 const struct iomap_ops *ops) 964 { 965 struct iomap_iter iter = { 966 .inode = iocb->ki_filp->f_mapping->host, 967 .pos = iocb->ki_pos, 968 .len = iov_iter_count(i), 969 .flags = IOMAP_WRITE, 970 }; 971 ssize_t ret; 972 973 if (iocb->ki_flags & IOCB_NOWAIT) 974 iter.flags |= IOMAP_NOWAIT; 975 976 while ((ret = iomap_iter(&iter, ops)) > 0) 977 iter.processed = iomap_write_iter(&iter, i); 978 979 if (unlikely(iter.pos == iocb->ki_pos)) 980 return ret; 981 ret = iter.pos - iocb->ki_pos; 982 iocb->ki_pos = iter.pos; 983 return ret; 984 } 985 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 986 987 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 988 struct folio *folio, loff_t start_byte, loff_t end_byte, 989 iomap_punch_t punch) 990 { 991 unsigned int first_blk, last_blk, i; 992 loff_t last_byte; 993 u8 blkbits = inode->i_blkbits; 994 struct iomap_folio_state *ifs; 995 int ret = 0; 996 997 /* 998 * When we have per-block dirty tracking, there can be 999 * blocks within a folio which are marked uptodate 1000 * but not dirty. In that case it is necessary to punch 1001 * out such blocks to avoid leaking any delalloc blocks. 1002 */ 1003 ifs = folio->private; 1004 if (!ifs) 1005 return ret; 1006 1007 last_byte = min_t(loff_t, end_byte - 1, 1008 folio_pos(folio) + folio_size(folio) - 1); 1009 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1010 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1011 for (i = first_blk; i <= last_blk; i++) { 1012 if (!ifs_block_is_dirty(folio, ifs, i)) { 1013 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1014 1 << blkbits); 1015 if (ret) 1016 return ret; 1017 } 1018 } 1019 1020 return ret; 1021 } 1022 1023 1024 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1025 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1026 iomap_punch_t punch) 1027 { 1028 int ret = 0; 1029 1030 if (!folio_test_dirty(folio)) 1031 return ret; 1032 1033 /* if dirty, punch up to offset */ 1034 if (start_byte > *punch_start_byte) { 1035 ret = punch(inode, *punch_start_byte, 1036 start_byte - *punch_start_byte); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 /* Punch non-dirty blocks within folio */ 1042 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1043 end_byte, punch); 1044 if (ret) 1045 return ret; 1046 1047 /* 1048 * Make sure the next punch start is correctly bound to 1049 * the end of this data range, not the end of the folio. 1050 */ 1051 *punch_start_byte = min_t(loff_t, end_byte, 1052 folio_pos(folio) + folio_size(folio)); 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * Scan the data range passed to us for dirty page cache folios. If we find a 1059 * dirty folio, punch out the preceding range and update the offset from which 1060 * the next punch will start from. 1061 * 1062 * We can punch out storage reservations under clean pages because they either 1063 * contain data that has been written back - in which case the delalloc punch 1064 * over that range is a no-op - or they have been read faults in which case they 1065 * contain zeroes and we can remove the delalloc backing range and any new 1066 * writes to those pages will do the normal hole filling operation... 1067 * 1068 * This makes the logic simple: we only need to keep the delalloc extents only 1069 * over the dirty ranges of the page cache. 1070 * 1071 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1072 * simplify range iterations. 1073 */ 1074 static int iomap_write_delalloc_scan(struct inode *inode, 1075 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1076 iomap_punch_t punch) 1077 { 1078 while (start_byte < end_byte) { 1079 struct folio *folio; 1080 int ret; 1081 1082 /* grab locked page */ 1083 folio = filemap_lock_folio(inode->i_mapping, 1084 start_byte >> PAGE_SHIFT); 1085 if (IS_ERR(folio)) { 1086 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1087 PAGE_SIZE; 1088 continue; 1089 } 1090 1091 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1092 start_byte, end_byte, punch); 1093 if (ret) { 1094 folio_unlock(folio); 1095 folio_put(folio); 1096 return ret; 1097 } 1098 1099 /* move offset to start of next folio in range */ 1100 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1101 folio_unlock(folio); 1102 folio_put(folio); 1103 } 1104 return 0; 1105 } 1106 1107 /* 1108 * Punch out all the delalloc blocks in the range given except for those that 1109 * have dirty data still pending in the page cache - those are going to be 1110 * written and so must still retain the delalloc backing for writeback. 1111 * 1112 * As we are scanning the page cache for data, we don't need to reimplement the 1113 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1114 * start and end of data ranges correctly even for sub-folio block sizes. This 1115 * byte range based iteration is especially convenient because it means we 1116 * don't have to care about variable size folios, nor where the start or end of 1117 * the data range lies within a folio, if they lie within the same folio or even 1118 * if there are multiple discontiguous data ranges within the folio. 1119 * 1120 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1121 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1122 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1123 * date. A write page fault can then mark it dirty. If we then fail a write() 1124 * beyond EOF into that up to date cached range, we allocate a delalloc block 1125 * beyond EOF and then have to punch it out. Because the range is up to date, 1126 * mapping_seek_hole_data() will return it, and we will skip the punch because 1127 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1128 * beyond EOF in this case as writeback will never write back and covert that 1129 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1130 * resulting in always punching out the range from the EOF to the end of the 1131 * range the iomap spans. 1132 * 1133 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1134 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1135 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1136 * returns the end of the data range (data_end). Using closed intervals would 1137 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1138 * the code to subtle off-by-one bugs.... 1139 */ 1140 static int iomap_write_delalloc_release(struct inode *inode, 1141 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1142 { 1143 loff_t punch_start_byte = start_byte; 1144 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1145 int error = 0; 1146 1147 /* 1148 * Lock the mapping to avoid races with page faults re-instantiating 1149 * folios and dirtying them via ->page_mkwrite whilst we walk the 1150 * cache and perform delalloc extent removal. Failing to do this can 1151 * leave dirty pages with no space reservation in the cache. 1152 */ 1153 filemap_invalidate_lock(inode->i_mapping); 1154 while (start_byte < scan_end_byte) { 1155 loff_t data_end; 1156 1157 start_byte = mapping_seek_hole_data(inode->i_mapping, 1158 start_byte, scan_end_byte, SEEK_DATA); 1159 /* 1160 * If there is no more data to scan, all that is left is to 1161 * punch out the remaining range. 1162 */ 1163 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1164 break; 1165 if (start_byte < 0) { 1166 error = start_byte; 1167 goto out_unlock; 1168 } 1169 WARN_ON_ONCE(start_byte < punch_start_byte); 1170 WARN_ON_ONCE(start_byte > scan_end_byte); 1171 1172 /* 1173 * We find the end of this contiguous cached data range by 1174 * seeking from start_byte to the beginning of the next hole. 1175 */ 1176 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1177 scan_end_byte, SEEK_HOLE); 1178 if (data_end < 0) { 1179 error = data_end; 1180 goto out_unlock; 1181 } 1182 WARN_ON_ONCE(data_end <= start_byte); 1183 WARN_ON_ONCE(data_end > scan_end_byte); 1184 1185 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1186 start_byte, data_end, punch); 1187 if (error) 1188 goto out_unlock; 1189 1190 /* The next data search starts at the end of this one. */ 1191 start_byte = data_end; 1192 } 1193 1194 if (punch_start_byte < end_byte) 1195 error = punch(inode, punch_start_byte, 1196 end_byte - punch_start_byte); 1197 out_unlock: 1198 filemap_invalidate_unlock(inode->i_mapping); 1199 return error; 1200 } 1201 1202 /* 1203 * When a short write occurs, the filesystem may need to remove reserved space 1204 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1205 * filesystems that use delayed allocation, we need to punch out delalloc 1206 * extents from the range that are not dirty in the page cache. As the write can 1207 * race with page faults, there can be dirty pages over the delalloc extent 1208 * outside the range of a short write but still within the delalloc extent 1209 * allocated for this iomap. 1210 * 1211 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1212 * simplify range iterations. 1213 * 1214 * The punch() callback *must* only punch delalloc extents in the range passed 1215 * to it. It must skip over all other types of extents in the range and leave 1216 * them completely unchanged. It must do this punch atomically with respect to 1217 * other extent modifications. 1218 * 1219 * The punch() callback may be called with a folio locked to prevent writeback 1220 * extent allocation racing at the edge of the range we are currently punching. 1221 * The locked folio may or may not cover the range being punched, so it is not 1222 * safe for the punch() callback to lock folios itself. 1223 * 1224 * Lock order is: 1225 * 1226 * inode->i_rwsem (shared or exclusive) 1227 * inode->i_mapping->invalidate_lock (exclusive) 1228 * folio_lock() 1229 * ->punch 1230 * internal filesystem allocation lock 1231 */ 1232 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1233 struct iomap *iomap, loff_t pos, loff_t length, 1234 ssize_t written, iomap_punch_t punch) 1235 { 1236 loff_t start_byte; 1237 loff_t end_byte; 1238 unsigned int blocksize = i_blocksize(inode); 1239 1240 if (iomap->type != IOMAP_DELALLOC) 1241 return 0; 1242 1243 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1244 if (!(iomap->flags & IOMAP_F_NEW)) 1245 return 0; 1246 1247 /* 1248 * start_byte refers to the first unused block after a short write. If 1249 * nothing was written, round offset down to point at the first block in 1250 * the range. 1251 */ 1252 if (unlikely(!written)) 1253 start_byte = round_down(pos, blocksize); 1254 else 1255 start_byte = round_up(pos + written, blocksize); 1256 end_byte = round_up(pos + length, blocksize); 1257 1258 /* Nothing to do if we've written the entire delalloc extent */ 1259 if (start_byte >= end_byte) 1260 return 0; 1261 1262 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1263 punch); 1264 } 1265 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1266 1267 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1268 { 1269 struct iomap *iomap = &iter->iomap; 1270 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1271 loff_t pos = iter->pos; 1272 loff_t length = iomap_length(iter); 1273 loff_t written = 0; 1274 1275 /* don't bother with blocks that are not shared to start with */ 1276 if (!(iomap->flags & IOMAP_F_SHARED)) 1277 return length; 1278 /* don't bother with holes or unwritten extents */ 1279 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1280 return length; 1281 1282 do { 1283 struct folio *folio; 1284 int status; 1285 size_t offset; 1286 size_t bytes = min_t(u64, SIZE_MAX, length); 1287 1288 status = iomap_write_begin(iter, pos, bytes, &folio); 1289 if (unlikely(status)) 1290 return status; 1291 if (iomap->flags & IOMAP_F_STALE) 1292 break; 1293 1294 offset = offset_in_folio(folio, pos); 1295 if (bytes > folio_size(folio) - offset) 1296 bytes = folio_size(folio) - offset; 1297 1298 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1299 if (WARN_ON_ONCE(bytes == 0)) 1300 return -EIO; 1301 1302 cond_resched(); 1303 1304 pos += bytes; 1305 written += bytes; 1306 length -= bytes; 1307 1308 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1309 } while (length > 0); 1310 1311 return written; 1312 } 1313 1314 int 1315 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1316 const struct iomap_ops *ops) 1317 { 1318 struct iomap_iter iter = { 1319 .inode = inode, 1320 .pos = pos, 1321 .len = len, 1322 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1323 }; 1324 int ret; 1325 1326 while ((ret = iomap_iter(&iter, ops)) > 0) 1327 iter.processed = iomap_unshare_iter(&iter); 1328 return ret; 1329 } 1330 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1331 1332 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1333 { 1334 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1335 loff_t pos = iter->pos; 1336 loff_t length = iomap_length(iter); 1337 loff_t written = 0; 1338 1339 /* already zeroed? we're done. */ 1340 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1341 return length; 1342 1343 do { 1344 struct folio *folio; 1345 int status; 1346 size_t offset; 1347 size_t bytes = min_t(u64, SIZE_MAX, length); 1348 1349 status = iomap_write_begin(iter, pos, bytes, &folio); 1350 if (status) 1351 return status; 1352 if (iter->iomap.flags & IOMAP_F_STALE) 1353 break; 1354 1355 offset = offset_in_folio(folio, pos); 1356 if (bytes > folio_size(folio) - offset) 1357 bytes = folio_size(folio) - offset; 1358 1359 folio_zero_range(folio, offset, bytes); 1360 folio_mark_accessed(folio); 1361 1362 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1363 if (WARN_ON_ONCE(bytes == 0)) 1364 return -EIO; 1365 1366 pos += bytes; 1367 length -= bytes; 1368 written += bytes; 1369 } while (length > 0); 1370 1371 if (did_zero) 1372 *did_zero = true; 1373 return written; 1374 } 1375 1376 int 1377 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1378 const struct iomap_ops *ops) 1379 { 1380 struct iomap_iter iter = { 1381 .inode = inode, 1382 .pos = pos, 1383 .len = len, 1384 .flags = IOMAP_ZERO, 1385 }; 1386 int ret; 1387 1388 while ((ret = iomap_iter(&iter, ops)) > 0) 1389 iter.processed = iomap_zero_iter(&iter, did_zero); 1390 return ret; 1391 } 1392 EXPORT_SYMBOL_GPL(iomap_zero_range); 1393 1394 int 1395 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1396 const struct iomap_ops *ops) 1397 { 1398 unsigned int blocksize = i_blocksize(inode); 1399 unsigned int off = pos & (blocksize - 1); 1400 1401 /* Block boundary? Nothing to do */ 1402 if (!off) 1403 return 0; 1404 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1405 } 1406 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1407 1408 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1409 struct folio *folio) 1410 { 1411 loff_t length = iomap_length(iter); 1412 int ret; 1413 1414 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1415 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1416 &iter->iomap); 1417 if (ret) 1418 return ret; 1419 block_commit_write(&folio->page, 0, length); 1420 } else { 1421 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1422 folio_mark_dirty(folio); 1423 } 1424 1425 return length; 1426 } 1427 1428 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1429 { 1430 struct iomap_iter iter = { 1431 .inode = file_inode(vmf->vma->vm_file), 1432 .flags = IOMAP_WRITE | IOMAP_FAULT, 1433 }; 1434 struct folio *folio = page_folio(vmf->page); 1435 ssize_t ret; 1436 1437 folio_lock(folio); 1438 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1439 if (ret < 0) 1440 goto out_unlock; 1441 iter.pos = folio_pos(folio); 1442 iter.len = ret; 1443 while ((ret = iomap_iter(&iter, ops)) > 0) 1444 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1445 1446 if (ret < 0) 1447 goto out_unlock; 1448 folio_wait_stable(folio); 1449 return VM_FAULT_LOCKED; 1450 out_unlock: 1451 folio_unlock(folio); 1452 return vmf_fs_error(ret); 1453 } 1454 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1455 1456 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1457 size_t len, int error) 1458 { 1459 struct iomap_folio_state *ifs = folio->private; 1460 1461 if (error) { 1462 folio_set_error(folio); 1463 mapping_set_error(inode->i_mapping, error); 1464 } 1465 1466 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1467 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1468 1469 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1470 folio_end_writeback(folio); 1471 } 1472 1473 /* 1474 * We're now finished for good with this ioend structure. Update the page 1475 * state, release holds on bios, and finally free up memory. Do not use the 1476 * ioend after this. 1477 */ 1478 static u32 1479 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1480 { 1481 struct inode *inode = ioend->io_inode; 1482 struct bio *bio = &ioend->io_inline_bio; 1483 struct bio *last = ioend->io_bio, *next; 1484 u64 start = bio->bi_iter.bi_sector; 1485 loff_t offset = ioend->io_offset; 1486 bool quiet = bio_flagged(bio, BIO_QUIET); 1487 u32 folio_count = 0; 1488 1489 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1490 struct folio_iter fi; 1491 1492 /* 1493 * For the last bio, bi_private points to the ioend, so we 1494 * need to explicitly end the iteration here. 1495 */ 1496 if (bio == last) 1497 next = NULL; 1498 else 1499 next = bio->bi_private; 1500 1501 /* walk all folios in bio, ending page IO on them */ 1502 bio_for_each_folio_all(fi, bio) { 1503 iomap_finish_folio_write(inode, fi.folio, fi.length, 1504 error); 1505 folio_count++; 1506 } 1507 bio_put(bio); 1508 } 1509 /* The ioend has been freed by bio_put() */ 1510 1511 if (unlikely(error && !quiet)) { 1512 printk_ratelimited(KERN_ERR 1513 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1514 inode->i_sb->s_id, inode->i_ino, offset, start); 1515 } 1516 return folio_count; 1517 } 1518 1519 /* 1520 * Ioend completion routine for merged bios. This can only be called from task 1521 * contexts as merged ioends can be of unbound length. Hence we have to break up 1522 * the writeback completions into manageable chunks to avoid long scheduler 1523 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1524 * good batch processing throughput without creating adverse scheduler latency 1525 * conditions. 1526 */ 1527 void 1528 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1529 { 1530 struct list_head tmp; 1531 u32 completions; 1532 1533 might_sleep(); 1534 1535 list_replace_init(&ioend->io_list, &tmp); 1536 completions = iomap_finish_ioend(ioend, error); 1537 1538 while (!list_empty(&tmp)) { 1539 if (completions > IOEND_BATCH_SIZE * 8) { 1540 cond_resched(); 1541 completions = 0; 1542 } 1543 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1544 list_del_init(&ioend->io_list); 1545 completions += iomap_finish_ioend(ioend, error); 1546 } 1547 } 1548 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1549 1550 /* 1551 * We can merge two adjacent ioends if they have the same set of work to do. 1552 */ 1553 static bool 1554 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1555 { 1556 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1557 return false; 1558 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1559 (next->io_flags & IOMAP_F_SHARED)) 1560 return false; 1561 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1562 (next->io_type == IOMAP_UNWRITTEN)) 1563 return false; 1564 if (ioend->io_offset + ioend->io_size != next->io_offset) 1565 return false; 1566 /* 1567 * Do not merge physically discontiguous ioends. The filesystem 1568 * completion functions will have to iterate the physical 1569 * discontiguities even if we merge the ioends at a logical level, so 1570 * we don't gain anything by merging physical discontiguities here. 1571 * 1572 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1573 * submission so does not point to the start sector of the bio at 1574 * completion. 1575 */ 1576 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1577 return false; 1578 return true; 1579 } 1580 1581 void 1582 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1583 { 1584 struct iomap_ioend *next; 1585 1586 INIT_LIST_HEAD(&ioend->io_list); 1587 1588 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1589 io_list))) { 1590 if (!iomap_ioend_can_merge(ioend, next)) 1591 break; 1592 list_move_tail(&next->io_list, &ioend->io_list); 1593 ioend->io_size += next->io_size; 1594 } 1595 } 1596 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1597 1598 static int 1599 iomap_ioend_compare(void *priv, const struct list_head *a, 1600 const struct list_head *b) 1601 { 1602 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1603 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1604 1605 if (ia->io_offset < ib->io_offset) 1606 return -1; 1607 if (ia->io_offset > ib->io_offset) 1608 return 1; 1609 return 0; 1610 } 1611 1612 void 1613 iomap_sort_ioends(struct list_head *ioend_list) 1614 { 1615 list_sort(NULL, ioend_list, iomap_ioend_compare); 1616 } 1617 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1618 1619 static void iomap_writepage_end_bio(struct bio *bio) 1620 { 1621 struct iomap_ioend *ioend = bio->bi_private; 1622 1623 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1624 } 1625 1626 /* 1627 * Submit the final bio for an ioend. 1628 * 1629 * If @error is non-zero, it means that we have a situation where some part of 1630 * the submission process has failed after we've marked pages for writeback 1631 * and unlocked them. In this situation, we need to fail the bio instead of 1632 * submitting it. This typically only happens on a filesystem shutdown. 1633 */ 1634 static int 1635 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1636 int error) 1637 { 1638 ioend->io_bio->bi_private = ioend; 1639 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1640 1641 if (wpc->ops->prepare_ioend) 1642 error = wpc->ops->prepare_ioend(ioend, error); 1643 if (error) { 1644 /* 1645 * If we're failing the IO now, just mark the ioend with an 1646 * error and finish it. This will run IO completion immediately 1647 * as there is only one reference to the ioend at this point in 1648 * time. 1649 */ 1650 ioend->io_bio->bi_status = errno_to_blk_status(error); 1651 bio_endio(ioend->io_bio); 1652 return error; 1653 } 1654 1655 submit_bio(ioend->io_bio); 1656 return 0; 1657 } 1658 1659 static struct iomap_ioend * 1660 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1661 loff_t offset, sector_t sector, struct writeback_control *wbc) 1662 { 1663 struct iomap_ioend *ioend; 1664 struct bio *bio; 1665 1666 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1667 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1668 GFP_NOFS, &iomap_ioend_bioset); 1669 bio->bi_iter.bi_sector = sector; 1670 wbc_init_bio(wbc, bio); 1671 1672 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1673 INIT_LIST_HEAD(&ioend->io_list); 1674 ioend->io_type = wpc->iomap.type; 1675 ioend->io_flags = wpc->iomap.flags; 1676 ioend->io_inode = inode; 1677 ioend->io_size = 0; 1678 ioend->io_folios = 0; 1679 ioend->io_offset = offset; 1680 ioend->io_bio = bio; 1681 ioend->io_sector = sector; 1682 return ioend; 1683 } 1684 1685 /* 1686 * Allocate a new bio, and chain the old bio to the new one. 1687 * 1688 * Note that we have to perform the chaining in this unintuitive order 1689 * so that the bi_private linkage is set up in the right direction for the 1690 * traversal in iomap_finish_ioend(). 1691 */ 1692 static struct bio * 1693 iomap_chain_bio(struct bio *prev) 1694 { 1695 struct bio *new; 1696 1697 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1698 bio_clone_blkg_association(new, prev); 1699 new->bi_iter.bi_sector = bio_end_sector(prev); 1700 1701 bio_chain(prev, new); 1702 bio_get(prev); /* for iomap_finish_ioend */ 1703 submit_bio(prev); 1704 return new; 1705 } 1706 1707 static bool 1708 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1709 sector_t sector) 1710 { 1711 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1712 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1713 return false; 1714 if (wpc->iomap.type != wpc->ioend->io_type) 1715 return false; 1716 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1717 return false; 1718 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1719 return false; 1720 /* 1721 * Limit ioend bio chain lengths to minimise IO completion latency. This 1722 * also prevents long tight loops ending page writeback on all the 1723 * folios in the ioend. 1724 */ 1725 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1726 return false; 1727 return true; 1728 } 1729 1730 /* 1731 * Test to see if we have an existing ioend structure that we could append to 1732 * first; otherwise finish off the current ioend and start another. 1733 */ 1734 static void 1735 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1736 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc, 1737 struct writeback_control *wbc, struct list_head *iolist) 1738 { 1739 sector_t sector = iomap_sector(&wpc->iomap, pos); 1740 unsigned len = i_blocksize(inode); 1741 size_t poff = offset_in_folio(folio, pos); 1742 1743 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1744 if (wpc->ioend) 1745 list_add(&wpc->ioend->io_list, iolist); 1746 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1747 } 1748 1749 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1750 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1751 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff); 1752 } 1753 1754 if (ifs) 1755 atomic_add(len, &ifs->write_bytes_pending); 1756 wpc->ioend->io_size += len; 1757 wbc_account_cgroup_owner(wbc, &folio->page, len); 1758 } 1759 1760 /* 1761 * We implement an immediate ioend submission policy here to avoid needing to 1762 * chain multiple ioends and hence nest mempool allocations which can violate 1763 * the forward progress guarantees we need to provide. The current ioend we're 1764 * adding blocks to is cached in the writepage context, and if the new block 1765 * doesn't append to the cached ioend, it will create a new ioend and cache that 1766 * instead. 1767 * 1768 * If a new ioend is created and cached, the old ioend is returned and queued 1769 * locally for submission once the entire page is processed or an error has been 1770 * detected. While ioends are submitted immediately after they are completed, 1771 * batching optimisations are provided by higher level block plugging. 1772 * 1773 * At the end of a writeback pass, there will be a cached ioend remaining on the 1774 * writepage context that the caller will need to submit. 1775 */ 1776 static int 1777 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1778 struct writeback_control *wbc, struct inode *inode, 1779 struct folio *folio, u64 end_pos) 1780 { 1781 struct iomap_folio_state *ifs = folio->private; 1782 struct iomap_ioend *ioend, *next; 1783 unsigned len = i_blocksize(inode); 1784 unsigned nblocks = i_blocks_per_folio(inode, folio); 1785 u64 pos = folio_pos(folio); 1786 int error = 0, count = 0, i; 1787 LIST_HEAD(submit_list); 1788 1789 WARN_ON_ONCE(end_pos <= pos); 1790 1791 if (!ifs && nblocks > 1) { 1792 ifs = ifs_alloc(inode, folio, 0); 1793 iomap_set_range_dirty(folio, 0, end_pos - pos); 1794 } 1795 1796 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0); 1797 1798 /* 1799 * Walk through the folio to find areas to write back. If we 1800 * run off the end of the current map or find the current map 1801 * invalid, grab a new one. 1802 */ 1803 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1804 if (ifs && !ifs_block_is_dirty(folio, ifs, i)) 1805 continue; 1806 1807 error = wpc->ops->map_blocks(wpc, inode, pos); 1808 if (error) 1809 break; 1810 trace_iomap_writepage_map(inode, &wpc->iomap); 1811 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1812 continue; 1813 if (wpc->iomap.type == IOMAP_HOLE) 1814 continue; 1815 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc, 1816 &submit_list); 1817 count++; 1818 } 1819 if (count) 1820 wpc->ioend->io_folios++; 1821 1822 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1823 WARN_ON_ONCE(!folio_test_locked(folio)); 1824 WARN_ON_ONCE(folio_test_writeback(folio)); 1825 WARN_ON_ONCE(folio_test_dirty(folio)); 1826 1827 /* 1828 * We cannot cancel the ioend directly here on error. We may have 1829 * already set other pages under writeback and hence we have to run I/O 1830 * completion to mark the error state of the pages under writeback 1831 * appropriately. 1832 */ 1833 if (unlikely(error)) { 1834 /* 1835 * Let the filesystem know what portion of the current page 1836 * failed to map. If the page hasn't been added to ioend, it 1837 * won't be affected by I/O completion and we must unlock it 1838 * now. 1839 */ 1840 if (wpc->ops->discard_folio) 1841 wpc->ops->discard_folio(folio, pos); 1842 if (!count) { 1843 folio_unlock(folio); 1844 goto done; 1845 } 1846 } 1847 1848 /* 1849 * We can have dirty bits set past end of file in page_mkwrite path 1850 * while mapping the last partial folio. Hence it's better to clear 1851 * all the dirty bits in the folio here. 1852 */ 1853 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1854 folio_start_writeback(folio); 1855 folio_unlock(folio); 1856 1857 /* 1858 * Preserve the original error if there was one; catch 1859 * submission errors here and propagate into subsequent ioend 1860 * submissions. 1861 */ 1862 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1863 int error2; 1864 1865 list_del_init(&ioend->io_list); 1866 error2 = iomap_submit_ioend(wpc, ioend, error); 1867 if (error2 && !error) 1868 error = error2; 1869 } 1870 1871 /* 1872 * We can end up here with no error and nothing to write only if we race 1873 * with a partial page truncate on a sub-page block sized filesystem. 1874 */ 1875 if (!count) 1876 folio_end_writeback(folio); 1877 done: 1878 mapping_set_error(inode->i_mapping, error); 1879 return error; 1880 } 1881 1882 /* 1883 * Write out a dirty page. 1884 * 1885 * For delalloc space on the page, we need to allocate space and flush it. 1886 * For unwritten space on the page, we need to start the conversion to 1887 * regular allocated space. 1888 */ 1889 static int iomap_do_writepage(struct folio *folio, 1890 struct writeback_control *wbc, void *data) 1891 { 1892 struct iomap_writepage_ctx *wpc = data; 1893 struct inode *inode = folio->mapping->host; 1894 u64 end_pos, isize; 1895 1896 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1897 1898 /* 1899 * Refuse to write the folio out if we're called from reclaim context. 1900 * 1901 * This avoids stack overflows when called from deeply used stacks in 1902 * random callers for direct reclaim or memcg reclaim. We explicitly 1903 * allow reclaim from kswapd as the stack usage there is relatively low. 1904 * 1905 * This should never happen except in the case of a VM regression so 1906 * warn about it. 1907 */ 1908 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1909 PF_MEMALLOC)) 1910 goto redirty; 1911 1912 /* 1913 * Is this folio beyond the end of the file? 1914 * 1915 * The folio index is less than the end_index, adjust the end_pos 1916 * to the highest offset that this folio should represent. 1917 * ----------------------------------------------------- 1918 * | file mapping | <EOF> | 1919 * ----------------------------------------------------- 1920 * | Page ... | Page N-2 | Page N-1 | Page N | | 1921 * ^--------------------------------^----------|-------- 1922 * | desired writeback range | see else | 1923 * ---------------------------------^------------------| 1924 */ 1925 isize = i_size_read(inode); 1926 end_pos = folio_pos(folio) + folio_size(folio); 1927 if (end_pos > isize) { 1928 /* 1929 * Check whether the page to write out is beyond or straddles 1930 * i_size or not. 1931 * ------------------------------------------------------- 1932 * | file mapping | <EOF> | 1933 * ------------------------------------------------------- 1934 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1935 * ^--------------------------------^-----------|--------- 1936 * | | Straddles | 1937 * ---------------------------------^-----------|--------| 1938 */ 1939 size_t poff = offset_in_folio(folio, isize); 1940 pgoff_t end_index = isize >> PAGE_SHIFT; 1941 1942 /* 1943 * Skip the page if it's fully outside i_size, e.g. 1944 * due to a truncate operation that's in progress. We've 1945 * cleaned this page and truncate will finish things off for 1946 * us. 1947 * 1948 * Note that the end_index is unsigned long. If the given 1949 * offset is greater than 16TB on a 32-bit system then if we 1950 * checked if the page is fully outside i_size with 1951 * "if (page->index >= end_index + 1)", "end_index + 1" would 1952 * overflow and evaluate to 0. Hence this page would be 1953 * redirtied and written out repeatedly, which would result in 1954 * an infinite loop; the user program performing this operation 1955 * would hang. Instead, we can detect this situation by 1956 * checking if the page is totally beyond i_size or if its 1957 * offset is just equal to the EOF. 1958 */ 1959 if (folio->index > end_index || 1960 (folio->index == end_index && poff == 0)) 1961 goto unlock; 1962 1963 /* 1964 * The page straddles i_size. It must be zeroed out on each 1965 * and every writepage invocation because it may be mmapped. 1966 * "A file is mapped in multiples of the page size. For a file 1967 * that is not a multiple of the page size, the remaining 1968 * memory is zeroed when mapped, and writes to that region are 1969 * not written out to the file." 1970 */ 1971 folio_zero_segment(folio, poff, folio_size(folio)); 1972 end_pos = isize; 1973 } 1974 1975 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1976 1977 redirty: 1978 folio_redirty_for_writepage(wbc, folio); 1979 unlock: 1980 folio_unlock(folio); 1981 return 0; 1982 } 1983 1984 int 1985 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1986 struct iomap_writepage_ctx *wpc, 1987 const struct iomap_writeback_ops *ops) 1988 { 1989 int ret; 1990 1991 wpc->ops = ops; 1992 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1993 if (!wpc->ioend) 1994 return ret; 1995 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1996 } 1997 EXPORT_SYMBOL_GPL(iomap_writepages); 1998 1999 static int __init iomap_init(void) 2000 { 2001 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 2002 offsetof(struct iomap_ioend, io_inline_bio), 2003 BIOSET_NEED_BVECS); 2004 } 2005 fs_initcall(iomap_init); 2006