1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <linux/seq_file.h> 25 #include <linux/debugfs.h> 26 #include <trace/events/writeback.h> 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/timestamp.h> 29 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 37 * Inode LRU list locks protect: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode->i_sb->s_inode_list_lock protects: 40 * inode->i_sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * Inode LRU list locks 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode->i_sb->s_inode_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __ro_after_init; 64 static unsigned int i_hash_shift __ro_after_init; 65 static struct hlist_head *inode_hashtable __ro_after_init; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 /* 69 * Empty aops. Can be used for the cases where the user does not 70 * define any of the address_space operations. 71 */ 72 const struct address_space_operations empty_aops = { 73 }; 74 EXPORT_SYMBOL(empty_aops); 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __ro_after_init; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 #ifdef CONFIG_DEBUG_FS 107 static DEFINE_PER_CPU(long, mg_ctime_updates); 108 static DEFINE_PER_CPU(long, mg_fine_stamps); 109 static DEFINE_PER_CPU(long, mg_ctime_swaps); 110 111 static unsigned long get_mg_ctime_updates(void) 112 { 113 unsigned long sum = 0; 114 int i; 115 116 for_each_possible_cpu(i) 117 sum += data_race(per_cpu(mg_ctime_updates, i)); 118 return sum; 119 } 120 121 static unsigned long get_mg_fine_stamps(void) 122 { 123 unsigned long sum = 0; 124 int i; 125 126 for_each_possible_cpu(i) 127 sum += data_race(per_cpu(mg_fine_stamps, i)); 128 return sum; 129 } 130 131 static unsigned long get_mg_ctime_swaps(void) 132 { 133 unsigned long sum = 0; 134 int i; 135 136 for_each_possible_cpu(i) 137 sum += data_race(per_cpu(mg_ctime_swaps, i)); 138 return sum; 139 } 140 141 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 142 143 static int mgts_show(struct seq_file *s, void *p) 144 { 145 unsigned long ctime_updates = get_mg_ctime_updates(); 146 unsigned long ctime_swaps = get_mg_ctime_swaps(); 147 unsigned long fine_stamps = get_mg_fine_stamps(); 148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 149 150 seq_printf(s, "%lu %lu %lu %lu\n", 151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 152 return 0; 153 } 154 155 DEFINE_SHOW_ATTRIBUTE(mgts); 156 157 static int __init mg_debugfs_init(void) 158 { 159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 160 return 0; 161 } 162 late_initcall(mg_debugfs_init); 163 164 #else /* ! CONFIG_DEBUG_FS */ 165 166 #define mgtime_counter_inc(__var) do { } while (0) 167 168 #endif /* CONFIG_DEBUG_FS */ 169 170 /* 171 * Handle nr_inode sysctl 172 */ 173 #ifdef CONFIG_SYSCTL 174 /* 175 * Statistics gathering.. 176 */ 177 static struct inodes_stat_t inodes_stat; 178 179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 180 size_t *lenp, loff_t *ppos) 181 { 182 inodes_stat.nr_inodes = get_nr_inodes(); 183 inodes_stat.nr_unused = get_nr_inodes_unused(); 184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 185 } 186 187 static const struct ctl_table inodes_sysctls[] = { 188 { 189 .procname = "inode-nr", 190 .data = &inodes_stat, 191 .maxlen = 2*sizeof(long), 192 .mode = 0444, 193 .proc_handler = proc_nr_inodes, 194 }, 195 { 196 .procname = "inode-state", 197 .data = &inodes_stat, 198 .maxlen = 7*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_inodes, 201 }, 202 }; 203 204 static int __init init_fs_inode_sysctls(void) 205 { 206 register_sysctl_init("fs", inodes_sysctls); 207 return 0; 208 } 209 early_initcall(init_fs_inode_sysctls); 210 #endif 211 212 static int no_open(struct inode *inode, struct file *file) 213 { 214 return -ENXIO; 215 } 216 217 /** 218 * inode_init_always_gfp - perform inode structure initialisation 219 * @sb: superblock inode belongs to 220 * @inode: inode to initialise 221 * @gfp: allocation flags 222 * 223 * These are initializations that need to be done on every inode 224 * allocation as the fields are not initialised by slab allocation. 225 * If there are additional allocations required @gfp is used. 226 */ 227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 228 { 229 static const struct inode_operations empty_iops; 230 static const struct file_operations no_open_fops = {.open = no_open}; 231 struct address_space *const mapping = &inode->i_data; 232 233 inode->i_sb = sb; 234 inode->i_blkbits = sb->s_blocksize_bits; 235 inode->i_flags = 0; 236 inode->i_state = 0; 237 atomic64_set(&inode->i_sequence, 0); 238 atomic_set(&inode->i_count, 1); 239 inode->i_op = &empty_iops; 240 inode->i_fop = &no_open_fops; 241 inode->i_ino = 0; 242 inode->__i_nlink = 1; 243 inode->i_opflags = 0; 244 if (sb->s_xattr) 245 inode->i_opflags |= IOP_XATTR; 246 if (sb->s_type->fs_flags & FS_MGTIME) 247 inode->i_opflags |= IOP_MGTIME; 248 i_uid_write(inode, 0); 249 i_gid_write(inode, 0); 250 atomic_set(&inode->i_writecount, 0); 251 inode->i_size = 0; 252 inode->i_write_hint = WRITE_LIFE_NOT_SET; 253 inode->i_blocks = 0; 254 inode->i_bytes = 0; 255 inode->i_generation = 0; 256 inode->i_pipe = NULL; 257 inode->i_cdev = NULL; 258 inode->i_link = NULL; 259 inode->i_dir_seq = 0; 260 inode->i_rdev = 0; 261 inode->dirtied_when = 0; 262 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 inode->i_wb_frn_winner = 0; 265 inode->i_wb_frn_avg_time = 0; 266 inode->i_wb_frn_history = 0; 267 #endif 268 269 spin_lock_init(&inode->i_lock); 270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 271 272 init_rwsem(&inode->i_rwsem); 273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 274 275 atomic_set(&inode->i_dio_count, 0); 276 277 mapping->a_ops = &empty_aops; 278 mapping->host = inode; 279 mapping->flags = 0; 280 mapping->wb_err = 0; 281 atomic_set(&mapping->i_mmap_writable, 0); 282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 283 atomic_set(&mapping->nr_thps, 0); 284 #endif 285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 286 mapping->i_private_data = NULL; 287 mapping->writeback_index = 0; 288 init_rwsem(&mapping->invalidate_lock); 289 lockdep_set_class_and_name(&mapping->invalidate_lock, 290 &sb->s_type->invalidate_lock_key, 291 "mapping.invalidate_lock"); 292 if (sb->s_iflags & SB_I_STABLE_WRITES) 293 mapping_set_stable_writes(mapping); 294 inode->i_private = NULL; 295 inode->i_mapping = mapping; 296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 297 #ifdef CONFIG_FS_POSIX_ACL 298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 299 #endif 300 301 #ifdef CONFIG_FSNOTIFY 302 inode->i_fsnotify_mask = 0; 303 #endif 304 inode->i_flctx = NULL; 305 306 if (unlikely(security_inode_alloc(inode, gfp))) 307 return -ENOMEM; 308 309 this_cpu_inc(nr_inodes); 310 311 return 0; 312 } 313 EXPORT_SYMBOL(inode_init_always_gfp); 314 315 void free_inode_nonrcu(struct inode *inode) 316 { 317 kmem_cache_free(inode_cachep, inode); 318 } 319 EXPORT_SYMBOL(free_inode_nonrcu); 320 321 static void i_callback(struct rcu_head *head) 322 { 323 struct inode *inode = container_of(head, struct inode, i_rcu); 324 if (inode->free_inode) 325 inode->free_inode(inode); 326 else 327 free_inode_nonrcu(inode); 328 } 329 330 /** 331 * alloc_inode - obtain an inode 332 * @sb: superblock 333 * 334 * Allocates a new inode for given superblock. 335 * Inode wont be chained in superblock s_inodes list 336 * This means : 337 * - fs can't be unmount 338 * - quotas, fsnotify, writeback can't work 339 */ 340 struct inode *alloc_inode(struct super_block *sb) 341 { 342 const struct super_operations *ops = sb->s_op; 343 struct inode *inode; 344 345 if (ops->alloc_inode) 346 inode = ops->alloc_inode(sb); 347 else 348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 349 350 if (!inode) 351 return NULL; 352 353 if (unlikely(inode_init_always(sb, inode))) { 354 if (ops->destroy_inode) { 355 ops->destroy_inode(inode); 356 if (!ops->free_inode) 357 return NULL; 358 } 359 inode->free_inode = ops->free_inode; 360 i_callback(&inode->i_rcu); 361 return NULL; 362 } 363 364 return inode; 365 } 366 367 void __destroy_inode(struct inode *inode) 368 { 369 BUG_ON(inode_has_buffers(inode)); 370 inode_detach_wb(inode); 371 security_inode_free(inode); 372 fsnotify_inode_delete(inode); 373 locks_free_lock_context(inode); 374 if (!inode->i_nlink) { 375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 376 atomic_long_dec(&inode->i_sb->s_remove_count); 377 } 378 379 #ifdef CONFIG_FS_POSIX_ACL 380 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 381 posix_acl_release(inode->i_acl); 382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 383 posix_acl_release(inode->i_default_acl); 384 #endif 385 this_cpu_dec(nr_inodes); 386 } 387 EXPORT_SYMBOL(__destroy_inode); 388 389 static void destroy_inode(struct inode *inode) 390 { 391 const struct super_operations *ops = inode->i_sb->s_op; 392 393 BUG_ON(!list_empty(&inode->i_lru)); 394 __destroy_inode(inode); 395 if (ops->destroy_inode) { 396 ops->destroy_inode(inode); 397 if (!ops->free_inode) 398 return; 399 } 400 inode->free_inode = ops->free_inode; 401 call_rcu(&inode->i_rcu, i_callback); 402 } 403 404 /** 405 * drop_nlink - directly drop an inode's link count 406 * @inode: inode 407 * 408 * This is a low-level filesystem helper to replace any 409 * direct filesystem manipulation of i_nlink. In cases 410 * where we are attempting to track writes to the 411 * filesystem, a decrement to zero means an imminent 412 * write when the file is truncated and actually unlinked 413 * on the filesystem. 414 */ 415 void drop_nlink(struct inode *inode) 416 { 417 WARN_ON(inode->i_nlink == 0); 418 inode->__i_nlink--; 419 if (!inode->i_nlink) 420 atomic_long_inc(&inode->i_sb->s_remove_count); 421 } 422 EXPORT_SYMBOL(drop_nlink); 423 424 /** 425 * clear_nlink - directly zero an inode's link count 426 * @inode: inode 427 * 428 * This is a low-level filesystem helper to replace any 429 * direct filesystem manipulation of i_nlink. See 430 * drop_nlink() for why we care about i_nlink hitting zero. 431 */ 432 void clear_nlink(struct inode *inode) 433 { 434 if (inode->i_nlink) { 435 inode->__i_nlink = 0; 436 atomic_long_inc(&inode->i_sb->s_remove_count); 437 } 438 } 439 EXPORT_SYMBOL(clear_nlink); 440 441 /** 442 * set_nlink - directly set an inode's link count 443 * @inode: inode 444 * @nlink: new nlink (should be non-zero) 445 * 446 * This is a low-level filesystem helper to replace any 447 * direct filesystem manipulation of i_nlink. 448 */ 449 void set_nlink(struct inode *inode, unsigned int nlink) 450 { 451 if (!nlink) { 452 clear_nlink(inode); 453 } else { 454 /* Yes, some filesystems do change nlink from zero to one */ 455 if (inode->i_nlink == 0) 456 atomic_long_dec(&inode->i_sb->s_remove_count); 457 458 inode->__i_nlink = nlink; 459 } 460 } 461 EXPORT_SYMBOL(set_nlink); 462 463 /** 464 * inc_nlink - directly increment an inode's link count 465 * @inode: inode 466 * 467 * This is a low-level filesystem helper to replace any 468 * direct filesystem manipulation of i_nlink. Currently, 469 * it is only here for parity with dec_nlink(). 470 */ 471 void inc_nlink(struct inode *inode) 472 { 473 if (unlikely(inode->i_nlink == 0)) { 474 WARN_ON(!(inode->i_state & I_LINKABLE)); 475 atomic_long_dec(&inode->i_sb->s_remove_count); 476 } 477 478 inode->__i_nlink++; 479 } 480 EXPORT_SYMBOL(inc_nlink); 481 482 static void __address_space_init_once(struct address_space *mapping) 483 { 484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 485 init_rwsem(&mapping->i_mmap_rwsem); 486 INIT_LIST_HEAD(&mapping->i_private_list); 487 spin_lock_init(&mapping->i_private_lock); 488 mapping->i_mmap = RB_ROOT_CACHED; 489 } 490 491 void address_space_init_once(struct address_space *mapping) 492 { 493 memset(mapping, 0, sizeof(*mapping)); 494 __address_space_init_once(mapping); 495 } 496 EXPORT_SYMBOL(address_space_init_once); 497 498 /* 499 * These are initializations that only need to be done 500 * once, because the fields are idempotent across use 501 * of the inode, so let the slab aware of that. 502 */ 503 void inode_init_once(struct inode *inode) 504 { 505 memset(inode, 0, sizeof(*inode)); 506 INIT_HLIST_NODE(&inode->i_hash); 507 INIT_LIST_HEAD(&inode->i_devices); 508 INIT_LIST_HEAD(&inode->i_io_list); 509 INIT_LIST_HEAD(&inode->i_wb_list); 510 INIT_LIST_HEAD(&inode->i_lru); 511 INIT_LIST_HEAD(&inode->i_sb_list); 512 __address_space_init_once(&inode->i_data); 513 i_size_ordered_init(inode); 514 } 515 EXPORT_SYMBOL(inode_init_once); 516 517 static void init_once(void *foo) 518 { 519 struct inode *inode = (struct inode *) foo; 520 521 inode_init_once(inode); 522 } 523 524 /* 525 * get additional reference to inode; caller must already hold one. 526 */ 527 void ihold(struct inode *inode) 528 { 529 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 530 } 531 EXPORT_SYMBOL(ihold); 532 533 static void __inode_add_lru(struct inode *inode, bool rotate) 534 { 535 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 536 return; 537 if (atomic_read(&inode->i_count)) 538 return; 539 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 540 return; 541 if (!mapping_shrinkable(&inode->i_data)) 542 return; 543 544 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 545 this_cpu_inc(nr_unused); 546 else if (rotate) 547 inode->i_state |= I_REFERENCED; 548 } 549 550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 551 struct inode *inode, u32 bit) 552 { 553 void *bit_address; 554 555 bit_address = inode_state_wait_address(inode, bit); 556 init_wait_var_entry(wqe, bit_address, 0); 557 return __var_waitqueue(bit_address); 558 } 559 EXPORT_SYMBOL(inode_bit_waitqueue); 560 561 /* 562 * Add inode to LRU if needed (inode is unused and clean). 563 * 564 * Needs inode->i_lock held. 565 */ 566 void inode_add_lru(struct inode *inode) 567 { 568 __inode_add_lru(inode, false); 569 } 570 571 static void inode_lru_list_del(struct inode *inode) 572 { 573 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 574 this_cpu_dec(nr_unused); 575 } 576 577 static void inode_pin_lru_isolating(struct inode *inode) 578 { 579 lockdep_assert_held(&inode->i_lock); 580 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 581 inode->i_state |= I_LRU_ISOLATING; 582 } 583 584 static void inode_unpin_lru_isolating(struct inode *inode) 585 { 586 spin_lock(&inode->i_lock); 587 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 588 inode->i_state &= ~I_LRU_ISOLATING; 589 /* Called with inode->i_lock which ensures memory ordering. */ 590 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 591 spin_unlock(&inode->i_lock); 592 } 593 594 static void inode_wait_for_lru_isolating(struct inode *inode) 595 { 596 struct wait_bit_queue_entry wqe; 597 struct wait_queue_head *wq_head; 598 599 lockdep_assert_held(&inode->i_lock); 600 if (!(inode->i_state & I_LRU_ISOLATING)) 601 return; 602 603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 604 for (;;) { 605 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 606 /* 607 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 608 * memory ordering. 609 */ 610 if (!(inode->i_state & I_LRU_ISOLATING)) 611 break; 612 spin_unlock(&inode->i_lock); 613 schedule(); 614 spin_lock(&inode->i_lock); 615 } 616 finish_wait(wq_head, &wqe.wq_entry); 617 WARN_ON(inode->i_state & I_LRU_ISOLATING); 618 } 619 620 /** 621 * inode_sb_list_add - add inode to the superblock list of inodes 622 * @inode: inode to add 623 */ 624 void inode_sb_list_add(struct inode *inode) 625 { 626 struct super_block *sb = inode->i_sb; 627 628 spin_lock(&sb->s_inode_list_lock); 629 list_add(&inode->i_sb_list, &sb->s_inodes); 630 spin_unlock(&sb->s_inode_list_lock); 631 } 632 EXPORT_SYMBOL_GPL(inode_sb_list_add); 633 634 static inline void inode_sb_list_del(struct inode *inode) 635 { 636 struct super_block *sb = inode->i_sb; 637 638 if (!list_empty(&inode->i_sb_list)) { 639 spin_lock(&sb->s_inode_list_lock); 640 list_del_init(&inode->i_sb_list); 641 spin_unlock(&sb->s_inode_list_lock); 642 } 643 } 644 645 static unsigned long hash(struct super_block *sb, unsigned long hashval) 646 { 647 unsigned long tmp; 648 649 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 650 L1_CACHE_BYTES; 651 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 652 return tmp & i_hash_mask; 653 } 654 655 /** 656 * __insert_inode_hash - hash an inode 657 * @inode: unhashed inode 658 * @hashval: unsigned long value used to locate this object in the 659 * inode_hashtable. 660 * 661 * Add an inode to the inode hash for this superblock. 662 */ 663 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 664 { 665 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 666 667 spin_lock(&inode_hash_lock); 668 spin_lock(&inode->i_lock); 669 hlist_add_head_rcu(&inode->i_hash, b); 670 spin_unlock(&inode->i_lock); 671 spin_unlock(&inode_hash_lock); 672 } 673 EXPORT_SYMBOL(__insert_inode_hash); 674 675 /** 676 * __remove_inode_hash - remove an inode from the hash 677 * @inode: inode to unhash 678 * 679 * Remove an inode from the superblock. 680 */ 681 void __remove_inode_hash(struct inode *inode) 682 { 683 spin_lock(&inode_hash_lock); 684 spin_lock(&inode->i_lock); 685 hlist_del_init_rcu(&inode->i_hash); 686 spin_unlock(&inode->i_lock); 687 spin_unlock(&inode_hash_lock); 688 } 689 EXPORT_SYMBOL(__remove_inode_hash); 690 691 void dump_mapping(const struct address_space *mapping) 692 { 693 struct inode *host; 694 const struct address_space_operations *a_ops; 695 struct hlist_node *dentry_first; 696 struct dentry *dentry_ptr; 697 struct dentry dentry; 698 char fname[64] = {}; 699 unsigned long ino; 700 701 /* 702 * If mapping is an invalid pointer, we don't want to crash 703 * accessing it, so probe everything depending on it carefully. 704 */ 705 if (get_kernel_nofault(host, &mapping->host) || 706 get_kernel_nofault(a_ops, &mapping->a_ops)) { 707 pr_warn("invalid mapping:%px\n", mapping); 708 return; 709 } 710 711 if (!host) { 712 pr_warn("aops:%ps\n", a_ops); 713 return; 714 } 715 716 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 717 get_kernel_nofault(ino, &host->i_ino)) { 718 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 719 return; 720 } 721 722 if (!dentry_first) { 723 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 724 return; 725 } 726 727 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 728 if (get_kernel_nofault(dentry, dentry_ptr) || 729 !dentry.d_parent || !dentry.d_name.name) { 730 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 731 a_ops, ino, dentry_ptr); 732 return; 733 } 734 735 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 736 strscpy(fname, "<invalid>"); 737 /* 738 * Even if strncpy_from_kernel_nofault() succeeded, 739 * the fname could be unreliable 740 */ 741 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 742 a_ops, ino, fname); 743 } 744 745 void clear_inode(struct inode *inode) 746 { 747 /* 748 * We have to cycle the i_pages lock here because reclaim can be in the 749 * process of removing the last page (in __filemap_remove_folio()) 750 * and we must not free the mapping under it. 751 */ 752 xa_lock_irq(&inode->i_data.i_pages); 753 BUG_ON(inode->i_data.nrpages); 754 /* 755 * Almost always, mapping_empty(&inode->i_data) here; but there are 756 * two known and long-standing ways in which nodes may get left behind 757 * (when deep radix-tree node allocation failed partway; or when THP 758 * collapse_file() failed). Until those two known cases are cleaned up, 759 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 760 * nor even WARN_ON(!mapping_empty). 761 */ 762 xa_unlock_irq(&inode->i_data.i_pages); 763 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 764 BUG_ON(!(inode->i_state & I_FREEING)); 765 BUG_ON(inode->i_state & I_CLEAR); 766 BUG_ON(!list_empty(&inode->i_wb_list)); 767 /* don't need i_lock here, no concurrent mods to i_state */ 768 inode->i_state = I_FREEING | I_CLEAR; 769 } 770 EXPORT_SYMBOL(clear_inode); 771 772 /* 773 * Free the inode passed in, removing it from the lists it is still connected 774 * to. We remove any pages still attached to the inode and wait for any IO that 775 * is still in progress before finally destroying the inode. 776 * 777 * An inode must already be marked I_FREEING so that we avoid the inode being 778 * moved back onto lists if we race with other code that manipulates the lists 779 * (e.g. writeback_single_inode). The caller is responsible for setting this. 780 * 781 * An inode must already be removed from the LRU list before being evicted from 782 * the cache. This should occur atomically with setting the I_FREEING state 783 * flag, so no inodes here should ever be on the LRU when being evicted. 784 */ 785 static void evict(struct inode *inode) 786 { 787 const struct super_operations *op = inode->i_sb->s_op; 788 789 BUG_ON(!(inode->i_state & I_FREEING)); 790 BUG_ON(!list_empty(&inode->i_lru)); 791 792 if (!list_empty(&inode->i_io_list)) 793 inode_io_list_del(inode); 794 795 inode_sb_list_del(inode); 796 797 spin_lock(&inode->i_lock); 798 inode_wait_for_lru_isolating(inode); 799 800 /* 801 * Wait for flusher thread to be done with the inode so that filesystem 802 * does not start destroying it while writeback is still running. Since 803 * the inode has I_FREEING set, flusher thread won't start new work on 804 * the inode. We just have to wait for running writeback to finish. 805 */ 806 inode_wait_for_writeback(inode); 807 spin_unlock(&inode->i_lock); 808 809 if (op->evict_inode) { 810 op->evict_inode(inode); 811 } else { 812 truncate_inode_pages_final(&inode->i_data); 813 clear_inode(inode); 814 } 815 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 816 cd_forget(inode); 817 818 remove_inode_hash(inode); 819 820 /* 821 * Wake up waiters in __wait_on_freeing_inode(). 822 * 823 * It is an invariant that any thread we need to wake up is already 824 * accounted for before remove_inode_hash() acquires ->i_lock -- both 825 * sides take the lock and sleep is aborted if the inode is found 826 * unhashed. Thus either the sleeper wins and goes off CPU, or removal 827 * wins and the sleeper aborts after testing with the lock. 828 * 829 * This also means we don't need any fences for the call below. 830 */ 831 inode_wake_up_bit(inode, __I_NEW); 832 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 833 834 destroy_inode(inode); 835 } 836 837 /* 838 * dispose_list - dispose of the contents of a local list 839 * @head: the head of the list to free 840 * 841 * Dispose-list gets a local list with local inodes in it, so it doesn't 842 * need to worry about list corruption and SMP locks. 843 */ 844 static void dispose_list(struct list_head *head) 845 { 846 while (!list_empty(head)) { 847 struct inode *inode; 848 849 inode = list_first_entry(head, struct inode, i_lru); 850 list_del_init(&inode->i_lru); 851 852 evict(inode); 853 cond_resched(); 854 } 855 } 856 857 /** 858 * evict_inodes - evict all evictable inodes for a superblock 859 * @sb: superblock to operate on 860 * 861 * Make sure that no inodes with zero refcount are retained. This is 862 * called by superblock shutdown after having SB_ACTIVE flag removed, 863 * so any inode reaching zero refcount during or after that call will 864 * be immediately evicted. 865 */ 866 void evict_inodes(struct super_block *sb) 867 { 868 struct inode *inode; 869 LIST_HEAD(dispose); 870 871 again: 872 spin_lock(&sb->s_inode_list_lock); 873 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 874 if (atomic_read(&inode->i_count)) 875 continue; 876 877 spin_lock(&inode->i_lock); 878 if (atomic_read(&inode->i_count)) { 879 spin_unlock(&inode->i_lock); 880 continue; 881 } 882 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 883 spin_unlock(&inode->i_lock); 884 continue; 885 } 886 887 inode->i_state |= I_FREEING; 888 inode_lru_list_del(inode); 889 spin_unlock(&inode->i_lock); 890 list_add(&inode->i_lru, &dispose); 891 892 /* 893 * We can have a ton of inodes to evict at unmount time given 894 * enough memory, check to see if we need to go to sleep for a 895 * bit so we don't livelock. 896 */ 897 if (need_resched()) { 898 spin_unlock(&sb->s_inode_list_lock); 899 cond_resched(); 900 dispose_list(&dispose); 901 goto again; 902 } 903 } 904 spin_unlock(&sb->s_inode_list_lock); 905 906 dispose_list(&dispose); 907 } 908 EXPORT_SYMBOL_GPL(evict_inodes); 909 910 /* 911 * Isolate the inode from the LRU in preparation for freeing it. 912 * 913 * If the inode has the I_REFERENCED flag set, then it means that it has been 914 * used recently - the flag is set in iput_final(). When we encounter such an 915 * inode, clear the flag and move it to the back of the LRU so it gets another 916 * pass through the LRU before it gets reclaimed. This is necessary because of 917 * the fact we are doing lazy LRU updates to minimise lock contention so the 918 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 919 * with this flag set because they are the inodes that are out of order. 920 */ 921 static enum lru_status inode_lru_isolate(struct list_head *item, 922 struct list_lru_one *lru, void *arg) 923 { 924 struct list_head *freeable = arg; 925 struct inode *inode = container_of(item, struct inode, i_lru); 926 927 /* 928 * We are inverting the lru lock/inode->i_lock here, so use a 929 * trylock. If we fail to get the lock, just skip it. 930 */ 931 if (!spin_trylock(&inode->i_lock)) 932 return LRU_SKIP; 933 934 /* 935 * Inodes can get referenced, redirtied, or repopulated while 936 * they're already on the LRU, and this can make them 937 * unreclaimable for a while. Remove them lazily here; iput, 938 * sync, or the last page cache deletion will requeue them. 939 */ 940 if (atomic_read(&inode->i_count) || 941 (inode->i_state & ~I_REFERENCED) || 942 !mapping_shrinkable(&inode->i_data)) { 943 list_lru_isolate(lru, &inode->i_lru); 944 spin_unlock(&inode->i_lock); 945 this_cpu_dec(nr_unused); 946 return LRU_REMOVED; 947 } 948 949 /* Recently referenced inodes get one more pass */ 950 if (inode->i_state & I_REFERENCED) { 951 inode->i_state &= ~I_REFERENCED; 952 spin_unlock(&inode->i_lock); 953 return LRU_ROTATE; 954 } 955 956 /* 957 * On highmem systems, mapping_shrinkable() permits dropping 958 * page cache in order to free up struct inodes: lowmem might 959 * be under pressure before the cache inside the highmem zone. 960 */ 961 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 962 inode_pin_lru_isolating(inode); 963 spin_unlock(&inode->i_lock); 964 spin_unlock(&lru->lock); 965 if (remove_inode_buffers(inode)) { 966 unsigned long reap; 967 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 968 if (current_is_kswapd()) 969 __count_vm_events(KSWAPD_INODESTEAL, reap); 970 else 971 __count_vm_events(PGINODESTEAL, reap); 972 mm_account_reclaimed_pages(reap); 973 } 974 inode_unpin_lru_isolating(inode); 975 return LRU_RETRY; 976 } 977 978 WARN_ON(inode->i_state & I_NEW); 979 inode->i_state |= I_FREEING; 980 list_lru_isolate_move(lru, &inode->i_lru, freeable); 981 spin_unlock(&inode->i_lock); 982 983 this_cpu_dec(nr_unused); 984 return LRU_REMOVED; 985 } 986 987 /* 988 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 989 * This is called from the superblock shrinker function with a number of inodes 990 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 991 * then are freed outside inode_lock by dispose_list(). 992 */ 993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 994 { 995 LIST_HEAD(freeable); 996 long freed; 997 998 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 999 inode_lru_isolate, &freeable); 1000 dispose_list(&freeable); 1001 return freed; 1002 } 1003 1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 1005 /* 1006 * Called with the inode lock held. 1007 */ 1008 static struct inode *find_inode(struct super_block *sb, 1009 struct hlist_head *head, 1010 int (*test)(struct inode *, void *), 1011 void *data, bool is_inode_hash_locked) 1012 { 1013 struct inode *inode = NULL; 1014 1015 if (is_inode_hash_locked) 1016 lockdep_assert_held(&inode_hash_lock); 1017 else 1018 lockdep_assert_not_held(&inode_hash_lock); 1019 1020 rcu_read_lock(); 1021 repeat: 1022 hlist_for_each_entry_rcu(inode, head, i_hash) { 1023 if (inode->i_sb != sb) 1024 continue; 1025 if (!test(inode, data)) 1026 continue; 1027 spin_lock(&inode->i_lock); 1028 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1029 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1030 goto repeat; 1031 } 1032 if (unlikely(inode->i_state & I_CREATING)) { 1033 spin_unlock(&inode->i_lock); 1034 rcu_read_unlock(); 1035 return ERR_PTR(-ESTALE); 1036 } 1037 __iget(inode); 1038 spin_unlock(&inode->i_lock); 1039 rcu_read_unlock(); 1040 return inode; 1041 } 1042 rcu_read_unlock(); 1043 return NULL; 1044 } 1045 1046 /* 1047 * find_inode_fast is the fast path version of find_inode, see the comment at 1048 * iget_locked for details. 1049 */ 1050 static struct inode *find_inode_fast(struct super_block *sb, 1051 struct hlist_head *head, unsigned long ino, 1052 bool is_inode_hash_locked) 1053 { 1054 struct inode *inode = NULL; 1055 1056 if (is_inode_hash_locked) 1057 lockdep_assert_held(&inode_hash_lock); 1058 else 1059 lockdep_assert_not_held(&inode_hash_lock); 1060 1061 rcu_read_lock(); 1062 repeat: 1063 hlist_for_each_entry_rcu(inode, head, i_hash) { 1064 if (inode->i_ino != ino) 1065 continue; 1066 if (inode->i_sb != sb) 1067 continue; 1068 spin_lock(&inode->i_lock); 1069 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1070 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1071 goto repeat; 1072 } 1073 if (unlikely(inode->i_state & I_CREATING)) { 1074 spin_unlock(&inode->i_lock); 1075 rcu_read_unlock(); 1076 return ERR_PTR(-ESTALE); 1077 } 1078 __iget(inode); 1079 spin_unlock(&inode->i_lock); 1080 rcu_read_unlock(); 1081 return inode; 1082 } 1083 rcu_read_unlock(); 1084 return NULL; 1085 } 1086 1087 /* 1088 * Each cpu owns a range of LAST_INO_BATCH numbers. 1089 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1090 * to renew the exhausted range. 1091 * 1092 * This does not significantly increase overflow rate because every CPU can 1093 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1094 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1095 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1096 * overflow rate by 2x, which does not seem too significant. 1097 * 1098 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1099 * error if st_ino won't fit in target struct field. Use 32bit counter 1100 * here to attempt to avoid that. 1101 */ 1102 #define LAST_INO_BATCH 1024 1103 static DEFINE_PER_CPU(unsigned int, last_ino); 1104 1105 unsigned int get_next_ino(void) 1106 { 1107 unsigned int *p = &get_cpu_var(last_ino); 1108 unsigned int res = *p; 1109 1110 #ifdef CONFIG_SMP 1111 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1112 static atomic_t shared_last_ino; 1113 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1114 1115 res = next - LAST_INO_BATCH; 1116 } 1117 #endif 1118 1119 res++; 1120 /* get_next_ino should not provide a 0 inode number */ 1121 if (unlikely(!res)) 1122 res++; 1123 *p = res; 1124 put_cpu_var(last_ino); 1125 return res; 1126 } 1127 EXPORT_SYMBOL(get_next_ino); 1128 1129 /** 1130 * new_inode - obtain an inode 1131 * @sb: superblock 1132 * 1133 * Allocates a new inode for given superblock. The default gfp_mask 1134 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1135 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1136 * for the page cache are not reclaimable or migratable, 1137 * mapping_set_gfp_mask() must be called with suitable flags on the 1138 * newly created inode's mapping 1139 * 1140 */ 1141 struct inode *new_inode(struct super_block *sb) 1142 { 1143 struct inode *inode; 1144 1145 inode = alloc_inode(sb); 1146 if (inode) 1147 inode_sb_list_add(inode); 1148 return inode; 1149 } 1150 EXPORT_SYMBOL(new_inode); 1151 1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1153 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1154 { 1155 if (S_ISDIR(inode->i_mode)) { 1156 struct file_system_type *type = inode->i_sb->s_type; 1157 1158 /* Set new key only if filesystem hasn't already changed it */ 1159 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1160 /* 1161 * ensure nobody is actually holding i_rwsem 1162 */ 1163 init_rwsem(&inode->i_rwsem); 1164 lockdep_set_class(&inode->i_rwsem, 1165 &type->i_mutex_dir_key); 1166 } 1167 } 1168 } 1169 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1170 #endif 1171 1172 /** 1173 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1174 * @inode: new inode to unlock 1175 * 1176 * Called when the inode is fully initialised to clear the new state of the 1177 * inode and wake up anyone waiting for the inode to finish initialisation. 1178 */ 1179 void unlock_new_inode(struct inode *inode) 1180 { 1181 lockdep_annotate_inode_mutex_key(inode); 1182 spin_lock(&inode->i_lock); 1183 WARN_ON(!(inode->i_state & I_NEW)); 1184 inode->i_state &= ~I_NEW & ~I_CREATING; 1185 /* 1186 * Pairs with the barrier in prepare_to_wait_event() to make sure 1187 * ___wait_var_event() either sees the bit cleared or 1188 * waitqueue_active() check in wake_up_var() sees the waiter. 1189 */ 1190 smp_mb(); 1191 inode_wake_up_bit(inode, __I_NEW); 1192 spin_unlock(&inode->i_lock); 1193 } 1194 EXPORT_SYMBOL(unlock_new_inode); 1195 1196 void discard_new_inode(struct inode *inode) 1197 { 1198 lockdep_annotate_inode_mutex_key(inode); 1199 spin_lock(&inode->i_lock); 1200 WARN_ON(!(inode->i_state & I_NEW)); 1201 inode->i_state &= ~I_NEW; 1202 /* 1203 * Pairs with the barrier in prepare_to_wait_event() to make sure 1204 * ___wait_var_event() either sees the bit cleared or 1205 * waitqueue_active() check in wake_up_var() sees the waiter. 1206 */ 1207 smp_mb(); 1208 inode_wake_up_bit(inode, __I_NEW); 1209 spin_unlock(&inode->i_lock); 1210 iput(inode); 1211 } 1212 EXPORT_SYMBOL(discard_new_inode); 1213 1214 /** 1215 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1216 * 1217 * Lock any non-NULL argument. Passed objects must not be directories. 1218 * Zero, one or two objects may be locked by this function. 1219 * 1220 * @inode1: first inode to lock 1221 * @inode2: second inode to lock 1222 */ 1223 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1224 { 1225 if (inode1) 1226 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1227 if (inode2) 1228 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1229 if (inode1 > inode2) 1230 swap(inode1, inode2); 1231 if (inode1) 1232 inode_lock(inode1); 1233 if (inode2 && inode2 != inode1) 1234 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1235 } 1236 EXPORT_SYMBOL(lock_two_nondirectories); 1237 1238 /** 1239 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1240 * @inode1: first inode to unlock 1241 * @inode2: second inode to unlock 1242 */ 1243 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1244 { 1245 if (inode1) { 1246 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1247 inode_unlock(inode1); 1248 } 1249 if (inode2 && inode2 != inode1) { 1250 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1251 inode_unlock(inode2); 1252 } 1253 } 1254 EXPORT_SYMBOL(unlock_two_nondirectories); 1255 1256 /** 1257 * inode_insert5 - obtain an inode from a mounted file system 1258 * @inode: pre-allocated inode to use for insert to cache 1259 * @hashval: hash value (usually inode number) to get 1260 * @test: callback used for comparisons between inodes 1261 * @set: callback used to initialize a new struct inode 1262 * @data: opaque data pointer to pass to @test and @set 1263 * 1264 * Search for the inode specified by @hashval and @data in the inode cache, 1265 * and if present return it with an increased reference count. This is a 1266 * variant of iget5_locked() that doesn't allocate an inode. 1267 * 1268 * If the inode is not present in the cache, insert the pre-allocated inode and 1269 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1270 * to fill it in before unlocking it via unlock_new_inode(). 1271 * 1272 * Note that both @test and @set are called with the inode_hash_lock held, so 1273 * they can't sleep. 1274 */ 1275 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1276 int (*test)(struct inode *, void *), 1277 int (*set)(struct inode *, void *), void *data) 1278 { 1279 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1280 struct inode *old; 1281 1282 again: 1283 spin_lock(&inode_hash_lock); 1284 old = find_inode(inode->i_sb, head, test, data, true); 1285 if (unlikely(old)) { 1286 /* 1287 * Uhhuh, somebody else created the same inode under us. 1288 * Use the old inode instead of the preallocated one. 1289 */ 1290 spin_unlock(&inode_hash_lock); 1291 if (IS_ERR(old)) 1292 return NULL; 1293 wait_on_inode(old); 1294 if (unlikely(inode_unhashed(old))) { 1295 iput(old); 1296 goto again; 1297 } 1298 return old; 1299 } 1300 1301 if (set && unlikely(set(inode, data))) { 1302 spin_unlock(&inode_hash_lock); 1303 return NULL; 1304 } 1305 1306 /* 1307 * Return the locked inode with I_NEW set, the 1308 * caller is responsible for filling in the contents 1309 */ 1310 spin_lock(&inode->i_lock); 1311 inode->i_state |= I_NEW; 1312 hlist_add_head_rcu(&inode->i_hash, head); 1313 spin_unlock(&inode->i_lock); 1314 1315 spin_unlock(&inode_hash_lock); 1316 1317 /* 1318 * Add inode to the sb list if it's not already. It has I_NEW at this 1319 * point, so it should be safe to test i_sb_list locklessly. 1320 */ 1321 if (list_empty(&inode->i_sb_list)) 1322 inode_sb_list_add(inode); 1323 1324 return inode; 1325 } 1326 EXPORT_SYMBOL(inode_insert5); 1327 1328 /** 1329 * iget5_locked - obtain an inode from a mounted file system 1330 * @sb: super block of file system 1331 * @hashval: hash value (usually inode number) to get 1332 * @test: callback used for comparisons between inodes 1333 * @set: callback used to initialize a new struct inode 1334 * @data: opaque data pointer to pass to @test and @set 1335 * 1336 * Search for the inode specified by @hashval and @data in the inode cache, 1337 * and if present return it with an increased reference count. This is a 1338 * generalized version of iget_locked() for file systems where the inode 1339 * number is not sufficient for unique identification of an inode. 1340 * 1341 * If the inode is not present in the cache, allocate and insert a new inode 1342 * and return it locked, hashed, and with the I_NEW flag set. The file system 1343 * gets to fill it in before unlocking it via unlock_new_inode(). 1344 * 1345 * Note that both @test and @set are called with the inode_hash_lock held, so 1346 * they can't sleep. 1347 */ 1348 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1349 int (*test)(struct inode *, void *), 1350 int (*set)(struct inode *, void *), void *data) 1351 { 1352 struct inode *inode = ilookup5(sb, hashval, test, data); 1353 1354 if (!inode) { 1355 struct inode *new = alloc_inode(sb); 1356 1357 if (new) { 1358 inode = inode_insert5(new, hashval, test, set, data); 1359 if (unlikely(inode != new)) 1360 destroy_inode(new); 1361 } 1362 } 1363 return inode; 1364 } 1365 EXPORT_SYMBOL(iget5_locked); 1366 1367 /** 1368 * iget5_locked_rcu - obtain an inode from a mounted file system 1369 * @sb: super block of file system 1370 * @hashval: hash value (usually inode number) to get 1371 * @test: callback used for comparisons between inodes 1372 * @set: callback used to initialize a new struct inode 1373 * @data: opaque data pointer to pass to @test and @set 1374 * 1375 * This is equivalent to iget5_locked, except the @test callback must 1376 * tolerate the inode not being stable, including being mid-teardown. 1377 */ 1378 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1379 int (*test)(struct inode *, void *), 1380 int (*set)(struct inode *, void *), void *data) 1381 { 1382 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1383 struct inode *inode, *new; 1384 1385 again: 1386 inode = find_inode(sb, head, test, data, false); 1387 if (inode) { 1388 if (IS_ERR(inode)) 1389 return NULL; 1390 wait_on_inode(inode); 1391 if (unlikely(inode_unhashed(inode))) { 1392 iput(inode); 1393 goto again; 1394 } 1395 return inode; 1396 } 1397 1398 new = alloc_inode(sb); 1399 if (new) { 1400 inode = inode_insert5(new, hashval, test, set, data); 1401 if (unlikely(inode != new)) 1402 destroy_inode(new); 1403 } 1404 return inode; 1405 } 1406 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1407 1408 /** 1409 * iget_locked - obtain an inode from a mounted file system 1410 * @sb: super block of file system 1411 * @ino: inode number to get 1412 * 1413 * Search for the inode specified by @ino in the inode cache and if present 1414 * return it with an increased reference count. This is for file systems 1415 * where the inode number is sufficient for unique identification of an inode. 1416 * 1417 * If the inode is not in cache, allocate a new inode and return it locked, 1418 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1419 * before unlocking it via unlock_new_inode(). 1420 */ 1421 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1422 { 1423 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1424 struct inode *inode; 1425 again: 1426 inode = find_inode_fast(sb, head, ino, false); 1427 if (inode) { 1428 if (IS_ERR(inode)) 1429 return NULL; 1430 wait_on_inode(inode); 1431 if (unlikely(inode_unhashed(inode))) { 1432 iput(inode); 1433 goto again; 1434 } 1435 return inode; 1436 } 1437 1438 inode = alloc_inode(sb); 1439 if (inode) { 1440 struct inode *old; 1441 1442 spin_lock(&inode_hash_lock); 1443 /* We released the lock, so.. */ 1444 old = find_inode_fast(sb, head, ino, true); 1445 if (!old) { 1446 inode->i_ino = ino; 1447 spin_lock(&inode->i_lock); 1448 inode->i_state = I_NEW; 1449 hlist_add_head_rcu(&inode->i_hash, head); 1450 spin_unlock(&inode->i_lock); 1451 spin_unlock(&inode_hash_lock); 1452 inode_sb_list_add(inode); 1453 1454 /* Return the locked inode with I_NEW set, the 1455 * caller is responsible for filling in the contents 1456 */ 1457 return inode; 1458 } 1459 1460 /* 1461 * Uhhuh, somebody else created the same inode under 1462 * us. Use the old inode instead of the one we just 1463 * allocated. 1464 */ 1465 spin_unlock(&inode_hash_lock); 1466 destroy_inode(inode); 1467 if (IS_ERR(old)) 1468 return NULL; 1469 inode = old; 1470 wait_on_inode(inode); 1471 if (unlikely(inode_unhashed(inode))) { 1472 iput(inode); 1473 goto again; 1474 } 1475 } 1476 return inode; 1477 } 1478 EXPORT_SYMBOL(iget_locked); 1479 1480 /* 1481 * search the inode cache for a matching inode number. 1482 * If we find one, then the inode number we are trying to 1483 * allocate is not unique and so we should not use it. 1484 * 1485 * Returns 1 if the inode number is unique, 0 if it is not. 1486 */ 1487 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1488 { 1489 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1490 struct inode *inode; 1491 1492 hlist_for_each_entry_rcu(inode, b, i_hash) { 1493 if (inode->i_ino == ino && inode->i_sb == sb) 1494 return 0; 1495 } 1496 return 1; 1497 } 1498 1499 /** 1500 * iunique - get a unique inode number 1501 * @sb: superblock 1502 * @max_reserved: highest reserved inode number 1503 * 1504 * Obtain an inode number that is unique on the system for a given 1505 * superblock. This is used by file systems that have no natural 1506 * permanent inode numbering system. An inode number is returned that 1507 * is higher than the reserved limit but unique. 1508 * 1509 * BUGS: 1510 * With a large number of inodes live on the file system this function 1511 * currently becomes quite slow. 1512 */ 1513 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1514 { 1515 /* 1516 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1517 * error if st_ino won't fit in target struct field. Use 32bit counter 1518 * here to attempt to avoid that. 1519 */ 1520 static DEFINE_SPINLOCK(iunique_lock); 1521 static unsigned int counter; 1522 ino_t res; 1523 1524 rcu_read_lock(); 1525 spin_lock(&iunique_lock); 1526 do { 1527 if (counter <= max_reserved) 1528 counter = max_reserved + 1; 1529 res = counter++; 1530 } while (!test_inode_iunique(sb, res)); 1531 spin_unlock(&iunique_lock); 1532 rcu_read_unlock(); 1533 1534 return res; 1535 } 1536 EXPORT_SYMBOL(iunique); 1537 1538 struct inode *igrab(struct inode *inode) 1539 { 1540 spin_lock(&inode->i_lock); 1541 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1542 __iget(inode); 1543 spin_unlock(&inode->i_lock); 1544 } else { 1545 spin_unlock(&inode->i_lock); 1546 /* 1547 * Handle the case where s_op->clear_inode is not been 1548 * called yet, and somebody is calling igrab 1549 * while the inode is getting freed. 1550 */ 1551 inode = NULL; 1552 } 1553 return inode; 1554 } 1555 EXPORT_SYMBOL(igrab); 1556 1557 /** 1558 * ilookup5_nowait - search for an inode in the inode cache 1559 * @sb: super block of file system to search 1560 * @hashval: hash value (usually inode number) to search for 1561 * @test: callback used for comparisons between inodes 1562 * @data: opaque data pointer to pass to @test 1563 * 1564 * Search for the inode specified by @hashval and @data in the inode cache. 1565 * If the inode is in the cache, the inode is returned with an incremented 1566 * reference count. 1567 * 1568 * Note: I_NEW is not waited upon so you have to be very careful what you do 1569 * with the returned inode. You probably should be using ilookup5() instead. 1570 * 1571 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1572 */ 1573 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1574 int (*test)(struct inode *, void *), void *data) 1575 { 1576 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1577 struct inode *inode; 1578 1579 spin_lock(&inode_hash_lock); 1580 inode = find_inode(sb, head, test, data, true); 1581 spin_unlock(&inode_hash_lock); 1582 1583 return IS_ERR(inode) ? NULL : inode; 1584 } 1585 EXPORT_SYMBOL(ilookup5_nowait); 1586 1587 /** 1588 * ilookup5 - search for an inode in the inode cache 1589 * @sb: super block of file system to search 1590 * @hashval: hash value (usually inode number) to search for 1591 * @test: callback used for comparisons between inodes 1592 * @data: opaque data pointer to pass to @test 1593 * 1594 * Search for the inode specified by @hashval and @data in the inode cache, 1595 * and if the inode is in the cache, return the inode with an incremented 1596 * reference count. Waits on I_NEW before returning the inode. 1597 * returned with an incremented reference count. 1598 * 1599 * This is a generalized version of ilookup() for file systems where the 1600 * inode number is not sufficient for unique identification of an inode. 1601 * 1602 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1603 */ 1604 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1605 int (*test)(struct inode *, void *), void *data) 1606 { 1607 struct inode *inode; 1608 again: 1609 inode = ilookup5_nowait(sb, hashval, test, data); 1610 if (inode) { 1611 wait_on_inode(inode); 1612 if (unlikely(inode_unhashed(inode))) { 1613 iput(inode); 1614 goto again; 1615 } 1616 } 1617 return inode; 1618 } 1619 EXPORT_SYMBOL(ilookup5); 1620 1621 /** 1622 * ilookup - search for an inode in the inode cache 1623 * @sb: super block of file system to search 1624 * @ino: inode number to search for 1625 * 1626 * Search for the inode @ino in the inode cache, and if the inode is in the 1627 * cache, the inode is returned with an incremented reference count. 1628 */ 1629 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1630 { 1631 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1632 struct inode *inode; 1633 again: 1634 inode = find_inode_fast(sb, head, ino, false); 1635 1636 if (inode) { 1637 if (IS_ERR(inode)) 1638 return NULL; 1639 wait_on_inode(inode); 1640 if (unlikely(inode_unhashed(inode))) { 1641 iput(inode); 1642 goto again; 1643 } 1644 } 1645 return inode; 1646 } 1647 EXPORT_SYMBOL(ilookup); 1648 1649 /** 1650 * find_inode_nowait - find an inode in the inode cache 1651 * @sb: super block of file system to search 1652 * @hashval: hash value (usually inode number) to search for 1653 * @match: callback used for comparisons between inodes 1654 * @data: opaque data pointer to pass to @match 1655 * 1656 * Search for the inode specified by @hashval and @data in the inode 1657 * cache, where the helper function @match will return 0 if the inode 1658 * does not match, 1 if the inode does match, and -1 if the search 1659 * should be stopped. The @match function must be responsible for 1660 * taking the i_lock spin_lock and checking i_state for an inode being 1661 * freed or being initialized, and incrementing the reference count 1662 * before returning 1. It also must not sleep, since it is called with 1663 * the inode_hash_lock spinlock held. 1664 * 1665 * This is a even more generalized version of ilookup5() when the 1666 * function must never block --- find_inode() can block in 1667 * __wait_on_freeing_inode() --- or when the caller can not increment 1668 * the reference count because the resulting iput() might cause an 1669 * inode eviction. The tradeoff is that the @match funtion must be 1670 * very carefully implemented. 1671 */ 1672 struct inode *find_inode_nowait(struct super_block *sb, 1673 unsigned long hashval, 1674 int (*match)(struct inode *, unsigned long, 1675 void *), 1676 void *data) 1677 { 1678 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1679 struct inode *inode, *ret_inode = NULL; 1680 int mval; 1681 1682 spin_lock(&inode_hash_lock); 1683 hlist_for_each_entry(inode, head, i_hash) { 1684 if (inode->i_sb != sb) 1685 continue; 1686 mval = match(inode, hashval, data); 1687 if (mval == 0) 1688 continue; 1689 if (mval == 1) 1690 ret_inode = inode; 1691 goto out; 1692 } 1693 out: 1694 spin_unlock(&inode_hash_lock); 1695 return ret_inode; 1696 } 1697 EXPORT_SYMBOL(find_inode_nowait); 1698 1699 /** 1700 * find_inode_rcu - find an inode in the inode cache 1701 * @sb: Super block of file system to search 1702 * @hashval: Key to hash 1703 * @test: Function to test match on an inode 1704 * @data: Data for test function 1705 * 1706 * Search for the inode specified by @hashval and @data in the inode cache, 1707 * where the helper function @test will return 0 if the inode does not match 1708 * and 1 if it does. The @test function must be responsible for taking the 1709 * i_lock spin_lock and checking i_state for an inode being freed or being 1710 * initialized. 1711 * 1712 * If successful, this will return the inode for which the @test function 1713 * returned 1 and NULL otherwise. 1714 * 1715 * The @test function is not permitted to take a ref on any inode presented. 1716 * It is also not permitted to sleep. 1717 * 1718 * The caller must hold the RCU read lock. 1719 */ 1720 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1721 int (*test)(struct inode *, void *), void *data) 1722 { 1723 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1724 struct inode *inode; 1725 1726 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1727 "suspicious find_inode_rcu() usage"); 1728 1729 hlist_for_each_entry_rcu(inode, head, i_hash) { 1730 if (inode->i_sb == sb && 1731 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1732 test(inode, data)) 1733 return inode; 1734 } 1735 return NULL; 1736 } 1737 EXPORT_SYMBOL(find_inode_rcu); 1738 1739 /** 1740 * find_inode_by_ino_rcu - Find an inode in the inode cache 1741 * @sb: Super block of file system to search 1742 * @ino: The inode number to match 1743 * 1744 * Search for the inode specified by @hashval and @data in the inode cache, 1745 * where the helper function @test will return 0 if the inode does not match 1746 * and 1 if it does. The @test function must be responsible for taking the 1747 * i_lock spin_lock and checking i_state for an inode being freed or being 1748 * initialized. 1749 * 1750 * If successful, this will return the inode for which the @test function 1751 * returned 1 and NULL otherwise. 1752 * 1753 * The @test function is not permitted to take a ref on any inode presented. 1754 * It is also not permitted to sleep. 1755 * 1756 * The caller must hold the RCU read lock. 1757 */ 1758 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1759 unsigned long ino) 1760 { 1761 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1762 struct inode *inode; 1763 1764 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1765 "suspicious find_inode_by_ino_rcu() usage"); 1766 1767 hlist_for_each_entry_rcu(inode, head, i_hash) { 1768 if (inode->i_ino == ino && 1769 inode->i_sb == sb && 1770 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1771 return inode; 1772 } 1773 return NULL; 1774 } 1775 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1776 1777 int insert_inode_locked(struct inode *inode) 1778 { 1779 struct super_block *sb = inode->i_sb; 1780 ino_t ino = inode->i_ino; 1781 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1782 1783 while (1) { 1784 struct inode *old = NULL; 1785 spin_lock(&inode_hash_lock); 1786 hlist_for_each_entry(old, head, i_hash) { 1787 if (old->i_ino != ino) 1788 continue; 1789 if (old->i_sb != sb) 1790 continue; 1791 spin_lock(&old->i_lock); 1792 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1793 spin_unlock(&old->i_lock); 1794 continue; 1795 } 1796 break; 1797 } 1798 if (likely(!old)) { 1799 spin_lock(&inode->i_lock); 1800 inode->i_state |= I_NEW | I_CREATING; 1801 hlist_add_head_rcu(&inode->i_hash, head); 1802 spin_unlock(&inode->i_lock); 1803 spin_unlock(&inode_hash_lock); 1804 return 0; 1805 } 1806 if (unlikely(old->i_state & I_CREATING)) { 1807 spin_unlock(&old->i_lock); 1808 spin_unlock(&inode_hash_lock); 1809 return -EBUSY; 1810 } 1811 __iget(old); 1812 spin_unlock(&old->i_lock); 1813 spin_unlock(&inode_hash_lock); 1814 wait_on_inode(old); 1815 if (unlikely(!inode_unhashed(old))) { 1816 iput(old); 1817 return -EBUSY; 1818 } 1819 iput(old); 1820 } 1821 } 1822 EXPORT_SYMBOL(insert_inode_locked); 1823 1824 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1825 int (*test)(struct inode *, void *), void *data) 1826 { 1827 struct inode *old; 1828 1829 inode->i_state |= I_CREATING; 1830 old = inode_insert5(inode, hashval, test, NULL, data); 1831 1832 if (old != inode) { 1833 iput(old); 1834 return -EBUSY; 1835 } 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(insert_inode_locked4); 1839 1840 1841 int inode_just_drop(struct inode *inode) 1842 { 1843 return 1; 1844 } 1845 EXPORT_SYMBOL(inode_just_drop); 1846 1847 /* 1848 * Called when we're dropping the last reference 1849 * to an inode. 1850 * 1851 * Call the FS "drop_inode()" function, defaulting to 1852 * the legacy UNIX filesystem behaviour. If it tells 1853 * us to evict inode, do so. Otherwise, retain inode 1854 * in cache if fs is alive, sync and evict if fs is 1855 * shutting down. 1856 */ 1857 static void iput_final(struct inode *inode) 1858 { 1859 struct super_block *sb = inode->i_sb; 1860 const struct super_operations *op = inode->i_sb->s_op; 1861 unsigned long state; 1862 int drop; 1863 1864 WARN_ON(inode->i_state & I_NEW); 1865 1866 if (op->drop_inode) 1867 drop = op->drop_inode(inode); 1868 else 1869 drop = inode_generic_drop(inode); 1870 1871 if (!drop && 1872 !(inode->i_state & I_DONTCACHE) && 1873 (sb->s_flags & SB_ACTIVE)) { 1874 __inode_add_lru(inode, true); 1875 spin_unlock(&inode->i_lock); 1876 return; 1877 } 1878 1879 state = inode->i_state; 1880 if (!drop) { 1881 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1882 spin_unlock(&inode->i_lock); 1883 1884 write_inode_now(inode, 1); 1885 1886 spin_lock(&inode->i_lock); 1887 state = inode->i_state; 1888 WARN_ON(state & I_NEW); 1889 state &= ~I_WILL_FREE; 1890 } 1891 1892 WRITE_ONCE(inode->i_state, state | I_FREEING); 1893 if (!list_empty(&inode->i_lru)) 1894 inode_lru_list_del(inode); 1895 spin_unlock(&inode->i_lock); 1896 1897 evict(inode); 1898 } 1899 1900 /** 1901 * iput - put an inode 1902 * @inode: inode to put 1903 * 1904 * Puts an inode, dropping its usage count. If the inode use count hits 1905 * zero, the inode is then freed and may also be destroyed. 1906 * 1907 * Consequently, iput() can sleep. 1908 */ 1909 void iput(struct inode *inode) 1910 { 1911 if (!inode) 1912 return; 1913 BUG_ON(inode->i_state & I_CLEAR); 1914 retry: 1915 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1916 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1917 atomic_inc(&inode->i_count); 1918 spin_unlock(&inode->i_lock); 1919 trace_writeback_lazytime_iput(inode); 1920 mark_inode_dirty_sync(inode); 1921 goto retry; 1922 } 1923 iput_final(inode); 1924 } 1925 } 1926 EXPORT_SYMBOL(iput); 1927 1928 #ifdef CONFIG_BLOCK 1929 /** 1930 * bmap - find a block number in a file 1931 * @inode: inode owning the block number being requested 1932 * @block: pointer containing the block to find 1933 * 1934 * Replaces the value in ``*block`` with the block number on the device holding 1935 * corresponding to the requested block number in the file. 1936 * That is, asked for block 4 of inode 1 the function will replace the 1937 * 4 in ``*block``, with disk block relative to the disk start that holds that 1938 * block of the file. 1939 * 1940 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1941 * hole, returns 0 and ``*block`` is also set to 0. 1942 */ 1943 int bmap(struct inode *inode, sector_t *block) 1944 { 1945 if (!inode->i_mapping->a_ops->bmap) 1946 return -EINVAL; 1947 1948 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1949 return 0; 1950 } 1951 EXPORT_SYMBOL(bmap); 1952 #endif 1953 1954 /* 1955 * With relative atime, only update atime if the previous atime is 1956 * earlier than or equal to either the ctime or mtime, 1957 * or if at least a day has passed since the last atime update. 1958 */ 1959 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1960 struct timespec64 now) 1961 { 1962 struct timespec64 atime, mtime, ctime; 1963 1964 if (!(mnt->mnt_flags & MNT_RELATIME)) 1965 return true; 1966 /* 1967 * Is mtime younger than or equal to atime? If yes, update atime: 1968 */ 1969 atime = inode_get_atime(inode); 1970 mtime = inode_get_mtime(inode); 1971 if (timespec64_compare(&mtime, &atime) >= 0) 1972 return true; 1973 /* 1974 * Is ctime younger than or equal to atime? If yes, update atime: 1975 */ 1976 ctime = inode_get_ctime(inode); 1977 if (timespec64_compare(&ctime, &atime) >= 0) 1978 return true; 1979 1980 /* 1981 * Is the previous atime value older than a day? If yes, 1982 * update atime: 1983 */ 1984 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1985 return true; 1986 /* 1987 * Good, we can skip the atime update: 1988 */ 1989 return false; 1990 } 1991 1992 /** 1993 * inode_update_timestamps - update the timestamps on the inode 1994 * @inode: inode to be updated 1995 * @flags: S_* flags that needed to be updated 1996 * 1997 * The update_time function is called when an inode's timestamps need to be 1998 * updated for a read or write operation. This function handles updating the 1999 * actual timestamps. It's up to the caller to ensure that the inode is marked 2000 * dirty appropriately. 2001 * 2002 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 2003 * attempt to update all three of them. S_ATIME updates can be handled 2004 * independently of the rest. 2005 * 2006 * Returns a set of S_* flags indicating which values changed. 2007 */ 2008 int inode_update_timestamps(struct inode *inode, int flags) 2009 { 2010 int updated = 0; 2011 struct timespec64 now; 2012 2013 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2014 struct timespec64 ctime = inode_get_ctime(inode); 2015 struct timespec64 mtime = inode_get_mtime(inode); 2016 2017 now = inode_set_ctime_current(inode); 2018 if (!timespec64_equal(&now, &ctime)) 2019 updated |= S_CTIME; 2020 if (!timespec64_equal(&now, &mtime)) { 2021 inode_set_mtime_to_ts(inode, now); 2022 updated |= S_MTIME; 2023 } 2024 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2025 updated |= S_VERSION; 2026 } else { 2027 now = current_time(inode); 2028 } 2029 2030 if (flags & S_ATIME) { 2031 struct timespec64 atime = inode_get_atime(inode); 2032 2033 if (!timespec64_equal(&now, &atime)) { 2034 inode_set_atime_to_ts(inode, now); 2035 updated |= S_ATIME; 2036 } 2037 } 2038 return updated; 2039 } 2040 EXPORT_SYMBOL(inode_update_timestamps); 2041 2042 /** 2043 * generic_update_time - update the timestamps on the inode 2044 * @inode: inode to be updated 2045 * @flags: S_* flags that needed to be updated 2046 * 2047 * The update_time function is called when an inode's timestamps need to be 2048 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2049 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2050 * updates can be handled done independently of the rest. 2051 * 2052 * Returns a S_* mask indicating which fields were updated. 2053 */ 2054 int generic_update_time(struct inode *inode, int flags) 2055 { 2056 int updated = inode_update_timestamps(inode, flags); 2057 int dirty_flags = 0; 2058 2059 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2060 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2061 if (updated & S_VERSION) 2062 dirty_flags |= I_DIRTY_SYNC; 2063 __mark_inode_dirty(inode, dirty_flags); 2064 return updated; 2065 } 2066 EXPORT_SYMBOL(generic_update_time); 2067 2068 /* 2069 * This does the actual work of updating an inodes time or version. Must have 2070 * had called mnt_want_write() before calling this. 2071 */ 2072 int inode_update_time(struct inode *inode, int flags) 2073 { 2074 if (inode->i_op->update_time) 2075 return inode->i_op->update_time(inode, flags); 2076 generic_update_time(inode, flags); 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(inode_update_time); 2080 2081 /** 2082 * atime_needs_update - update the access time 2083 * @path: the &struct path to update 2084 * @inode: inode to update 2085 * 2086 * Update the accessed time on an inode and mark it for writeback. 2087 * This function automatically handles read only file systems and media, 2088 * as well as the "noatime" flag and inode specific "noatime" markers. 2089 */ 2090 bool atime_needs_update(const struct path *path, struct inode *inode) 2091 { 2092 struct vfsmount *mnt = path->mnt; 2093 struct timespec64 now, atime; 2094 2095 if (inode->i_flags & S_NOATIME) 2096 return false; 2097 2098 /* Atime updates will likely cause i_uid and i_gid to be written 2099 * back improprely if their true value is unknown to the vfs. 2100 */ 2101 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2102 return false; 2103 2104 if (IS_NOATIME(inode)) 2105 return false; 2106 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2107 return false; 2108 2109 if (mnt->mnt_flags & MNT_NOATIME) 2110 return false; 2111 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2112 return false; 2113 2114 now = current_time(inode); 2115 2116 if (!relatime_need_update(mnt, inode, now)) 2117 return false; 2118 2119 atime = inode_get_atime(inode); 2120 if (timespec64_equal(&atime, &now)) 2121 return false; 2122 2123 return true; 2124 } 2125 2126 void touch_atime(const struct path *path) 2127 { 2128 struct vfsmount *mnt = path->mnt; 2129 struct inode *inode = d_inode(path->dentry); 2130 2131 if (!atime_needs_update(path, inode)) 2132 return; 2133 2134 if (!sb_start_write_trylock(inode->i_sb)) 2135 return; 2136 2137 if (mnt_get_write_access(mnt) != 0) 2138 goto skip_update; 2139 /* 2140 * File systems can error out when updating inodes if they need to 2141 * allocate new space to modify an inode (such is the case for 2142 * Btrfs), but since we touch atime while walking down the path we 2143 * really don't care if we failed to update the atime of the file, 2144 * so just ignore the return value. 2145 * We may also fail on filesystems that have the ability to make parts 2146 * of the fs read only, e.g. subvolumes in Btrfs. 2147 */ 2148 inode_update_time(inode, S_ATIME); 2149 mnt_put_write_access(mnt); 2150 skip_update: 2151 sb_end_write(inode->i_sb); 2152 } 2153 EXPORT_SYMBOL(touch_atime); 2154 2155 /* 2156 * Return mask of changes for notify_change() that need to be done as a 2157 * response to write or truncate. Return 0 if nothing has to be changed. 2158 * Negative value on error (change should be denied). 2159 */ 2160 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2161 struct dentry *dentry) 2162 { 2163 struct inode *inode = d_inode(dentry); 2164 int mask = 0; 2165 int ret; 2166 2167 if (IS_NOSEC(inode)) 2168 return 0; 2169 2170 mask = setattr_should_drop_suidgid(idmap, inode); 2171 ret = security_inode_need_killpriv(dentry); 2172 if (ret < 0) 2173 return ret; 2174 if (ret) 2175 mask |= ATTR_KILL_PRIV; 2176 return mask; 2177 } 2178 2179 static int __remove_privs(struct mnt_idmap *idmap, 2180 struct dentry *dentry, int kill) 2181 { 2182 struct iattr newattrs; 2183 2184 newattrs.ia_valid = ATTR_FORCE | kill; 2185 /* 2186 * Note we call this on write, so notify_change will not 2187 * encounter any conflicting delegations: 2188 */ 2189 return notify_change(idmap, dentry, &newattrs, NULL); 2190 } 2191 2192 static int file_remove_privs_flags(struct file *file, unsigned int flags) 2193 { 2194 struct dentry *dentry = file_dentry(file); 2195 struct inode *inode = file_inode(file); 2196 int error = 0; 2197 int kill; 2198 2199 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2200 return 0; 2201 2202 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2203 if (kill < 0) 2204 return kill; 2205 2206 if (kill) { 2207 if (flags & IOCB_NOWAIT) 2208 return -EAGAIN; 2209 2210 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2211 } 2212 2213 if (!error) 2214 inode_has_no_xattr(inode); 2215 return error; 2216 } 2217 2218 /** 2219 * file_remove_privs - remove special file privileges (suid, capabilities) 2220 * @file: file to remove privileges from 2221 * 2222 * When file is modified by a write or truncation ensure that special 2223 * file privileges are removed. 2224 * 2225 * Return: 0 on success, negative errno on failure. 2226 */ 2227 int file_remove_privs(struct file *file) 2228 { 2229 return file_remove_privs_flags(file, 0); 2230 } 2231 EXPORT_SYMBOL(file_remove_privs); 2232 2233 /** 2234 * current_time - Return FS time (possibly fine-grained) 2235 * @inode: inode. 2236 * 2237 * Return the current time truncated to the time granularity supported by 2238 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2239 * as having been QUERIED, get a fine-grained timestamp, but don't update 2240 * the floor. 2241 * 2242 * For a multigrain inode, this is effectively an estimate of the timestamp 2243 * that a file would receive. An actual update must go through 2244 * inode_set_ctime_current(). 2245 */ 2246 struct timespec64 current_time(struct inode *inode) 2247 { 2248 struct timespec64 now; 2249 u32 cns; 2250 2251 ktime_get_coarse_real_ts64_mg(&now); 2252 2253 if (!is_mgtime(inode)) 2254 goto out; 2255 2256 /* If nothing has queried it, then coarse time is fine */ 2257 cns = smp_load_acquire(&inode->i_ctime_nsec); 2258 if (cns & I_CTIME_QUERIED) { 2259 /* 2260 * If there is no apparent change, then get a fine-grained 2261 * timestamp. 2262 */ 2263 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2264 ktime_get_real_ts64(&now); 2265 } 2266 out: 2267 return timestamp_truncate(now, inode); 2268 } 2269 EXPORT_SYMBOL(current_time); 2270 2271 static int inode_needs_update_time(struct inode *inode) 2272 { 2273 struct timespec64 now, ts; 2274 int sync_it = 0; 2275 2276 /* First try to exhaust all avenues to not sync */ 2277 if (IS_NOCMTIME(inode)) 2278 return 0; 2279 2280 now = current_time(inode); 2281 2282 ts = inode_get_mtime(inode); 2283 if (!timespec64_equal(&ts, &now)) 2284 sync_it |= S_MTIME; 2285 2286 ts = inode_get_ctime(inode); 2287 if (!timespec64_equal(&ts, &now)) 2288 sync_it |= S_CTIME; 2289 2290 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2291 sync_it |= S_VERSION; 2292 2293 return sync_it; 2294 } 2295 2296 static int __file_update_time(struct file *file, int sync_mode) 2297 { 2298 int ret = 0; 2299 struct inode *inode = file_inode(file); 2300 2301 /* try to update time settings */ 2302 if (!mnt_get_write_access_file(file)) { 2303 ret = inode_update_time(inode, sync_mode); 2304 mnt_put_write_access_file(file); 2305 } 2306 2307 return ret; 2308 } 2309 2310 /** 2311 * file_update_time - update mtime and ctime time 2312 * @file: file accessed 2313 * 2314 * Update the mtime and ctime members of an inode and mark the inode for 2315 * writeback. Note that this function is meant exclusively for usage in 2316 * the file write path of filesystems, and filesystems may choose to 2317 * explicitly ignore updates via this function with the _NOCMTIME inode 2318 * flag, e.g. for network filesystem where these imestamps are handled 2319 * by the server. This can return an error for file systems who need to 2320 * allocate space in order to update an inode. 2321 * 2322 * Return: 0 on success, negative errno on failure. 2323 */ 2324 int file_update_time(struct file *file) 2325 { 2326 int ret; 2327 struct inode *inode = file_inode(file); 2328 2329 ret = inode_needs_update_time(inode); 2330 if (ret <= 0) 2331 return ret; 2332 2333 return __file_update_time(file, ret); 2334 } 2335 EXPORT_SYMBOL(file_update_time); 2336 2337 /** 2338 * file_modified_flags - handle mandated vfs changes when modifying a file 2339 * @file: file that was modified 2340 * @flags: kiocb flags 2341 * 2342 * When file has been modified ensure that special 2343 * file privileges are removed and time settings are updated. 2344 * 2345 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2346 * time settings will not be updated. It will return -EAGAIN. 2347 * 2348 * Context: Caller must hold the file's inode lock. 2349 * 2350 * Return: 0 on success, negative errno on failure. 2351 */ 2352 static int file_modified_flags(struct file *file, int flags) 2353 { 2354 int ret; 2355 struct inode *inode = file_inode(file); 2356 2357 /* 2358 * Clear the security bits if the process is not being run by root. 2359 * This keeps people from modifying setuid and setgid binaries. 2360 */ 2361 ret = file_remove_privs_flags(file, flags); 2362 if (ret) 2363 return ret; 2364 2365 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2366 return 0; 2367 2368 ret = inode_needs_update_time(inode); 2369 if (ret <= 0) 2370 return ret; 2371 if (flags & IOCB_NOWAIT) 2372 return -EAGAIN; 2373 2374 return __file_update_time(file, ret); 2375 } 2376 2377 /** 2378 * file_modified - handle mandated vfs changes when modifying a file 2379 * @file: file that was modified 2380 * 2381 * When file has been modified ensure that special 2382 * file privileges are removed and time settings are updated. 2383 * 2384 * Context: Caller must hold the file's inode lock. 2385 * 2386 * Return: 0 on success, negative errno on failure. 2387 */ 2388 int file_modified(struct file *file) 2389 { 2390 return file_modified_flags(file, 0); 2391 } 2392 EXPORT_SYMBOL(file_modified); 2393 2394 /** 2395 * kiocb_modified - handle mandated vfs changes when modifying a file 2396 * @iocb: iocb that was modified 2397 * 2398 * When file has been modified ensure that special 2399 * file privileges are removed and time settings are updated. 2400 * 2401 * Context: Caller must hold the file's inode lock. 2402 * 2403 * Return: 0 on success, negative errno on failure. 2404 */ 2405 int kiocb_modified(struct kiocb *iocb) 2406 { 2407 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2408 } 2409 EXPORT_SYMBOL_GPL(kiocb_modified); 2410 2411 int inode_needs_sync(struct inode *inode) 2412 { 2413 if (IS_SYNC(inode)) 2414 return 1; 2415 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2416 return 1; 2417 return 0; 2418 } 2419 EXPORT_SYMBOL(inode_needs_sync); 2420 2421 /* 2422 * If we try to find an inode in the inode hash while it is being 2423 * deleted, we have to wait until the filesystem completes its 2424 * deletion before reporting that it isn't found. This function waits 2425 * until the deletion _might_ have completed. Callers are responsible 2426 * to recheck inode state. 2427 * 2428 * It doesn't matter if I_NEW is not set initially, a call to 2429 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2430 * will DTRT. 2431 */ 2432 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2433 { 2434 struct wait_bit_queue_entry wqe; 2435 struct wait_queue_head *wq_head; 2436 2437 /* 2438 * Handle racing against evict(), see that routine for more details. 2439 */ 2440 if (unlikely(inode_unhashed(inode))) { 2441 WARN_ON(is_inode_hash_locked); 2442 spin_unlock(&inode->i_lock); 2443 return; 2444 } 2445 2446 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2447 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2448 spin_unlock(&inode->i_lock); 2449 rcu_read_unlock(); 2450 if (is_inode_hash_locked) 2451 spin_unlock(&inode_hash_lock); 2452 schedule(); 2453 finish_wait(wq_head, &wqe.wq_entry); 2454 if (is_inode_hash_locked) 2455 spin_lock(&inode_hash_lock); 2456 rcu_read_lock(); 2457 } 2458 2459 static __initdata unsigned long ihash_entries; 2460 static int __init set_ihash_entries(char *str) 2461 { 2462 if (!str) 2463 return 0; 2464 ihash_entries = simple_strtoul(str, &str, 0); 2465 return 1; 2466 } 2467 __setup("ihash_entries=", set_ihash_entries); 2468 2469 /* 2470 * Initialize the waitqueues and inode hash table. 2471 */ 2472 void __init inode_init_early(void) 2473 { 2474 /* If hashes are distributed across NUMA nodes, defer 2475 * hash allocation until vmalloc space is available. 2476 */ 2477 if (hashdist) 2478 return; 2479 2480 inode_hashtable = 2481 alloc_large_system_hash("Inode-cache", 2482 sizeof(struct hlist_head), 2483 ihash_entries, 2484 14, 2485 HASH_EARLY | HASH_ZERO, 2486 &i_hash_shift, 2487 &i_hash_mask, 2488 0, 2489 0); 2490 } 2491 2492 void __init inode_init(void) 2493 { 2494 /* inode slab cache */ 2495 inode_cachep = kmem_cache_create("inode_cache", 2496 sizeof(struct inode), 2497 0, 2498 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2499 SLAB_ACCOUNT), 2500 init_once); 2501 2502 /* Hash may have been set up in inode_init_early */ 2503 if (!hashdist) 2504 return; 2505 2506 inode_hashtable = 2507 alloc_large_system_hash("Inode-cache", 2508 sizeof(struct hlist_head), 2509 ihash_entries, 2510 14, 2511 HASH_ZERO, 2512 &i_hash_shift, 2513 &i_hash_mask, 2514 0, 2515 0); 2516 } 2517 2518 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2519 { 2520 inode->i_mode = mode; 2521 switch (inode->i_mode & S_IFMT) { 2522 case S_IFCHR: 2523 inode->i_fop = &def_chr_fops; 2524 inode->i_rdev = rdev; 2525 break; 2526 case S_IFBLK: 2527 if (IS_ENABLED(CONFIG_BLOCK)) 2528 inode->i_fop = &def_blk_fops; 2529 inode->i_rdev = rdev; 2530 break; 2531 case S_IFIFO: 2532 inode->i_fop = &pipefifo_fops; 2533 break; 2534 case S_IFSOCK: 2535 /* leave it no_open_fops */ 2536 break; 2537 default: 2538 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2539 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2540 inode->i_ino); 2541 break; 2542 } 2543 } 2544 EXPORT_SYMBOL(init_special_inode); 2545 2546 /** 2547 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2548 * @idmap: idmap of the mount the inode was created from 2549 * @inode: New inode 2550 * @dir: Directory inode 2551 * @mode: mode of the new inode 2552 * 2553 * If the inode has been created through an idmapped mount the idmap of 2554 * the vfsmount must be passed through @idmap. This function will then take 2555 * care to map the inode according to @idmap before checking permissions 2556 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2557 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2558 */ 2559 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2560 const struct inode *dir, umode_t mode) 2561 { 2562 inode_fsuid_set(inode, idmap); 2563 if (dir && dir->i_mode & S_ISGID) { 2564 inode->i_gid = dir->i_gid; 2565 2566 /* Directories are special, and always inherit S_ISGID */ 2567 if (S_ISDIR(mode)) 2568 mode |= S_ISGID; 2569 } else 2570 inode_fsgid_set(inode, idmap); 2571 inode->i_mode = mode; 2572 } 2573 EXPORT_SYMBOL(inode_init_owner); 2574 2575 /** 2576 * inode_owner_or_capable - check current task permissions to inode 2577 * @idmap: idmap of the mount the inode was found from 2578 * @inode: inode being checked 2579 * 2580 * Return true if current either has CAP_FOWNER in a namespace with the 2581 * inode owner uid mapped, or owns the file. 2582 * 2583 * If the inode has been found through an idmapped mount the idmap of 2584 * the vfsmount must be passed through @idmap. This function will then take 2585 * care to map the inode according to @idmap before checking permissions. 2586 * On non-idmapped mounts or if permission checking is to be performed on the 2587 * raw inode simply pass @nop_mnt_idmap. 2588 */ 2589 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2590 const struct inode *inode) 2591 { 2592 vfsuid_t vfsuid; 2593 struct user_namespace *ns; 2594 2595 vfsuid = i_uid_into_vfsuid(idmap, inode); 2596 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2597 return true; 2598 2599 ns = current_user_ns(); 2600 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2601 return true; 2602 return false; 2603 } 2604 EXPORT_SYMBOL(inode_owner_or_capable); 2605 2606 /* 2607 * Direct i/o helper functions 2608 */ 2609 bool inode_dio_finished(const struct inode *inode) 2610 { 2611 return atomic_read(&inode->i_dio_count) == 0; 2612 } 2613 EXPORT_SYMBOL(inode_dio_finished); 2614 2615 /** 2616 * inode_dio_wait - wait for outstanding DIO requests to finish 2617 * @inode: inode to wait for 2618 * 2619 * Waits for all pending direct I/O requests to finish so that we can 2620 * proceed with a truncate or equivalent operation. 2621 * 2622 * Must be called under a lock that serializes taking new references 2623 * to i_dio_count, usually by inode->i_rwsem. 2624 */ 2625 void inode_dio_wait(struct inode *inode) 2626 { 2627 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2628 } 2629 EXPORT_SYMBOL(inode_dio_wait); 2630 2631 void inode_dio_wait_interruptible(struct inode *inode) 2632 { 2633 wait_var_event_interruptible(&inode->i_dio_count, 2634 inode_dio_finished(inode)); 2635 } 2636 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2637 2638 /* 2639 * inode_set_flags - atomically set some inode flags 2640 * 2641 * Note: the caller should be holding i_rwsem exclusively, or else be sure that 2642 * they have exclusive access to the inode structure (i.e., while the 2643 * inode is being instantiated). The reason for the cmpxchg() loop 2644 * --- which wouldn't be necessary if all code paths which modify 2645 * i_flags actually followed this rule, is that there is at least one 2646 * code path which doesn't today so we use cmpxchg() out of an abundance 2647 * of caution. 2648 * 2649 * In the long run, i_rwsem is overkill, and we should probably look 2650 * at using the i_lock spinlock to protect i_flags, and then make sure 2651 * it is so documented in include/linux/fs.h and that all code follows 2652 * the locking convention!! 2653 */ 2654 void inode_set_flags(struct inode *inode, unsigned int flags, 2655 unsigned int mask) 2656 { 2657 WARN_ON_ONCE(flags & ~mask); 2658 set_mask_bits(&inode->i_flags, mask, flags); 2659 } 2660 EXPORT_SYMBOL(inode_set_flags); 2661 2662 void inode_nohighmem(struct inode *inode) 2663 { 2664 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2665 } 2666 EXPORT_SYMBOL(inode_nohighmem); 2667 2668 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2669 { 2670 trace_inode_set_ctime_to_ts(inode, &ts); 2671 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2672 inode->i_ctime_sec = ts.tv_sec; 2673 inode->i_ctime_nsec = ts.tv_nsec; 2674 return ts; 2675 } 2676 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2677 2678 /** 2679 * timestamp_truncate - Truncate timespec to a granularity 2680 * @t: Timespec 2681 * @inode: inode being updated 2682 * 2683 * Truncate a timespec to the granularity supported by the fs 2684 * containing the inode. Always rounds down. gran must 2685 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2686 */ 2687 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2688 { 2689 struct super_block *sb = inode->i_sb; 2690 unsigned int gran = sb->s_time_gran; 2691 2692 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2693 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2694 t.tv_nsec = 0; 2695 2696 /* Avoid division in the common cases 1 ns and 1 s. */ 2697 if (gran == 1) 2698 ; /* nothing */ 2699 else if (gran == NSEC_PER_SEC) 2700 t.tv_nsec = 0; 2701 else if (gran > 1 && gran < NSEC_PER_SEC) 2702 t.tv_nsec -= t.tv_nsec % gran; 2703 else 2704 WARN(1, "invalid file time granularity: %u", gran); 2705 return t; 2706 } 2707 EXPORT_SYMBOL(timestamp_truncate); 2708 2709 /** 2710 * inode_set_ctime_current - set the ctime to current_time 2711 * @inode: inode 2712 * 2713 * Set the inode's ctime to the current value for the inode. Returns the 2714 * current value that was assigned. If this is not a multigrain inode, then we 2715 * set it to the later of the coarse time and floor value. 2716 * 2717 * If it is multigrain, then we first see if the coarse-grained timestamp is 2718 * distinct from what is already there. If so, then use that. Otherwise, get a 2719 * fine-grained timestamp. 2720 * 2721 * After that, try to swap the new value into i_ctime_nsec. Accept the 2722 * resulting ctime, regardless of the outcome of the swap. If it has 2723 * already been replaced, then that timestamp is later than the earlier 2724 * unacceptable one, and is thus acceptable. 2725 */ 2726 struct timespec64 inode_set_ctime_current(struct inode *inode) 2727 { 2728 struct timespec64 now; 2729 u32 cns, cur; 2730 2731 ktime_get_coarse_real_ts64_mg(&now); 2732 now = timestamp_truncate(now, inode); 2733 2734 /* Just return that if this is not a multigrain fs */ 2735 if (!is_mgtime(inode)) { 2736 inode_set_ctime_to_ts(inode, now); 2737 goto out; 2738 } 2739 2740 /* 2741 * A fine-grained time is only needed if someone has queried 2742 * for timestamps, and the current coarse grained time isn't 2743 * later than what's already there. 2744 */ 2745 cns = smp_load_acquire(&inode->i_ctime_nsec); 2746 if (cns & I_CTIME_QUERIED) { 2747 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2748 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2749 2750 if (timespec64_compare(&now, &ctime) <= 0) { 2751 ktime_get_real_ts64_mg(&now); 2752 now = timestamp_truncate(now, inode); 2753 mgtime_counter_inc(mg_fine_stamps); 2754 } 2755 } 2756 mgtime_counter_inc(mg_ctime_updates); 2757 2758 /* No need to cmpxchg if it's exactly the same */ 2759 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2760 trace_ctime_xchg_skip(inode, &now); 2761 goto out; 2762 } 2763 cur = cns; 2764 retry: 2765 /* Try to swap the nsec value into place. */ 2766 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2767 /* If swap occurred, then we're (mostly) done */ 2768 inode->i_ctime_sec = now.tv_sec; 2769 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2770 mgtime_counter_inc(mg_ctime_swaps); 2771 } else { 2772 /* 2773 * Was the change due to someone marking the old ctime QUERIED? 2774 * If so then retry the swap. This can only happen once since 2775 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2776 * with a new ctime. 2777 */ 2778 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2779 cns = cur; 2780 goto retry; 2781 } 2782 /* Otherwise, keep the existing ctime */ 2783 now.tv_sec = inode->i_ctime_sec; 2784 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2785 } 2786 out: 2787 return now; 2788 } 2789 EXPORT_SYMBOL(inode_set_ctime_current); 2790 2791 /** 2792 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2793 * @inode: inode to update 2794 * @update: timespec64 to set the ctime 2795 * 2796 * Attempt to atomically update the ctime on behalf of a delegation holder. 2797 * 2798 * The nfs server can call back the holder of a delegation to get updated 2799 * inode attributes, including the mtime. When updating the mtime, update 2800 * the ctime to a value at least equal to that. 2801 * 2802 * This can race with concurrent updates to the inode, in which 2803 * case the update is skipped. 2804 * 2805 * Note that this works even when multigrain timestamps are not enabled, 2806 * so it is used in either case. 2807 */ 2808 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2809 { 2810 struct timespec64 now, cur_ts; 2811 u32 cur, old; 2812 2813 /* pairs with try_cmpxchg below */ 2814 cur = smp_load_acquire(&inode->i_ctime_nsec); 2815 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2816 cur_ts.tv_sec = inode->i_ctime_sec; 2817 2818 /* If the update is older than the existing value, skip it. */ 2819 if (timespec64_compare(&update, &cur_ts) <= 0) 2820 return cur_ts; 2821 2822 ktime_get_coarse_real_ts64_mg(&now); 2823 2824 /* Clamp the update to "now" if it's in the future */ 2825 if (timespec64_compare(&update, &now) > 0) 2826 update = now; 2827 2828 update = timestamp_truncate(update, inode); 2829 2830 /* No need to update if the values are already the same */ 2831 if (timespec64_equal(&update, &cur_ts)) 2832 return cur_ts; 2833 2834 /* 2835 * Try to swap the nsec value into place. If it fails, that means 2836 * it raced with an update due to a write or similar activity. That 2837 * stamp takes precedence, so just skip the update. 2838 */ 2839 retry: 2840 old = cur; 2841 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2842 inode->i_ctime_sec = update.tv_sec; 2843 mgtime_counter_inc(mg_ctime_swaps); 2844 return update; 2845 } 2846 2847 /* 2848 * Was the change due to another task marking the old ctime QUERIED? 2849 * 2850 * If so, then retry the swap. This can only happen once since 2851 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2852 * with a new ctime. 2853 */ 2854 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2855 goto retry; 2856 2857 /* Otherwise, it was a new timestamp. */ 2858 cur_ts.tv_sec = inode->i_ctime_sec; 2859 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2860 return cur_ts; 2861 } 2862 EXPORT_SYMBOL(inode_set_ctime_deleg); 2863 2864 /** 2865 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2866 * @idmap: idmap of the mount @inode was found from 2867 * @inode: inode to check 2868 * @vfsgid: the new/current vfsgid of @inode 2869 * 2870 * Check whether @vfsgid is in the caller's group list or if the caller is 2871 * privileged with CAP_FSETID over @inode. This can be used to determine 2872 * whether the setgid bit can be kept or must be dropped. 2873 * 2874 * Return: true if the caller is sufficiently privileged, false if not. 2875 */ 2876 bool in_group_or_capable(struct mnt_idmap *idmap, 2877 const struct inode *inode, vfsgid_t vfsgid) 2878 { 2879 if (vfsgid_in_group_p(vfsgid)) 2880 return true; 2881 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2882 return true; 2883 return false; 2884 } 2885 EXPORT_SYMBOL(in_group_or_capable); 2886 2887 /** 2888 * mode_strip_sgid - handle the sgid bit for non-directories 2889 * @idmap: idmap of the mount the inode was created from 2890 * @dir: parent directory inode 2891 * @mode: mode of the file to be created in @dir 2892 * 2893 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2894 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2895 * either in the group of the parent directory or they have CAP_FSETID 2896 * in their user namespace and are privileged over the parent directory. 2897 * In all other cases, strip the S_ISGID bit from @mode. 2898 * 2899 * Return: the new mode to use for the file 2900 */ 2901 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2902 const struct inode *dir, umode_t mode) 2903 { 2904 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2905 return mode; 2906 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2907 return mode; 2908 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2909 return mode; 2910 return mode & ~S_ISGID; 2911 } 2912 EXPORT_SYMBOL(mode_strip_sgid); 2913 2914 #ifdef CONFIG_DEBUG_VFS 2915 /* 2916 * Dump an inode. 2917 * 2918 * TODO: add a proper inode dumping routine, this is a stub to get debug off the 2919 * ground. 2920 */ 2921 void dump_inode(struct inode *inode, const char *reason) 2922 { 2923 pr_warn("%s encountered for inode %px (%s)\n", reason, inode, inode->i_sb->s_type->name); 2924 } 2925 2926 EXPORT_SYMBOL(dump_inode); 2927 #endif 2928