1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 inode->i_private = NULL; 219 inode->i_mapping = mapping; 220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 221 #ifdef CONFIG_FS_POSIX_ACL 222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 223 #endif 224 225 #ifdef CONFIG_FSNOTIFY 226 inode->i_fsnotify_mask = 0; 227 #endif 228 inode->i_flctx = NULL; 229 230 if (unlikely(security_inode_alloc(inode))) 231 return -ENOMEM; 232 this_cpu_inc(nr_inodes); 233 234 return 0; 235 } 236 EXPORT_SYMBOL(inode_init_always); 237 238 void free_inode_nonrcu(struct inode *inode) 239 { 240 kmem_cache_free(inode_cachep, inode); 241 } 242 EXPORT_SYMBOL(free_inode_nonrcu); 243 244 static void i_callback(struct rcu_head *head) 245 { 246 struct inode *inode = container_of(head, struct inode, i_rcu); 247 if (inode->free_inode) 248 inode->free_inode(inode); 249 else 250 free_inode_nonrcu(inode); 251 } 252 253 static struct inode *alloc_inode(struct super_block *sb) 254 { 255 const struct super_operations *ops = sb->s_op; 256 struct inode *inode; 257 258 if (ops->alloc_inode) 259 inode = ops->alloc_inode(sb); 260 else 261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 262 263 if (!inode) 264 return NULL; 265 266 if (unlikely(inode_init_always(sb, inode))) { 267 if (ops->destroy_inode) { 268 ops->destroy_inode(inode); 269 if (!ops->free_inode) 270 return NULL; 271 } 272 inode->free_inode = ops->free_inode; 273 i_callback(&inode->i_rcu); 274 return NULL; 275 } 276 277 return inode; 278 } 279 280 void __destroy_inode(struct inode *inode) 281 { 282 BUG_ON(inode_has_buffers(inode)); 283 inode_detach_wb(inode); 284 security_inode_free(inode); 285 fsnotify_inode_delete(inode); 286 locks_free_lock_context(inode); 287 if (!inode->i_nlink) { 288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 289 atomic_long_dec(&inode->i_sb->s_remove_count); 290 } 291 292 #ifdef CONFIG_FS_POSIX_ACL 293 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 294 posix_acl_release(inode->i_acl); 295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 296 posix_acl_release(inode->i_default_acl); 297 #endif 298 this_cpu_dec(nr_inodes); 299 } 300 EXPORT_SYMBOL(__destroy_inode); 301 302 static void destroy_inode(struct inode *inode) 303 { 304 const struct super_operations *ops = inode->i_sb->s_op; 305 306 BUG_ON(!list_empty(&inode->i_lru)); 307 __destroy_inode(inode); 308 if (ops->destroy_inode) { 309 ops->destroy_inode(inode); 310 if (!ops->free_inode) 311 return; 312 } 313 inode->free_inode = ops->free_inode; 314 call_rcu(&inode->i_rcu, i_callback); 315 } 316 317 /** 318 * drop_nlink - directly drop an inode's link count 319 * @inode: inode 320 * 321 * This is a low-level filesystem helper to replace any 322 * direct filesystem manipulation of i_nlink. In cases 323 * where we are attempting to track writes to the 324 * filesystem, a decrement to zero means an imminent 325 * write when the file is truncated and actually unlinked 326 * on the filesystem. 327 */ 328 void drop_nlink(struct inode *inode) 329 { 330 WARN_ON(inode->i_nlink == 0); 331 inode->__i_nlink--; 332 if (!inode->i_nlink) 333 atomic_long_inc(&inode->i_sb->s_remove_count); 334 } 335 EXPORT_SYMBOL(drop_nlink); 336 337 /** 338 * clear_nlink - directly zero an inode's link count 339 * @inode: inode 340 * 341 * This is a low-level filesystem helper to replace any 342 * direct filesystem manipulation of i_nlink. See 343 * drop_nlink() for why we care about i_nlink hitting zero. 344 */ 345 void clear_nlink(struct inode *inode) 346 { 347 if (inode->i_nlink) { 348 inode->__i_nlink = 0; 349 atomic_long_inc(&inode->i_sb->s_remove_count); 350 } 351 } 352 EXPORT_SYMBOL(clear_nlink); 353 354 /** 355 * set_nlink - directly set an inode's link count 356 * @inode: inode 357 * @nlink: new nlink (should be non-zero) 358 * 359 * This is a low-level filesystem helper to replace any 360 * direct filesystem manipulation of i_nlink. 361 */ 362 void set_nlink(struct inode *inode, unsigned int nlink) 363 { 364 if (!nlink) { 365 clear_nlink(inode); 366 } else { 367 /* Yes, some filesystems do change nlink from zero to one */ 368 if (inode->i_nlink == 0) 369 atomic_long_dec(&inode->i_sb->s_remove_count); 370 371 inode->__i_nlink = nlink; 372 } 373 } 374 EXPORT_SYMBOL(set_nlink); 375 376 /** 377 * inc_nlink - directly increment an inode's link count 378 * @inode: inode 379 * 380 * This is a low-level filesystem helper to replace any 381 * direct filesystem manipulation of i_nlink. Currently, 382 * it is only here for parity with dec_nlink(). 383 */ 384 void inc_nlink(struct inode *inode) 385 { 386 if (unlikely(inode->i_nlink == 0)) { 387 WARN_ON(!(inode->i_state & I_LINKABLE)); 388 atomic_long_dec(&inode->i_sb->s_remove_count); 389 } 390 391 inode->__i_nlink++; 392 } 393 EXPORT_SYMBOL(inc_nlink); 394 395 static void __address_space_init_once(struct address_space *mapping) 396 { 397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 398 init_rwsem(&mapping->i_mmap_rwsem); 399 INIT_LIST_HEAD(&mapping->private_list); 400 spin_lock_init(&mapping->private_lock); 401 mapping->i_mmap = RB_ROOT_CACHED; 402 } 403 404 void address_space_init_once(struct address_space *mapping) 405 { 406 memset(mapping, 0, sizeof(*mapping)); 407 __address_space_init_once(mapping); 408 } 409 EXPORT_SYMBOL(address_space_init_once); 410 411 /* 412 * These are initializations that only need to be done 413 * once, because the fields are idempotent across use 414 * of the inode, so let the slab aware of that. 415 */ 416 void inode_init_once(struct inode *inode) 417 { 418 memset(inode, 0, sizeof(*inode)); 419 INIT_HLIST_NODE(&inode->i_hash); 420 INIT_LIST_HEAD(&inode->i_devices); 421 INIT_LIST_HEAD(&inode->i_io_list); 422 INIT_LIST_HEAD(&inode->i_wb_list); 423 INIT_LIST_HEAD(&inode->i_lru); 424 INIT_LIST_HEAD(&inode->i_sb_list); 425 __address_space_init_once(&inode->i_data); 426 i_size_ordered_init(inode); 427 } 428 EXPORT_SYMBOL(inode_init_once); 429 430 static void init_once(void *foo) 431 { 432 struct inode *inode = (struct inode *) foo; 433 434 inode_init_once(inode); 435 } 436 437 /* 438 * inode->i_lock must be held 439 */ 440 void __iget(struct inode *inode) 441 { 442 atomic_inc(&inode->i_count); 443 } 444 445 /* 446 * get additional reference to inode; caller must already hold one. 447 */ 448 void ihold(struct inode *inode) 449 { 450 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 451 } 452 EXPORT_SYMBOL(ihold); 453 454 static void __inode_add_lru(struct inode *inode, bool rotate) 455 { 456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 457 return; 458 if (atomic_read(&inode->i_count)) 459 return; 460 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 461 return; 462 if (!mapping_shrinkable(&inode->i_data)) 463 return; 464 465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 466 this_cpu_inc(nr_unused); 467 else if (rotate) 468 inode->i_state |= I_REFERENCED; 469 } 470 471 /* 472 * Add inode to LRU if needed (inode is unused and clean). 473 * 474 * Needs inode->i_lock held. 475 */ 476 void inode_add_lru(struct inode *inode) 477 { 478 __inode_add_lru(inode, false); 479 } 480 481 static void inode_lru_list_del(struct inode *inode) 482 { 483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 484 this_cpu_dec(nr_unused); 485 } 486 487 /** 488 * inode_sb_list_add - add inode to the superblock list of inodes 489 * @inode: inode to add 490 */ 491 void inode_sb_list_add(struct inode *inode) 492 { 493 spin_lock(&inode->i_sb->s_inode_list_lock); 494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 495 spin_unlock(&inode->i_sb->s_inode_list_lock); 496 } 497 EXPORT_SYMBOL_GPL(inode_sb_list_add); 498 499 static inline void inode_sb_list_del(struct inode *inode) 500 { 501 if (!list_empty(&inode->i_sb_list)) { 502 spin_lock(&inode->i_sb->s_inode_list_lock); 503 list_del_init(&inode->i_sb_list); 504 spin_unlock(&inode->i_sb->s_inode_list_lock); 505 } 506 } 507 508 static unsigned long hash(struct super_block *sb, unsigned long hashval) 509 { 510 unsigned long tmp; 511 512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 513 L1_CACHE_BYTES; 514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 515 return tmp & i_hash_mask; 516 } 517 518 /** 519 * __insert_inode_hash - hash an inode 520 * @inode: unhashed inode 521 * @hashval: unsigned long value used to locate this object in the 522 * inode_hashtable. 523 * 524 * Add an inode to the inode hash for this superblock. 525 */ 526 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 527 { 528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 529 530 spin_lock(&inode_hash_lock); 531 spin_lock(&inode->i_lock); 532 hlist_add_head_rcu(&inode->i_hash, b); 533 spin_unlock(&inode->i_lock); 534 spin_unlock(&inode_hash_lock); 535 } 536 EXPORT_SYMBOL(__insert_inode_hash); 537 538 /** 539 * __remove_inode_hash - remove an inode from the hash 540 * @inode: inode to unhash 541 * 542 * Remove an inode from the superblock. 543 */ 544 void __remove_inode_hash(struct inode *inode) 545 { 546 spin_lock(&inode_hash_lock); 547 spin_lock(&inode->i_lock); 548 hlist_del_init_rcu(&inode->i_hash); 549 spin_unlock(&inode->i_lock); 550 spin_unlock(&inode_hash_lock); 551 } 552 EXPORT_SYMBOL(__remove_inode_hash); 553 554 void dump_mapping(const struct address_space *mapping) 555 { 556 struct inode *host; 557 const struct address_space_operations *a_ops; 558 struct hlist_node *dentry_first; 559 struct dentry *dentry_ptr; 560 struct dentry dentry; 561 unsigned long ino; 562 563 /* 564 * If mapping is an invalid pointer, we don't want to crash 565 * accessing it, so probe everything depending on it carefully. 566 */ 567 if (get_kernel_nofault(host, &mapping->host) || 568 get_kernel_nofault(a_ops, &mapping->a_ops)) { 569 pr_warn("invalid mapping:%px\n", mapping); 570 return; 571 } 572 573 if (!host) { 574 pr_warn("aops:%ps\n", a_ops); 575 return; 576 } 577 578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 579 get_kernel_nofault(ino, &host->i_ino)) { 580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 581 return; 582 } 583 584 if (!dentry_first) { 585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 586 return; 587 } 588 589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 590 if (get_kernel_nofault(dentry, dentry_ptr)) { 591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 592 a_ops, ino, dentry_ptr); 593 return; 594 } 595 596 /* 597 * if dentry is corrupted, the %pd handler may still crash, 598 * but it's unlikely that we reach here with a corrupt mapping 599 */ 600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 601 } 602 603 void clear_inode(struct inode *inode) 604 { 605 /* 606 * We have to cycle the i_pages lock here because reclaim can be in the 607 * process of removing the last page (in __filemap_remove_folio()) 608 * and we must not free the mapping under it. 609 */ 610 xa_lock_irq(&inode->i_data.i_pages); 611 BUG_ON(inode->i_data.nrpages); 612 /* 613 * Almost always, mapping_empty(&inode->i_data) here; but there are 614 * two known and long-standing ways in which nodes may get left behind 615 * (when deep radix-tree node allocation failed partway; or when THP 616 * collapse_file() failed). Until those two known cases are cleaned up, 617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 618 * nor even WARN_ON(!mapping_empty). 619 */ 620 xa_unlock_irq(&inode->i_data.i_pages); 621 BUG_ON(!list_empty(&inode->i_data.private_list)); 622 BUG_ON(!(inode->i_state & I_FREEING)); 623 BUG_ON(inode->i_state & I_CLEAR); 624 BUG_ON(!list_empty(&inode->i_wb_list)); 625 /* don't need i_lock here, no concurrent mods to i_state */ 626 inode->i_state = I_FREEING | I_CLEAR; 627 } 628 EXPORT_SYMBOL(clear_inode); 629 630 /* 631 * Free the inode passed in, removing it from the lists it is still connected 632 * to. We remove any pages still attached to the inode and wait for any IO that 633 * is still in progress before finally destroying the inode. 634 * 635 * An inode must already be marked I_FREEING so that we avoid the inode being 636 * moved back onto lists if we race with other code that manipulates the lists 637 * (e.g. writeback_single_inode). The caller is responsible for setting this. 638 * 639 * An inode must already be removed from the LRU list before being evicted from 640 * the cache. This should occur atomically with setting the I_FREEING state 641 * flag, so no inodes here should ever be on the LRU when being evicted. 642 */ 643 static void evict(struct inode *inode) 644 { 645 const struct super_operations *op = inode->i_sb->s_op; 646 647 BUG_ON(!(inode->i_state & I_FREEING)); 648 BUG_ON(!list_empty(&inode->i_lru)); 649 650 if (!list_empty(&inode->i_io_list)) 651 inode_io_list_del(inode); 652 653 inode_sb_list_del(inode); 654 655 /* 656 * Wait for flusher thread to be done with the inode so that filesystem 657 * does not start destroying it while writeback is still running. Since 658 * the inode has I_FREEING set, flusher thread won't start new work on 659 * the inode. We just have to wait for running writeback to finish. 660 */ 661 inode_wait_for_writeback(inode); 662 663 if (op->evict_inode) { 664 op->evict_inode(inode); 665 } else { 666 truncate_inode_pages_final(&inode->i_data); 667 clear_inode(inode); 668 } 669 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 670 cd_forget(inode); 671 672 remove_inode_hash(inode); 673 674 spin_lock(&inode->i_lock); 675 wake_up_bit(&inode->i_state, __I_NEW); 676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 677 spin_unlock(&inode->i_lock); 678 679 destroy_inode(inode); 680 } 681 682 /* 683 * dispose_list - dispose of the contents of a local list 684 * @head: the head of the list to free 685 * 686 * Dispose-list gets a local list with local inodes in it, so it doesn't 687 * need to worry about list corruption and SMP locks. 688 */ 689 static void dispose_list(struct list_head *head) 690 { 691 while (!list_empty(head)) { 692 struct inode *inode; 693 694 inode = list_first_entry(head, struct inode, i_lru); 695 list_del_init(&inode->i_lru); 696 697 evict(inode); 698 cond_resched(); 699 } 700 } 701 702 /** 703 * evict_inodes - evict all evictable inodes for a superblock 704 * @sb: superblock to operate on 705 * 706 * Make sure that no inodes with zero refcount are retained. This is 707 * called by superblock shutdown after having SB_ACTIVE flag removed, 708 * so any inode reaching zero refcount during or after that call will 709 * be immediately evicted. 710 */ 711 void evict_inodes(struct super_block *sb) 712 { 713 struct inode *inode, *next; 714 LIST_HEAD(dispose); 715 716 again: 717 spin_lock(&sb->s_inode_list_lock); 718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 719 if (atomic_read(&inode->i_count)) 720 continue; 721 722 spin_lock(&inode->i_lock); 723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 728 inode->i_state |= I_FREEING; 729 inode_lru_list_del(inode); 730 spin_unlock(&inode->i_lock); 731 list_add(&inode->i_lru, &dispose); 732 733 /* 734 * We can have a ton of inodes to evict at unmount time given 735 * enough memory, check to see if we need to go to sleep for a 736 * bit so we don't livelock. 737 */ 738 if (need_resched()) { 739 spin_unlock(&sb->s_inode_list_lock); 740 cond_resched(); 741 dispose_list(&dispose); 742 goto again; 743 } 744 } 745 spin_unlock(&sb->s_inode_list_lock); 746 747 dispose_list(&dispose); 748 } 749 EXPORT_SYMBOL_GPL(evict_inodes); 750 751 /** 752 * invalidate_inodes - attempt to free all inodes on a superblock 753 * @sb: superblock to operate on 754 * 755 * Attempts to free all inodes (including dirty inodes) for a given superblock. 756 */ 757 void invalidate_inodes(struct super_block *sb) 758 { 759 struct inode *inode, *next; 760 LIST_HEAD(dispose); 761 762 again: 763 spin_lock(&sb->s_inode_list_lock); 764 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 765 spin_lock(&inode->i_lock); 766 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 767 spin_unlock(&inode->i_lock); 768 continue; 769 } 770 if (atomic_read(&inode->i_count)) { 771 spin_unlock(&inode->i_lock); 772 continue; 773 } 774 775 inode->i_state |= I_FREEING; 776 inode_lru_list_del(inode); 777 spin_unlock(&inode->i_lock); 778 list_add(&inode->i_lru, &dispose); 779 if (need_resched()) { 780 spin_unlock(&sb->s_inode_list_lock); 781 cond_resched(); 782 dispose_list(&dispose); 783 goto again; 784 } 785 } 786 spin_unlock(&sb->s_inode_list_lock); 787 788 dispose_list(&dispose); 789 } 790 791 /* 792 * Isolate the inode from the LRU in preparation for freeing it. 793 * 794 * If the inode has the I_REFERENCED flag set, then it means that it has been 795 * used recently - the flag is set in iput_final(). When we encounter such an 796 * inode, clear the flag and move it to the back of the LRU so it gets another 797 * pass through the LRU before it gets reclaimed. This is necessary because of 798 * the fact we are doing lazy LRU updates to minimise lock contention so the 799 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 800 * with this flag set because they are the inodes that are out of order. 801 */ 802 static enum lru_status inode_lru_isolate(struct list_head *item, 803 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 804 { 805 struct list_head *freeable = arg; 806 struct inode *inode = container_of(item, struct inode, i_lru); 807 808 /* 809 * We are inverting the lru lock/inode->i_lock here, so use a 810 * trylock. If we fail to get the lock, just skip it. 811 */ 812 if (!spin_trylock(&inode->i_lock)) 813 return LRU_SKIP; 814 815 /* 816 * Inodes can get referenced, redirtied, or repopulated while 817 * they're already on the LRU, and this can make them 818 * unreclaimable for a while. Remove them lazily here; iput, 819 * sync, or the last page cache deletion will requeue them. 820 */ 821 if (atomic_read(&inode->i_count) || 822 (inode->i_state & ~I_REFERENCED) || 823 !mapping_shrinkable(&inode->i_data)) { 824 list_lru_isolate(lru, &inode->i_lru); 825 spin_unlock(&inode->i_lock); 826 this_cpu_dec(nr_unused); 827 return LRU_REMOVED; 828 } 829 830 /* Recently referenced inodes get one more pass */ 831 if (inode->i_state & I_REFERENCED) { 832 inode->i_state &= ~I_REFERENCED; 833 spin_unlock(&inode->i_lock); 834 return LRU_ROTATE; 835 } 836 837 /* 838 * On highmem systems, mapping_shrinkable() permits dropping 839 * page cache in order to free up struct inodes: lowmem might 840 * be under pressure before the cache inside the highmem zone. 841 */ 842 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 843 __iget(inode); 844 spin_unlock(&inode->i_lock); 845 spin_unlock(lru_lock); 846 if (remove_inode_buffers(inode)) { 847 unsigned long reap; 848 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 849 if (current_is_kswapd()) 850 __count_vm_events(KSWAPD_INODESTEAL, reap); 851 else 852 __count_vm_events(PGINODESTEAL, reap); 853 mm_account_reclaimed_pages(reap); 854 } 855 iput(inode); 856 spin_lock(lru_lock); 857 return LRU_RETRY; 858 } 859 860 WARN_ON(inode->i_state & I_NEW); 861 inode->i_state |= I_FREEING; 862 list_lru_isolate_move(lru, &inode->i_lru, freeable); 863 spin_unlock(&inode->i_lock); 864 865 this_cpu_dec(nr_unused); 866 return LRU_REMOVED; 867 } 868 869 /* 870 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 871 * This is called from the superblock shrinker function with a number of inodes 872 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 873 * then are freed outside inode_lock by dispose_list(). 874 */ 875 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 876 { 877 LIST_HEAD(freeable); 878 long freed; 879 880 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 881 inode_lru_isolate, &freeable); 882 dispose_list(&freeable); 883 return freed; 884 } 885 886 static void __wait_on_freeing_inode(struct inode *inode); 887 /* 888 * Called with the inode lock held. 889 */ 890 static struct inode *find_inode(struct super_block *sb, 891 struct hlist_head *head, 892 int (*test)(struct inode *, void *), 893 void *data) 894 { 895 struct inode *inode = NULL; 896 897 repeat: 898 hlist_for_each_entry(inode, head, i_hash) { 899 if (inode->i_sb != sb) 900 continue; 901 if (!test(inode, data)) 902 continue; 903 spin_lock(&inode->i_lock); 904 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 905 __wait_on_freeing_inode(inode); 906 goto repeat; 907 } 908 if (unlikely(inode->i_state & I_CREATING)) { 909 spin_unlock(&inode->i_lock); 910 return ERR_PTR(-ESTALE); 911 } 912 __iget(inode); 913 spin_unlock(&inode->i_lock); 914 return inode; 915 } 916 return NULL; 917 } 918 919 /* 920 * find_inode_fast is the fast path version of find_inode, see the comment at 921 * iget_locked for details. 922 */ 923 static struct inode *find_inode_fast(struct super_block *sb, 924 struct hlist_head *head, unsigned long ino) 925 { 926 struct inode *inode = NULL; 927 928 repeat: 929 hlist_for_each_entry(inode, head, i_hash) { 930 if (inode->i_ino != ino) 931 continue; 932 if (inode->i_sb != sb) 933 continue; 934 spin_lock(&inode->i_lock); 935 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 936 __wait_on_freeing_inode(inode); 937 goto repeat; 938 } 939 if (unlikely(inode->i_state & I_CREATING)) { 940 spin_unlock(&inode->i_lock); 941 return ERR_PTR(-ESTALE); 942 } 943 __iget(inode); 944 spin_unlock(&inode->i_lock); 945 return inode; 946 } 947 return NULL; 948 } 949 950 /* 951 * Each cpu owns a range of LAST_INO_BATCH numbers. 952 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 953 * to renew the exhausted range. 954 * 955 * This does not significantly increase overflow rate because every CPU can 956 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 957 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 958 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 959 * overflow rate by 2x, which does not seem too significant. 960 * 961 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 962 * error if st_ino won't fit in target struct field. Use 32bit counter 963 * here to attempt to avoid that. 964 */ 965 #define LAST_INO_BATCH 1024 966 static DEFINE_PER_CPU(unsigned int, last_ino); 967 968 unsigned int get_next_ino(void) 969 { 970 unsigned int *p = &get_cpu_var(last_ino); 971 unsigned int res = *p; 972 973 #ifdef CONFIG_SMP 974 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 975 static atomic_t shared_last_ino; 976 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 977 978 res = next - LAST_INO_BATCH; 979 } 980 #endif 981 982 res++; 983 /* get_next_ino should not provide a 0 inode number */ 984 if (unlikely(!res)) 985 res++; 986 *p = res; 987 put_cpu_var(last_ino); 988 return res; 989 } 990 EXPORT_SYMBOL(get_next_ino); 991 992 /** 993 * new_inode_pseudo - obtain an inode 994 * @sb: superblock 995 * 996 * Allocates a new inode for given superblock. 997 * Inode wont be chained in superblock s_inodes list 998 * This means : 999 * - fs can't be unmount 1000 * - quotas, fsnotify, writeback can't work 1001 */ 1002 struct inode *new_inode_pseudo(struct super_block *sb) 1003 { 1004 struct inode *inode = alloc_inode(sb); 1005 1006 if (inode) { 1007 spin_lock(&inode->i_lock); 1008 inode->i_state = 0; 1009 spin_unlock(&inode->i_lock); 1010 } 1011 return inode; 1012 } 1013 1014 /** 1015 * new_inode - obtain an inode 1016 * @sb: superblock 1017 * 1018 * Allocates a new inode for given superblock. The default gfp_mask 1019 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1020 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1021 * for the page cache are not reclaimable or migratable, 1022 * mapping_set_gfp_mask() must be called with suitable flags on the 1023 * newly created inode's mapping 1024 * 1025 */ 1026 struct inode *new_inode(struct super_block *sb) 1027 { 1028 struct inode *inode; 1029 1030 inode = new_inode_pseudo(sb); 1031 if (inode) 1032 inode_sb_list_add(inode); 1033 return inode; 1034 } 1035 EXPORT_SYMBOL(new_inode); 1036 1037 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1038 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1039 { 1040 if (S_ISDIR(inode->i_mode)) { 1041 struct file_system_type *type = inode->i_sb->s_type; 1042 1043 /* Set new key only if filesystem hasn't already changed it */ 1044 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1045 /* 1046 * ensure nobody is actually holding i_mutex 1047 */ 1048 // mutex_destroy(&inode->i_mutex); 1049 init_rwsem(&inode->i_rwsem); 1050 lockdep_set_class(&inode->i_rwsem, 1051 &type->i_mutex_dir_key); 1052 } 1053 } 1054 } 1055 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1056 #endif 1057 1058 /** 1059 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1060 * @inode: new inode to unlock 1061 * 1062 * Called when the inode is fully initialised to clear the new state of the 1063 * inode and wake up anyone waiting for the inode to finish initialisation. 1064 */ 1065 void unlock_new_inode(struct inode *inode) 1066 { 1067 lockdep_annotate_inode_mutex_key(inode); 1068 spin_lock(&inode->i_lock); 1069 WARN_ON(!(inode->i_state & I_NEW)); 1070 inode->i_state &= ~I_NEW & ~I_CREATING; 1071 smp_mb(); 1072 wake_up_bit(&inode->i_state, __I_NEW); 1073 spin_unlock(&inode->i_lock); 1074 } 1075 EXPORT_SYMBOL(unlock_new_inode); 1076 1077 void discard_new_inode(struct inode *inode) 1078 { 1079 lockdep_annotate_inode_mutex_key(inode); 1080 spin_lock(&inode->i_lock); 1081 WARN_ON(!(inode->i_state & I_NEW)); 1082 inode->i_state &= ~I_NEW; 1083 smp_mb(); 1084 wake_up_bit(&inode->i_state, __I_NEW); 1085 spin_unlock(&inode->i_lock); 1086 iput(inode); 1087 } 1088 EXPORT_SYMBOL(discard_new_inode); 1089 1090 /** 1091 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1092 * 1093 * Lock any non-NULL argument. The caller must make sure that if he is passing 1094 * in two directories, one is not ancestor of the other. Zero, one or two 1095 * objects may be locked by this function. 1096 * 1097 * @inode1: first inode to lock 1098 * @inode2: second inode to lock 1099 * @subclass1: inode lock subclass for the first lock obtained 1100 * @subclass2: inode lock subclass for the second lock obtained 1101 */ 1102 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1103 unsigned subclass1, unsigned subclass2) 1104 { 1105 if (!inode1 || !inode2) { 1106 /* 1107 * Make sure @subclass1 will be used for the acquired lock. 1108 * This is not strictly necessary (no current caller cares) but 1109 * let's keep things consistent. 1110 */ 1111 if (!inode1) 1112 swap(inode1, inode2); 1113 goto lock; 1114 } 1115 1116 /* 1117 * If one object is directory and the other is not, we must make sure 1118 * to lock directory first as the other object may be its child. 1119 */ 1120 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1121 if (inode1 > inode2) 1122 swap(inode1, inode2); 1123 } else if (!S_ISDIR(inode1->i_mode)) 1124 swap(inode1, inode2); 1125 lock: 1126 if (inode1) 1127 inode_lock_nested(inode1, subclass1); 1128 if (inode2 && inode2 != inode1) 1129 inode_lock_nested(inode2, subclass2); 1130 } 1131 1132 /** 1133 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1134 * 1135 * Lock any non-NULL argument. Passed objects must not be directories. 1136 * Zero, one or two objects may be locked by this function. 1137 * 1138 * @inode1: first inode to lock 1139 * @inode2: second inode to lock 1140 */ 1141 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1142 { 1143 if (inode1) 1144 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1145 if (inode2) 1146 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1147 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1148 } 1149 EXPORT_SYMBOL(lock_two_nondirectories); 1150 1151 /** 1152 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1153 * @inode1: first inode to unlock 1154 * @inode2: second inode to unlock 1155 */ 1156 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1157 { 1158 if (inode1) { 1159 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1160 inode_unlock(inode1); 1161 } 1162 if (inode2 && inode2 != inode1) { 1163 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1164 inode_unlock(inode2); 1165 } 1166 } 1167 EXPORT_SYMBOL(unlock_two_nondirectories); 1168 1169 /** 1170 * inode_insert5 - obtain an inode from a mounted file system 1171 * @inode: pre-allocated inode to use for insert to cache 1172 * @hashval: hash value (usually inode number) to get 1173 * @test: callback used for comparisons between inodes 1174 * @set: callback used to initialize a new struct inode 1175 * @data: opaque data pointer to pass to @test and @set 1176 * 1177 * Search for the inode specified by @hashval and @data in the inode cache, 1178 * and if present it is return it with an increased reference count. This is 1179 * a variant of iget5_locked() for callers that don't want to fail on memory 1180 * allocation of inode. 1181 * 1182 * If the inode is not in cache, insert the pre-allocated inode to cache and 1183 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1184 * to fill it in before unlocking it via unlock_new_inode(). 1185 * 1186 * Note both @test and @set are called with the inode_hash_lock held, so can't 1187 * sleep. 1188 */ 1189 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1190 int (*test)(struct inode *, void *), 1191 int (*set)(struct inode *, void *), void *data) 1192 { 1193 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1194 struct inode *old; 1195 1196 again: 1197 spin_lock(&inode_hash_lock); 1198 old = find_inode(inode->i_sb, head, test, data); 1199 if (unlikely(old)) { 1200 /* 1201 * Uhhuh, somebody else created the same inode under us. 1202 * Use the old inode instead of the preallocated one. 1203 */ 1204 spin_unlock(&inode_hash_lock); 1205 if (IS_ERR(old)) 1206 return NULL; 1207 wait_on_inode(old); 1208 if (unlikely(inode_unhashed(old))) { 1209 iput(old); 1210 goto again; 1211 } 1212 return old; 1213 } 1214 1215 if (set && unlikely(set(inode, data))) { 1216 inode = NULL; 1217 goto unlock; 1218 } 1219 1220 /* 1221 * Return the locked inode with I_NEW set, the 1222 * caller is responsible for filling in the contents 1223 */ 1224 spin_lock(&inode->i_lock); 1225 inode->i_state |= I_NEW; 1226 hlist_add_head_rcu(&inode->i_hash, head); 1227 spin_unlock(&inode->i_lock); 1228 1229 /* 1230 * Add inode to the sb list if it's not already. It has I_NEW at this 1231 * point, so it should be safe to test i_sb_list locklessly. 1232 */ 1233 if (list_empty(&inode->i_sb_list)) 1234 inode_sb_list_add(inode); 1235 unlock: 1236 spin_unlock(&inode_hash_lock); 1237 1238 return inode; 1239 } 1240 EXPORT_SYMBOL(inode_insert5); 1241 1242 /** 1243 * iget5_locked - obtain an inode from a mounted file system 1244 * @sb: super block of file system 1245 * @hashval: hash value (usually inode number) to get 1246 * @test: callback used for comparisons between inodes 1247 * @set: callback used to initialize a new struct inode 1248 * @data: opaque data pointer to pass to @test and @set 1249 * 1250 * Search for the inode specified by @hashval and @data in the inode cache, 1251 * and if present it is return it with an increased reference count. This is 1252 * a generalized version of iget_locked() for file systems where the inode 1253 * number is not sufficient for unique identification of an inode. 1254 * 1255 * If the inode is not in cache, allocate a new inode and return it locked, 1256 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1257 * before unlocking it via unlock_new_inode(). 1258 * 1259 * Note both @test and @set are called with the inode_hash_lock held, so can't 1260 * sleep. 1261 */ 1262 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1263 int (*test)(struct inode *, void *), 1264 int (*set)(struct inode *, void *), void *data) 1265 { 1266 struct inode *inode = ilookup5(sb, hashval, test, data); 1267 1268 if (!inode) { 1269 struct inode *new = alloc_inode(sb); 1270 1271 if (new) { 1272 new->i_state = 0; 1273 inode = inode_insert5(new, hashval, test, set, data); 1274 if (unlikely(inode != new)) 1275 destroy_inode(new); 1276 } 1277 } 1278 return inode; 1279 } 1280 EXPORT_SYMBOL(iget5_locked); 1281 1282 /** 1283 * iget_locked - obtain an inode from a mounted file system 1284 * @sb: super block of file system 1285 * @ino: inode number to get 1286 * 1287 * Search for the inode specified by @ino in the inode cache and if present 1288 * return it with an increased reference count. This is for file systems 1289 * where the inode number is sufficient for unique identification of an inode. 1290 * 1291 * If the inode is not in cache, allocate a new inode and return it locked, 1292 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1293 * before unlocking it via unlock_new_inode(). 1294 */ 1295 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1296 { 1297 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1298 struct inode *inode; 1299 again: 1300 spin_lock(&inode_hash_lock); 1301 inode = find_inode_fast(sb, head, ino); 1302 spin_unlock(&inode_hash_lock); 1303 if (inode) { 1304 if (IS_ERR(inode)) 1305 return NULL; 1306 wait_on_inode(inode); 1307 if (unlikely(inode_unhashed(inode))) { 1308 iput(inode); 1309 goto again; 1310 } 1311 return inode; 1312 } 1313 1314 inode = alloc_inode(sb); 1315 if (inode) { 1316 struct inode *old; 1317 1318 spin_lock(&inode_hash_lock); 1319 /* We released the lock, so.. */ 1320 old = find_inode_fast(sb, head, ino); 1321 if (!old) { 1322 inode->i_ino = ino; 1323 spin_lock(&inode->i_lock); 1324 inode->i_state = I_NEW; 1325 hlist_add_head_rcu(&inode->i_hash, head); 1326 spin_unlock(&inode->i_lock); 1327 inode_sb_list_add(inode); 1328 spin_unlock(&inode_hash_lock); 1329 1330 /* Return the locked inode with I_NEW set, the 1331 * caller is responsible for filling in the contents 1332 */ 1333 return inode; 1334 } 1335 1336 /* 1337 * Uhhuh, somebody else created the same inode under 1338 * us. Use the old inode instead of the one we just 1339 * allocated. 1340 */ 1341 spin_unlock(&inode_hash_lock); 1342 destroy_inode(inode); 1343 if (IS_ERR(old)) 1344 return NULL; 1345 inode = old; 1346 wait_on_inode(inode); 1347 if (unlikely(inode_unhashed(inode))) { 1348 iput(inode); 1349 goto again; 1350 } 1351 } 1352 return inode; 1353 } 1354 EXPORT_SYMBOL(iget_locked); 1355 1356 /* 1357 * search the inode cache for a matching inode number. 1358 * If we find one, then the inode number we are trying to 1359 * allocate is not unique and so we should not use it. 1360 * 1361 * Returns 1 if the inode number is unique, 0 if it is not. 1362 */ 1363 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1364 { 1365 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1366 struct inode *inode; 1367 1368 hlist_for_each_entry_rcu(inode, b, i_hash) { 1369 if (inode->i_ino == ino && inode->i_sb == sb) 1370 return 0; 1371 } 1372 return 1; 1373 } 1374 1375 /** 1376 * iunique - get a unique inode number 1377 * @sb: superblock 1378 * @max_reserved: highest reserved inode number 1379 * 1380 * Obtain an inode number that is unique on the system for a given 1381 * superblock. This is used by file systems that have no natural 1382 * permanent inode numbering system. An inode number is returned that 1383 * is higher than the reserved limit but unique. 1384 * 1385 * BUGS: 1386 * With a large number of inodes live on the file system this function 1387 * currently becomes quite slow. 1388 */ 1389 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1390 { 1391 /* 1392 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1393 * error if st_ino won't fit in target struct field. Use 32bit counter 1394 * here to attempt to avoid that. 1395 */ 1396 static DEFINE_SPINLOCK(iunique_lock); 1397 static unsigned int counter; 1398 ino_t res; 1399 1400 rcu_read_lock(); 1401 spin_lock(&iunique_lock); 1402 do { 1403 if (counter <= max_reserved) 1404 counter = max_reserved + 1; 1405 res = counter++; 1406 } while (!test_inode_iunique(sb, res)); 1407 spin_unlock(&iunique_lock); 1408 rcu_read_unlock(); 1409 1410 return res; 1411 } 1412 EXPORT_SYMBOL(iunique); 1413 1414 struct inode *igrab(struct inode *inode) 1415 { 1416 spin_lock(&inode->i_lock); 1417 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1418 __iget(inode); 1419 spin_unlock(&inode->i_lock); 1420 } else { 1421 spin_unlock(&inode->i_lock); 1422 /* 1423 * Handle the case where s_op->clear_inode is not been 1424 * called yet, and somebody is calling igrab 1425 * while the inode is getting freed. 1426 */ 1427 inode = NULL; 1428 } 1429 return inode; 1430 } 1431 EXPORT_SYMBOL(igrab); 1432 1433 /** 1434 * ilookup5_nowait - search for an inode in the inode cache 1435 * @sb: super block of file system to search 1436 * @hashval: hash value (usually inode number) to search for 1437 * @test: callback used for comparisons between inodes 1438 * @data: opaque data pointer to pass to @test 1439 * 1440 * Search for the inode specified by @hashval and @data in the inode cache. 1441 * If the inode is in the cache, the inode is returned with an incremented 1442 * reference count. 1443 * 1444 * Note: I_NEW is not waited upon so you have to be very careful what you do 1445 * with the returned inode. You probably should be using ilookup5() instead. 1446 * 1447 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1448 */ 1449 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1450 int (*test)(struct inode *, void *), void *data) 1451 { 1452 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1453 struct inode *inode; 1454 1455 spin_lock(&inode_hash_lock); 1456 inode = find_inode(sb, head, test, data); 1457 spin_unlock(&inode_hash_lock); 1458 1459 return IS_ERR(inode) ? NULL : inode; 1460 } 1461 EXPORT_SYMBOL(ilookup5_nowait); 1462 1463 /** 1464 * ilookup5 - search for an inode in the inode cache 1465 * @sb: super block of file system to search 1466 * @hashval: hash value (usually inode number) to search for 1467 * @test: callback used for comparisons between inodes 1468 * @data: opaque data pointer to pass to @test 1469 * 1470 * Search for the inode specified by @hashval and @data in the inode cache, 1471 * and if the inode is in the cache, return the inode with an incremented 1472 * reference count. Waits on I_NEW before returning the inode. 1473 * returned with an incremented reference count. 1474 * 1475 * This is a generalized version of ilookup() for file systems where the 1476 * inode number is not sufficient for unique identification of an inode. 1477 * 1478 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1479 */ 1480 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1481 int (*test)(struct inode *, void *), void *data) 1482 { 1483 struct inode *inode; 1484 again: 1485 inode = ilookup5_nowait(sb, hashval, test, data); 1486 if (inode) { 1487 wait_on_inode(inode); 1488 if (unlikely(inode_unhashed(inode))) { 1489 iput(inode); 1490 goto again; 1491 } 1492 } 1493 return inode; 1494 } 1495 EXPORT_SYMBOL(ilookup5); 1496 1497 /** 1498 * ilookup - search for an inode in the inode cache 1499 * @sb: super block of file system to search 1500 * @ino: inode number to search for 1501 * 1502 * Search for the inode @ino in the inode cache, and if the inode is in the 1503 * cache, the inode is returned with an incremented reference count. 1504 */ 1505 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1506 { 1507 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1508 struct inode *inode; 1509 again: 1510 spin_lock(&inode_hash_lock); 1511 inode = find_inode_fast(sb, head, ino); 1512 spin_unlock(&inode_hash_lock); 1513 1514 if (inode) { 1515 if (IS_ERR(inode)) 1516 return NULL; 1517 wait_on_inode(inode); 1518 if (unlikely(inode_unhashed(inode))) { 1519 iput(inode); 1520 goto again; 1521 } 1522 } 1523 return inode; 1524 } 1525 EXPORT_SYMBOL(ilookup); 1526 1527 /** 1528 * find_inode_nowait - find an inode in the inode cache 1529 * @sb: super block of file system to search 1530 * @hashval: hash value (usually inode number) to search for 1531 * @match: callback used for comparisons between inodes 1532 * @data: opaque data pointer to pass to @match 1533 * 1534 * Search for the inode specified by @hashval and @data in the inode 1535 * cache, where the helper function @match will return 0 if the inode 1536 * does not match, 1 if the inode does match, and -1 if the search 1537 * should be stopped. The @match function must be responsible for 1538 * taking the i_lock spin_lock and checking i_state for an inode being 1539 * freed or being initialized, and incrementing the reference count 1540 * before returning 1. It also must not sleep, since it is called with 1541 * the inode_hash_lock spinlock held. 1542 * 1543 * This is a even more generalized version of ilookup5() when the 1544 * function must never block --- find_inode() can block in 1545 * __wait_on_freeing_inode() --- or when the caller can not increment 1546 * the reference count because the resulting iput() might cause an 1547 * inode eviction. The tradeoff is that the @match funtion must be 1548 * very carefully implemented. 1549 */ 1550 struct inode *find_inode_nowait(struct super_block *sb, 1551 unsigned long hashval, 1552 int (*match)(struct inode *, unsigned long, 1553 void *), 1554 void *data) 1555 { 1556 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1557 struct inode *inode, *ret_inode = NULL; 1558 int mval; 1559 1560 spin_lock(&inode_hash_lock); 1561 hlist_for_each_entry(inode, head, i_hash) { 1562 if (inode->i_sb != sb) 1563 continue; 1564 mval = match(inode, hashval, data); 1565 if (mval == 0) 1566 continue; 1567 if (mval == 1) 1568 ret_inode = inode; 1569 goto out; 1570 } 1571 out: 1572 spin_unlock(&inode_hash_lock); 1573 return ret_inode; 1574 } 1575 EXPORT_SYMBOL(find_inode_nowait); 1576 1577 /** 1578 * find_inode_rcu - find an inode in the inode cache 1579 * @sb: Super block of file system to search 1580 * @hashval: Key to hash 1581 * @test: Function to test match on an inode 1582 * @data: Data for test function 1583 * 1584 * Search for the inode specified by @hashval and @data in the inode cache, 1585 * where the helper function @test will return 0 if the inode does not match 1586 * and 1 if it does. The @test function must be responsible for taking the 1587 * i_lock spin_lock and checking i_state for an inode being freed or being 1588 * initialized. 1589 * 1590 * If successful, this will return the inode for which the @test function 1591 * returned 1 and NULL otherwise. 1592 * 1593 * The @test function is not permitted to take a ref on any inode presented. 1594 * It is also not permitted to sleep. 1595 * 1596 * The caller must hold the RCU read lock. 1597 */ 1598 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1599 int (*test)(struct inode *, void *), void *data) 1600 { 1601 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1602 struct inode *inode; 1603 1604 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1605 "suspicious find_inode_rcu() usage"); 1606 1607 hlist_for_each_entry_rcu(inode, head, i_hash) { 1608 if (inode->i_sb == sb && 1609 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1610 test(inode, data)) 1611 return inode; 1612 } 1613 return NULL; 1614 } 1615 EXPORT_SYMBOL(find_inode_rcu); 1616 1617 /** 1618 * find_inode_by_ino_rcu - Find an inode in the inode cache 1619 * @sb: Super block of file system to search 1620 * @ino: The inode number to match 1621 * 1622 * Search for the inode specified by @hashval and @data in the inode cache, 1623 * where the helper function @test will return 0 if the inode does not match 1624 * and 1 if it does. The @test function must be responsible for taking the 1625 * i_lock spin_lock and checking i_state for an inode being freed or being 1626 * initialized. 1627 * 1628 * If successful, this will return the inode for which the @test function 1629 * returned 1 and NULL otherwise. 1630 * 1631 * The @test function is not permitted to take a ref on any inode presented. 1632 * It is also not permitted to sleep. 1633 * 1634 * The caller must hold the RCU read lock. 1635 */ 1636 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1637 unsigned long ino) 1638 { 1639 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1640 struct inode *inode; 1641 1642 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1643 "suspicious find_inode_by_ino_rcu() usage"); 1644 1645 hlist_for_each_entry_rcu(inode, head, i_hash) { 1646 if (inode->i_ino == ino && 1647 inode->i_sb == sb && 1648 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1649 return inode; 1650 } 1651 return NULL; 1652 } 1653 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1654 1655 int insert_inode_locked(struct inode *inode) 1656 { 1657 struct super_block *sb = inode->i_sb; 1658 ino_t ino = inode->i_ino; 1659 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1660 1661 while (1) { 1662 struct inode *old = NULL; 1663 spin_lock(&inode_hash_lock); 1664 hlist_for_each_entry(old, head, i_hash) { 1665 if (old->i_ino != ino) 1666 continue; 1667 if (old->i_sb != sb) 1668 continue; 1669 spin_lock(&old->i_lock); 1670 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1671 spin_unlock(&old->i_lock); 1672 continue; 1673 } 1674 break; 1675 } 1676 if (likely(!old)) { 1677 spin_lock(&inode->i_lock); 1678 inode->i_state |= I_NEW | I_CREATING; 1679 hlist_add_head_rcu(&inode->i_hash, head); 1680 spin_unlock(&inode->i_lock); 1681 spin_unlock(&inode_hash_lock); 1682 return 0; 1683 } 1684 if (unlikely(old->i_state & I_CREATING)) { 1685 spin_unlock(&old->i_lock); 1686 spin_unlock(&inode_hash_lock); 1687 return -EBUSY; 1688 } 1689 __iget(old); 1690 spin_unlock(&old->i_lock); 1691 spin_unlock(&inode_hash_lock); 1692 wait_on_inode(old); 1693 if (unlikely(!inode_unhashed(old))) { 1694 iput(old); 1695 return -EBUSY; 1696 } 1697 iput(old); 1698 } 1699 } 1700 EXPORT_SYMBOL(insert_inode_locked); 1701 1702 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1703 int (*test)(struct inode *, void *), void *data) 1704 { 1705 struct inode *old; 1706 1707 inode->i_state |= I_CREATING; 1708 old = inode_insert5(inode, hashval, test, NULL, data); 1709 1710 if (old != inode) { 1711 iput(old); 1712 return -EBUSY; 1713 } 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(insert_inode_locked4); 1717 1718 1719 int generic_delete_inode(struct inode *inode) 1720 { 1721 return 1; 1722 } 1723 EXPORT_SYMBOL(generic_delete_inode); 1724 1725 /* 1726 * Called when we're dropping the last reference 1727 * to an inode. 1728 * 1729 * Call the FS "drop_inode()" function, defaulting to 1730 * the legacy UNIX filesystem behaviour. If it tells 1731 * us to evict inode, do so. Otherwise, retain inode 1732 * in cache if fs is alive, sync and evict if fs is 1733 * shutting down. 1734 */ 1735 static void iput_final(struct inode *inode) 1736 { 1737 struct super_block *sb = inode->i_sb; 1738 const struct super_operations *op = inode->i_sb->s_op; 1739 unsigned long state; 1740 int drop; 1741 1742 WARN_ON(inode->i_state & I_NEW); 1743 1744 if (op->drop_inode) 1745 drop = op->drop_inode(inode); 1746 else 1747 drop = generic_drop_inode(inode); 1748 1749 if (!drop && 1750 !(inode->i_state & I_DONTCACHE) && 1751 (sb->s_flags & SB_ACTIVE)) { 1752 __inode_add_lru(inode, true); 1753 spin_unlock(&inode->i_lock); 1754 return; 1755 } 1756 1757 state = inode->i_state; 1758 if (!drop) { 1759 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1760 spin_unlock(&inode->i_lock); 1761 1762 write_inode_now(inode, 1); 1763 1764 spin_lock(&inode->i_lock); 1765 state = inode->i_state; 1766 WARN_ON(state & I_NEW); 1767 state &= ~I_WILL_FREE; 1768 } 1769 1770 WRITE_ONCE(inode->i_state, state | I_FREEING); 1771 if (!list_empty(&inode->i_lru)) 1772 inode_lru_list_del(inode); 1773 spin_unlock(&inode->i_lock); 1774 1775 evict(inode); 1776 } 1777 1778 /** 1779 * iput - put an inode 1780 * @inode: inode to put 1781 * 1782 * Puts an inode, dropping its usage count. If the inode use count hits 1783 * zero, the inode is then freed and may also be destroyed. 1784 * 1785 * Consequently, iput() can sleep. 1786 */ 1787 void iput(struct inode *inode) 1788 { 1789 if (!inode) 1790 return; 1791 BUG_ON(inode->i_state & I_CLEAR); 1792 retry: 1793 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1794 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1795 atomic_inc(&inode->i_count); 1796 spin_unlock(&inode->i_lock); 1797 trace_writeback_lazytime_iput(inode); 1798 mark_inode_dirty_sync(inode); 1799 goto retry; 1800 } 1801 iput_final(inode); 1802 } 1803 } 1804 EXPORT_SYMBOL(iput); 1805 1806 #ifdef CONFIG_BLOCK 1807 /** 1808 * bmap - find a block number in a file 1809 * @inode: inode owning the block number being requested 1810 * @block: pointer containing the block to find 1811 * 1812 * Replaces the value in ``*block`` with the block number on the device holding 1813 * corresponding to the requested block number in the file. 1814 * That is, asked for block 4 of inode 1 the function will replace the 1815 * 4 in ``*block``, with disk block relative to the disk start that holds that 1816 * block of the file. 1817 * 1818 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1819 * hole, returns 0 and ``*block`` is also set to 0. 1820 */ 1821 int bmap(struct inode *inode, sector_t *block) 1822 { 1823 if (!inode->i_mapping->a_ops->bmap) 1824 return -EINVAL; 1825 1826 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1827 return 0; 1828 } 1829 EXPORT_SYMBOL(bmap); 1830 #endif 1831 1832 /* 1833 * With relative atime, only update atime if the previous atime is 1834 * earlier than or equal to either the ctime or mtime, 1835 * or if at least a day has passed since the last atime update. 1836 */ 1837 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1838 struct timespec64 now) 1839 { 1840 struct timespec64 ctime; 1841 1842 if (!(mnt->mnt_flags & MNT_RELATIME)) 1843 return 1; 1844 /* 1845 * Is mtime younger than or equal to atime? If yes, update atime: 1846 */ 1847 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1848 return 1; 1849 /* 1850 * Is ctime younger than or equal to atime? If yes, update atime: 1851 */ 1852 ctime = inode_get_ctime(inode); 1853 if (timespec64_compare(&ctime, &inode->i_atime) >= 0) 1854 return 1; 1855 1856 /* 1857 * Is the previous atime value older than a day? If yes, 1858 * update atime: 1859 */ 1860 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1861 return 1; 1862 /* 1863 * Good, we can skip the atime update: 1864 */ 1865 return 0; 1866 } 1867 1868 /** 1869 * inode_update_timestamps - update the timestamps on the inode 1870 * @inode: inode to be updated 1871 * @flags: S_* flags that needed to be updated 1872 * 1873 * The update_time function is called when an inode's timestamps need to be 1874 * updated for a read or write operation. This function handles updating the 1875 * actual timestamps. It's up to the caller to ensure that the inode is marked 1876 * dirty appropriately. 1877 * 1878 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1879 * attempt to update all three of them. S_ATIME updates can be handled 1880 * independently of the rest. 1881 * 1882 * Returns a set of S_* flags indicating which values changed. 1883 */ 1884 int inode_update_timestamps(struct inode *inode, int flags) 1885 { 1886 int updated = 0; 1887 struct timespec64 now; 1888 1889 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1890 struct timespec64 ctime = inode_get_ctime(inode); 1891 1892 now = inode_set_ctime_current(inode); 1893 if (!timespec64_equal(&now, &ctime)) 1894 updated |= S_CTIME; 1895 if (!timespec64_equal(&now, &inode->i_mtime)) { 1896 inode->i_mtime = now; 1897 updated |= S_MTIME; 1898 } 1899 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1900 updated |= S_VERSION; 1901 } else { 1902 now = current_time(inode); 1903 } 1904 1905 if (flags & S_ATIME) { 1906 if (!timespec64_equal(&now, &inode->i_atime)) { 1907 inode->i_atime = now; 1908 updated |= S_ATIME; 1909 } 1910 } 1911 return updated; 1912 } 1913 EXPORT_SYMBOL(inode_update_timestamps); 1914 1915 /** 1916 * generic_update_time - update the timestamps on the inode 1917 * @inode: inode to be updated 1918 * @flags: S_* flags that needed to be updated 1919 * 1920 * The update_time function is called when an inode's timestamps need to be 1921 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1922 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1923 * updates can be handled done independently of the rest. 1924 * 1925 * Returns a S_* mask indicating which fields were updated. 1926 */ 1927 int generic_update_time(struct inode *inode, int flags) 1928 { 1929 int updated = inode_update_timestamps(inode, flags); 1930 int dirty_flags = 0; 1931 1932 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1933 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1934 if (updated & S_VERSION) 1935 dirty_flags |= I_DIRTY_SYNC; 1936 __mark_inode_dirty(inode, dirty_flags); 1937 return updated; 1938 } 1939 EXPORT_SYMBOL(generic_update_time); 1940 1941 /* 1942 * This does the actual work of updating an inodes time or version. Must have 1943 * had called mnt_want_write() before calling this. 1944 */ 1945 int inode_update_time(struct inode *inode, int flags) 1946 { 1947 if (inode->i_op->update_time) 1948 return inode->i_op->update_time(inode, flags); 1949 generic_update_time(inode, flags); 1950 return 0; 1951 } 1952 EXPORT_SYMBOL(inode_update_time); 1953 1954 /** 1955 * atime_needs_update - update the access time 1956 * @path: the &struct path to update 1957 * @inode: inode to update 1958 * 1959 * Update the accessed time on an inode and mark it for writeback. 1960 * This function automatically handles read only file systems and media, 1961 * as well as the "noatime" flag and inode specific "noatime" markers. 1962 */ 1963 bool atime_needs_update(const struct path *path, struct inode *inode) 1964 { 1965 struct vfsmount *mnt = path->mnt; 1966 struct timespec64 now; 1967 1968 if (inode->i_flags & S_NOATIME) 1969 return false; 1970 1971 /* Atime updates will likely cause i_uid and i_gid to be written 1972 * back improprely if their true value is unknown to the vfs. 1973 */ 1974 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1975 return false; 1976 1977 if (IS_NOATIME(inode)) 1978 return false; 1979 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1980 return false; 1981 1982 if (mnt->mnt_flags & MNT_NOATIME) 1983 return false; 1984 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1985 return false; 1986 1987 now = current_time(inode); 1988 1989 if (!relatime_need_update(mnt, inode, now)) 1990 return false; 1991 1992 if (timespec64_equal(&inode->i_atime, &now)) 1993 return false; 1994 1995 return true; 1996 } 1997 1998 void touch_atime(const struct path *path) 1999 { 2000 struct vfsmount *mnt = path->mnt; 2001 struct inode *inode = d_inode(path->dentry); 2002 2003 if (!atime_needs_update(path, inode)) 2004 return; 2005 2006 if (!sb_start_write_trylock(inode->i_sb)) 2007 return; 2008 2009 if (__mnt_want_write(mnt) != 0) 2010 goto skip_update; 2011 /* 2012 * File systems can error out when updating inodes if they need to 2013 * allocate new space to modify an inode (such is the case for 2014 * Btrfs), but since we touch atime while walking down the path we 2015 * really don't care if we failed to update the atime of the file, 2016 * so just ignore the return value. 2017 * We may also fail on filesystems that have the ability to make parts 2018 * of the fs read only, e.g. subvolumes in Btrfs. 2019 */ 2020 inode_update_time(inode, S_ATIME); 2021 __mnt_drop_write(mnt); 2022 skip_update: 2023 sb_end_write(inode->i_sb); 2024 } 2025 EXPORT_SYMBOL(touch_atime); 2026 2027 /* 2028 * Return mask of changes for notify_change() that need to be done as a 2029 * response to write or truncate. Return 0 if nothing has to be changed. 2030 * Negative value on error (change should be denied). 2031 */ 2032 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2033 struct dentry *dentry) 2034 { 2035 struct inode *inode = d_inode(dentry); 2036 int mask = 0; 2037 int ret; 2038 2039 if (IS_NOSEC(inode)) 2040 return 0; 2041 2042 mask = setattr_should_drop_suidgid(idmap, inode); 2043 ret = security_inode_need_killpriv(dentry); 2044 if (ret < 0) 2045 return ret; 2046 if (ret) 2047 mask |= ATTR_KILL_PRIV; 2048 return mask; 2049 } 2050 2051 static int __remove_privs(struct mnt_idmap *idmap, 2052 struct dentry *dentry, int kill) 2053 { 2054 struct iattr newattrs; 2055 2056 newattrs.ia_valid = ATTR_FORCE | kill; 2057 /* 2058 * Note we call this on write, so notify_change will not 2059 * encounter any conflicting delegations: 2060 */ 2061 return notify_change(idmap, dentry, &newattrs, NULL); 2062 } 2063 2064 static int __file_remove_privs(struct file *file, unsigned int flags) 2065 { 2066 struct dentry *dentry = file_dentry(file); 2067 struct inode *inode = file_inode(file); 2068 int error = 0; 2069 int kill; 2070 2071 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2072 return 0; 2073 2074 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2075 if (kill < 0) 2076 return kill; 2077 2078 if (kill) { 2079 if (flags & IOCB_NOWAIT) 2080 return -EAGAIN; 2081 2082 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2083 } 2084 2085 if (!error) 2086 inode_has_no_xattr(inode); 2087 return error; 2088 } 2089 2090 /** 2091 * file_remove_privs - remove special file privileges (suid, capabilities) 2092 * @file: file to remove privileges from 2093 * 2094 * When file is modified by a write or truncation ensure that special 2095 * file privileges are removed. 2096 * 2097 * Return: 0 on success, negative errno on failure. 2098 */ 2099 int file_remove_privs(struct file *file) 2100 { 2101 return __file_remove_privs(file, 0); 2102 } 2103 EXPORT_SYMBOL(file_remove_privs); 2104 2105 /** 2106 * current_mgtime - Return FS time (possibly fine-grained) 2107 * @inode: inode. 2108 * 2109 * Return the current time truncated to the time granularity supported by 2110 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2111 * as having been QUERIED, get a fine-grained timestamp. 2112 */ 2113 struct timespec64 current_mgtime(struct inode *inode) 2114 { 2115 struct timespec64 now, ctime; 2116 atomic_long_t *pnsec = (atomic_long_t *)&inode->__i_ctime.tv_nsec; 2117 long nsec = atomic_long_read(pnsec); 2118 2119 if (nsec & I_CTIME_QUERIED) { 2120 ktime_get_real_ts64(&now); 2121 return timestamp_truncate(now, inode); 2122 } 2123 2124 ktime_get_coarse_real_ts64(&now); 2125 now = timestamp_truncate(now, inode); 2126 2127 /* 2128 * If we've recently fetched a fine-grained timestamp 2129 * then the coarse-grained one may still be earlier than the 2130 * existing ctime. Just keep the existing value if so. 2131 */ 2132 ctime = inode_get_ctime(inode); 2133 if (timespec64_compare(&ctime, &now) > 0) 2134 now = ctime; 2135 2136 return now; 2137 } 2138 EXPORT_SYMBOL(current_mgtime); 2139 2140 static struct timespec64 current_ctime(struct inode *inode) 2141 { 2142 if (is_mgtime(inode)) 2143 return current_mgtime(inode); 2144 return current_time(inode); 2145 } 2146 2147 static int inode_needs_update_time(struct inode *inode) 2148 { 2149 int sync_it = 0; 2150 struct timespec64 now = current_ctime(inode); 2151 struct timespec64 ctime; 2152 2153 /* First try to exhaust all avenues to not sync */ 2154 if (IS_NOCMTIME(inode)) 2155 return 0; 2156 2157 if (!timespec64_equal(&inode->i_mtime, &now)) 2158 sync_it = S_MTIME; 2159 2160 ctime = inode_get_ctime(inode); 2161 if (!timespec64_equal(&ctime, &now)) 2162 sync_it |= S_CTIME; 2163 2164 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2165 sync_it |= S_VERSION; 2166 2167 return sync_it; 2168 } 2169 2170 static int __file_update_time(struct file *file, int sync_mode) 2171 { 2172 int ret = 0; 2173 struct inode *inode = file_inode(file); 2174 2175 /* try to update time settings */ 2176 if (!__mnt_want_write_file(file)) { 2177 ret = inode_update_time(inode, sync_mode); 2178 __mnt_drop_write_file(file); 2179 } 2180 2181 return ret; 2182 } 2183 2184 /** 2185 * file_update_time - update mtime and ctime time 2186 * @file: file accessed 2187 * 2188 * Update the mtime and ctime members of an inode and mark the inode for 2189 * writeback. Note that this function is meant exclusively for usage in 2190 * the file write path of filesystems, and filesystems may choose to 2191 * explicitly ignore updates via this function with the _NOCMTIME inode 2192 * flag, e.g. for network filesystem where these imestamps are handled 2193 * by the server. This can return an error for file systems who need to 2194 * allocate space in order to update an inode. 2195 * 2196 * Return: 0 on success, negative errno on failure. 2197 */ 2198 int file_update_time(struct file *file) 2199 { 2200 int ret; 2201 struct inode *inode = file_inode(file); 2202 2203 ret = inode_needs_update_time(inode); 2204 if (ret <= 0) 2205 return ret; 2206 2207 return __file_update_time(file, ret); 2208 } 2209 EXPORT_SYMBOL(file_update_time); 2210 2211 /** 2212 * file_modified_flags - handle mandated vfs changes when modifying a file 2213 * @file: file that was modified 2214 * @flags: kiocb flags 2215 * 2216 * When file has been modified ensure that special 2217 * file privileges are removed and time settings are updated. 2218 * 2219 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2220 * time settings will not be updated. It will return -EAGAIN. 2221 * 2222 * Context: Caller must hold the file's inode lock. 2223 * 2224 * Return: 0 on success, negative errno on failure. 2225 */ 2226 static int file_modified_flags(struct file *file, int flags) 2227 { 2228 int ret; 2229 struct inode *inode = file_inode(file); 2230 2231 /* 2232 * Clear the security bits if the process is not being run by root. 2233 * This keeps people from modifying setuid and setgid binaries. 2234 */ 2235 ret = __file_remove_privs(file, flags); 2236 if (ret) 2237 return ret; 2238 2239 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2240 return 0; 2241 2242 ret = inode_needs_update_time(inode); 2243 if (ret <= 0) 2244 return ret; 2245 if (flags & IOCB_NOWAIT) 2246 return -EAGAIN; 2247 2248 return __file_update_time(file, ret); 2249 } 2250 2251 /** 2252 * file_modified - handle mandated vfs changes when modifying a file 2253 * @file: file that was modified 2254 * 2255 * When file has been modified ensure that special 2256 * file privileges are removed and time settings are updated. 2257 * 2258 * Context: Caller must hold the file's inode lock. 2259 * 2260 * Return: 0 on success, negative errno on failure. 2261 */ 2262 int file_modified(struct file *file) 2263 { 2264 return file_modified_flags(file, 0); 2265 } 2266 EXPORT_SYMBOL(file_modified); 2267 2268 /** 2269 * kiocb_modified - handle mandated vfs changes when modifying a file 2270 * @iocb: iocb that was modified 2271 * 2272 * When file has been modified ensure that special 2273 * file privileges are removed and time settings are updated. 2274 * 2275 * Context: Caller must hold the file's inode lock. 2276 * 2277 * Return: 0 on success, negative errno on failure. 2278 */ 2279 int kiocb_modified(struct kiocb *iocb) 2280 { 2281 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2282 } 2283 EXPORT_SYMBOL_GPL(kiocb_modified); 2284 2285 int inode_needs_sync(struct inode *inode) 2286 { 2287 if (IS_SYNC(inode)) 2288 return 1; 2289 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2290 return 1; 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(inode_needs_sync); 2294 2295 /* 2296 * If we try to find an inode in the inode hash while it is being 2297 * deleted, we have to wait until the filesystem completes its 2298 * deletion before reporting that it isn't found. This function waits 2299 * until the deletion _might_ have completed. Callers are responsible 2300 * to recheck inode state. 2301 * 2302 * It doesn't matter if I_NEW is not set initially, a call to 2303 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2304 * will DTRT. 2305 */ 2306 static void __wait_on_freeing_inode(struct inode *inode) 2307 { 2308 wait_queue_head_t *wq; 2309 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2310 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2311 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2312 spin_unlock(&inode->i_lock); 2313 spin_unlock(&inode_hash_lock); 2314 schedule(); 2315 finish_wait(wq, &wait.wq_entry); 2316 spin_lock(&inode_hash_lock); 2317 } 2318 2319 static __initdata unsigned long ihash_entries; 2320 static int __init set_ihash_entries(char *str) 2321 { 2322 if (!str) 2323 return 0; 2324 ihash_entries = simple_strtoul(str, &str, 0); 2325 return 1; 2326 } 2327 __setup("ihash_entries=", set_ihash_entries); 2328 2329 /* 2330 * Initialize the waitqueues and inode hash table. 2331 */ 2332 void __init inode_init_early(void) 2333 { 2334 /* If hashes are distributed across NUMA nodes, defer 2335 * hash allocation until vmalloc space is available. 2336 */ 2337 if (hashdist) 2338 return; 2339 2340 inode_hashtable = 2341 alloc_large_system_hash("Inode-cache", 2342 sizeof(struct hlist_head), 2343 ihash_entries, 2344 14, 2345 HASH_EARLY | HASH_ZERO, 2346 &i_hash_shift, 2347 &i_hash_mask, 2348 0, 2349 0); 2350 } 2351 2352 void __init inode_init(void) 2353 { 2354 /* inode slab cache */ 2355 inode_cachep = kmem_cache_create("inode_cache", 2356 sizeof(struct inode), 2357 0, 2358 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2359 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2360 init_once); 2361 2362 /* Hash may have been set up in inode_init_early */ 2363 if (!hashdist) 2364 return; 2365 2366 inode_hashtable = 2367 alloc_large_system_hash("Inode-cache", 2368 sizeof(struct hlist_head), 2369 ihash_entries, 2370 14, 2371 HASH_ZERO, 2372 &i_hash_shift, 2373 &i_hash_mask, 2374 0, 2375 0); 2376 } 2377 2378 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2379 { 2380 inode->i_mode = mode; 2381 if (S_ISCHR(mode)) { 2382 inode->i_fop = &def_chr_fops; 2383 inode->i_rdev = rdev; 2384 } else if (S_ISBLK(mode)) { 2385 if (IS_ENABLED(CONFIG_BLOCK)) 2386 inode->i_fop = &def_blk_fops; 2387 inode->i_rdev = rdev; 2388 } else if (S_ISFIFO(mode)) 2389 inode->i_fop = &pipefifo_fops; 2390 else if (S_ISSOCK(mode)) 2391 ; /* leave it no_open_fops */ 2392 else 2393 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2394 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2395 inode->i_ino); 2396 } 2397 EXPORT_SYMBOL(init_special_inode); 2398 2399 /** 2400 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2401 * @idmap: idmap of the mount the inode was created from 2402 * @inode: New inode 2403 * @dir: Directory inode 2404 * @mode: mode of the new inode 2405 * 2406 * If the inode has been created through an idmapped mount the idmap of 2407 * the vfsmount must be passed through @idmap. This function will then take 2408 * care to map the inode according to @idmap before checking permissions 2409 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2410 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2411 */ 2412 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2413 const struct inode *dir, umode_t mode) 2414 { 2415 inode_fsuid_set(inode, idmap); 2416 if (dir && dir->i_mode & S_ISGID) { 2417 inode->i_gid = dir->i_gid; 2418 2419 /* Directories are special, and always inherit S_ISGID */ 2420 if (S_ISDIR(mode)) 2421 mode |= S_ISGID; 2422 } else 2423 inode_fsgid_set(inode, idmap); 2424 inode->i_mode = mode; 2425 } 2426 EXPORT_SYMBOL(inode_init_owner); 2427 2428 /** 2429 * inode_owner_or_capable - check current task permissions to inode 2430 * @idmap: idmap of the mount the inode was found from 2431 * @inode: inode being checked 2432 * 2433 * Return true if current either has CAP_FOWNER in a namespace with the 2434 * inode owner uid mapped, or owns the file. 2435 * 2436 * If the inode has been found through an idmapped mount the idmap of 2437 * the vfsmount must be passed through @idmap. This function will then take 2438 * care to map the inode according to @idmap before checking permissions. 2439 * On non-idmapped mounts or if permission checking is to be performed on the 2440 * raw inode simply passs @nop_mnt_idmap. 2441 */ 2442 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2443 const struct inode *inode) 2444 { 2445 vfsuid_t vfsuid; 2446 struct user_namespace *ns; 2447 2448 vfsuid = i_uid_into_vfsuid(idmap, inode); 2449 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2450 return true; 2451 2452 ns = current_user_ns(); 2453 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2454 return true; 2455 return false; 2456 } 2457 EXPORT_SYMBOL(inode_owner_or_capable); 2458 2459 /* 2460 * Direct i/o helper functions 2461 */ 2462 static void __inode_dio_wait(struct inode *inode) 2463 { 2464 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2465 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2466 2467 do { 2468 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2469 if (atomic_read(&inode->i_dio_count)) 2470 schedule(); 2471 } while (atomic_read(&inode->i_dio_count)); 2472 finish_wait(wq, &q.wq_entry); 2473 } 2474 2475 /** 2476 * inode_dio_wait - wait for outstanding DIO requests to finish 2477 * @inode: inode to wait for 2478 * 2479 * Waits for all pending direct I/O requests to finish so that we can 2480 * proceed with a truncate or equivalent operation. 2481 * 2482 * Must be called under a lock that serializes taking new references 2483 * to i_dio_count, usually by inode->i_mutex. 2484 */ 2485 void inode_dio_wait(struct inode *inode) 2486 { 2487 if (atomic_read(&inode->i_dio_count)) 2488 __inode_dio_wait(inode); 2489 } 2490 EXPORT_SYMBOL(inode_dio_wait); 2491 2492 /* 2493 * inode_set_flags - atomically set some inode flags 2494 * 2495 * Note: the caller should be holding i_mutex, or else be sure that 2496 * they have exclusive access to the inode structure (i.e., while the 2497 * inode is being instantiated). The reason for the cmpxchg() loop 2498 * --- which wouldn't be necessary if all code paths which modify 2499 * i_flags actually followed this rule, is that there is at least one 2500 * code path which doesn't today so we use cmpxchg() out of an abundance 2501 * of caution. 2502 * 2503 * In the long run, i_mutex is overkill, and we should probably look 2504 * at using the i_lock spinlock to protect i_flags, and then make sure 2505 * it is so documented in include/linux/fs.h and that all code follows 2506 * the locking convention!! 2507 */ 2508 void inode_set_flags(struct inode *inode, unsigned int flags, 2509 unsigned int mask) 2510 { 2511 WARN_ON_ONCE(flags & ~mask); 2512 set_mask_bits(&inode->i_flags, mask, flags); 2513 } 2514 EXPORT_SYMBOL(inode_set_flags); 2515 2516 void inode_nohighmem(struct inode *inode) 2517 { 2518 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2519 } 2520 EXPORT_SYMBOL(inode_nohighmem); 2521 2522 /** 2523 * timestamp_truncate - Truncate timespec to a granularity 2524 * @t: Timespec 2525 * @inode: inode being updated 2526 * 2527 * Truncate a timespec to the granularity supported by the fs 2528 * containing the inode. Always rounds down. gran must 2529 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2530 */ 2531 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2532 { 2533 struct super_block *sb = inode->i_sb; 2534 unsigned int gran = sb->s_time_gran; 2535 2536 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2537 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2538 t.tv_nsec = 0; 2539 2540 /* Avoid division in the common cases 1 ns and 1 s. */ 2541 if (gran == 1) 2542 ; /* nothing */ 2543 else if (gran == NSEC_PER_SEC) 2544 t.tv_nsec = 0; 2545 else if (gran > 1 && gran < NSEC_PER_SEC) 2546 t.tv_nsec -= t.tv_nsec % gran; 2547 else 2548 WARN(1, "invalid file time granularity: %u", gran); 2549 return t; 2550 } 2551 EXPORT_SYMBOL(timestamp_truncate); 2552 2553 /** 2554 * current_time - Return FS time 2555 * @inode: inode. 2556 * 2557 * Return the current time truncated to the time granularity supported by 2558 * the fs. 2559 * 2560 * Note that inode and inode->sb cannot be NULL. 2561 * Otherwise, the function warns and returns time without truncation. 2562 */ 2563 struct timespec64 current_time(struct inode *inode) 2564 { 2565 struct timespec64 now; 2566 2567 ktime_get_coarse_real_ts64(&now); 2568 return timestamp_truncate(now, inode); 2569 } 2570 EXPORT_SYMBOL(current_time); 2571 2572 /** 2573 * inode_set_ctime_current - set the ctime to current_time 2574 * @inode: inode 2575 * 2576 * Set the inode->i_ctime to the current value for the inode. Returns 2577 * the current value that was assigned to i_ctime. 2578 */ 2579 struct timespec64 inode_set_ctime_current(struct inode *inode) 2580 { 2581 struct timespec64 now; 2582 struct timespec64 ctime; 2583 2584 ctime.tv_nsec = READ_ONCE(inode->__i_ctime.tv_nsec); 2585 if (!(ctime.tv_nsec & I_CTIME_QUERIED)) { 2586 now = current_time(inode); 2587 2588 /* Just copy it into place if it's not multigrain */ 2589 if (!is_mgtime(inode)) { 2590 inode_set_ctime_to_ts(inode, now); 2591 return now; 2592 } 2593 2594 /* 2595 * If we've recently updated with a fine-grained timestamp, 2596 * then the coarse-grained one may still be earlier than the 2597 * existing ctime. Just keep the existing value if so. 2598 */ 2599 ctime.tv_sec = inode->__i_ctime.tv_sec; 2600 if (timespec64_compare(&ctime, &now) > 0) 2601 return ctime; 2602 2603 /* 2604 * Ctime updates are usually protected by the inode_lock, but 2605 * we can still race with someone setting the QUERIED flag. 2606 * Try to swap the new nsec value into place. If it's changed 2607 * in the interim, then just go with a fine-grained timestamp. 2608 */ 2609 if (cmpxchg(&inode->__i_ctime.tv_nsec, ctime.tv_nsec, 2610 now.tv_nsec) != ctime.tv_nsec) 2611 goto fine_grained; 2612 inode->__i_ctime.tv_sec = now.tv_sec; 2613 return now; 2614 } 2615 fine_grained: 2616 ktime_get_real_ts64(&now); 2617 inode_set_ctime_to_ts(inode, timestamp_truncate(now, inode)); 2618 return now; 2619 } 2620 EXPORT_SYMBOL(inode_set_ctime_current); 2621 2622 /** 2623 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2624 * @idmap: idmap of the mount @inode was found from 2625 * @inode: inode to check 2626 * @vfsgid: the new/current vfsgid of @inode 2627 * 2628 * Check wether @vfsgid is in the caller's group list or if the caller is 2629 * privileged with CAP_FSETID over @inode. This can be used to determine 2630 * whether the setgid bit can be kept or must be dropped. 2631 * 2632 * Return: true if the caller is sufficiently privileged, false if not. 2633 */ 2634 bool in_group_or_capable(struct mnt_idmap *idmap, 2635 const struct inode *inode, vfsgid_t vfsgid) 2636 { 2637 if (vfsgid_in_group_p(vfsgid)) 2638 return true; 2639 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2640 return true; 2641 return false; 2642 } 2643 2644 /** 2645 * mode_strip_sgid - handle the sgid bit for non-directories 2646 * @idmap: idmap of the mount the inode was created from 2647 * @dir: parent directory inode 2648 * @mode: mode of the file to be created in @dir 2649 * 2650 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2651 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2652 * either in the group of the parent directory or they have CAP_FSETID 2653 * in their user namespace and are privileged over the parent directory. 2654 * In all other cases, strip the S_ISGID bit from @mode. 2655 * 2656 * Return: the new mode to use for the file 2657 */ 2658 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2659 const struct inode *dir, umode_t mode) 2660 { 2661 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2662 return mode; 2663 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2664 return mode; 2665 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2666 return mode; 2667 return mode & ~S_ISGID; 2668 } 2669 EXPORT_SYMBOL(mode_strip_sgid); 2670