xref: /linux/fs/iomap/buffered-io.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2023 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	spinlock_t		state_lock;
33 	unsigned int		read_bytes_pending;
34 	atomic_t		write_bytes_pending;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static bool ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 
68 	bitmap_set(ifs->state, first_blk, nr_blks);
69 	return ifs_is_fully_uptodate(folio, ifs);
70 }
71 
72 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
73 		size_t len)
74 {
75 	struct iomap_folio_state *ifs = folio->private;
76 	unsigned long flags;
77 	bool uptodate = true;
78 
79 	if (ifs) {
80 		spin_lock_irqsave(&ifs->state_lock, flags);
81 		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
82 		spin_unlock_irqrestore(&ifs->state_lock, flags);
83 	}
84 
85 	if (uptodate)
86 		folio_mark_uptodate(folio);
87 }
88 
89 static inline bool ifs_block_is_dirty(struct folio *folio,
90 		struct iomap_folio_state *ifs, int block)
91 {
92 	struct inode *inode = folio->mapping->host;
93 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
94 
95 	return test_bit(block + blks_per_folio, ifs->state);
96 }
97 
98 static unsigned ifs_find_dirty_range(struct folio *folio,
99 		struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
100 {
101 	struct inode *inode = folio->mapping->host;
102 	unsigned start_blk =
103 		offset_in_folio(folio, *range_start) >> inode->i_blkbits;
104 	unsigned end_blk = min_not_zero(
105 		offset_in_folio(folio, range_end) >> inode->i_blkbits,
106 		i_blocks_per_folio(inode, folio));
107 	unsigned nblks = 1;
108 
109 	while (!ifs_block_is_dirty(folio, ifs, start_blk))
110 		if (++start_blk == end_blk)
111 			return 0;
112 
113 	while (start_blk + nblks < end_blk) {
114 		if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
115 			break;
116 		nblks++;
117 	}
118 
119 	*range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
120 	return nblks << inode->i_blkbits;
121 }
122 
123 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
124 		u64 range_end)
125 {
126 	struct iomap_folio_state *ifs = folio->private;
127 
128 	if (*range_start >= range_end)
129 		return 0;
130 
131 	if (ifs)
132 		return ifs_find_dirty_range(folio, ifs, range_start, range_end);
133 	return range_end - *range_start;
134 }
135 
136 static void ifs_clear_range_dirty(struct folio *folio,
137 		struct iomap_folio_state *ifs, size_t off, size_t len)
138 {
139 	struct inode *inode = folio->mapping->host;
140 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
141 	unsigned int first_blk = (off >> inode->i_blkbits);
142 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
143 	unsigned int nr_blks = last_blk - first_blk + 1;
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&ifs->state_lock, flags);
147 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
148 	spin_unlock_irqrestore(&ifs->state_lock, flags);
149 }
150 
151 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
152 {
153 	struct iomap_folio_state *ifs = folio->private;
154 
155 	if (ifs)
156 		ifs_clear_range_dirty(folio, ifs, off, len);
157 }
158 
159 static void ifs_set_range_dirty(struct folio *folio,
160 		struct iomap_folio_state *ifs, size_t off, size_t len)
161 {
162 	struct inode *inode = folio->mapping->host;
163 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
164 	unsigned int first_blk = (off >> inode->i_blkbits);
165 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
166 	unsigned int nr_blks = last_blk - first_blk + 1;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&ifs->state_lock, flags);
170 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
171 	spin_unlock_irqrestore(&ifs->state_lock, flags);
172 }
173 
174 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
175 {
176 	struct iomap_folio_state *ifs = folio->private;
177 
178 	if (ifs)
179 		ifs_set_range_dirty(folio, ifs, off, len);
180 }
181 
182 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
183 		struct folio *folio, unsigned int flags)
184 {
185 	struct iomap_folio_state *ifs = folio->private;
186 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
187 	gfp_t gfp;
188 
189 	if (ifs || nr_blocks <= 1)
190 		return ifs;
191 
192 	if (flags & IOMAP_NOWAIT)
193 		gfp = GFP_NOWAIT;
194 	else
195 		gfp = GFP_NOFS | __GFP_NOFAIL;
196 
197 	/*
198 	 * ifs->state tracks two sets of state flags when the
199 	 * filesystem block size is smaller than the folio size.
200 	 * The first state tracks per-block uptodate and the
201 	 * second tracks per-block dirty state.
202 	 */
203 	ifs = kzalloc(struct_size(ifs, state,
204 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
205 	if (!ifs)
206 		return ifs;
207 
208 	spin_lock_init(&ifs->state_lock);
209 	if (folio_test_uptodate(folio))
210 		bitmap_set(ifs->state, 0, nr_blocks);
211 	if (folio_test_dirty(folio))
212 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
213 	folio_attach_private(folio, ifs);
214 
215 	return ifs;
216 }
217 
218 static void ifs_free(struct folio *folio)
219 {
220 	struct iomap_folio_state *ifs = folio_detach_private(folio);
221 
222 	if (!ifs)
223 		return;
224 	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
225 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
226 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
227 			folio_test_uptodate(folio));
228 	kfree(ifs);
229 }
230 
231 /*
232  * Calculate the range inside the folio that we actually need to read.
233  */
234 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
235 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
236 {
237 	struct iomap_folio_state *ifs = folio->private;
238 	loff_t orig_pos = *pos;
239 	loff_t isize = i_size_read(inode);
240 	unsigned block_bits = inode->i_blkbits;
241 	unsigned block_size = (1 << block_bits);
242 	size_t poff = offset_in_folio(folio, *pos);
243 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
244 	unsigned first = poff >> block_bits;
245 	unsigned last = (poff + plen - 1) >> block_bits;
246 
247 	/*
248 	 * If the block size is smaller than the page size, we need to check the
249 	 * per-block uptodate status and adjust the offset and length if needed
250 	 * to avoid reading in already uptodate ranges.
251 	 */
252 	if (ifs) {
253 		unsigned int i;
254 
255 		/* move forward for each leading block marked uptodate */
256 		for (i = first; i <= last; i++) {
257 			if (!ifs_block_is_uptodate(ifs, i))
258 				break;
259 			*pos += block_size;
260 			poff += block_size;
261 			plen -= block_size;
262 			first++;
263 		}
264 
265 		/* truncate len if we find any trailing uptodate block(s) */
266 		for ( ; i <= last; i++) {
267 			if (ifs_block_is_uptodate(ifs, i)) {
268 				plen -= (last - i + 1) * block_size;
269 				last = i - 1;
270 				break;
271 			}
272 		}
273 	}
274 
275 	/*
276 	 * If the extent spans the block that contains the i_size, we need to
277 	 * handle both halves separately so that we properly zero data in the
278 	 * page cache for blocks that are entirely outside of i_size.
279 	 */
280 	if (orig_pos <= isize && orig_pos + length > isize) {
281 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
282 
283 		if (first <= end && last > end)
284 			plen -= (last - end) * block_size;
285 	}
286 
287 	*offp = poff;
288 	*lenp = plen;
289 }
290 
291 static void iomap_finish_folio_read(struct folio *folio, size_t off,
292 		size_t len, int error)
293 {
294 	struct iomap_folio_state *ifs = folio->private;
295 	bool uptodate = !error;
296 	bool finished = true;
297 
298 	if (ifs) {
299 		unsigned long flags;
300 
301 		spin_lock_irqsave(&ifs->state_lock, flags);
302 		if (!error)
303 			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
304 		ifs->read_bytes_pending -= len;
305 		finished = !ifs->read_bytes_pending;
306 		spin_unlock_irqrestore(&ifs->state_lock, flags);
307 	}
308 
309 	if (error)
310 		folio_set_error(folio);
311 	if (finished)
312 		folio_end_read(folio, uptodate);
313 }
314 
315 static void iomap_read_end_io(struct bio *bio)
316 {
317 	int error = blk_status_to_errno(bio->bi_status);
318 	struct folio_iter fi;
319 
320 	bio_for_each_folio_all(fi, bio)
321 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
322 	bio_put(bio);
323 }
324 
325 struct iomap_readpage_ctx {
326 	struct folio		*cur_folio;
327 	bool			cur_folio_in_bio;
328 	struct bio		*bio;
329 	struct readahead_control *rac;
330 };
331 
332 /**
333  * iomap_read_inline_data - copy inline data into the page cache
334  * @iter: iteration structure
335  * @folio: folio to copy to
336  *
337  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
338  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
339  * Returns zero for success to complete the read, or the usual negative errno.
340  */
341 static int iomap_read_inline_data(const struct iomap_iter *iter,
342 		struct folio *folio)
343 {
344 	const struct iomap *iomap = iomap_iter_srcmap(iter);
345 	size_t size = i_size_read(iter->inode) - iomap->offset;
346 	size_t offset = offset_in_folio(folio, iomap->offset);
347 
348 	if (folio_test_uptodate(folio))
349 		return 0;
350 
351 	if (WARN_ON_ONCE(size > iomap->length))
352 		return -EIO;
353 	if (offset > 0)
354 		ifs_alloc(iter->inode, folio, iter->flags);
355 
356 	folio_fill_tail(folio, offset, iomap->inline_data, size);
357 	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
358 	return 0;
359 }
360 
361 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
362 		loff_t pos)
363 {
364 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
365 
366 	return srcmap->type != IOMAP_MAPPED ||
367 		(srcmap->flags & IOMAP_F_NEW) ||
368 		pos >= i_size_read(iter->inode);
369 }
370 
371 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
372 		struct iomap_readpage_ctx *ctx, loff_t offset)
373 {
374 	const struct iomap *iomap = &iter->iomap;
375 	loff_t pos = iter->pos + offset;
376 	loff_t length = iomap_length(iter) - offset;
377 	struct folio *folio = ctx->cur_folio;
378 	struct iomap_folio_state *ifs;
379 	loff_t orig_pos = pos;
380 	size_t poff, plen;
381 	sector_t sector;
382 
383 	if (iomap->type == IOMAP_INLINE)
384 		return iomap_read_inline_data(iter, folio);
385 
386 	/* zero post-eof blocks as the page may be mapped */
387 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
388 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
389 	if (plen == 0)
390 		goto done;
391 
392 	if (iomap_block_needs_zeroing(iter, pos)) {
393 		folio_zero_range(folio, poff, plen);
394 		iomap_set_range_uptodate(folio, poff, plen);
395 		goto done;
396 	}
397 
398 	ctx->cur_folio_in_bio = true;
399 	if (ifs) {
400 		spin_lock_irq(&ifs->state_lock);
401 		ifs->read_bytes_pending += plen;
402 		spin_unlock_irq(&ifs->state_lock);
403 	}
404 
405 	sector = iomap_sector(iomap, pos);
406 	if (!ctx->bio ||
407 	    bio_end_sector(ctx->bio) != sector ||
408 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
409 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
410 		gfp_t orig_gfp = gfp;
411 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
412 
413 		if (ctx->bio)
414 			submit_bio(ctx->bio);
415 
416 		if (ctx->rac) /* same as readahead_gfp_mask */
417 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
418 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
419 				     REQ_OP_READ, gfp);
420 		/*
421 		 * If the bio_alloc fails, try it again for a single page to
422 		 * avoid having to deal with partial page reads.  This emulates
423 		 * what do_mpage_read_folio does.
424 		 */
425 		if (!ctx->bio) {
426 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
427 					     orig_gfp);
428 		}
429 		if (ctx->rac)
430 			ctx->bio->bi_opf |= REQ_RAHEAD;
431 		ctx->bio->bi_iter.bi_sector = sector;
432 		ctx->bio->bi_end_io = iomap_read_end_io;
433 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
434 	}
435 
436 done:
437 	/*
438 	 * Move the caller beyond our range so that it keeps making progress.
439 	 * For that, we have to include any leading non-uptodate ranges, but
440 	 * we can skip trailing ones as they will be handled in the next
441 	 * iteration.
442 	 */
443 	return pos - orig_pos + plen;
444 }
445 
446 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
447 {
448 	struct iomap_iter iter = {
449 		.inode		= folio->mapping->host,
450 		.pos		= folio_pos(folio),
451 		.len		= folio_size(folio),
452 	};
453 	struct iomap_readpage_ctx ctx = {
454 		.cur_folio	= folio,
455 	};
456 	int ret;
457 
458 	trace_iomap_readpage(iter.inode, 1);
459 
460 	while ((ret = iomap_iter(&iter, ops)) > 0)
461 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
462 
463 	if (ret < 0)
464 		folio_set_error(folio);
465 
466 	if (ctx.bio) {
467 		submit_bio(ctx.bio);
468 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
469 	} else {
470 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
471 		folio_unlock(folio);
472 	}
473 
474 	/*
475 	 * Just like mpage_readahead and block_read_full_folio, we always
476 	 * return 0 and just set the folio error flag on errors.  This
477 	 * should be cleaned up throughout the stack eventually.
478 	 */
479 	return 0;
480 }
481 EXPORT_SYMBOL_GPL(iomap_read_folio);
482 
483 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
484 		struct iomap_readpage_ctx *ctx)
485 {
486 	loff_t length = iomap_length(iter);
487 	loff_t done, ret;
488 
489 	for (done = 0; done < length; done += ret) {
490 		if (ctx->cur_folio &&
491 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
492 			if (!ctx->cur_folio_in_bio)
493 				folio_unlock(ctx->cur_folio);
494 			ctx->cur_folio = NULL;
495 		}
496 		if (!ctx->cur_folio) {
497 			ctx->cur_folio = readahead_folio(ctx->rac);
498 			ctx->cur_folio_in_bio = false;
499 		}
500 		ret = iomap_readpage_iter(iter, ctx, done);
501 		if (ret <= 0)
502 			return ret;
503 	}
504 
505 	return done;
506 }
507 
508 /**
509  * iomap_readahead - Attempt to read pages from a file.
510  * @rac: Describes the pages to be read.
511  * @ops: The operations vector for the filesystem.
512  *
513  * This function is for filesystems to call to implement their readahead
514  * address_space operation.
515  *
516  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
517  * blocks from disc), and may wait for it.  The caller may be trying to
518  * access a different page, and so sleeping excessively should be avoided.
519  * It may allocate memory, but should avoid costly allocations.  This
520  * function is called with memalloc_nofs set, so allocations will not cause
521  * the filesystem to be reentered.
522  */
523 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
524 {
525 	struct iomap_iter iter = {
526 		.inode	= rac->mapping->host,
527 		.pos	= readahead_pos(rac),
528 		.len	= readahead_length(rac),
529 	};
530 	struct iomap_readpage_ctx ctx = {
531 		.rac	= rac,
532 	};
533 
534 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
535 
536 	while (iomap_iter(&iter, ops) > 0)
537 		iter.processed = iomap_readahead_iter(&iter, &ctx);
538 
539 	if (ctx.bio)
540 		submit_bio(ctx.bio);
541 	if (ctx.cur_folio) {
542 		if (!ctx.cur_folio_in_bio)
543 			folio_unlock(ctx.cur_folio);
544 	}
545 }
546 EXPORT_SYMBOL_GPL(iomap_readahead);
547 
548 /*
549  * iomap_is_partially_uptodate checks whether blocks within a folio are
550  * uptodate or not.
551  *
552  * Returns true if all blocks which correspond to the specified part
553  * of the folio are uptodate.
554  */
555 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
556 {
557 	struct iomap_folio_state *ifs = folio->private;
558 	struct inode *inode = folio->mapping->host;
559 	unsigned first, last, i;
560 
561 	if (!ifs)
562 		return false;
563 
564 	/* Caller's range may extend past the end of this folio */
565 	count = min(folio_size(folio) - from, count);
566 
567 	/* First and last blocks in range within folio */
568 	first = from >> inode->i_blkbits;
569 	last = (from + count - 1) >> inode->i_blkbits;
570 
571 	for (i = first; i <= last; i++)
572 		if (!ifs_block_is_uptodate(ifs, i))
573 			return false;
574 	return true;
575 }
576 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
577 
578 /**
579  * iomap_get_folio - get a folio reference for writing
580  * @iter: iteration structure
581  * @pos: start offset of write
582  * @len: Suggested size of folio to create.
583  *
584  * Returns a locked reference to the folio at @pos, or an error pointer if the
585  * folio could not be obtained.
586  */
587 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
588 {
589 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
590 
591 	if (iter->flags & IOMAP_NOWAIT)
592 		fgp |= FGP_NOWAIT;
593 	fgp |= fgf_set_order(len);
594 
595 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
596 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
597 }
598 EXPORT_SYMBOL_GPL(iomap_get_folio);
599 
600 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
601 {
602 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
603 			folio_size(folio));
604 
605 	/*
606 	 * If the folio is dirty, we refuse to release our metadata because
607 	 * it may be partially dirty.  Once we track per-block dirty state,
608 	 * we can release the metadata if every block is dirty.
609 	 */
610 	if (folio_test_dirty(folio))
611 		return false;
612 	ifs_free(folio);
613 	return true;
614 }
615 EXPORT_SYMBOL_GPL(iomap_release_folio);
616 
617 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
618 {
619 	trace_iomap_invalidate_folio(folio->mapping->host,
620 					folio_pos(folio) + offset, len);
621 
622 	/*
623 	 * If we're invalidating the entire folio, clear the dirty state
624 	 * from it and release it to avoid unnecessary buildup of the LRU.
625 	 */
626 	if (offset == 0 && len == folio_size(folio)) {
627 		WARN_ON_ONCE(folio_test_writeback(folio));
628 		folio_cancel_dirty(folio);
629 		ifs_free(folio);
630 	}
631 }
632 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
633 
634 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
635 {
636 	struct inode *inode = mapping->host;
637 	size_t len = folio_size(folio);
638 
639 	ifs_alloc(inode, folio, 0);
640 	iomap_set_range_dirty(folio, 0, len);
641 	return filemap_dirty_folio(mapping, folio);
642 }
643 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
644 
645 static void
646 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
647 {
648 	loff_t i_size = i_size_read(inode);
649 
650 	/*
651 	 * Only truncate newly allocated pages beyoned EOF, even if the
652 	 * write started inside the existing inode size.
653 	 */
654 	if (pos + len > i_size)
655 		truncate_pagecache_range(inode, max(pos, i_size),
656 					 pos + len - 1);
657 }
658 
659 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
660 		size_t poff, size_t plen, const struct iomap *iomap)
661 {
662 	struct bio_vec bvec;
663 	struct bio bio;
664 
665 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
666 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
667 	bio_add_folio_nofail(&bio, folio, plen, poff);
668 	return submit_bio_wait(&bio);
669 }
670 
671 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
672 		size_t len, struct folio *folio)
673 {
674 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
675 	struct iomap_folio_state *ifs;
676 	loff_t block_size = i_blocksize(iter->inode);
677 	loff_t block_start = round_down(pos, block_size);
678 	loff_t block_end = round_up(pos + len, block_size);
679 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
680 	size_t from = offset_in_folio(folio, pos), to = from + len;
681 	size_t poff, plen;
682 
683 	/*
684 	 * If the write or zeroing completely overlaps the current folio, then
685 	 * entire folio will be dirtied so there is no need for
686 	 * per-block state tracking structures to be attached to this folio.
687 	 * For the unshare case, we must read in the ondisk contents because we
688 	 * are not changing pagecache contents.
689 	 */
690 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
691 	    pos + len >= folio_pos(folio) + folio_size(folio))
692 		return 0;
693 
694 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
695 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
696 		return -EAGAIN;
697 
698 	if (folio_test_uptodate(folio))
699 		return 0;
700 	folio_clear_error(folio);
701 
702 	do {
703 		iomap_adjust_read_range(iter->inode, folio, &block_start,
704 				block_end - block_start, &poff, &plen);
705 		if (plen == 0)
706 			break;
707 
708 		if (!(iter->flags & IOMAP_UNSHARE) &&
709 		    (from <= poff || from >= poff + plen) &&
710 		    (to <= poff || to >= poff + plen))
711 			continue;
712 
713 		if (iomap_block_needs_zeroing(iter, block_start)) {
714 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
715 				return -EIO;
716 			folio_zero_segments(folio, poff, from, to, poff + plen);
717 		} else {
718 			int status;
719 
720 			if (iter->flags & IOMAP_NOWAIT)
721 				return -EAGAIN;
722 
723 			status = iomap_read_folio_sync(block_start, folio,
724 					poff, plen, srcmap);
725 			if (status)
726 				return status;
727 		}
728 		iomap_set_range_uptodate(folio, poff, plen);
729 	} while ((block_start += plen) < block_end);
730 
731 	return 0;
732 }
733 
734 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
735 		size_t len)
736 {
737 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
738 
739 	if (folio_ops && folio_ops->get_folio)
740 		return folio_ops->get_folio(iter, pos, len);
741 	else
742 		return iomap_get_folio(iter, pos, len);
743 }
744 
745 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
746 		struct folio *folio)
747 {
748 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
749 
750 	if (folio_ops && folio_ops->put_folio) {
751 		folio_ops->put_folio(iter->inode, pos, ret, folio);
752 	} else {
753 		folio_unlock(folio);
754 		folio_put(folio);
755 	}
756 }
757 
758 static int iomap_write_begin_inline(const struct iomap_iter *iter,
759 		struct folio *folio)
760 {
761 	/* needs more work for the tailpacking case; disable for now */
762 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
763 		return -EIO;
764 	return iomap_read_inline_data(iter, folio);
765 }
766 
767 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
768 		size_t len, struct folio **foliop)
769 {
770 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
771 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
772 	struct folio *folio;
773 	int status = 0;
774 
775 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
776 	if (srcmap != &iter->iomap)
777 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
778 
779 	if (fatal_signal_pending(current))
780 		return -EINTR;
781 
782 	if (!mapping_large_folio_support(iter->inode->i_mapping))
783 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
784 
785 	folio = __iomap_get_folio(iter, pos, len);
786 	if (IS_ERR(folio))
787 		return PTR_ERR(folio);
788 
789 	/*
790 	 * Now we have a locked folio, before we do anything with it we need to
791 	 * check that the iomap we have cached is not stale. The inode extent
792 	 * mapping can change due to concurrent IO in flight (e.g.
793 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
794 	 * reclaimed a previously partially written page at this index after IO
795 	 * completion before this write reaches this file offset) and hence we
796 	 * could do the wrong thing here (zero a page range incorrectly or fail
797 	 * to zero) and corrupt data.
798 	 */
799 	if (folio_ops && folio_ops->iomap_valid) {
800 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
801 							 &iter->iomap);
802 		if (!iomap_valid) {
803 			iter->iomap.flags |= IOMAP_F_STALE;
804 			status = 0;
805 			goto out_unlock;
806 		}
807 	}
808 
809 	if (pos + len > folio_pos(folio) + folio_size(folio))
810 		len = folio_pos(folio) + folio_size(folio) - pos;
811 
812 	if (srcmap->type == IOMAP_INLINE)
813 		status = iomap_write_begin_inline(iter, folio);
814 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
815 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
816 	else
817 		status = __iomap_write_begin(iter, pos, len, folio);
818 
819 	if (unlikely(status))
820 		goto out_unlock;
821 
822 	*foliop = folio;
823 	return 0;
824 
825 out_unlock:
826 	__iomap_put_folio(iter, pos, 0, folio);
827 
828 	return status;
829 }
830 
831 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
832 		size_t copied, struct folio *folio)
833 {
834 	flush_dcache_folio(folio);
835 
836 	/*
837 	 * The blocks that were entirely written will now be uptodate, so we
838 	 * don't have to worry about a read_folio reading them and overwriting a
839 	 * partial write.  However, if we've encountered a short write and only
840 	 * partially written into a block, it will not be marked uptodate, so a
841 	 * read_folio might come in and destroy our partial write.
842 	 *
843 	 * Do the simplest thing and just treat any short write to a
844 	 * non-uptodate page as a zero-length write, and force the caller to
845 	 * redo the whole thing.
846 	 */
847 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
848 		return false;
849 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
850 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
851 	filemap_dirty_folio(inode->i_mapping, folio);
852 	return true;
853 }
854 
855 static void iomap_write_end_inline(const struct iomap_iter *iter,
856 		struct folio *folio, loff_t pos, size_t copied)
857 {
858 	const struct iomap *iomap = &iter->iomap;
859 	void *addr;
860 
861 	WARN_ON_ONCE(!folio_test_uptodate(folio));
862 	BUG_ON(!iomap_inline_data_valid(iomap));
863 
864 	flush_dcache_folio(folio);
865 	addr = kmap_local_folio(folio, pos);
866 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
867 	kunmap_local(addr);
868 
869 	mark_inode_dirty(iter->inode);
870 }
871 
872 /*
873  * Returns true if all copied bytes have been written to the pagecache,
874  * otherwise return false.
875  */
876 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
877 		size_t copied, struct folio *folio)
878 {
879 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
880 
881 	if (srcmap->type == IOMAP_INLINE) {
882 		iomap_write_end_inline(iter, folio, pos, copied);
883 		return true;
884 	}
885 
886 	if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
887 		size_t bh_written;
888 
889 		bh_written = block_write_end(NULL, iter->inode->i_mapping, pos,
890 					len, copied, &folio->page, NULL);
891 		WARN_ON_ONCE(bh_written != copied && bh_written != 0);
892 		return bh_written == copied;
893 	}
894 
895 	return __iomap_write_end(iter->inode, pos, len, copied, folio);
896 }
897 
898 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
899 {
900 	loff_t length = iomap_length(iter);
901 	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
902 	loff_t pos = iter->pos;
903 	ssize_t total_written = 0;
904 	long status = 0;
905 	struct address_space *mapping = iter->inode->i_mapping;
906 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
907 
908 	do {
909 		struct folio *folio;
910 		loff_t old_size;
911 		size_t offset;		/* Offset into folio */
912 		size_t bytes;		/* Bytes to write to folio */
913 		size_t copied;		/* Bytes copied from user */
914 		size_t written;		/* Bytes have been written */
915 
916 		bytes = iov_iter_count(i);
917 retry:
918 		offset = pos & (chunk - 1);
919 		bytes = min(chunk - offset, bytes);
920 		status = balance_dirty_pages_ratelimited_flags(mapping,
921 							       bdp_flags);
922 		if (unlikely(status))
923 			break;
924 
925 		if (bytes > length)
926 			bytes = length;
927 
928 		/*
929 		 * Bring in the user page that we'll copy from _first_.
930 		 * Otherwise there's a nasty deadlock on copying from the
931 		 * same page as we're writing to, without it being marked
932 		 * up-to-date.
933 		 *
934 		 * For async buffered writes the assumption is that the user
935 		 * page has already been faulted in. This can be optimized by
936 		 * faulting the user page.
937 		 */
938 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
939 			status = -EFAULT;
940 			break;
941 		}
942 
943 		status = iomap_write_begin(iter, pos, bytes, &folio);
944 		if (unlikely(status)) {
945 			iomap_write_failed(iter->inode, pos, bytes);
946 			break;
947 		}
948 		if (iter->iomap.flags & IOMAP_F_STALE)
949 			break;
950 
951 		offset = offset_in_folio(folio, pos);
952 		if (bytes > folio_size(folio) - offset)
953 			bytes = folio_size(folio) - offset;
954 
955 		if (mapping_writably_mapped(mapping))
956 			flush_dcache_folio(folio);
957 
958 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
959 		written = iomap_write_end(iter, pos, bytes, copied, folio) ?
960 			  copied : 0;
961 
962 		/*
963 		 * Update the in-memory inode size after copying the data into
964 		 * the page cache.  It's up to the file system to write the
965 		 * updated size to disk, preferably after I/O completion so that
966 		 * no stale data is exposed.  Only once that's done can we
967 		 * unlock and release the folio.
968 		 */
969 		old_size = iter->inode->i_size;
970 		if (pos + written > old_size) {
971 			i_size_write(iter->inode, pos + written);
972 			iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
973 		}
974 		__iomap_put_folio(iter, pos, written, folio);
975 
976 		if (old_size < pos)
977 			pagecache_isize_extended(iter->inode, old_size, pos);
978 
979 		cond_resched();
980 		if (unlikely(written == 0)) {
981 			/*
982 			 * A short copy made iomap_write_end() reject the
983 			 * thing entirely.  Might be memory poisoning
984 			 * halfway through, might be a race with munmap,
985 			 * might be severe memory pressure.
986 			 */
987 			iomap_write_failed(iter->inode, pos, bytes);
988 			iov_iter_revert(i, copied);
989 
990 			if (chunk > PAGE_SIZE)
991 				chunk /= 2;
992 			if (copied) {
993 				bytes = copied;
994 				goto retry;
995 			}
996 		} else {
997 			pos += written;
998 			total_written += written;
999 			length -= written;
1000 		}
1001 	} while (iov_iter_count(i) && length);
1002 
1003 	if (status == -EAGAIN) {
1004 		iov_iter_revert(i, total_written);
1005 		return -EAGAIN;
1006 	}
1007 	return total_written ? total_written : status;
1008 }
1009 
1010 ssize_t
1011 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1012 		const struct iomap_ops *ops)
1013 {
1014 	struct iomap_iter iter = {
1015 		.inode		= iocb->ki_filp->f_mapping->host,
1016 		.pos		= iocb->ki_pos,
1017 		.len		= iov_iter_count(i),
1018 		.flags		= IOMAP_WRITE,
1019 	};
1020 	ssize_t ret;
1021 
1022 	if (iocb->ki_flags & IOCB_NOWAIT)
1023 		iter.flags |= IOMAP_NOWAIT;
1024 
1025 	while ((ret = iomap_iter(&iter, ops)) > 0)
1026 		iter.processed = iomap_write_iter(&iter, i);
1027 
1028 	if (unlikely(iter.pos == iocb->ki_pos))
1029 		return ret;
1030 	ret = iter.pos - iocb->ki_pos;
1031 	iocb->ki_pos = iter.pos;
1032 	return ret;
1033 }
1034 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1035 
1036 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
1037 		struct folio *folio, loff_t start_byte, loff_t end_byte,
1038 		iomap_punch_t punch)
1039 {
1040 	unsigned int first_blk, last_blk, i;
1041 	loff_t last_byte;
1042 	u8 blkbits = inode->i_blkbits;
1043 	struct iomap_folio_state *ifs;
1044 	int ret = 0;
1045 
1046 	/*
1047 	 * When we have per-block dirty tracking, there can be
1048 	 * blocks within a folio which are marked uptodate
1049 	 * but not dirty. In that case it is necessary to punch
1050 	 * out such blocks to avoid leaking any delalloc blocks.
1051 	 */
1052 	ifs = folio->private;
1053 	if (!ifs)
1054 		return ret;
1055 
1056 	last_byte = min_t(loff_t, end_byte - 1,
1057 			folio_pos(folio) + folio_size(folio) - 1);
1058 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1059 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1060 	for (i = first_blk; i <= last_blk; i++) {
1061 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1062 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1063 				    1 << blkbits);
1064 			if (ret)
1065 				return ret;
1066 		}
1067 	}
1068 
1069 	return ret;
1070 }
1071 
1072 
1073 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1074 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1075 		iomap_punch_t punch)
1076 {
1077 	int ret = 0;
1078 
1079 	if (!folio_test_dirty(folio))
1080 		return ret;
1081 
1082 	/* if dirty, punch up to offset */
1083 	if (start_byte > *punch_start_byte) {
1084 		ret = punch(inode, *punch_start_byte,
1085 				start_byte - *punch_start_byte);
1086 		if (ret)
1087 			return ret;
1088 	}
1089 
1090 	/* Punch non-dirty blocks within folio */
1091 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1092 			end_byte, punch);
1093 	if (ret)
1094 		return ret;
1095 
1096 	/*
1097 	 * Make sure the next punch start is correctly bound to
1098 	 * the end of this data range, not the end of the folio.
1099 	 */
1100 	*punch_start_byte = min_t(loff_t, end_byte,
1101 				folio_pos(folio) + folio_size(folio));
1102 
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Scan the data range passed to us for dirty page cache folios. If we find a
1108  * dirty folio, punch out the preceding range and update the offset from which
1109  * the next punch will start from.
1110  *
1111  * We can punch out storage reservations under clean pages because they either
1112  * contain data that has been written back - in which case the delalloc punch
1113  * over that range is a no-op - or they have been read faults in which case they
1114  * contain zeroes and we can remove the delalloc backing range and any new
1115  * writes to those pages will do the normal hole filling operation...
1116  *
1117  * This makes the logic simple: we only need to keep the delalloc extents only
1118  * over the dirty ranges of the page cache.
1119  *
1120  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1121  * simplify range iterations.
1122  */
1123 static int iomap_write_delalloc_scan(struct inode *inode,
1124 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1125 		iomap_punch_t punch)
1126 {
1127 	while (start_byte < end_byte) {
1128 		struct folio	*folio;
1129 		int ret;
1130 
1131 		/* grab locked page */
1132 		folio = filemap_lock_folio(inode->i_mapping,
1133 				start_byte >> PAGE_SHIFT);
1134 		if (IS_ERR(folio)) {
1135 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1136 					PAGE_SIZE;
1137 			continue;
1138 		}
1139 
1140 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1141 						 start_byte, end_byte, punch);
1142 		if (ret) {
1143 			folio_unlock(folio);
1144 			folio_put(folio);
1145 			return ret;
1146 		}
1147 
1148 		/* move offset to start of next folio in range */
1149 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1150 		folio_unlock(folio);
1151 		folio_put(folio);
1152 	}
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Punch out all the delalloc blocks in the range given except for those that
1158  * have dirty data still pending in the page cache - those are going to be
1159  * written and so must still retain the delalloc backing for writeback.
1160  *
1161  * As we are scanning the page cache for data, we don't need to reimplement the
1162  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1163  * start and end of data ranges correctly even for sub-folio block sizes. This
1164  * byte range based iteration is especially convenient because it means we
1165  * don't have to care about variable size folios, nor where the start or end of
1166  * the data range lies within a folio, if they lie within the same folio or even
1167  * if there are multiple discontiguous data ranges within the folio.
1168  *
1169  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1170  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1171  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1172  * date. A write page fault can then mark it dirty. If we then fail a write()
1173  * beyond EOF into that up to date cached range, we allocate a delalloc block
1174  * beyond EOF and then have to punch it out. Because the range is up to date,
1175  * mapping_seek_hole_data() will return it, and we will skip the punch because
1176  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1177  * beyond EOF in this case as writeback will never write back and covert that
1178  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1179  * resulting in always punching out the range from the EOF to the end of the
1180  * range the iomap spans.
1181  *
1182  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1183  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1184  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1185  * returns the end of the data range (data_end). Using closed intervals would
1186  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1187  * the code to subtle off-by-one bugs....
1188  */
1189 static int iomap_write_delalloc_release(struct inode *inode,
1190 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1191 {
1192 	loff_t punch_start_byte = start_byte;
1193 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1194 	int error = 0;
1195 
1196 	/*
1197 	 * Lock the mapping to avoid races with page faults re-instantiating
1198 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1199 	 * cache and perform delalloc extent removal. Failing to do this can
1200 	 * leave dirty pages with no space reservation in the cache.
1201 	 */
1202 	filemap_invalidate_lock(inode->i_mapping);
1203 	while (start_byte < scan_end_byte) {
1204 		loff_t		data_end;
1205 
1206 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1207 				start_byte, scan_end_byte, SEEK_DATA);
1208 		/*
1209 		 * If there is no more data to scan, all that is left is to
1210 		 * punch out the remaining range.
1211 		 */
1212 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1213 			break;
1214 		if (start_byte < 0) {
1215 			error = start_byte;
1216 			goto out_unlock;
1217 		}
1218 		WARN_ON_ONCE(start_byte < punch_start_byte);
1219 		WARN_ON_ONCE(start_byte > scan_end_byte);
1220 
1221 		/*
1222 		 * We find the end of this contiguous cached data range by
1223 		 * seeking from start_byte to the beginning of the next hole.
1224 		 */
1225 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1226 				scan_end_byte, SEEK_HOLE);
1227 		if (data_end < 0) {
1228 			error = data_end;
1229 			goto out_unlock;
1230 		}
1231 		WARN_ON_ONCE(data_end <= start_byte);
1232 		WARN_ON_ONCE(data_end > scan_end_byte);
1233 
1234 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1235 				start_byte, data_end, punch);
1236 		if (error)
1237 			goto out_unlock;
1238 
1239 		/* The next data search starts at the end of this one. */
1240 		start_byte = data_end;
1241 	}
1242 
1243 	if (punch_start_byte < end_byte)
1244 		error = punch(inode, punch_start_byte,
1245 				end_byte - punch_start_byte);
1246 out_unlock:
1247 	filemap_invalidate_unlock(inode->i_mapping);
1248 	return error;
1249 }
1250 
1251 /*
1252  * When a short write occurs, the filesystem may need to remove reserved space
1253  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1254  * filesystems that use delayed allocation, we need to punch out delalloc
1255  * extents from the range that are not dirty in the page cache. As the write can
1256  * race with page faults, there can be dirty pages over the delalloc extent
1257  * outside the range of a short write but still within the delalloc extent
1258  * allocated for this iomap.
1259  *
1260  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1261  * simplify range iterations.
1262  *
1263  * The punch() callback *must* only punch delalloc extents in the range passed
1264  * to it. It must skip over all other types of extents in the range and leave
1265  * them completely unchanged. It must do this punch atomically with respect to
1266  * other extent modifications.
1267  *
1268  * The punch() callback may be called with a folio locked to prevent writeback
1269  * extent allocation racing at the edge of the range we are currently punching.
1270  * The locked folio may or may not cover the range being punched, so it is not
1271  * safe for the punch() callback to lock folios itself.
1272  *
1273  * Lock order is:
1274  *
1275  * inode->i_rwsem (shared or exclusive)
1276  *   inode->i_mapping->invalidate_lock (exclusive)
1277  *     folio_lock()
1278  *       ->punch
1279  *         internal filesystem allocation lock
1280  */
1281 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1282 		struct iomap *iomap, loff_t pos, loff_t length,
1283 		ssize_t written, iomap_punch_t punch)
1284 {
1285 	loff_t			start_byte;
1286 	loff_t			end_byte;
1287 	unsigned int		blocksize = i_blocksize(inode);
1288 
1289 	if (iomap->type != IOMAP_DELALLOC)
1290 		return 0;
1291 
1292 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1293 	if (!(iomap->flags & IOMAP_F_NEW))
1294 		return 0;
1295 
1296 	/*
1297 	 * start_byte refers to the first unused block after a short write. If
1298 	 * nothing was written, round offset down to point at the first block in
1299 	 * the range.
1300 	 */
1301 	if (unlikely(!written))
1302 		start_byte = round_down(pos, blocksize);
1303 	else
1304 		start_byte = round_up(pos + written, blocksize);
1305 	end_byte = round_up(pos + length, blocksize);
1306 
1307 	/* Nothing to do if we've written the entire delalloc extent */
1308 	if (start_byte >= end_byte)
1309 		return 0;
1310 
1311 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1312 					punch);
1313 }
1314 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1315 
1316 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1317 {
1318 	struct iomap *iomap = &iter->iomap;
1319 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1320 	loff_t pos = iter->pos;
1321 	loff_t length = iomap_length(iter);
1322 	loff_t written = 0;
1323 
1324 	/* don't bother with blocks that are not shared to start with */
1325 	if (!(iomap->flags & IOMAP_F_SHARED))
1326 		return length;
1327 	/* don't bother with holes or unwritten extents */
1328 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1329 		return length;
1330 
1331 	do {
1332 		struct folio *folio;
1333 		int status;
1334 		size_t offset;
1335 		size_t bytes = min_t(u64, SIZE_MAX, length);
1336 		bool ret;
1337 
1338 		status = iomap_write_begin(iter, pos, bytes, &folio);
1339 		if (unlikely(status))
1340 			return status;
1341 		if (iomap->flags & IOMAP_F_STALE)
1342 			break;
1343 
1344 		offset = offset_in_folio(folio, pos);
1345 		if (bytes > folio_size(folio) - offset)
1346 			bytes = folio_size(folio) - offset;
1347 
1348 		ret = iomap_write_end(iter, pos, bytes, bytes, folio);
1349 		__iomap_put_folio(iter, pos, bytes, folio);
1350 		if (WARN_ON_ONCE(!ret))
1351 			return -EIO;
1352 
1353 		cond_resched();
1354 
1355 		pos += bytes;
1356 		written += bytes;
1357 		length -= bytes;
1358 
1359 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1360 	} while (length > 0);
1361 
1362 	return written;
1363 }
1364 
1365 int
1366 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1367 		const struct iomap_ops *ops)
1368 {
1369 	struct iomap_iter iter = {
1370 		.inode		= inode,
1371 		.pos		= pos,
1372 		.len		= len,
1373 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1374 	};
1375 	int ret;
1376 
1377 	while ((ret = iomap_iter(&iter, ops)) > 0)
1378 		iter.processed = iomap_unshare_iter(&iter);
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1382 
1383 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1384 {
1385 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1386 	loff_t pos = iter->pos;
1387 	loff_t length = iomap_length(iter);
1388 	loff_t written = 0;
1389 
1390 	/* already zeroed?  we're done. */
1391 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1392 		return length;
1393 
1394 	do {
1395 		struct folio *folio;
1396 		int status;
1397 		size_t offset;
1398 		size_t bytes = min_t(u64, SIZE_MAX, length);
1399 		bool ret;
1400 
1401 		status = iomap_write_begin(iter, pos, bytes, &folio);
1402 		if (status)
1403 			return status;
1404 		if (iter->iomap.flags & IOMAP_F_STALE)
1405 			break;
1406 
1407 		offset = offset_in_folio(folio, pos);
1408 		if (bytes > folio_size(folio) - offset)
1409 			bytes = folio_size(folio) - offset;
1410 
1411 		folio_zero_range(folio, offset, bytes);
1412 		folio_mark_accessed(folio);
1413 
1414 		ret = iomap_write_end(iter, pos, bytes, bytes, folio);
1415 		__iomap_put_folio(iter, pos, bytes, folio);
1416 		if (WARN_ON_ONCE(!ret))
1417 			return -EIO;
1418 
1419 		pos += bytes;
1420 		length -= bytes;
1421 		written += bytes;
1422 	} while (length > 0);
1423 
1424 	if (did_zero)
1425 		*did_zero = true;
1426 	return written;
1427 }
1428 
1429 int
1430 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1431 		const struct iomap_ops *ops)
1432 {
1433 	struct iomap_iter iter = {
1434 		.inode		= inode,
1435 		.pos		= pos,
1436 		.len		= len,
1437 		.flags		= IOMAP_ZERO,
1438 	};
1439 	int ret;
1440 
1441 	while ((ret = iomap_iter(&iter, ops)) > 0)
1442 		iter.processed = iomap_zero_iter(&iter, did_zero);
1443 	return ret;
1444 }
1445 EXPORT_SYMBOL_GPL(iomap_zero_range);
1446 
1447 int
1448 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1449 		const struct iomap_ops *ops)
1450 {
1451 	unsigned int blocksize = i_blocksize(inode);
1452 	unsigned int off = pos & (blocksize - 1);
1453 
1454 	/* Block boundary? Nothing to do */
1455 	if (!off)
1456 		return 0;
1457 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1458 }
1459 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1460 
1461 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1462 		struct folio *folio)
1463 {
1464 	loff_t length = iomap_length(iter);
1465 	int ret;
1466 
1467 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1468 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1469 					      &iter->iomap);
1470 		if (ret)
1471 			return ret;
1472 		block_commit_write(&folio->page, 0, length);
1473 	} else {
1474 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1475 		folio_mark_dirty(folio);
1476 	}
1477 
1478 	return length;
1479 }
1480 
1481 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1482 {
1483 	struct iomap_iter iter = {
1484 		.inode		= file_inode(vmf->vma->vm_file),
1485 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1486 	};
1487 	struct folio *folio = page_folio(vmf->page);
1488 	ssize_t ret;
1489 
1490 	folio_lock(folio);
1491 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1492 	if (ret < 0)
1493 		goto out_unlock;
1494 	iter.pos = folio_pos(folio);
1495 	iter.len = ret;
1496 	while ((ret = iomap_iter(&iter, ops)) > 0)
1497 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1498 
1499 	if (ret < 0)
1500 		goto out_unlock;
1501 	folio_wait_stable(folio);
1502 	return VM_FAULT_LOCKED;
1503 out_unlock:
1504 	folio_unlock(folio);
1505 	return vmf_fs_error(ret);
1506 }
1507 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1508 
1509 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1510 		size_t len)
1511 {
1512 	struct iomap_folio_state *ifs = folio->private;
1513 
1514 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1515 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1516 
1517 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1518 		folio_end_writeback(folio);
1519 }
1520 
1521 /*
1522  * We're now finished for good with this ioend structure.  Update the page
1523  * state, release holds on bios, and finally free up memory.  Do not use the
1524  * ioend after this.
1525  */
1526 static u32
1527 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1528 {
1529 	struct inode *inode = ioend->io_inode;
1530 	struct bio *bio = &ioend->io_bio;
1531 	struct folio_iter fi;
1532 	u32 folio_count = 0;
1533 
1534 	if (error) {
1535 		mapping_set_error(inode->i_mapping, error);
1536 		if (!bio_flagged(bio, BIO_QUIET)) {
1537 			pr_err_ratelimited(
1538 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1539 				inode->i_sb->s_id, inode->i_ino,
1540 				ioend->io_offset, ioend->io_sector);
1541 		}
1542 	}
1543 
1544 	/* walk all folios in bio, ending page IO on them */
1545 	bio_for_each_folio_all(fi, bio) {
1546 		if (error)
1547 			folio_set_error(fi.folio);
1548 		iomap_finish_folio_write(inode, fi.folio, fi.length);
1549 		folio_count++;
1550 	}
1551 
1552 	bio_put(bio);	/* frees the ioend */
1553 	return folio_count;
1554 }
1555 
1556 /*
1557  * Ioend completion routine for merged bios. This can only be called from task
1558  * contexts as merged ioends can be of unbound length. Hence we have to break up
1559  * the writeback completions into manageable chunks to avoid long scheduler
1560  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1561  * good batch processing throughput without creating adverse scheduler latency
1562  * conditions.
1563  */
1564 void
1565 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1566 {
1567 	struct list_head tmp;
1568 	u32 completions;
1569 
1570 	might_sleep();
1571 
1572 	list_replace_init(&ioend->io_list, &tmp);
1573 	completions = iomap_finish_ioend(ioend, error);
1574 
1575 	while (!list_empty(&tmp)) {
1576 		if (completions > IOEND_BATCH_SIZE * 8) {
1577 			cond_resched();
1578 			completions = 0;
1579 		}
1580 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1581 		list_del_init(&ioend->io_list);
1582 		completions += iomap_finish_ioend(ioend, error);
1583 	}
1584 }
1585 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1586 
1587 /*
1588  * We can merge two adjacent ioends if they have the same set of work to do.
1589  */
1590 static bool
1591 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1592 {
1593 	if (ioend->io_bio.bi_status != next->io_bio.bi_status)
1594 		return false;
1595 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1596 	    (next->io_flags & IOMAP_F_SHARED))
1597 		return false;
1598 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1599 	    (next->io_type == IOMAP_UNWRITTEN))
1600 		return false;
1601 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1602 		return false;
1603 	/*
1604 	 * Do not merge physically discontiguous ioends. The filesystem
1605 	 * completion functions will have to iterate the physical
1606 	 * discontiguities even if we merge the ioends at a logical level, so
1607 	 * we don't gain anything by merging physical discontiguities here.
1608 	 *
1609 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1610 	 * submission so does not point to the start sector of the bio at
1611 	 * completion.
1612 	 */
1613 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1614 		return false;
1615 	return true;
1616 }
1617 
1618 void
1619 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1620 {
1621 	struct iomap_ioend *next;
1622 
1623 	INIT_LIST_HEAD(&ioend->io_list);
1624 
1625 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1626 			io_list))) {
1627 		if (!iomap_ioend_can_merge(ioend, next))
1628 			break;
1629 		list_move_tail(&next->io_list, &ioend->io_list);
1630 		ioend->io_size += next->io_size;
1631 	}
1632 }
1633 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1634 
1635 static int
1636 iomap_ioend_compare(void *priv, const struct list_head *a,
1637 		const struct list_head *b)
1638 {
1639 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1640 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1641 
1642 	if (ia->io_offset < ib->io_offset)
1643 		return -1;
1644 	if (ia->io_offset > ib->io_offset)
1645 		return 1;
1646 	return 0;
1647 }
1648 
1649 void
1650 iomap_sort_ioends(struct list_head *ioend_list)
1651 {
1652 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1653 }
1654 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1655 
1656 static void iomap_writepage_end_bio(struct bio *bio)
1657 {
1658 	iomap_finish_ioend(iomap_ioend_from_bio(bio),
1659 			blk_status_to_errno(bio->bi_status));
1660 }
1661 
1662 /*
1663  * Submit the final bio for an ioend.
1664  *
1665  * If @error is non-zero, it means that we have a situation where some part of
1666  * the submission process has failed after we've marked pages for writeback.
1667  * We cannot cancel ioend directly in that case, so call the bio end I/O handler
1668  * with the error status here to run the normal I/O completion handler to clear
1669  * the writeback bit and let the file system proess the errors.
1670  */
1671 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error)
1672 {
1673 	if (!wpc->ioend)
1674 		return error;
1675 
1676 	/*
1677 	 * Let the file systems prepare the I/O submission and hook in an I/O
1678 	 * comletion handler.  This also needs to happen in case after a
1679 	 * failure happened so that the file system end I/O handler gets called
1680 	 * to clean up.
1681 	 */
1682 	if (wpc->ops->prepare_ioend)
1683 		error = wpc->ops->prepare_ioend(wpc->ioend, error);
1684 
1685 	if (error) {
1686 		wpc->ioend->io_bio.bi_status = errno_to_blk_status(error);
1687 		bio_endio(&wpc->ioend->io_bio);
1688 	} else {
1689 		submit_bio(&wpc->ioend->io_bio);
1690 	}
1691 
1692 	wpc->ioend = NULL;
1693 	return error;
1694 }
1695 
1696 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc,
1697 		struct writeback_control *wbc, struct inode *inode, loff_t pos)
1698 {
1699 	struct iomap_ioend *ioend;
1700 	struct bio *bio;
1701 
1702 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1703 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1704 			       GFP_NOFS, &iomap_ioend_bioset);
1705 	bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos);
1706 	bio->bi_end_io = iomap_writepage_end_bio;
1707 	wbc_init_bio(wbc, bio);
1708 	bio->bi_write_hint = inode->i_write_hint;
1709 
1710 	ioend = iomap_ioend_from_bio(bio);
1711 	INIT_LIST_HEAD(&ioend->io_list);
1712 	ioend->io_type = wpc->iomap.type;
1713 	ioend->io_flags = wpc->iomap.flags;
1714 	ioend->io_inode = inode;
1715 	ioend->io_size = 0;
1716 	ioend->io_offset = pos;
1717 	ioend->io_sector = bio->bi_iter.bi_sector;
1718 
1719 	wpc->nr_folios = 0;
1720 	return ioend;
1721 }
1722 
1723 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos)
1724 {
1725 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1726 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1727 		return false;
1728 	if (wpc->iomap.type != wpc->ioend->io_type)
1729 		return false;
1730 	if (pos != wpc->ioend->io_offset + wpc->ioend->io_size)
1731 		return false;
1732 	if (iomap_sector(&wpc->iomap, pos) !=
1733 	    bio_end_sector(&wpc->ioend->io_bio))
1734 		return false;
1735 	/*
1736 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1737 	 * also prevents long tight loops ending page writeback on all the
1738 	 * folios in the ioend.
1739 	 */
1740 	if (wpc->nr_folios >= IOEND_BATCH_SIZE)
1741 		return false;
1742 	return true;
1743 }
1744 
1745 /*
1746  * Test to see if we have an existing ioend structure that we could append to
1747  * first; otherwise finish off the current ioend and start another.
1748  *
1749  * If a new ioend is created and cached, the old ioend is submitted to the block
1750  * layer instantly.  Batching optimisations are provided by higher level block
1751  * plugging.
1752  *
1753  * At the end of a writeback pass, there will be a cached ioend remaining on the
1754  * writepage context that the caller will need to submit.
1755  */
1756 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc,
1757 		struct writeback_control *wbc, struct folio *folio,
1758 		struct inode *inode, loff_t pos, unsigned len)
1759 {
1760 	struct iomap_folio_state *ifs = folio->private;
1761 	size_t poff = offset_in_folio(folio, pos);
1762 	int error;
1763 
1764 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) {
1765 new_ioend:
1766 		error = iomap_submit_ioend(wpc, 0);
1767 		if (error)
1768 			return error;
1769 		wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos);
1770 	}
1771 
1772 	if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff))
1773 		goto new_ioend;
1774 
1775 	if (ifs)
1776 		atomic_add(len, &ifs->write_bytes_pending);
1777 	wpc->ioend->io_size += len;
1778 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1779 	return 0;
1780 }
1781 
1782 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc,
1783 		struct writeback_control *wbc, struct folio *folio,
1784 		struct inode *inode, u64 pos, unsigned dirty_len,
1785 		unsigned *count)
1786 {
1787 	int error;
1788 
1789 	do {
1790 		unsigned map_len;
1791 
1792 		error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len);
1793 		if (error)
1794 			break;
1795 		trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap);
1796 
1797 		map_len = min_t(u64, dirty_len,
1798 			wpc->iomap.offset + wpc->iomap.length - pos);
1799 		WARN_ON_ONCE(!folio->private && map_len < dirty_len);
1800 
1801 		switch (wpc->iomap.type) {
1802 		case IOMAP_INLINE:
1803 			WARN_ON_ONCE(1);
1804 			error = -EIO;
1805 			break;
1806 		case IOMAP_HOLE:
1807 			break;
1808 		default:
1809 			error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos,
1810 					map_len);
1811 			if (!error)
1812 				(*count)++;
1813 			break;
1814 		}
1815 		dirty_len -= map_len;
1816 		pos += map_len;
1817 	} while (dirty_len && !error);
1818 
1819 	/*
1820 	 * We cannot cancel the ioend directly here on error.  We may have
1821 	 * already set other pages under writeback and hence we have to run I/O
1822 	 * completion to mark the error state of the pages under writeback
1823 	 * appropriately.
1824 	 *
1825 	 * Just let the file system know what portion of the folio failed to
1826 	 * map.
1827 	 */
1828 	if (error && wpc->ops->discard_folio)
1829 		wpc->ops->discard_folio(folio, pos);
1830 	return error;
1831 }
1832 
1833 /*
1834  * Check interaction of the folio with the file end.
1835  *
1836  * If the folio is entirely beyond i_size, return false.  If it straddles
1837  * i_size, adjust end_pos and zero all data beyond i_size.
1838  */
1839 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode,
1840 		u64 *end_pos)
1841 {
1842 	u64 isize = i_size_read(inode);
1843 
1844 	if (*end_pos > isize) {
1845 		size_t poff = offset_in_folio(folio, isize);
1846 		pgoff_t end_index = isize >> PAGE_SHIFT;
1847 
1848 		/*
1849 		 * If the folio is entirely ouside of i_size, skip it.
1850 		 *
1851 		 * This can happen due to a truncate operation that is in
1852 		 * progress and in that case truncate will finish it off once
1853 		 * we've dropped the folio lock.
1854 		 *
1855 		 * Note that the pgoff_t used for end_index is an unsigned long.
1856 		 * If the given offset is greater than 16TB on a 32-bit system,
1857 		 * then if we checked if the folio is fully outside i_size with
1858 		 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1859 		 * overflow and evaluate to 0.  Hence this folio would be
1860 		 * redirtied and written out repeatedly, which would result in
1861 		 * an infinite loop; the user program performing this operation
1862 		 * would hang.  Instead, we can detect this situation by
1863 		 * checking if the folio is totally beyond i_size or if its
1864 		 * offset is just equal to the EOF.
1865 		 */
1866 		if (folio->index > end_index ||
1867 		    (folio->index == end_index && poff == 0))
1868 			return false;
1869 
1870 		/*
1871 		 * The folio straddles i_size.
1872 		 *
1873 		 * It must be zeroed out on each and every writepage invocation
1874 		 * because it may be mmapped:
1875 		 *
1876 		 *    A file is mapped in multiples of the page size.  For a
1877 		 *    file that is not a multiple of the page size, the
1878 		 *    remaining memory is zeroed when mapped, and writes to that
1879 		 *    region are not written out to the file.
1880 		 *
1881 		 * Also adjust the writeback range to skip all blocks entirely
1882 		 * beyond i_size.
1883 		 */
1884 		folio_zero_segment(folio, poff, folio_size(folio));
1885 		*end_pos = round_up(isize, i_blocksize(inode));
1886 	}
1887 
1888 	return true;
1889 }
1890 
1891 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1892 		struct writeback_control *wbc, struct folio *folio)
1893 {
1894 	struct iomap_folio_state *ifs = folio->private;
1895 	struct inode *inode = folio->mapping->host;
1896 	u64 pos = folio_pos(folio);
1897 	u64 end_pos = pos + folio_size(folio);
1898 	unsigned count = 0;
1899 	int error = 0;
1900 	u32 rlen;
1901 
1902 	WARN_ON_ONCE(!folio_test_locked(folio));
1903 	WARN_ON_ONCE(folio_test_dirty(folio));
1904 	WARN_ON_ONCE(folio_test_writeback(folio));
1905 
1906 	trace_iomap_writepage(inode, pos, folio_size(folio));
1907 
1908 	if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) {
1909 		folio_unlock(folio);
1910 		return 0;
1911 	}
1912 	WARN_ON_ONCE(end_pos <= pos);
1913 
1914 	if (i_blocks_per_folio(inode, folio) > 1) {
1915 		if (!ifs) {
1916 			ifs = ifs_alloc(inode, folio, 0);
1917 			iomap_set_range_dirty(folio, 0, end_pos - pos);
1918 		}
1919 
1920 		/*
1921 		 * Keep the I/O completion handler from clearing the writeback
1922 		 * bit until we have submitted all blocks by adding a bias to
1923 		 * ifs->write_bytes_pending, which is dropped after submitting
1924 		 * all blocks.
1925 		 */
1926 		WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1927 		atomic_inc(&ifs->write_bytes_pending);
1928 	}
1929 
1930 	/*
1931 	 * Set the writeback bit ASAP, as the I/O completion for the single
1932 	 * block per folio case happen hit as soon as we're submitting the bio.
1933 	 */
1934 	folio_start_writeback(folio);
1935 
1936 	/*
1937 	 * Walk through the folio to find dirty areas to write back.
1938 	 */
1939 	while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) {
1940 		error = iomap_writepage_map_blocks(wpc, wbc, folio, inode,
1941 				pos, rlen, &count);
1942 		if (error)
1943 			break;
1944 		pos += rlen;
1945 	}
1946 
1947 	if (count)
1948 		wpc->nr_folios++;
1949 
1950 	/*
1951 	 * We can have dirty bits set past end of file in page_mkwrite path
1952 	 * while mapping the last partial folio. Hence it's better to clear
1953 	 * all the dirty bits in the folio here.
1954 	 */
1955 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1956 
1957 	/*
1958 	 * Usually the writeback bit is cleared by the I/O completion handler.
1959 	 * But we may end up either not actually writing any blocks, or (when
1960 	 * there are multiple blocks in a folio) all I/O might have finished
1961 	 * already at this point.  In that case we need to clear the writeback
1962 	 * bit ourselves right after unlocking the page.
1963 	 */
1964 	folio_unlock(folio);
1965 	if (ifs) {
1966 		if (atomic_dec_and_test(&ifs->write_bytes_pending))
1967 			folio_end_writeback(folio);
1968 	} else {
1969 		if (!count)
1970 			folio_end_writeback(folio);
1971 	}
1972 	mapping_set_error(inode->i_mapping, error);
1973 	return error;
1974 }
1975 
1976 int
1977 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1978 		struct iomap_writepage_ctx *wpc,
1979 		const struct iomap_writeback_ops *ops)
1980 {
1981 	struct folio *folio = NULL;
1982 	int error;
1983 
1984 	/*
1985 	 * Writeback from reclaim context should never happen except in the case
1986 	 * of a VM regression so warn about it and refuse to write the data.
1987 	 */
1988 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1989 			PF_MEMALLOC))
1990 		return -EIO;
1991 
1992 	wpc->ops = ops;
1993 	while ((folio = writeback_iter(mapping, wbc, folio, &error)))
1994 		error = iomap_writepage_map(wpc, wbc, folio);
1995 	return iomap_submit_ioend(wpc, error);
1996 }
1997 EXPORT_SYMBOL_GPL(iomap_writepages);
1998 
1999 static int __init iomap_init(void)
2000 {
2001 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2002 			   offsetof(struct iomap_ioend, io_bio),
2003 			   BIOSET_NEED_BVECS);
2004 }
2005 fs_initcall(iomap_init);
2006