1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/iomap.h> 7 #include <linux/buffer_head.h> 8 #include <linux/writeback.h> 9 #include <linux/swap.h> 10 #include <linux/migrate.h> 11 #include "trace.h" 12 13 #include "../internal.h" 14 15 /* 16 * Structure allocated for each folio to track per-block uptodate, dirty state 17 * and I/O completions. 18 */ 19 struct iomap_folio_state { 20 spinlock_t state_lock; 21 unsigned int read_bytes_pending; 22 atomic_t write_bytes_pending; 23 24 /* 25 * Each block has two bits in this bitmap: 26 * Bits [0..blocks_per_folio) has the uptodate status. 27 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 28 */ 29 unsigned long state[]; 30 }; 31 32 static inline bool ifs_is_fully_uptodate(struct folio *folio, 33 struct iomap_folio_state *ifs) 34 { 35 struct inode *inode = folio->mapping->host; 36 37 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 38 } 39 40 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 41 unsigned int block) 42 { 43 return test_bit(block, ifs->state); 44 } 45 46 static bool ifs_set_range_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs, size_t off, size_t len) 48 { 49 struct inode *inode = folio->mapping->host; 50 unsigned int first_blk = off >> inode->i_blkbits; 51 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 52 unsigned int nr_blks = last_blk - first_blk + 1; 53 54 bitmap_set(ifs->state, first_blk, nr_blks); 55 return ifs_is_fully_uptodate(folio, ifs); 56 } 57 58 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 59 size_t len) 60 { 61 struct iomap_folio_state *ifs = folio->private; 62 unsigned long flags; 63 bool uptodate = true; 64 65 if (folio_test_uptodate(folio)) 66 return; 67 68 if (ifs) { 69 spin_lock_irqsave(&ifs->state_lock, flags); 70 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 71 spin_unlock_irqrestore(&ifs->state_lock, flags); 72 } 73 74 if (uptodate) 75 folio_mark_uptodate(folio); 76 } 77 78 static inline bool ifs_block_is_dirty(struct folio *folio, 79 struct iomap_folio_state *ifs, int block) 80 { 81 struct inode *inode = folio->mapping->host; 82 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 83 84 return test_bit(block + blks_per_folio, ifs->state); 85 } 86 87 static unsigned ifs_find_dirty_range(struct folio *folio, 88 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 89 { 90 struct inode *inode = folio->mapping->host; 91 unsigned start_blk = 92 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 93 unsigned end_blk = min_not_zero( 94 offset_in_folio(folio, range_end) >> inode->i_blkbits, 95 i_blocks_per_folio(inode, folio)); 96 unsigned nblks = 1; 97 98 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 99 if (++start_blk == end_blk) 100 return 0; 101 102 while (start_blk + nblks < end_blk) { 103 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 104 break; 105 nblks++; 106 } 107 108 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 109 return nblks << inode->i_blkbits; 110 } 111 112 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 113 u64 range_end) 114 { 115 struct iomap_folio_state *ifs = folio->private; 116 117 if (*range_start >= range_end) 118 return 0; 119 120 if (ifs) 121 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 122 return range_end - *range_start; 123 } 124 125 static void ifs_clear_range_dirty(struct folio *folio, 126 struct iomap_folio_state *ifs, size_t off, size_t len) 127 { 128 struct inode *inode = folio->mapping->host; 129 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 130 unsigned int first_blk = (off >> inode->i_blkbits); 131 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 132 unsigned int nr_blks = last_blk - first_blk + 1; 133 unsigned long flags; 134 135 spin_lock_irqsave(&ifs->state_lock, flags); 136 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 137 spin_unlock_irqrestore(&ifs->state_lock, flags); 138 } 139 140 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 141 { 142 struct iomap_folio_state *ifs = folio->private; 143 144 if (ifs) 145 ifs_clear_range_dirty(folio, ifs, off, len); 146 } 147 148 static void ifs_set_range_dirty(struct folio *folio, 149 struct iomap_folio_state *ifs, size_t off, size_t len) 150 { 151 struct inode *inode = folio->mapping->host; 152 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 153 unsigned int first_blk = (off >> inode->i_blkbits); 154 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 155 unsigned int nr_blks = last_blk - first_blk + 1; 156 unsigned long flags; 157 158 spin_lock_irqsave(&ifs->state_lock, flags); 159 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 160 spin_unlock_irqrestore(&ifs->state_lock, flags); 161 } 162 163 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 164 { 165 struct iomap_folio_state *ifs = folio->private; 166 167 if (ifs) 168 ifs_set_range_dirty(folio, ifs, off, len); 169 } 170 171 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 172 struct folio *folio, unsigned int flags) 173 { 174 struct iomap_folio_state *ifs = folio->private; 175 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 176 gfp_t gfp; 177 178 if (ifs || nr_blocks <= 1) 179 return ifs; 180 181 if (flags & IOMAP_NOWAIT) 182 gfp = GFP_NOWAIT; 183 else 184 gfp = GFP_NOFS | __GFP_NOFAIL; 185 186 /* 187 * ifs->state tracks two sets of state flags when the 188 * filesystem block size is smaller than the folio size. 189 * The first state tracks per-block uptodate and the 190 * second tracks per-block dirty state. 191 */ 192 ifs = kzalloc(struct_size(ifs, state, 193 BITS_TO_LONGS(2 * nr_blocks)), gfp); 194 if (!ifs) 195 return ifs; 196 197 spin_lock_init(&ifs->state_lock); 198 if (folio_test_uptodate(folio)) 199 bitmap_set(ifs->state, 0, nr_blocks); 200 if (folio_test_dirty(folio)) 201 bitmap_set(ifs->state, nr_blocks, nr_blocks); 202 folio_attach_private(folio, ifs); 203 204 return ifs; 205 } 206 207 static void ifs_free(struct folio *folio) 208 { 209 struct iomap_folio_state *ifs = folio_detach_private(folio); 210 211 if (!ifs) 212 return; 213 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 214 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 215 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 216 folio_test_uptodate(folio)); 217 kfree(ifs); 218 } 219 220 /* 221 * Calculate the range inside the folio that we actually need to read. 222 */ 223 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 224 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 225 { 226 struct iomap_folio_state *ifs = folio->private; 227 loff_t orig_pos = *pos; 228 loff_t isize = i_size_read(inode); 229 unsigned block_bits = inode->i_blkbits; 230 unsigned block_size = (1 << block_bits); 231 size_t poff = offset_in_folio(folio, *pos); 232 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 233 size_t orig_plen = plen; 234 unsigned first = poff >> block_bits; 235 unsigned last = (poff + plen - 1) >> block_bits; 236 237 /* 238 * If the block size is smaller than the page size, we need to check the 239 * per-block uptodate status and adjust the offset and length if needed 240 * to avoid reading in already uptodate ranges. 241 */ 242 if (ifs) { 243 unsigned int i; 244 245 /* move forward for each leading block marked uptodate */ 246 for (i = first; i <= last; i++) { 247 if (!ifs_block_is_uptodate(ifs, i)) 248 break; 249 *pos += block_size; 250 poff += block_size; 251 plen -= block_size; 252 first++; 253 } 254 255 /* truncate len if we find any trailing uptodate block(s) */ 256 while (++i <= last) { 257 if (ifs_block_is_uptodate(ifs, i)) { 258 plen -= (last - i + 1) * block_size; 259 last = i - 1; 260 break; 261 } 262 } 263 } 264 265 /* 266 * If the extent spans the block that contains the i_size, we need to 267 * handle both halves separately so that we properly zero data in the 268 * page cache for blocks that are entirely outside of i_size. 269 */ 270 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 271 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 272 273 if (first <= end && last > end) 274 plen -= (last - end) * block_size; 275 } 276 277 *offp = poff; 278 *lenp = plen; 279 } 280 281 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 282 loff_t pos) 283 { 284 const struct iomap *srcmap = iomap_iter_srcmap(iter); 285 286 return srcmap->type != IOMAP_MAPPED || 287 (srcmap->flags & IOMAP_F_NEW) || 288 pos >= i_size_read(iter->inode); 289 } 290 291 /** 292 * iomap_read_inline_data - copy inline data into the page cache 293 * @iter: iteration structure 294 * @folio: folio to copy to 295 * 296 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 297 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 298 * Returns zero for success to complete the read, or the usual negative errno. 299 */ 300 static int iomap_read_inline_data(const struct iomap_iter *iter, 301 struct folio *folio) 302 { 303 const struct iomap *iomap = iomap_iter_srcmap(iter); 304 size_t size = i_size_read(iter->inode) - iomap->offset; 305 size_t offset = offset_in_folio(folio, iomap->offset); 306 307 if (WARN_ON_ONCE(!iomap->inline_data)) 308 return -EIO; 309 310 if (folio_test_uptodate(folio)) 311 return 0; 312 313 if (WARN_ON_ONCE(size > iomap->length)) 314 return -EIO; 315 if (offset > 0) 316 ifs_alloc(iter->inode, folio, iter->flags); 317 318 folio_fill_tail(folio, offset, iomap->inline_data, size); 319 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 320 return 0; 321 } 322 323 #ifdef CONFIG_BLOCK 324 static void iomap_finish_folio_read(struct folio *folio, size_t off, 325 size_t len, int error) 326 { 327 struct iomap_folio_state *ifs = folio->private; 328 bool uptodate = !error; 329 bool finished = true; 330 331 if (ifs) { 332 unsigned long flags; 333 334 spin_lock_irqsave(&ifs->state_lock, flags); 335 if (!error) 336 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 337 ifs->read_bytes_pending -= len; 338 finished = !ifs->read_bytes_pending; 339 spin_unlock_irqrestore(&ifs->state_lock, flags); 340 } 341 342 if (finished) 343 folio_end_read(folio, uptodate); 344 } 345 346 static void iomap_read_end_io(struct bio *bio) 347 { 348 int error = blk_status_to_errno(bio->bi_status); 349 struct folio_iter fi; 350 351 bio_for_each_folio_all(fi, bio) 352 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 353 bio_put(bio); 354 } 355 356 struct iomap_readpage_ctx { 357 struct folio *cur_folio; 358 bool cur_folio_in_bio; 359 struct bio *bio; 360 struct readahead_control *rac; 361 }; 362 363 static int iomap_readpage_iter(struct iomap_iter *iter, 364 struct iomap_readpage_ctx *ctx) 365 { 366 const struct iomap *iomap = &iter->iomap; 367 loff_t pos = iter->pos; 368 loff_t length = iomap_length(iter); 369 struct folio *folio = ctx->cur_folio; 370 struct iomap_folio_state *ifs; 371 size_t poff, plen; 372 sector_t sector; 373 int ret; 374 375 if (iomap->type == IOMAP_INLINE) { 376 ret = iomap_read_inline_data(iter, folio); 377 if (ret) 378 return ret; 379 return iomap_iter_advance(iter, &length); 380 } 381 382 /* zero post-eof blocks as the page may be mapped */ 383 ifs = ifs_alloc(iter->inode, folio, iter->flags); 384 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 385 if (plen == 0) 386 goto done; 387 388 if (iomap_block_needs_zeroing(iter, pos)) { 389 folio_zero_range(folio, poff, plen); 390 iomap_set_range_uptodate(folio, poff, plen); 391 goto done; 392 } 393 394 ctx->cur_folio_in_bio = true; 395 if (ifs) { 396 spin_lock_irq(&ifs->state_lock); 397 ifs->read_bytes_pending += plen; 398 spin_unlock_irq(&ifs->state_lock); 399 } 400 401 sector = iomap_sector(iomap, pos); 402 if (!ctx->bio || 403 bio_end_sector(ctx->bio) != sector || 404 !bio_add_folio(ctx->bio, folio, plen, poff)) { 405 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 406 gfp_t orig_gfp = gfp; 407 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 408 409 if (ctx->bio) 410 submit_bio(ctx->bio); 411 412 if (ctx->rac) /* same as readahead_gfp_mask */ 413 gfp |= __GFP_NORETRY | __GFP_NOWARN; 414 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 415 REQ_OP_READ, gfp); 416 /* 417 * If the bio_alloc fails, try it again for a single page to 418 * avoid having to deal with partial page reads. This emulates 419 * what do_mpage_read_folio does. 420 */ 421 if (!ctx->bio) { 422 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 423 orig_gfp); 424 } 425 if (ctx->rac) 426 ctx->bio->bi_opf |= REQ_RAHEAD; 427 ctx->bio->bi_iter.bi_sector = sector; 428 ctx->bio->bi_end_io = iomap_read_end_io; 429 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 430 } 431 432 done: 433 /* 434 * Move the caller beyond our range so that it keeps making progress. 435 * For that, we have to include any leading non-uptodate ranges, but 436 * we can skip trailing ones as they will be handled in the next 437 * iteration. 438 */ 439 length = pos - iter->pos + plen; 440 return iomap_iter_advance(iter, &length); 441 } 442 443 static int iomap_read_folio_iter(struct iomap_iter *iter, 444 struct iomap_readpage_ctx *ctx) 445 { 446 int ret; 447 448 while (iomap_length(iter)) { 449 ret = iomap_readpage_iter(iter, ctx); 450 if (ret) 451 return ret; 452 } 453 454 return 0; 455 } 456 457 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 458 { 459 struct iomap_iter iter = { 460 .inode = folio->mapping->host, 461 .pos = folio_pos(folio), 462 .len = folio_size(folio), 463 }; 464 struct iomap_readpage_ctx ctx = { 465 .cur_folio = folio, 466 }; 467 int ret; 468 469 trace_iomap_readpage(iter.inode, 1); 470 471 while ((ret = iomap_iter(&iter, ops)) > 0) 472 iter.status = iomap_read_folio_iter(&iter, &ctx); 473 474 if (ctx.bio) { 475 submit_bio(ctx.bio); 476 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 477 } else { 478 WARN_ON_ONCE(ctx.cur_folio_in_bio); 479 folio_unlock(folio); 480 } 481 482 /* 483 * Just like mpage_readahead and block_read_full_folio, we always 484 * return 0 and just set the folio error flag on errors. This 485 * should be cleaned up throughout the stack eventually. 486 */ 487 return 0; 488 } 489 EXPORT_SYMBOL_GPL(iomap_read_folio); 490 491 static int iomap_readahead_iter(struct iomap_iter *iter, 492 struct iomap_readpage_ctx *ctx) 493 { 494 int ret; 495 496 while (iomap_length(iter)) { 497 if (ctx->cur_folio && 498 offset_in_folio(ctx->cur_folio, iter->pos) == 0) { 499 if (!ctx->cur_folio_in_bio) 500 folio_unlock(ctx->cur_folio); 501 ctx->cur_folio = NULL; 502 } 503 if (!ctx->cur_folio) { 504 ctx->cur_folio = readahead_folio(ctx->rac); 505 ctx->cur_folio_in_bio = false; 506 } 507 ret = iomap_readpage_iter(iter, ctx); 508 if (ret) 509 return ret; 510 } 511 512 return 0; 513 } 514 515 /** 516 * iomap_readahead - Attempt to read pages from a file. 517 * @rac: Describes the pages to be read. 518 * @ops: The operations vector for the filesystem. 519 * 520 * This function is for filesystems to call to implement their readahead 521 * address_space operation. 522 * 523 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 524 * blocks from disc), and may wait for it. The caller may be trying to 525 * access a different page, and so sleeping excessively should be avoided. 526 * It may allocate memory, but should avoid costly allocations. This 527 * function is called with memalloc_nofs set, so allocations will not cause 528 * the filesystem to be reentered. 529 */ 530 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 531 { 532 struct iomap_iter iter = { 533 .inode = rac->mapping->host, 534 .pos = readahead_pos(rac), 535 .len = readahead_length(rac), 536 }; 537 struct iomap_readpage_ctx ctx = { 538 .rac = rac, 539 }; 540 541 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 542 543 while (iomap_iter(&iter, ops) > 0) 544 iter.status = iomap_readahead_iter(&iter, &ctx); 545 546 if (ctx.bio) 547 submit_bio(ctx.bio); 548 if (ctx.cur_folio) { 549 if (!ctx.cur_folio_in_bio) 550 folio_unlock(ctx.cur_folio); 551 } 552 } 553 EXPORT_SYMBOL_GPL(iomap_readahead); 554 555 static int iomap_read_folio_range(const struct iomap_iter *iter, 556 struct folio *folio, loff_t pos, size_t len) 557 { 558 const struct iomap *srcmap = iomap_iter_srcmap(iter); 559 struct bio_vec bvec; 560 struct bio bio; 561 562 bio_init(&bio, srcmap->bdev, &bvec, 1, REQ_OP_READ); 563 bio.bi_iter.bi_sector = iomap_sector(srcmap, pos); 564 bio_add_folio_nofail(&bio, folio, len, offset_in_folio(folio, pos)); 565 return submit_bio_wait(&bio); 566 } 567 #else 568 static int iomap_read_folio_range(const struct iomap_iter *iter, 569 struct folio *folio, loff_t pos, size_t len) 570 { 571 WARN_ON_ONCE(1); 572 return -EIO; 573 } 574 #endif /* CONFIG_BLOCK */ 575 576 /* 577 * iomap_is_partially_uptodate checks whether blocks within a folio are 578 * uptodate or not. 579 * 580 * Returns true if all blocks which correspond to the specified part 581 * of the folio are uptodate. 582 */ 583 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 584 { 585 struct iomap_folio_state *ifs = folio->private; 586 struct inode *inode = folio->mapping->host; 587 unsigned first, last, i; 588 589 if (!ifs) 590 return false; 591 592 /* Caller's range may extend past the end of this folio */ 593 count = min(folio_size(folio) - from, count); 594 595 /* First and last blocks in range within folio */ 596 first = from >> inode->i_blkbits; 597 last = (from + count - 1) >> inode->i_blkbits; 598 599 for (i = first; i <= last; i++) 600 if (!ifs_block_is_uptodate(ifs, i)) 601 return false; 602 return true; 603 } 604 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 605 606 /** 607 * iomap_get_folio - get a folio reference for writing 608 * @iter: iteration structure 609 * @pos: start offset of write 610 * @len: Suggested size of folio to create. 611 * 612 * Returns a locked reference to the folio at @pos, or an error pointer if the 613 * folio could not be obtained. 614 */ 615 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 616 { 617 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 618 619 if (iter->flags & IOMAP_NOWAIT) 620 fgp |= FGP_NOWAIT; 621 if (iter->flags & IOMAP_DONTCACHE) 622 fgp |= FGP_DONTCACHE; 623 fgp |= fgf_set_order(len); 624 625 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 626 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 627 } 628 EXPORT_SYMBOL_GPL(iomap_get_folio); 629 630 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 631 { 632 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 633 folio_size(folio)); 634 635 /* 636 * If the folio is dirty, we refuse to release our metadata because 637 * it may be partially dirty. Once we track per-block dirty state, 638 * we can release the metadata if every block is dirty. 639 */ 640 if (folio_test_dirty(folio)) 641 return false; 642 ifs_free(folio); 643 return true; 644 } 645 EXPORT_SYMBOL_GPL(iomap_release_folio); 646 647 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 648 { 649 trace_iomap_invalidate_folio(folio->mapping->host, 650 folio_pos(folio) + offset, len); 651 652 /* 653 * If we're invalidating the entire folio, clear the dirty state 654 * from it and release it to avoid unnecessary buildup of the LRU. 655 */ 656 if (offset == 0 && len == folio_size(folio)) { 657 WARN_ON_ONCE(folio_test_writeback(folio)); 658 folio_cancel_dirty(folio); 659 ifs_free(folio); 660 } 661 } 662 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 663 664 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 665 { 666 struct inode *inode = mapping->host; 667 size_t len = folio_size(folio); 668 669 ifs_alloc(inode, folio, 0); 670 iomap_set_range_dirty(folio, 0, len); 671 return filemap_dirty_folio(mapping, folio); 672 } 673 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 674 675 static void 676 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 677 { 678 loff_t i_size = i_size_read(inode); 679 680 /* 681 * Only truncate newly allocated pages beyoned EOF, even if the 682 * write started inside the existing inode size. 683 */ 684 if (pos + len > i_size) 685 truncate_pagecache_range(inode, max(pos, i_size), 686 pos + len - 1); 687 } 688 689 static int __iomap_write_begin(const struct iomap_iter *iter, 690 const struct iomap_write_ops *write_ops, size_t len, 691 struct folio *folio) 692 { 693 struct iomap_folio_state *ifs; 694 loff_t pos = iter->pos; 695 loff_t block_size = i_blocksize(iter->inode); 696 loff_t block_start = round_down(pos, block_size); 697 loff_t block_end = round_up(pos + len, block_size); 698 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 699 size_t from = offset_in_folio(folio, pos), to = from + len; 700 size_t poff, plen; 701 702 /* 703 * If the write or zeroing completely overlaps the current folio, then 704 * entire folio will be dirtied so there is no need for 705 * per-block state tracking structures to be attached to this folio. 706 * For the unshare case, we must read in the ondisk contents because we 707 * are not changing pagecache contents. 708 */ 709 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 710 pos + len >= folio_pos(folio) + folio_size(folio)) 711 return 0; 712 713 ifs = ifs_alloc(iter->inode, folio, iter->flags); 714 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 715 return -EAGAIN; 716 717 if (folio_test_uptodate(folio)) 718 return 0; 719 720 do { 721 iomap_adjust_read_range(iter->inode, folio, &block_start, 722 block_end - block_start, &poff, &plen); 723 if (plen == 0) 724 break; 725 726 if (!(iter->flags & IOMAP_UNSHARE) && 727 (from <= poff || from >= poff + plen) && 728 (to <= poff || to >= poff + plen)) 729 continue; 730 731 if (iomap_block_needs_zeroing(iter, block_start)) { 732 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 733 return -EIO; 734 folio_zero_segments(folio, poff, from, to, poff + plen); 735 } else { 736 int status; 737 738 if (iter->flags & IOMAP_NOWAIT) 739 return -EAGAIN; 740 741 if (write_ops && write_ops->read_folio_range) 742 status = write_ops->read_folio_range(iter, 743 folio, block_start, plen); 744 else 745 status = iomap_read_folio_range(iter, 746 folio, block_start, plen); 747 if (status) 748 return status; 749 } 750 iomap_set_range_uptodate(folio, poff, plen); 751 } while ((block_start += plen) < block_end); 752 753 return 0; 754 } 755 756 static struct folio *__iomap_get_folio(struct iomap_iter *iter, 757 const struct iomap_write_ops *write_ops, size_t len) 758 { 759 loff_t pos = iter->pos; 760 761 if (!mapping_large_folio_support(iter->inode->i_mapping)) 762 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 763 764 if (write_ops && write_ops->get_folio) 765 return write_ops->get_folio(iter, pos, len); 766 return iomap_get_folio(iter, pos, len); 767 } 768 769 static void __iomap_put_folio(struct iomap_iter *iter, 770 const struct iomap_write_ops *write_ops, size_t ret, 771 struct folio *folio) 772 { 773 loff_t pos = iter->pos; 774 775 if (write_ops && write_ops->put_folio) { 776 write_ops->put_folio(iter->inode, pos, ret, folio); 777 } else { 778 folio_unlock(folio); 779 folio_put(folio); 780 } 781 } 782 783 /* trim pos and bytes to within a given folio */ 784 static loff_t iomap_trim_folio_range(struct iomap_iter *iter, 785 struct folio *folio, size_t *offset, u64 *bytes) 786 { 787 loff_t pos = iter->pos; 788 size_t fsize = folio_size(folio); 789 790 WARN_ON_ONCE(pos < folio_pos(folio)); 791 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize); 792 793 *offset = offset_in_folio(folio, pos); 794 *bytes = min(*bytes, fsize - *offset); 795 796 return pos; 797 } 798 799 static int iomap_write_begin_inline(const struct iomap_iter *iter, 800 struct folio *folio) 801 { 802 /* needs more work for the tailpacking case; disable for now */ 803 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 804 return -EIO; 805 return iomap_read_inline_data(iter, folio); 806 } 807 808 /* 809 * Grab and prepare a folio for write based on iter state. Returns the folio, 810 * offset, and length. Callers can optionally pass a max length *plen, 811 * otherwise init to zero. 812 */ 813 static int iomap_write_begin(struct iomap_iter *iter, 814 const struct iomap_write_ops *write_ops, struct folio **foliop, 815 size_t *poffset, u64 *plen) 816 { 817 const struct iomap *srcmap = iomap_iter_srcmap(iter); 818 loff_t pos = iter->pos; 819 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter)); 820 struct folio *folio; 821 int status = 0; 822 823 len = min_not_zero(len, *plen); 824 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 825 if (srcmap != &iter->iomap) 826 BUG_ON(pos + len > srcmap->offset + srcmap->length); 827 828 if (fatal_signal_pending(current)) 829 return -EINTR; 830 831 folio = __iomap_get_folio(iter, write_ops, len); 832 if (IS_ERR(folio)) 833 return PTR_ERR(folio); 834 835 /* 836 * Now we have a locked folio, before we do anything with it we need to 837 * check that the iomap we have cached is not stale. The inode extent 838 * mapping can change due to concurrent IO in flight (e.g. 839 * IOMAP_UNWRITTEN state can change and memory reclaim could have 840 * reclaimed a previously partially written page at this index after IO 841 * completion before this write reaches this file offset) and hence we 842 * could do the wrong thing here (zero a page range incorrectly or fail 843 * to zero) and corrupt data. 844 */ 845 if (write_ops && write_ops->iomap_valid) { 846 bool iomap_valid = write_ops->iomap_valid(iter->inode, 847 &iter->iomap); 848 if (!iomap_valid) { 849 iter->iomap.flags |= IOMAP_F_STALE; 850 status = 0; 851 goto out_unlock; 852 } 853 } 854 855 pos = iomap_trim_folio_range(iter, folio, poffset, &len); 856 857 if (srcmap->type == IOMAP_INLINE) 858 status = iomap_write_begin_inline(iter, folio); 859 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 860 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 861 else 862 status = __iomap_write_begin(iter, write_ops, len, folio); 863 864 if (unlikely(status)) 865 goto out_unlock; 866 867 *foliop = folio; 868 *plen = len; 869 return 0; 870 871 out_unlock: 872 __iomap_put_folio(iter, write_ops, 0, folio); 873 return status; 874 } 875 876 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 877 size_t copied, struct folio *folio) 878 { 879 flush_dcache_folio(folio); 880 881 /* 882 * The blocks that were entirely written will now be uptodate, so we 883 * don't have to worry about a read_folio reading them and overwriting a 884 * partial write. However, if we've encountered a short write and only 885 * partially written into a block, it will not be marked uptodate, so a 886 * read_folio might come in and destroy our partial write. 887 * 888 * Do the simplest thing and just treat any short write to a 889 * non-uptodate page as a zero-length write, and force the caller to 890 * redo the whole thing. 891 */ 892 if (unlikely(copied < len && !folio_test_uptodate(folio))) 893 return false; 894 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 895 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 896 filemap_dirty_folio(inode->i_mapping, folio); 897 return true; 898 } 899 900 static bool iomap_write_end_inline(const struct iomap_iter *iter, 901 struct folio *folio, loff_t pos, size_t copied) 902 { 903 const struct iomap *iomap = &iter->iomap; 904 void *addr; 905 906 WARN_ON_ONCE(!folio_test_uptodate(folio)); 907 BUG_ON(!iomap_inline_data_valid(iomap)); 908 909 if (WARN_ON_ONCE(!iomap->inline_data)) 910 return false; 911 912 flush_dcache_folio(folio); 913 addr = kmap_local_folio(folio, pos); 914 memcpy(iomap_inline_data(iomap, pos), addr, copied); 915 kunmap_local(addr); 916 917 mark_inode_dirty(iter->inode); 918 return true; 919 } 920 921 /* 922 * Returns true if all copied bytes have been written to the pagecache, 923 * otherwise return false. 924 */ 925 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied, 926 struct folio *folio) 927 { 928 const struct iomap *srcmap = iomap_iter_srcmap(iter); 929 loff_t pos = iter->pos; 930 931 if (srcmap->type == IOMAP_INLINE) 932 return iomap_write_end_inline(iter, folio, pos, copied); 933 934 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 935 size_t bh_written; 936 937 bh_written = block_write_end(pos, len, copied, folio); 938 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 939 return bh_written == copied; 940 } 941 942 return __iomap_write_end(iter->inode, pos, len, copied, folio); 943 } 944 945 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i, 946 const struct iomap_write_ops *write_ops) 947 { 948 ssize_t total_written = 0; 949 int status = 0; 950 struct address_space *mapping = iter->inode->i_mapping; 951 size_t chunk = mapping_max_folio_size(mapping); 952 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 953 954 do { 955 struct folio *folio; 956 loff_t old_size; 957 size_t offset; /* Offset into folio */ 958 u64 bytes; /* Bytes to write to folio */ 959 size_t copied; /* Bytes copied from user */ 960 u64 written; /* Bytes have been written */ 961 loff_t pos; 962 963 bytes = iov_iter_count(i); 964 retry: 965 offset = iter->pos & (chunk - 1); 966 bytes = min(chunk - offset, bytes); 967 status = balance_dirty_pages_ratelimited_flags(mapping, 968 bdp_flags); 969 if (unlikely(status)) 970 break; 971 972 if (bytes > iomap_length(iter)) 973 bytes = iomap_length(iter); 974 975 /* 976 * Bring in the user page that we'll copy from _first_. 977 * Otherwise there's a nasty deadlock on copying from the 978 * same page as we're writing to, without it being marked 979 * up-to-date. 980 * 981 * For async buffered writes the assumption is that the user 982 * page has already been faulted in. This can be optimized by 983 * faulting the user page. 984 */ 985 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 986 status = -EFAULT; 987 break; 988 } 989 990 status = iomap_write_begin(iter, write_ops, &folio, &offset, 991 &bytes); 992 if (unlikely(status)) { 993 iomap_write_failed(iter->inode, iter->pos, bytes); 994 break; 995 } 996 if (iter->iomap.flags & IOMAP_F_STALE) 997 break; 998 999 pos = iter->pos; 1000 1001 if (mapping_writably_mapped(mapping)) 1002 flush_dcache_folio(folio); 1003 1004 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 1005 written = iomap_write_end(iter, bytes, copied, folio) ? 1006 copied : 0; 1007 1008 /* 1009 * Update the in-memory inode size after copying the data into 1010 * the page cache. It's up to the file system to write the 1011 * updated size to disk, preferably after I/O completion so that 1012 * no stale data is exposed. Only once that's done can we 1013 * unlock and release the folio. 1014 */ 1015 old_size = iter->inode->i_size; 1016 if (pos + written > old_size) { 1017 i_size_write(iter->inode, pos + written); 1018 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 1019 } 1020 __iomap_put_folio(iter, write_ops, written, folio); 1021 1022 if (old_size < pos) 1023 pagecache_isize_extended(iter->inode, old_size, pos); 1024 1025 cond_resched(); 1026 if (unlikely(written == 0)) { 1027 /* 1028 * A short copy made iomap_write_end() reject the 1029 * thing entirely. Might be memory poisoning 1030 * halfway through, might be a race with munmap, 1031 * might be severe memory pressure. 1032 */ 1033 iomap_write_failed(iter->inode, pos, bytes); 1034 iov_iter_revert(i, copied); 1035 1036 if (chunk > PAGE_SIZE) 1037 chunk /= 2; 1038 if (copied) { 1039 bytes = copied; 1040 goto retry; 1041 } 1042 } else { 1043 total_written += written; 1044 iomap_iter_advance(iter, &written); 1045 } 1046 } while (iov_iter_count(i) && iomap_length(iter)); 1047 1048 return total_written ? 0 : status; 1049 } 1050 1051 ssize_t 1052 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1053 const struct iomap_ops *ops, 1054 const struct iomap_write_ops *write_ops, void *private) 1055 { 1056 struct iomap_iter iter = { 1057 .inode = iocb->ki_filp->f_mapping->host, 1058 .pos = iocb->ki_pos, 1059 .len = iov_iter_count(i), 1060 .flags = IOMAP_WRITE, 1061 .private = private, 1062 }; 1063 ssize_t ret; 1064 1065 if (iocb->ki_flags & IOCB_NOWAIT) 1066 iter.flags |= IOMAP_NOWAIT; 1067 if (iocb->ki_flags & IOCB_DONTCACHE) 1068 iter.flags |= IOMAP_DONTCACHE; 1069 1070 while ((ret = iomap_iter(&iter, ops)) > 0) 1071 iter.status = iomap_write_iter(&iter, i, write_ops); 1072 1073 if (unlikely(iter.pos == iocb->ki_pos)) 1074 return ret; 1075 ret = iter.pos - iocb->ki_pos; 1076 iocb->ki_pos = iter.pos; 1077 return ret; 1078 } 1079 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1080 1081 static void iomap_write_delalloc_ifs_punch(struct inode *inode, 1082 struct folio *folio, loff_t start_byte, loff_t end_byte, 1083 struct iomap *iomap, iomap_punch_t punch) 1084 { 1085 unsigned int first_blk, last_blk, i; 1086 loff_t last_byte; 1087 u8 blkbits = inode->i_blkbits; 1088 struct iomap_folio_state *ifs; 1089 1090 /* 1091 * When we have per-block dirty tracking, there can be 1092 * blocks within a folio which are marked uptodate 1093 * but not dirty. In that case it is necessary to punch 1094 * out such blocks to avoid leaking any delalloc blocks. 1095 */ 1096 ifs = folio->private; 1097 if (!ifs) 1098 return; 1099 1100 last_byte = min_t(loff_t, end_byte - 1, 1101 folio_pos(folio) + folio_size(folio) - 1); 1102 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1103 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1104 for (i = first_blk; i <= last_blk; i++) { 1105 if (!ifs_block_is_dirty(folio, ifs, i)) 1106 punch(inode, folio_pos(folio) + (i << blkbits), 1107 1 << blkbits, iomap); 1108 } 1109 } 1110 1111 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1112 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1113 struct iomap *iomap, iomap_punch_t punch) 1114 { 1115 if (!folio_test_dirty(folio)) 1116 return; 1117 1118 /* if dirty, punch up to offset */ 1119 if (start_byte > *punch_start_byte) { 1120 punch(inode, *punch_start_byte, start_byte - *punch_start_byte, 1121 iomap); 1122 } 1123 1124 /* Punch non-dirty blocks within folio */ 1125 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, 1126 iomap, punch); 1127 1128 /* 1129 * Make sure the next punch start is correctly bound to 1130 * the end of this data range, not the end of the folio. 1131 */ 1132 *punch_start_byte = min_t(loff_t, end_byte, 1133 folio_pos(folio) + folio_size(folio)); 1134 } 1135 1136 /* 1137 * Scan the data range passed to us for dirty page cache folios. If we find a 1138 * dirty folio, punch out the preceding range and update the offset from which 1139 * the next punch will start from. 1140 * 1141 * We can punch out storage reservations under clean pages because they either 1142 * contain data that has been written back - in which case the delalloc punch 1143 * over that range is a no-op - or they have been read faults in which case they 1144 * contain zeroes and we can remove the delalloc backing range and any new 1145 * writes to those pages will do the normal hole filling operation... 1146 * 1147 * This makes the logic simple: we only need to keep the delalloc extents only 1148 * over the dirty ranges of the page cache. 1149 * 1150 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1151 * simplify range iterations. 1152 */ 1153 static void iomap_write_delalloc_scan(struct inode *inode, 1154 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1155 struct iomap *iomap, iomap_punch_t punch) 1156 { 1157 while (start_byte < end_byte) { 1158 struct folio *folio; 1159 1160 /* grab locked page */ 1161 folio = filemap_lock_folio(inode->i_mapping, 1162 start_byte >> PAGE_SHIFT); 1163 if (IS_ERR(folio)) { 1164 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1165 PAGE_SIZE; 1166 continue; 1167 } 1168 1169 iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1170 start_byte, end_byte, iomap, punch); 1171 1172 /* move offset to start of next folio in range */ 1173 start_byte = folio_pos(folio) + folio_size(folio); 1174 folio_unlock(folio); 1175 folio_put(folio); 1176 } 1177 } 1178 1179 /* 1180 * When a short write occurs, the filesystem might need to use ->iomap_end 1181 * to remove space reservations created in ->iomap_begin. 1182 * 1183 * For filesystems that use delayed allocation, there can be dirty pages over 1184 * the delalloc extent outside the range of a short write but still within the 1185 * delalloc extent allocated for this iomap if the write raced with page 1186 * faults. 1187 * 1188 * Punch out all the delalloc blocks in the range given except for those that 1189 * have dirty data still pending in the page cache - those are going to be 1190 * written and so must still retain the delalloc backing for writeback. 1191 * 1192 * The punch() callback *must* only punch delalloc extents in the range passed 1193 * to it. It must skip over all other types of extents in the range and leave 1194 * them completely unchanged. It must do this punch atomically with respect to 1195 * other extent modifications. 1196 * 1197 * The punch() callback may be called with a folio locked to prevent writeback 1198 * extent allocation racing at the edge of the range we are currently punching. 1199 * The locked folio may or may not cover the range being punched, so it is not 1200 * safe for the punch() callback to lock folios itself. 1201 * 1202 * Lock order is: 1203 * 1204 * inode->i_rwsem (shared or exclusive) 1205 * inode->i_mapping->invalidate_lock (exclusive) 1206 * folio_lock() 1207 * ->punch 1208 * internal filesystem allocation lock 1209 * 1210 * As we are scanning the page cache for data, we don't need to reimplement the 1211 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1212 * start and end of data ranges correctly even for sub-folio block sizes. This 1213 * byte range based iteration is especially convenient because it means we 1214 * don't have to care about variable size folios, nor where the start or end of 1215 * the data range lies within a folio, if they lie within the same folio or even 1216 * if there are multiple discontiguous data ranges within the folio. 1217 * 1218 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1219 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1220 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1221 * date. A write page fault can then mark it dirty. If we then fail a write() 1222 * beyond EOF into that up to date cached range, we allocate a delalloc block 1223 * beyond EOF and then have to punch it out. Because the range is up to date, 1224 * mapping_seek_hole_data() will return it, and we will skip the punch because 1225 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1226 * beyond EOF in this case as writeback will never write back and covert that 1227 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1228 * resulting in always punching out the range from the EOF to the end of the 1229 * range the iomap spans. 1230 * 1231 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1232 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1233 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1234 * returns the end of the data range (data_end). Using closed intervals would 1235 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1236 * the code to subtle off-by-one bugs.... 1237 */ 1238 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, 1239 loff_t end_byte, unsigned flags, struct iomap *iomap, 1240 iomap_punch_t punch) 1241 { 1242 loff_t punch_start_byte = start_byte; 1243 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1244 1245 /* 1246 * The caller must hold invalidate_lock to avoid races with page faults 1247 * re-instantiating folios and dirtying them via ->page_mkwrite whilst 1248 * we walk the cache and perform delalloc extent removal. Failing to do 1249 * this can leave dirty pages with no space reservation in the cache. 1250 */ 1251 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock); 1252 1253 while (start_byte < scan_end_byte) { 1254 loff_t data_end; 1255 1256 start_byte = mapping_seek_hole_data(inode->i_mapping, 1257 start_byte, scan_end_byte, SEEK_DATA); 1258 /* 1259 * If there is no more data to scan, all that is left is to 1260 * punch out the remaining range. 1261 * 1262 * Note that mapping_seek_hole_data is only supposed to return 1263 * either an offset or -ENXIO, so WARN on any other error as 1264 * that would be an API change without updating the callers. 1265 */ 1266 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1267 break; 1268 if (WARN_ON_ONCE(start_byte < 0)) 1269 return; 1270 WARN_ON_ONCE(start_byte < punch_start_byte); 1271 WARN_ON_ONCE(start_byte > scan_end_byte); 1272 1273 /* 1274 * We find the end of this contiguous cached data range by 1275 * seeking from start_byte to the beginning of the next hole. 1276 */ 1277 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1278 scan_end_byte, SEEK_HOLE); 1279 if (WARN_ON_ONCE(data_end < 0)) 1280 return; 1281 1282 /* 1283 * If we race with post-direct I/O invalidation of the page cache, 1284 * there might be no data left at start_byte. 1285 */ 1286 if (data_end == start_byte) 1287 continue; 1288 1289 WARN_ON_ONCE(data_end < start_byte); 1290 WARN_ON_ONCE(data_end > scan_end_byte); 1291 1292 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, 1293 data_end, iomap, punch); 1294 1295 /* The next data search starts at the end of this one. */ 1296 start_byte = data_end; 1297 } 1298 1299 if (punch_start_byte < end_byte) 1300 punch(inode, punch_start_byte, end_byte - punch_start_byte, 1301 iomap); 1302 } 1303 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release); 1304 1305 static int iomap_unshare_iter(struct iomap_iter *iter, 1306 const struct iomap_write_ops *write_ops) 1307 { 1308 struct iomap *iomap = &iter->iomap; 1309 u64 bytes = iomap_length(iter); 1310 int status; 1311 1312 if (!iomap_want_unshare_iter(iter)) 1313 return iomap_iter_advance(iter, &bytes); 1314 1315 do { 1316 struct folio *folio; 1317 size_t offset; 1318 bool ret; 1319 1320 bytes = min_t(u64, SIZE_MAX, bytes); 1321 status = iomap_write_begin(iter, write_ops, &folio, &offset, 1322 &bytes); 1323 if (unlikely(status)) 1324 return status; 1325 if (iomap->flags & IOMAP_F_STALE) 1326 break; 1327 1328 ret = iomap_write_end(iter, bytes, bytes, folio); 1329 __iomap_put_folio(iter, write_ops, bytes, folio); 1330 if (WARN_ON_ONCE(!ret)) 1331 return -EIO; 1332 1333 cond_resched(); 1334 1335 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1336 1337 status = iomap_iter_advance(iter, &bytes); 1338 if (status) 1339 break; 1340 } while (bytes > 0); 1341 1342 return status; 1343 } 1344 1345 int 1346 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1347 const struct iomap_ops *ops, 1348 const struct iomap_write_ops *write_ops) 1349 { 1350 struct iomap_iter iter = { 1351 .inode = inode, 1352 .pos = pos, 1353 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1354 }; 1355 loff_t size = i_size_read(inode); 1356 int ret; 1357 1358 if (pos < 0 || pos >= size) 1359 return 0; 1360 1361 iter.len = min(len, size - pos); 1362 while ((ret = iomap_iter(&iter, ops)) > 0) 1363 iter.status = iomap_unshare_iter(&iter, write_ops); 1364 return ret; 1365 } 1366 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1367 1368 /* 1369 * Flush the remaining range of the iter and mark the current mapping stale. 1370 * This is used when zero range sees an unwritten mapping that may have had 1371 * dirty pagecache over it. 1372 */ 1373 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) 1374 { 1375 struct address_space *mapping = i->inode->i_mapping; 1376 loff_t end = i->pos + i->len - 1; 1377 1378 i->iomap.flags |= IOMAP_F_STALE; 1379 return filemap_write_and_wait_range(mapping, i->pos, end); 1380 } 1381 1382 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero, 1383 const struct iomap_write_ops *write_ops) 1384 { 1385 u64 bytes = iomap_length(iter); 1386 int status; 1387 1388 do { 1389 struct folio *folio; 1390 size_t offset; 1391 bool ret; 1392 1393 bytes = min_t(u64, SIZE_MAX, bytes); 1394 status = iomap_write_begin(iter, write_ops, &folio, &offset, 1395 &bytes); 1396 if (status) 1397 return status; 1398 if (iter->iomap.flags & IOMAP_F_STALE) 1399 break; 1400 1401 /* warn about zeroing folios beyond eof that won't write back */ 1402 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size); 1403 1404 trace_iomap_zero_iter(iter->inode, folio_pos(folio) + offset, 1405 bytes); 1406 1407 folio_zero_range(folio, offset, bytes); 1408 folio_mark_accessed(folio); 1409 1410 ret = iomap_write_end(iter, bytes, bytes, folio); 1411 __iomap_put_folio(iter, write_ops, bytes, folio); 1412 if (WARN_ON_ONCE(!ret)) 1413 return -EIO; 1414 1415 status = iomap_iter_advance(iter, &bytes); 1416 if (status) 1417 break; 1418 } while (bytes > 0); 1419 1420 if (did_zero) 1421 *did_zero = true; 1422 return status; 1423 } 1424 1425 int 1426 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1427 const struct iomap_ops *ops, 1428 const struct iomap_write_ops *write_ops, void *private) 1429 { 1430 struct iomap_iter iter = { 1431 .inode = inode, 1432 .pos = pos, 1433 .len = len, 1434 .flags = IOMAP_ZERO, 1435 .private = private, 1436 }; 1437 struct address_space *mapping = inode->i_mapping; 1438 unsigned int blocksize = i_blocksize(inode); 1439 unsigned int off = pos & (blocksize - 1); 1440 loff_t plen = min_t(loff_t, len, blocksize - off); 1441 int ret; 1442 bool range_dirty; 1443 1444 /* 1445 * Zero range can skip mappings that are zero on disk so long as 1446 * pagecache is clean. If pagecache was dirty prior to zero range, the 1447 * mapping converts on writeback completion and so must be zeroed. 1448 * 1449 * The simplest way to deal with this across a range is to flush 1450 * pagecache and process the updated mappings. To avoid excessive 1451 * flushing on partial eof zeroing, special case it to zero the 1452 * unaligned start portion if already dirty in pagecache. 1453 */ 1454 if (off && 1455 filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) { 1456 iter.len = plen; 1457 while ((ret = iomap_iter(&iter, ops)) > 0) 1458 iter.status = iomap_zero_iter(&iter, did_zero, 1459 write_ops); 1460 1461 iter.len = len - (iter.pos - pos); 1462 if (ret || !iter.len) 1463 return ret; 1464 } 1465 1466 /* 1467 * To avoid an unconditional flush, check pagecache state and only flush 1468 * if dirty and the fs returns a mapping that might convert on 1469 * writeback. 1470 */ 1471 range_dirty = filemap_range_needs_writeback(inode->i_mapping, 1472 iter.pos, iter.pos + iter.len - 1); 1473 while ((ret = iomap_iter(&iter, ops)) > 0) { 1474 const struct iomap *srcmap = iomap_iter_srcmap(&iter); 1475 1476 if (srcmap->type == IOMAP_HOLE || 1477 srcmap->type == IOMAP_UNWRITTEN) { 1478 s64 status; 1479 1480 if (range_dirty) { 1481 range_dirty = false; 1482 status = iomap_zero_iter_flush_and_stale(&iter); 1483 } else { 1484 status = iomap_iter_advance_full(&iter); 1485 } 1486 iter.status = status; 1487 continue; 1488 } 1489 1490 iter.status = iomap_zero_iter(&iter, did_zero, write_ops); 1491 } 1492 return ret; 1493 } 1494 EXPORT_SYMBOL_GPL(iomap_zero_range); 1495 1496 int 1497 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1498 const struct iomap_ops *ops, 1499 const struct iomap_write_ops *write_ops, void *private) 1500 { 1501 unsigned int blocksize = i_blocksize(inode); 1502 unsigned int off = pos & (blocksize - 1); 1503 1504 /* Block boundary? Nothing to do */ 1505 if (!off) 1506 return 0; 1507 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops, 1508 write_ops, private); 1509 } 1510 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1511 1512 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1513 struct folio *folio) 1514 { 1515 loff_t length = iomap_length(iter); 1516 int ret; 1517 1518 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1519 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1520 &iter->iomap); 1521 if (ret) 1522 return ret; 1523 block_commit_write(folio, 0, length); 1524 } else { 1525 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1526 folio_mark_dirty(folio); 1527 } 1528 1529 return iomap_iter_advance(iter, &length); 1530 } 1531 1532 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops, 1533 void *private) 1534 { 1535 struct iomap_iter iter = { 1536 .inode = file_inode(vmf->vma->vm_file), 1537 .flags = IOMAP_WRITE | IOMAP_FAULT, 1538 .private = private, 1539 }; 1540 struct folio *folio = page_folio(vmf->page); 1541 ssize_t ret; 1542 1543 folio_lock(folio); 1544 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1545 if (ret < 0) 1546 goto out_unlock; 1547 iter.pos = folio_pos(folio); 1548 iter.len = ret; 1549 while ((ret = iomap_iter(&iter, ops)) > 0) 1550 iter.status = iomap_folio_mkwrite_iter(&iter, folio); 1551 1552 if (ret < 0) 1553 goto out_unlock; 1554 folio_wait_stable(folio); 1555 return VM_FAULT_LOCKED; 1556 out_unlock: 1557 folio_unlock(folio); 1558 return vmf_fs_error(ret); 1559 } 1560 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1561 1562 void iomap_start_folio_write(struct inode *inode, struct folio *folio, 1563 size_t len) 1564 { 1565 struct iomap_folio_state *ifs = folio->private; 1566 1567 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1568 if (ifs) 1569 atomic_add(len, &ifs->write_bytes_pending); 1570 } 1571 EXPORT_SYMBOL_GPL(iomap_start_folio_write); 1572 1573 void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1574 size_t len) 1575 { 1576 struct iomap_folio_state *ifs = folio->private; 1577 1578 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1579 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1580 1581 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1582 folio_end_writeback(folio); 1583 } 1584 EXPORT_SYMBOL_GPL(iomap_finish_folio_write); 1585 1586 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc, 1587 struct folio *folio, u64 pos, u32 rlen, u64 end_pos, 1588 bool *wb_pending) 1589 { 1590 do { 1591 ssize_t ret; 1592 1593 ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos); 1594 if (WARN_ON_ONCE(ret == 0 || ret > rlen)) 1595 return -EIO; 1596 if (ret < 0) 1597 return ret; 1598 rlen -= ret; 1599 pos += ret; 1600 1601 /* 1602 * Holes are not be written back by ->writeback_range, so track 1603 * if we did handle anything that is not a hole here. 1604 */ 1605 if (wpc->iomap.type != IOMAP_HOLE) 1606 *wb_pending = true; 1607 } while (rlen); 1608 1609 return 0; 1610 } 1611 1612 /* 1613 * Check interaction of the folio with the file end. 1614 * 1615 * If the folio is entirely beyond i_size, return false. If it straddles 1616 * i_size, adjust end_pos and zero all data beyond i_size. 1617 */ 1618 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode, 1619 u64 *end_pos) 1620 { 1621 u64 isize = i_size_read(inode); 1622 1623 if (*end_pos > isize) { 1624 size_t poff = offset_in_folio(folio, isize); 1625 pgoff_t end_index = isize >> PAGE_SHIFT; 1626 1627 /* 1628 * If the folio is entirely ouside of i_size, skip it. 1629 * 1630 * This can happen due to a truncate operation that is in 1631 * progress and in that case truncate will finish it off once 1632 * we've dropped the folio lock. 1633 * 1634 * Note that the pgoff_t used for end_index is an unsigned long. 1635 * If the given offset is greater than 16TB on a 32-bit system, 1636 * then if we checked if the folio is fully outside i_size with 1637 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1638 * overflow and evaluate to 0. Hence this folio would be 1639 * redirtied and written out repeatedly, which would result in 1640 * an infinite loop; the user program performing this operation 1641 * would hang. Instead, we can detect this situation by 1642 * checking if the folio is totally beyond i_size or if its 1643 * offset is just equal to the EOF. 1644 */ 1645 if (folio->index > end_index || 1646 (folio->index == end_index && poff == 0)) 1647 return false; 1648 1649 /* 1650 * The folio straddles i_size. 1651 * 1652 * It must be zeroed out on each and every writepage invocation 1653 * because it may be mmapped: 1654 * 1655 * A file is mapped in multiples of the page size. For a 1656 * file that is not a multiple of the page size, the 1657 * remaining memory is zeroed when mapped, and writes to that 1658 * region are not written out to the file. 1659 * 1660 * Also adjust the end_pos to the end of file and skip writeback 1661 * for all blocks entirely beyond i_size. 1662 */ 1663 folio_zero_segment(folio, poff, folio_size(folio)); 1664 *end_pos = isize; 1665 } 1666 1667 return true; 1668 } 1669 1670 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio) 1671 { 1672 struct iomap_folio_state *ifs = folio->private; 1673 struct inode *inode = wpc->inode; 1674 u64 pos = folio_pos(folio); 1675 u64 end_pos = pos + folio_size(folio); 1676 u64 end_aligned = 0; 1677 bool wb_pending = false; 1678 int error = 0; 1679 u32 rlen; 1680 1681 WARN_ON_ONCE(!folio_test_locked(folio)); 1682 WARN_ON_ONCE(folio_test_dirty(folio)); 1683 WARN_ON_ONCE(folio_test_writeback(folio)); 1684 1685 trace_iomap_writeback_folio(inode, pos, folio_size(folio)); 1686 1687 if (!iomap_writeback_handle_eof(folio, inode, &end_pos)) 1688 return 0; 1689 WARN_ON_ONCE(end_pos <= pos); 1690 1691 if (i_blocks_per_folio(inode, folio) > 1) { 1692 if (!ifs) { 1693 ifs = ifs_alloc(inode, folio, 0); 1694 iomap_set_range_dirty(folio, 0, end_pos - pos); 1695 } 1696 1697 /* 1698 * Keep the I/O completion handler from clearing the writeback 1699 * bit until we have submitted all blocks by adding a bias to 1700 * ifs->write_bytes_pending, which is dropped after submitting 1701 * all blocks. 1702 */ 1703 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1704 iomap_start_folio_write(inode, folio, 1); 1705 } 1706 1707 /* 1708 * Set the writeback bit ASAP, as the I/O completion for the single 1709 * block per folio case happen hit as soon as we're submitting the bio. 1710 */ 1711 folio_start_writeback(folio); 1712 1713 /* 1714 * Walk through the folio to find dirty areas to write back. 1715 */ 1716 end_aligned = round_up(end_pos, i_blocksize(inode)); 1717 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) { 1718 error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos, 1719 &wb_pending); 1720 if (error) 1721 break; 1722 pos += rlen; 1723 } 1724 1725 if (wb_pending) 1726 wpc->nr_folios++; 1727 1728 /* 1729 * We can have dirty bits set past end of file in page_mkwrite path 1730 * while mapping the last partial folio. Hence it's better to clear 1731 * all the dirty bits in the folio here. 1732 */ 1733 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1734 1735 /* 1736 * Usually the writeback bit is cleared by the I/O completion handler. 1737 * But we may end up either not actually writing any blocks, or (when 1738 * there are multiple blocks in a folio) all I/O might have finished 1739 * already at this point. In that case we need to clear the writeback 1740 * bit ourselves right after unlocking the page. 1741 */ 1742 if (ifs) { 1743 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1744 folio_end_writeback(folio); 1745 } else { 1746 if (!wb_pending) 1747 folio_end_writeback(folio); 1748 } 1749 mapping_set_error(inode->i_mapping, error); 1750 return error; 1751 } 1752 EXPORT_SYMBOL_GPL(iomap_writeback_folio); 1753 1754 int 1755 iomap_writepages(struct iomap_writepage_ctx *wpc) 1756 { 1757 struct address_space *mapping = wpc->inode->i_mapping; 1758 struct folio *folio = NULL; 1759 int error; 1760 1761 /* 1762 * Writeback from reclaim context should never happen except in the case 1763 * of a VM regression so warn about it and refuse to write the data. 1764 */ 1765 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1766 PF_MEMALLOC)) 1767 return -EIO; 1768 1769 while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) { 1770 error = iomap_writeback_folio(wpc, folio); 1771 folio_unlock(folio); 1772 } 1773 1774 /* 1775 * If @error is non-zero, it means that we have a situation where some 1776 * part of the submission process has failed after we've marked pages 1777 * for writeback. 1778 * 1779 * We cannot cancel the writeback directly in that case, so always call 1780 * ->writeback_submit to run the I/O completion handler to clear the 1781 * writeback bit and let the file system proess the errors. 1782 */ 1783 if (wpc->wb_ctx) 1784 return wpc->ops->writeback_submit(wpc, error); 1785 return error; 1786 } 1787 EXPORT_SYMBOL_GPL(iomap_writepages); 1788