1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <linux/seq_file.h> 25 #include <linux/debugfs.h> 26 #include <trace/events/writeback.h> 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/timestamp.h> 29 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 37 * Inode LRU list locks protect: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode->i_sb->s_inode_list_lock protects: 40 * inode->i_sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * Inode LRU list locks 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode->i_sb->s_inode_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __ro_after_init; 64 static unsigned int i_hash_shift __ro_after_init; 65 static struct hlist_head *inode_hashtable __ro_after_init; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 /* 69 * Empty aops. Can be used for the cases where the user does not 70 * define any of the address_space operations. 71 */ 72 const struct address_space_operations empty_aops = { 73 }; 74 EXPORT_SYMBOL(empty_aops); 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __ro_after_init; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 #ifdef CONFIG_DEBUG_FS 107 static DEFINE_PER_CPU(long, mg_ctime_updates); 108 static DEFINE_PER_CPU(long, mg_fine_stamps); 109 static DEFINE_PER_CPU(long, mg_ctime_swaps); 110 111 static unsigned long get_mg_ctime_updates(void) 112 { 113 unsigned long sum = 0; 114 int i; 115 116 for_each_possible_cpu(i) 117 sum += data_race(per_cpu(mg_ctime_updates, i)); 118 return sum; 119 } 120 121 static unsigned long get_mg_fine_stamps(void) 122 { 123 unsigned long sum = 0; 124 int i; 125 126 for_each_possible_cpu(i) 127 sum += data_race(per_cpu(mg_fine_stamps, i)); 128 return sum; 129 } 130 131 static unsigned long get_mg_ctime_swaps(void) 132 { 133 unsigned long sum = 0; 134 int i; 135 136 for_each_possible_cpu(i) 137 sum += data_race(per_cpu(mg_ctime_swaps, i)); 138 return sum; 139 } 140 141 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 142 143 static int mgts_show(struct seq_file *s, void *p) 144 { 145 unsigned long ctime_updates = get_mg_ctime_updates(); 146 unsigned long ctime_swaps = get_mg_ctime_swaps(); 147 unsigned long fine_stamps = get_mg_fine_stamps(); 148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 149 150 seq_printf(s, "%lu %lu %lu %lu\n", 151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 152 return 0; 153 } 154 155 DEFINE_SHOW_ATTRIBUTE(mgts); 156 157 static int __init mg_debugfs_init(void) 158 { 159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 160 return 0; 161 } 162 late_initcall(mg_debugfs_init); 163 164 #else /* ! CONFIG_DEBUG_FS */ 165 166 #define mgtime_counter_inc(__var) do { } while (0) 167 168 #endif /* CONFIG_DEBUG_FS */ 169 170 /* 171 * Handle nr_inode sysctl 172 */ 173 #ifdef CONFIG_SYSCTL 174 /* 175 * Statistics gathering.. 176 */ 177 static struct inodes_stat_t inodes_stat; 178 179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 180 size_t *lenp, loff_t *ppos) 181 { 182 inodes_stat.nr_inodes = get_nr_inodes(); 183 inodes_stat.nr_unused = get_nr_inodes_unused(); 184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 185 } 186 187 static const struct ctl_table inodes_sysctls[] = { 188 { 189 .procname = "inode-nr", 190 .data = &inodes_stat, 191 .maxlen = 2*sizeof(long), 192 .mode = 0444, 193 .proc_handler = proc_nr_inodes, 194 }, 195 { 196 .procname = "inode-state", 197 .data = &inodes_stat, 198 .maxlen = 7*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_inodes, 201 }, 202 }; 203 204 static int __init init_fs_inode_sysctls(void) 205 { 206 register_sysctl_init("fs", inodes_sysctls); 207 return 0; 208 } 209 early_initcall(init_fs_inode_sysctls); 210 #endif 211 212 static int no_open(struct inode *inode, struct file *file) 213 { 214 return -ENXIO; 215 } 216 217 /** 218 * inode_init_always_gfp - perform inode structure initialisation 219 * @sb: superblock inode belongs to 220 * @inode: inode to initialise 221 * @gfp: allocation flags 222 * 223 * These are initializations that need to be done on every inode 224 * allocation as the fields are not initialised by slab allocation. 225 * If there are additional allocations required @gfp is used. 226 */ 227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 228 { 229 static const struct inode_operations empty_iops; 230 static const struct file_operations no_open_fops = {.open = no_open}; 231 struct address_space *const mapping = &inode->i_data; 232 233 inode->i_sb = sb; 234 inode->i_blkbits = sb->s_blocksize_bits; 235 inode->i_flags = 0; 236 inode->i_state = 0; 237 atomic64_set(&inode->i_sequence, 0); 238 atomic_set(&inode->i_count, 1); 239 inode->i_op = &empty_iops; 240 inode->i_fop = &no_open_fops; 241 inode->i_ino = 0; 242 inode->__i_nlink = 1; 243 inode->i_opflags = 0; 244 if (sb->s_xattr) 245 inode->i_opflags |= IOP_XATTR; 246 if (sb->s_type->fs_flags & FS_MGTIME) 247 inode->i_opflags |= IOP_MGTIME; 248 i_uid_write(inode, 0); 249 i_gid_write(inode, 0); 250 atomic_set(&inode->i_writecount, 0); 251 inode->i_size = 0; 252 inode->i_write_hint = WRITE_LIFE_NOT_SET; 253 inode->i_blocks = 0; 254 inode->i_bytes = 0; 255 inode->i_generation = 0; 256 inode->i_pipe = NULL; 257 inode->i_cdev = NULL; 258 inode->i_link = NULL; 259 inode->i_dir_seq = 0; 260 inode->i_rdev = 0; 261 inode->dirtied_when = 0; 262 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 inode->i_wb_frn_winner = 0; 265 inode->i_wb_frn_avg_time = 0; 266 inode->i_wb_frn_history = 0; 267 #endif 268 269 spin_lock_init(&inode->i_lock); 270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 271 272 init_rwsem(&inode->i_rwsem); 273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 274 275 atomic_set(&inode->i_dio_count, 0); 276 277 mapping->a_ops = &empty_aops; 278 mapping->host = inode; 279 mapping->flags = 0; 280 mapping->wb_err = 0; 281 atomic_set(&mapping->i_mmap_writable, 0); 282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 283 atomic_set(&mapping->nr_thps, 0); 284 #endif 285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 286 mapping->i_private_data = NULL; 287 mapping->writeback_index = 0; 288 init_rwsem(&mapping->invalidate_lock); 289 lockdep_set_class_and_name(&mapping->invalidate_lock, 290 &sb->s_type->invalidate_lock_key, 291 "mapping.invalidate_lock"); 292 if (sb->s_iflags & SB_I_STABLE_WRITES) 293 mapping_set_stable_writes(mapping); 294 inode->i_private = NULL; 295 inode->i_mapping = mapping; 296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 297 #ifdef CONFIG_FS_POSIX_ACL 298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 299 #endif 300 301 #ifdef CONFIG_FSNOTIFY 302 inode->i_fsnotify_mask = 0; 303 #endif 304 inode->i_flctx = NULL; 305 306 if (unlikely(security_inode_alloc(inode, gfp))) 307 return -ENOMEM; 308 309 this_cpu_inc(nr_inodes); 310 311 return 0; 312 } 313 EXPORT_SYMBOL(inode_init_always_gfp); 314 315 void free_inode_nonrcu(struct inode *inode) 316 { 317 kmem_cache_free(inode_cachep, inode); 318 } 319 EXPORT_SYMBOL(free_inode_nonrcu); 320 321 static void i_callback(struct rcu_head *head) 322 { 323 struct inode *inode = container_of(head, struct inode, i_rcu); 324 if (inode->free_inode) 325 inode->free_inode(inode); 326 else 327 free_inode_nonrcu(inode); 328 } 329 330 /** 331 * alloc_inode - obtain an inode 332 * @sb: superblock 333 * 334 * Allocates a new inode for given superblock. 335 * Inode wont be chained in superblock s_inodes list 336 * This means : 337 * - fs can't be unmount 338 * - quotas, fsnotify, writeback can't work 339 */ 340 struct inode *alloc_inode(struct super_block *sb) 341 { 342 const struct super_operations *ops = sb->s_op; 343 struct inode *inode; 344 345 if (ops->alloc_inode) 346 inode = ops->alloc_inode(sb); 347 else 348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 349 350 if (!inode) 351 return NULL; 352 353 if (unlikely(inode_init_always(sb, inode))) { 354 if (ops->destroy_inode) { 355 ops->destroy_inode(inode); 356 if (!ops->free_inode) 357 return NULL; 358 } 359 inode->free_inode = ops->free_inode; 360 i_callback(&inode->i_rcu); 361 return NULL; 362 } 363 364 return inode; 365 } 366 367 void __destroy_inode(struct inode *inode) 368 { 369 BUG_ON(inode_has_buffers(inode)); 370 inode_detach_wb(inode); 371 security_inode_free(inode); 372 fsnotify_inode_delete(inode); 373 locks_free_lock_context(inode); 374 if (!inode->i_nlink) { 375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 376 atomic_long_dec(&inode->i_sb->s_remove_count); 377 } 378 379 #ifdef CONFIG_FS_POSIX_ACL 380 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 381 posix_acl_release(inode->i_acl); 382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 383 posix_acl_release(inode->i_default_acl); 384 #endif 385 this_cpu_dec(nr_inodes); 386 } 387 EXPORT_SYMBOL(__destroy_inode); 388 389 static void destroy_inode(struct inode *inode) 390 { 391 const struct super_operations *ops = inode->i_sb->s_op; 392 393 BUG_ON(!list_empty(&inode->i_lru)); 394 __destroy_inode(inode); 395 if (ops->destroy_inode) { 396 ops->destroy_inode(inode); 397 if (!ops->free_inode) 398 return; 399 } 400 inode->free_inode = ops->free_inode; 401 call_rcu(&inode->i_rcu, i_callback); 402 } 403 404 /** 405 * drop_nlink - directly drop an inode's link count 406 * @inode: inode 407 * 408 * This is a low-level filesystem helper to replace any 409 * direct filesystem manipulation of i_nlink. In cases 410 * where we are attempting to track writes to the 411 * filesystem, a decrement to zero means an imminent 412 * write when the file is truncated and actually unlinked 413 * on the filesystem. 414 */ 415 void drop_nlink(struct inode *inode) 416 { 417 WARN_ON(inode->i_nlink == 0); 418 inode->__i_nlink--; 419 if (!inode->i_nlink) 420 atomic_long_inc(&inode->i_sb->s_remove_count); 421 } 422 EXPORT_SYMBOL(drop_nlink); 423 424 /** 425 * clear_nlink - directly zero an inode's link count 426 * @inode: inode 427 * 428 * This is a low-level filesystem helper to replace any 429 * direct filesystem manipulation of i_nlink. See 430 * drop_nlink() for why we care about i_nlink hitting zero. 431 */ 432 void clear_nlink(struct inode *inode) 433 { 434 if (inode->i_nlink) { 435 inode->__i_nlink = 0; 436 atomic_long_inc(&inode->i_sb->s_remove_count); 437 } 438 } 439 EXPORT_SYMBOL(clear_nlink); 440 441 /** 442 * set_nlink - directly set an inode's link count 443 * @inode: inode 444 * @nlink: new nlink (should be non-zero) 445 * 446 * This is a low-level filesystem helper to replace any 447 * direct filesystem manipulation of i_nlink. 448 */ 449 void set_nlink(struct inode *inode, unsigned int nlink) 450 { 451 if (!nlink) { 452 clear_nlink(inode); 453 } else { 454 /* Yes, some filesystems do change nlink from zero to one */ 455 if (inode->i_nlink == 0) 456 atomic_long_dec(&inode->i_sb->s_remove_count); 457 458 inode->__i_nlink = nlink; 459 } 460 } 461 EXPORT_SYMBOL(set_nlink); 462 463 /** 464 * inc_nlink - directly increment an inode's link count 465 * @inode: inode 466 * 467 * This is a low-level filesystem helper to replace any 468 * direct filesystem manipulation of i_nlink. Currently, 469 * it is only here for parity with dec_nlink(). 470 */ 471 void inc_nlink(struct inode *inode) 472 { 473 if (unlikely(inode->i_nlink == 0)) { 474 WARN_ON(!(inode->i_state & I_LINKABLE)); 475 atomic_long_dec(&inode->i_sb->s_remove_count); 476 } 477 478 inode->__i_nlink++; 479 } 480 EXPORT_SYMBOL(inc_nlink); 481 482 static void __address_space_init_once(struct address_space *mapping) 483 { 484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 485 init_rwsem(&mapping->i_mmap_rwsem); 486 INIT_LIST_HEAD(&mapping->i_private_list); 487 spin_lock_init(&mapping->i_private_lock); 488 mapping->i_mmap = RB_ROOT_CACHED; 489 } 490 491 void address_space_init_once(struct address_space *mapping) 492 { 493 memset(mapping, 0, sizeof(*mapping)); 494 __address_space_init_once(mapping); 495 } 496 EXPORT_SYMBOL(address_space_init_once); 497 498 /* 499 * These are initializations that only need to be done 500 * once, because the fields are idempotent across use 501 * of the inode, so let the slab aware of that. 502 */ 503 void inode_init_once(struct inode *inode) 504 { 505 memset(inode, 0, sizeof(*inode)); 506 INIT_HLIST_NODE(&inode->i_hash); 507 INIT_LIST_HEAD(&inode->i_devices); 508 INIT_LIST_HEAD(&inode->i_io_list); 509 INIT_LIST_HEAD(&inode->i_wb_list); 510 INIT_LIST_HEAD(&inode->i_lru); 511 INIT_LIST_HEAD(&inode->i_sb_list); 512 __address_space_init_once(&inode->i_data); 513 i_size_ordered_init(inode); 514 } 515 EXPORT_SYMBOL(inode_init_once); 516 517 static void init_once(void *foo) 518 { 519 struct inode *inode = (struct inode *) foo; 520 521 inode_init_once(inode); 522 } 523 524 /* 525 * get additional reference to inode; caller must already hold one. 526 */ 527 void ihold(struct inode *inode) 528 { 529 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 530 } 531 EXPORT_SYMBOL(ihold); 532 533 static void __inode_add_lru(struct inode *inode, bool rotate) 534 { 535 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 536 return; 537 if (atomic_read(&inode->i_count)) 538 return; 539 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 540 return; 541 if (!mapping_shrinkable(&inode->i_data)) 542 return; 543 544 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 545 this_cpu_inc(nr_unused); 546 else if (rotate) 547 inode->i_state |= I_REFERENCED; 548 } 549 550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 551 struct inode *inode, u32 bit) 552 { 553 void *bit_address; 554 555 bit_address = inode_state_wait_address(inode, bit); 556 init_wait_var_entry(wqe, bit_address, 0); 557 return __var_waitqueue(bit_address); 558 } 559 EXPORT_SYMBOL(inode_bit_waitqueue); 560 561 /* 562 * Add inode to LRU if needed (inode is unused and clean). 563 * 564 * Needs inode->i_lock held. 565 */ 566 void inode_add_lru(struct inode *inode) 567 { 568 __inode_add_lru(inode, false); 569 } 570 571 static void inode_lru_list_del(struct inode *inode) 572 { 573 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 574 this_cpu_dec(nr_unused); 575 } 576 577 static void inode_pin_lru_isolating(struct inode *inode) 578 { 579 lockdep_assert_held(&inode->i_lock); 580 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 581 inode->i_state |= I_LRU_ISOLATING; 582 } 583 584 static void inode_unpin_lru_isolating(struct inode *inode) 585 { 586 spin_lock(&inode->i_lock); 587 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 588 inode->i_state &= ~I_LRU_ISOLATING; 589 /* Called with inode->i_lock which ensures memory ordering. */ 590 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 591 spin_unlock(&inode->i_lock); 592 } 593 594 static void inode_wait_for_lru_isolating(struct inode *inode) 595 { 596 struct wait_bit_queue_entry wqe; 597 struct wait_queue_head *wq_head; 598 599 lockdep_assert_held(&inode->i_lock); 600 if (!(inode->i_state & I_LRU_ISOLATING)) 601 return; 602 603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 604 for (;;) { 605 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 606 /* 607 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 608 * memory ordering. 609 */ 610 if (!(inode->i_state & I_LRU_ISOLATING)) 611 break; 612 spin_unlock(&inode->i_lock); 613 schedule(); 614 spin_lock(&inode->i_lock); 615 } 616 finish_wait(wq_head, &wqe.wq_entry); 617 WARN_ON(inode->i_state & I_LRU_ISOLATING); 618 } 619 620 /** 621 * inode_sb_list_add - add inode to the superblock list of inodes 622 * @inode: inode to add 623 */ 624 void inode_sb_list_add(struct inode *inode) 625 { 626 struct super_block *sb = inode->i_sb; 627 628 spin_lock(&sb->s_inode_list_lock); 629 list_add(&inode->i_sb_list, &sb->s_inodes); 630 spin_unlock(&sb->s_inode_list_lock); 631 } 632 EXPORT_SYMBOL_GPL(inode_sb_list_add); 633 634 static inline void inode_sb_list_del(struct inode *inode) 635 { 636 struct super_block *sb = inode->i_sb; 637 638 if (!list_empty(&inode->i_sb_list)) { 639 spin_lock(&sb->s_inode_list_lock); 640 list_del_init(&inode->i_sb_list); 641 spin_unlock(&sb->s_inode_list_lock); 642 } 643 } 644 645 static unsigned long hash(struct super_block *sb, unsigned long hashval) 646 { 647 unsigned long tmp; 648 649 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 650 L1_CACHE_BYTES; 651 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 652 return tmp & i_hash_mask; 653 } 654 655 /** 656 * __insert_inode_hash - hash an inode 657 * @inode: unhashed inode 658 * @hashval: unsigned long value used to locate this object in the 659 * inode_hashtable. 660 * 661 * Add an inode to the inode hash for this superblock. 662 */ 663 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 664 { 665 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 666 667 spin_lock(&inode_hash_lock); 668 spin_lock(&inode->i_lock); 669 hlist_add_head_rcu(&inode->i_hash, b); 670 spin_unlock(&inode->i_lock); 671 spin_unlock(&inode_hash_lock); 672 } 673 EXPORT_SYMBOL(__insert_inode_hash); 674 675 /** 676 * __remove_inode_hash - remove an inode from the hash 677 * @inode: inode to unhash 678 * 679 * Remove an inode from the superblock. 680 */ 681 void __remove_inode_hash(struct inode *inode) 682 { 683 spin_lock(&inode_hash_lock); 684 spin_lock(&inode->i_lock); 685 hlist_del_init_rcu(&inode->i_hash); 686 spin_unlock(&inode->i_lock); 687 spin_unlock(&inode_hash_lock); 688 } 689 EXPORT_SYMBOL(__remove_inode_hash); 690 691 void dump_mapping(const struct address_space *mapping) 692 { 693 struct inode *host; 694 const struct address_space_operations *a_ops; 695 struct hlist_node *dentry_first; 696 struct dentry *dentry_ptr; 697 struct dentry dentry; 698 char fname[64] = {}; 699 unsigned long ino; 700 701 /* 702 * If mapping is an invalid pointer, we don't want to crash 703 * accessing it, so probe everything depending on it carefully. 704 */ 705 if (get_kernel_nofault(host, &mapping->host) || 706 get_kernel_nofault(a_ops, &mapping->a_ops)) { 707 pr_warn("invalid mapping:%px\n", mapping); 708 return; 709 } 710 711 if (!host) { 712 pr_warn("aops:%ps\n", a_ops); 713 return; 714 } 715 716 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 717 get_kernel_nofault(ino, &host->i_ino)) { 718 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 719 return; 720 } 721 722 if (!dentry_first) { 723 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 724 return; 725 } 726 727 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 728 if (get_kernel_nofault(dentry, dentry_ptr) || 729 !dentry.d_parent || !dentry.d_name.name) { 730 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 731 a_ops, ino, dentry_ptr); 732 return; 733 } 734 735 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 736 strscpy(fname, "<invalid>"); 737 /* 738 * Even if strncpy_from_kernel_nofault() succeeded, 739 * the fname could be unreliable 740 */ 741 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 742 a_ops, ino, fname); 743 } 744 745 void clear_inode(struct inode *inode) 746 { 747 /* 748 * We have to cycle the i_pages lock here because reclaim can be in the 749 * process of removing the last page (in __filemap_remove_folio()) 750 * and we must not free the mapping under it. 751 */ 752 xa_lock_irq(&inode->i_data.i_pages); 753 BUG_ON(inode->i_data.nrpages); 754 /* 755 * Almost always, mapping_empty(&inode->i_data) here; but there are 756 * two known and long-standing ways in which nodes may get left behind 757 * (when deep radix-tree node allocation failed partway; or when THP 758 * collapse_file() failed). Until those two known cases are cleaned up, 759 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 760 * nor even WARN_ON(!mapping_empty). 761 */ 762 xa_unlock_irq(&inode->i_data.i_pages); 763 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 764 BUG_ON(!(inode->i_state & I_FREEING)); 765 BUG_ON(inode->i_state & I_CLEAR); 766 BUG_ON(!list_empty(&inode->i_wb_list)); 767 /* don't need i_lock here, no concurrent mods to i_state */ 768 inode->i_state = I_FREEING | I_CLEAR; 769 } 770 EXPORT_SYMBOL(clear_inode); 771 772 /* 773 * Free the inode passed in, removing it from the lists it is still connected 774 * to. We remove any pages still attached to the inode and wait for any IO that 775 * is still in progress before finally destroying the inode. 776 * 777 * An inode must already be marked I_FREEING so that we avoid the inode being 778 * moved back onto lists if we race with other code that manipulates the lists 779 * (e.g. writeback_single_inode). The caller is responsible for setting this. 780 * 781 * An inode must already be removed from the LRU list before being evicted from 782 * the cache. This should occur atomically with setting the I_FREEING state 783 * flag, so no inodes here should ever be on the LRU when being evicted. 784 */ 785 static void evict(struct inode *inode) 786 { 787 const struct super_operations *op = inode->i_sb->s_op; 788 789 BUG_ON(!(inode->i_state & I_FREEING)); 790 BUG_ON(!list_empty(&inode->i_lru)); 791 792 if (!list_empty(&inode->i_io_list)) 793 inode_io_list_del(inode); 794 795 inode_sb_list_del(inode); 796 797 spin_lock(&inode->i_lock); 798 inode_wait_for_lru_isolating(inode); 799 800 /* 801 * Wait for flusher thread to be done with the inode so that filesystem 802 * does not start destroying it while writeback is still running. Since 803 * the inode has I_FREEING set, flusher thread won't start new work on 804 * the inode. We just have to wait for running writeback to finish. 805 */ 806 inode_wait_for_writeback(inode); 807 spin_unlock(&inode->i_lock); 808 809 if (op->evict_inode) { 810 op->evict_inode(inode); 811 } else { 812 truncate_inode_pages_final(&inode->i_data); 813 clear_inode(inode); 814 } 815 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 816 cd_forget(inode); 817 818 remove_inode_hash(inode); 819 820 /* 821 * Wake up waiters in __wait_on_freeing_inode(). 822 * 823 * It is an invariant that any thread we need to wake up is already 824 * accounted for before remove_inode_hash() acquires ->i_lock -- both 825 * sides take the lock and sleep is aborted if the inode is found 826 * unhashed. Thus either the sleeper wins and goes off CPU, or removal 827 * wins and the sleeper aborts after testing with the lock. 828 * 829 * This also means we don't need any fences for the call below. 830 */ 831 inode_wake_up_bit(inode, __I_NEW); 832 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 833 834 destroy_inode(inode); 835 } 836 837 /* 838 * dispose_list - dispose of the contents of a local list 839 * @head: the head of the list to free 840 * 841 * Dispose-list gets a local list with local inodes in it, so it doesn't 842 * need to worry about list corruption and SMP locks. 843 */ 844 static void dispose_list(struct list_head *head) 845 { 846 while (!list_empty(head)) { 847 struct inode *inode; 848 849 inode = list_first_entry(head, struct inode, i_lru); 850 list_del_init(&inode->i_lru); 851 852 evict(inode); 853 cond_resched(); 854 } 855 } 856 857 /** 858 * evict_inodes - evict all evictable inodes for a superblock 859 * @sb: superblock to operate on 860 * 861 * Make sure that no inodes with zero refcount are retained. This is 862 * called by superblock shutdown after having SB_ACTIVE flag removed, 863 * so any inode reaching zero refcount during or after that call will 864 * be immediately evicted. 865 */ 866 void evict_inodes(struct super_block *sb) 867 { 868 struct inode *inode, *next; 869 LIST_HEAD(dispose); 870 871 again: 872 spin_lock(&sb->s_inode_list_lock); 873 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 874 if (atomic_read(&inode->i_count)) 875 continue; 876 877 spin_lock(&inode->i_lock); 878 if (atomic_read(&inode->i_count)) { 879 spin_unlock(&inode->i_lock); 880 continue; 881 } 882 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 883 spin_unlock(&inode->i_lock); 884 continue; 885 } 886 887 inode->i_state |= I_FREEING; 888 inode_lru_list_del(inode); 889 spin_unlock(&inode->i_lock); 890 list_add(&inode->i_lru, &dispose); 891 892 /* 893 * We can have a ton of inodes to evict at unmount time given 894 * enough memory, check to see if we need to go to sleep for a 895 * bit so we don't livelock. 896 */ 897 if (need_resched()) { 898 spin_unlock(&sb->s_inode_list_lock); 899 cond_resched(); 900 dispose_list(&dispose); 901 goto again; 902 } 903 } 904 spin_unlock(&sb->s_inode_list_lock); 905 906 dispose_list(&dispose); 907 } 908 EXPORT_SYMBOL_GPL(evict_inodes); 909 910 /* 911 * Isolate the inode from the LRU in preparation for freeing it. 912 * 913 * If the inode has the I_REFERENCED flag set, then it means that it has been 914 * used recently - the flag is set in iput_final(). When we encounter such an 915 * inode, clear the flag and move it to the back of the LRU so it gets another 916 * pass through the LRU before it gets reclaimed. This is necessary because of 917 * the fact we are doing lazy LRU updates to minimise lock contention so the 918 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 919 * with this flag set because they are the inodes that are out of order. 920 */ 921 static enum lru_status inode_lru_isolate(struct list_head *item, 922 struct list_lru_one *lru, void *arg) 923 { 924 struct list_head *freeable = arg; 925 struct inode *inode = container_of(item, struct inode, i_lru); 926 927 /* 928 * We are inverting the lru lock/inode->i_lock here, so use a 929 * trylock. If we fail to get the lock, just skip it. 930 */ 931 if (!spin_trylock(&inode->i_lock)) 932 return LRU_SKIP; 933 934 /* 935 * Inodes can get referenced, redirtied, or repopulated while 936 * they're already on the LRU, and this can make them 937 * unreclaimable for a while. Remove them lazily here; iput, 938 * sync, or the last page cache deletion will requeue them. 939 */ 940 if (atomic_read(&inode->i_count) || 941 (inode->i_state & ~I_REFERENCED) || 942 !mapping_shrinkable(&inode->i_data)) { 943 list_lru_isolate(lru, &inode->i_lru); 944 spin_unlock(&inode->i_lock); 945 this_cpu_dec(nr_unused); 946 return LRU_REMOVED; 947 } 948 949 /* Recently referenced inodes get one more pass */ 950 if (inode->i_state & I_REFERENCED) { 951 inode->i_state &= ~I_REFERENCED; 952 spin_unlock(&inode->i_lock); 953 return LRU_ROTATE; 954 } 955 956 /* 957 * On highmem systems, mapping_shrinkable() permits dropping 958 * page cache in order to free up struct inodes: lowmem might 959 * be under pressure before the cache inside the highmem zone. 960 */ 961 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 962 inode_pin_lru_isolating(inode); 963 spin_unlock(&inode->i_lock); 964 spin_unlock(&lru->lock); 965 if (remove_inode_buffers(inode)) { 966 unsigned long reap; 967 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 968 if (current_is_kswapd()) 969 __count_vm_events(KSWAPD_INODESTEAL, reap); 970 else 971 __count_vm_events(PGINODESTEAL, reap); 972 mm_account_reclaimed_pages(reap); 973 } 974 inode_unpin_lru_isolating(inode); 975 return LRU_RETRY; 976 } 977 978 WARN_ON(inode->i_state & I_NEW); 979 inode->i_state |= I_FREEING; 980 list_lru_isolate_move(lru, &inode->i_lru, freeable); 981 spin_unlock(&inode->i_lock); 982 983 this_cpu_dec(nr_unused); 984 return LRU_REMOVED; 985 } 986 987 /* 988 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 989 * This is called from the superblock shrinker function with a number of inodes 990 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 991 * then are freed outside inode_lock by dispose_list(). 992 */ 993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 994 { 995 LIST_HEAD(freeable); 996 long freed; 997 998 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 999 inode_lru_isolate, &freeable); 1000 dispose_list(&freeable); 1001 return freed; 1002 } 1003 1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 1005 /* 1006 * Called with the inode lock held. 1007 */ 1008 static struct inode *find_inode(struct super_block *sb, 1009 struct hlist_head *head, 1010 int (*test)(struct inode *, void *), 1011 void *data, bool is_inode_hash_locked) 1012 { 1013 struct inode *inode = NULL; 1014 1015 if (is_inode_hash_locked) 1016 lockdep_assert_held(&inode_hash_lock); 1017 else 1018 lockdep_assert_not_held(&inode_hash_lock); 1019 1020 rcu_read_lock(); 1021 repeat: 1022 hlist_for_each_entry_rcu(inode, head, i_hash) { 1023 if (inode->i_sb != sb) 1024 continue; 1025 if (!test(inode, data)) 1026 continue; 1027 spin_lock(&inode->i_lock); 1028 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1029 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1030 goto repeat; 1031 } 1032 if (unlikely(inode->i_state & I_CREATING)) { 1033 spin_unlock(&inode->i_lock); 1034 rcu_read_unlock(); 1035 return ERR_PTR(-ESTALE); 1036 } 1037 __iget(inode); 1038 spin_unlock(&inode->i_lock); 1039 rcu_read_unlock(); 1040 return inode; 1041 } 1042 rcu_read_unlock(); 1043 return NULL; 1044 } 1045 1046 /* 1047 * find_inode_fast is the fast path version of find_inode, see the comment at 1048 * iget_locked for details. 1049 */ 1050 static struct inode *find_inode_fast(struct super_block *sb, 1051 struct hlist_head *head, unsigned long ino, 1052 bool is_inode_hash_locked) 1053 { 1054 struct inode *inode = NULL; 1055 1056 if (is_inode_hash_locked) 1057 lockdep_assert_held(&inode_hash_lock); 1058 else 1059 lockdep_assert_not_held(&inode_hash_lock); 1060 1061 rcu_read_lock(); 1062 repeat: 1063 hlist_for_each_entry_rcu(inode, head, i_hash) { 1064 if (inode->i_ino != ino) 1065 continue; 1066 if (inode->i_sb != sb) 1067 continue; 1068 spin_lock(&inode->i_lock); 1069 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1070 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1071 goto repeat; 1072 } 1073 if (unlikely(inode->i_state & I_CREATING)) { 1074 spin_unlock(&inode->i_lock); 1075 rcu_read_unlock(); 1076 return ERR_PTR(-ESTALE); 1077 } 1078 __iget(inode); 1079 spin_unlock(&inode->i_lock); 1080 rcu_read_unlock(); 1081 return inode; 1082 } 1083 rcu_read_unlock(); 1084 return NULL; 1085 } 1086 1087 /* 1088 * Each cpu owns a range of LAST_INO_BATCH numbers. 1089 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1090 * to renew the exhausted range. 1091 * 1092 * This does not significantly increase overflow rate because every CPU can 1093 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1094 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1095 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1096 * overflow rate by 2x, which does not seem too significant. 1097 * 1098 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1099 * error if st_ino won't fit in target struct field. Use 32bit counter 1100 * here to attempt to avoid that. 1101 */ 1102 #define LAST_INO_BATCH 1024 1103 static DEFINE_PER_CPU(unsigned int, last_ino); 1104 1105 unsigned int get_next_ino(void) 1106 { 1107 unsigned int *p = &get_cpu_var(last_ino); 1108 unsigned int res = *p; 1109 1110 #ifdef CONFIG_SMP 1111 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1112 static atomic_t shared_last_ino; 1113 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1114 1115 res = next - LAST_INO_BATCH; 1116 } 1117 #endif 1118 1119 res++; 1120 /* get_next_ino should not provide a 0 inode number */ 1121 if (unlikely(!res)) 1122 res++; 1123 *p = res; 1124 put_cpu_var(last_ino); 1125 return res; 1126 } 1127 EXPORT_SYMBOL(get_next_ino); 1128 1129 /** 1130 * new_inode - obtain an inode 1131 * @sb: superblock 1132 * 1133 * Allocates a new inode for given superblock. The default gfp_mask 1134 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1135 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1136 * for the page cache are not reclaimable or migratable, 1137 * mapping_set_gfp_mask() must be called with suitable flags on the 1138 * newly created inode's mapping 1139 * 1140 */ 1141 struct inode *new_inode(struct super_block *sb) 1142 { 1143 struct inode *inode; 1144 1145 inode = alloc_inode(sb); 1146 if (inode) 1147 inode_sb_list_add(inode); 1148 return inode; 1149 } 1150 EXPORT_SYMBOL(new_inode); 1151 1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1153 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1154 { 1155 if (S_ISDIR(inode->i_mode)) { 1156 struct file_system_type *type = inode->i_sb->s_type; 1157 1158 /* Set new key only if filesystem hasn't already changed it */ 1159 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1160 /* 1161 * ensure nobody is actually holding i_mutex 1162 */ 1163 // mutex_destroy(&inode->i_mutex); 1164 init_rwsem(&inode->i_rwsem); 1165 lockdep_set_class(&inode->i_rwsem, 1166 &type->i_mutex_dir_key); 1167 } 1168 } 1169 } 1170 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1171 #endif 1172 1173 /** 1174 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1175 * @inode: new inode to unlock 1176 * 1177 * Called when the inode is fully initialised to clear the new state of the 1178 * inode and wake up anyone waiting for the inode to finish initialisation. 1179 */ 1180 void unlock_new_inode(struct inode *inode) 1181 { 1182 lockdep_annotate_inode_mutex_key(inode); 1183 spin_lock(&inode->i_lock); 1184 WARN_ON(!(inode->i_state & I_NEW)); 1185 inode->i_state &= ~I_NEW & ~I_CREATING; 1186 /* 1187 * Pairs with the barrier in prepare_to_wait_event() to make sure 1188 * ___wait_var_event() either sees the bit cleared or 1189 * waitqueue_active() check in wake_up_var() sees the waiter. 1190 */ 1191 smp_mb(); 1192 inode_wake_up_bit(inode, __I_NEW); 1193 spin_unlock(&inode->i_lock); 1194 } 1195 EXPORT_SYMBOL(unlock_new_inode); 1196 1197 void discard_new_inode(struct inode *inode) 1198 { 1199 lockdep_annotate_inode_mutex_key(inode); 1200 spin_lock(&inode->i_lock); 1201 WARN_ON(!(inode->i_state & I_NEW)); 1202 inode->i_state &= ~I_NEW; 1203 /* 1204 * Pairs with the barrier in prepare_to_wait_event() to make sure 1205 * ___wait_var_event() either sees the bit cleared or 1206 * waitqueue_active() check in wake_up_var() sees the waiter. 1207 */ 1208 smp_mb(); 1209 inode_wake_up_bit(inode, __I_NEW); 1210 spin_unlock(&inode->i_lock); 1211 iput(inode); 1212 } 1213 EXPORT_SYMBOL(discard_new_inode); 1214 1215 /** 1216 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1217 * 1218 * Lock any non-NULL argument. Passed objects must not be directories. 1219 * Zero, one or two objects may be locked by this function. 1220 * 1221 * @inode1: first inode to lock 1222 * @inode2: second inode to lock 1223 */ 1224 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1225 { 1226 if (inode1) 1227 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1228 if (inode2) 1229 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1230 if (inode1 > inode2) 1231 swap(inode1, inode2); 1232 if (inode1) 1233 inode_lock(inode1); 1234 if (inode2 && inode2 != inode1) 1235 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1236 } 1237 EXPORT_SYMBOL(lock_two_nondirectories); 1238 1239 /** 1240 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1241 * @inode1: first inode to unlock 1242 * @inode2: second inode to unlock 1243 */ 1244 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1245 { 1246 if (inode1) { 1247 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1248 inode_unlock(inode1); 1249 } 1250 if (inode2 && inode2 != inode1) { 1251 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1252 inode_unlock(inode2); 1253 } 1254 } 1255 EXPORT_SYMBOL(unlock_two_nondirectories); 1256 1257 /** 1258 * inode_insert5 - obtain an inode from a mounted file system 1259 * @inode: pre-allocated inode to use for insert to cache 1260 * @hashval: hash value (usually inode number) to get 1261 * @test: callback used for comparisons between inodes 1262 * @set: callback used to initialize a new struct inode 1263 * @data: opaque data pointer to pass to @test and @set 1264 * 1265 * Search for the inode specified by @hashval and @data in the inode cache, 1266 * and if present return it with an increased reference count. This is a 1267 * variant of iget5_locked() that doesn't allocate an inode. 1268 * 1269 * If the inode is not present in the cache, insert the pre-allocated inode and 1270 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1271 * to fill it in before unlocking it via unlock_new_inode(). 1272 * 1273 * Note that both @test and @set are called with the inode_hash_lock held, so 1274 * they can't sleep. 1275 */ 1276 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1277 int (*test)(struct inode *, void *), 1278 int (*set)(struct inode *, void *), void *data) 1279 { 1280 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1281 struct inode *old; 1282 1283 again: 1284 spin_lock(&inode_hash_lock); 1285 old = find_inode(inode->i_sb, head, test, data, true); 1286 if (unlikely(old)) { 1287 /* 1288 * Uhhuh, somebody else created the same inode under us. 1289 * Use the old inode instead of the preallocated one. 1290 */ 1291 spin_unlock(&inode_hash_lock); 1292 if (IS_ERR(old)) 1293 return NULL; 1294 wait_on_inode(old); 1295 if (unlikely(inode_unhashed(old))) { 1296 iput(old); 1297 goto again; 1298 } 1299 return old; 1300 } 1301 1302 if (set && unlikely(set(inode, data))) { 1303 spin_unlock(&inode_hash_lock); 1304 return NULL; 1305 } 1306 1307 /* 1308 * Return the locked inode with I_NEW set, the 1309 * caller is responsible for filling in the contents 1310 */ 1311 spin_lock(&inode->i_lock); 1312 inode->i_state |= I_NEW; 1313 hlist_add_head_rcu(&inode->i_hash, head); 1314 spin_unlock(&inode->i_lock); 1315 1316 spin_unlock(&inode_hash_lock); 1317 1318 /* 1319 * Add inode to the sb list if it's not already. It has I_NEW at this 1320 * point, so it should be safe to test i_sb_list locklessly. 1321 */ 1322 if (list_empty(&inode->i_sb_list)) 1323 inode_sb_list_add(inode); 1324 1325 return inode; 1326 } 1327 EXPORT_SYMBOL(inode_insert5); 1328 1329 /** 1330 * iget5_locked - obtain an inode from a mounted file system 1331 * @sb: super block of file system 1332 * @hashval: hash value (usually inode number) to get 1333 * @test: callback used for comparisons between inodes 1334 * @set: callback used to initialize a new struct inode 1335 * @data: opaque data pointer to pass to @test and @set 1336 * 1337 * Search for the inode specified by @hashval and @data in the inode cache, 1338 * and if present return it with an increased reference count. This is a 1339 * generalized version of iget_locked() for file systems where the inode 1340 * number is not sufficient for unique identification of an inode. 1341 * 1342 * If the inode is not present in the cache, allocate and insert a new inode 1343 * and return it locked, hashed, and with the I_NEW flag set. The file system 1344 * gets to fill it in before unlocking it via unlock_new_inode(). 1345 * 1346 * Note that both @test and @set are called with the inode_hash_lock held, so 1347 * they can't sleep. 1348 */ 1349 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1350 int (*test)(struct inode *, void *), 1351 int (*set)(struct inode *, void *), void *data) 1352 { 1353 struct inode *inode = ilookup5(sb, hashval, test, data); 1354 1355 if (!inode) { 1356 struct inode *new = alloc_inode(sb); 1357 1358 if (new) { 1359 inode = inode_insert5(new, hashval, test, set, data); 1360 if (unlikely(inode != new)) 1361 destroy_inode(new); 1362 } 1363 } 1364 return inode; 1365 } 1366 EXPORT_SYMBOL(iget5_locked); 1367 1368 /** 1369 * iget5_locked_rcu - obtain an inode from a mounted file system 1370 * @sb: super block of file system 1371 * @hashval: hash value (usually inode number) to get 1372 * @test: callback used for comparisons between inodes 1373 * @set: callback used to initialize a new struct inode 1374 * @data: opaque data pointer to pass to @test and @set 1375 * 1376 * This is equivalent to iget5_locked, except the @test callback must 1377 * tolerate the inode not being stable, including being mid-teardown. 1378 */ 1379 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1380 int (*test)(struct inode *, void *), 1381 int (*set)(struct inode *, void *), void *data) 1382 { 1383 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1384 struct inode *inode, *new; 1385 1386 again: 1387 inode = find_inode(sb, head, test, data, false); 1388 if (inode) { 1389 if (IS_ERR(inode)) 1390 return NULL; 1391 wait_on_inode(inode); 1392 if (unlikely(inode_unhashed(inode))) { 1393 iput(inode); 1394 goto again; 1395 } 1396 return inode; 1397 } 1398 1399 new = alloc_inode(sb); 1400 if (new) { 1401 inode = inode_insert5(new, hashval, test, set, data); 1402 if (unlikely(inode != new)) 1403 destroy_inode(new); 1404 } 1405 return inode; 1406 } 1407 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1408 1409 /** 1410 * iget_locked - obtain an inode from a mounted file system 1411 * @sb: super block of file system 1412 * @ino: inode number to get 1413 * 1414 * Search for the inode specified by @ino in the inode cache and if present 1415 * return it with an increased reference count. This is for file systems 1416 * where the inode number is sufficient for unique identification of an inode. 1417 * 1418 * If the inode is not in cache, allocate a new inode and return it locked, 1419 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1420 * before unlocking it via unlock_new_inode(). 1421 */ 1422 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1423 { 1424 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1425 struct inode *inode; 1426 again: 1427 inode = find_inode_fast(sb, head, ino, false); 1428 if (inode) { 1429 if (IS_ERR(inode)) 1430 return NULL; 1431 wait_on_inode(inode); 1432 if (unlikely(inode_unhashed(inode))) { 1433 iput(inode); 1434 goto again; 1435 } 1436 return inode; 1437 } 1438 1439 inode = alloc_inode(sb); 1440 if (inode) { 1441 struct inode *old; 1442 1443 spin_lock(&inode_hash_lock); 1444 /* We released the lock, so.. */ 1445 old = find_inode_fast(sb, head, ino, true); 1446 if (!old) { 1447 inode->i_ino = ino; 1448 spin_lock(&inode->i_lock); 1449 inode->i_state = I_NEW; 1450 hlist_add_head_rcu(&inode->i_hash, head); 1451 spin_unlock(&inode->i_lock); 1452 spin_unlock(&inode_hash_lock); 1453 inode_sb_list_add(inode); 1454 1455 /* Return the locked inode with I_NEW set, the 1456 * caller is responsible for filling in the contents 1457 */ 1458 return inode; 1459 } 1460 1461 /* 1462 * Uhhuh, somebody else created the same inode under 1463 * us. Use the old inode instead of the one we just 1464 * allocated. 1465 */ 1466 spin_unlock(&inode_hash_lock); 1467 destroy_inode(inode); 1468 if (IS_ERR(old)) 1469 return NULL; 1470 inode = old; 1471 wait_on_inode(inode); 1472 if (unlikely(inode_unhashed(inode))) { 1473 iput(inode); 1474 goto again; 1475 } 1476 } 1477 return inode; 1478 } 1479 EXPORT_SYMBOL(iget_locked); 1480 1481 /* 1482 * search the inode cache for a matching inode number. 1483 * If we find one, then the inode number we are trying to 1484 * allocate is not unique and so we should not use it. 1485 * 1486 * Returns 1 if the inode number is unique, 0 if it is not. 1487 */ 1488 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1489 { 1490 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1491 struct inode *inode; 1492 1493 hlist_for_each_entry_rcu(inode, b, i_hash) { 1494 if (inode->i_ino == ino && inode->i_sb == sb) 1495 return 0; 1496 } 1497 return 1; 1498 } 1499 1500 /** 1501 * iunique - get a unique inode number 1502 * @sb: superblock 1503 * @max_reserved: highest reserved inode number 1504 * 1505 * Obtain an inode number that is unique on the system for a given 1506 * superblock. This is used by file systems that have no natural 1507 * permanent inode numbering system. An inode number is returned that 1508 * is higher than the reserved limit but unique. 1509 * 1510 * BUGS: 1511 * With a large number of inodes live on the file system this function 1512 * currently becomes quite slow. 1513 */ 1514 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1515 { 1516 /* 1517 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1518 * error if st_ino won't fit in target struct field. Use 32bit counter 1519 * here to attempt to avoid that. 1520 */ 1521 static DEFINE_SPINLOCK(iunique_lock); 1522 static unsigned int counter; 1523 ino_t res; 1524 1525 rcu_read_lock(); 1526 spin_lock(&iunique_lock); 1527 do { 1528 if (counter <= max_reserved) 1529 counter = max_reserved + 1; 1530 res = counter++; 1531 } while (!test_inode_iunique(sb, res)); 1532 spin_unlock(&iunique_lock); 1533 rcu_read_unlock(); 1534 1535 return res; 1536 } 1537 EXPORT_SYMBOL(iunique); 1538 1539 struct inode *igrab(struct inode *inode) 1540 { 1541 spin_lock(&inode->i_lock); 1542 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1543 __iget(inode); 1544 spin_unlock(&inode->i_lock); 1545 } else { 1546 spin_unlock(&inode->i_lock); 1547 /* 1548 * Handle the case where s_op->clear_inode is not been 1549 * called yet, and somebody is calling igrab 1550 * while the inode is getting freed. 1551 */ 1552 inode = NULL; 1553 } 1554 return inode; 1555 } 1556 EXPORT_SYMBOL(igrab); 1557 1558 /** 1559 * ilookup5_nowait - search for an inode in the inode cache 1560 * @sb: super block of file system to search 1561 * @hashval: hash value (usually inode number) to search for 1562 * @test: callback used for comparisons between inodes 1563 * @data: opaque data pointer to pass to @test 1564 * 1565 * Search for the inode specified by @hashval and @data in the inode cache. 1566 * If the inode is in the cache, the inode is returned with an incremented 1567 * reference count. 1568 * 1569 * Note: I_NEW is not waited upon so you have to be very careful what you do 1570 * with the returned inode. You probably should be using ilookup5() instead. 1571 * 1572 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1573 */ 1574 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1575 int (*test)(struct inode *, void *), void *data) 1576 { 1577 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1578 struct inode *inode; 1579 1580 spin_lock(&inode_hash_lock); 1581 inode = find_inode(sb, head, test, data, true); 1582 spin_unlock(&inode_hash_lock); 1583 1584 return IS_ERR(inode) ? NULL : inode; 1585 } 1586 EXPORT_SYMBOL(ilookup5_nowait); 1587 1588 /** 1589 * ilookup5 - search for an inode in the inode cache 1590 * @sb: super block of file system to search 1591 * @hashval: hash value (usually inode number) to search for 1592 * @test: callback used for comparisons between inodes 1593 * @data: opaque data pointer to pass to @test 1594 * 1595 * Search for the inode specified by @hashval and @data in the inode cache, 1596 * and if the inode is in the cache, return the inode with an incremented 1597 * reference count. Waits on I_NEW before returning the inode. 1598 * returned with an incremented reference count. 1599 * 1600 * This is a generalized version of ilookup() for file systems where the 1601 * inode number is not sufficient for unique identification of an inode. 1602 * 1603 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1604 */ 1605 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1606 int (*test)(struct inode *, void *), void *data) 1607 { 1608 struct inode *inode; 1609 again: 1610 inode = ilookup5_nowait(sb, hashval, test, data); 1611 if (inode) { 1612 wait_on_inode(inode); 1613 if (unlikely(inode_unhashed(inode))) { 1614 iput(inode); 1615 goto again; 1616 } 1617 } 1618 return inode; 1619 } 1620 EXPORT_SYMBOL(ilookup5); 1621 1622 /** 1623 * ilookup - search for an inode in the inode cache 1624 * @sb: super block of file system to search 1625 * @ino: inode number to search for 1626 * 1627 * Search for the inode @ino in the inode cache, and if the inode is in the 1628 * cache, the inode is returned with an incremented reference count. 1629 */ 1630 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1631 { 1632 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1633 struct inode *inode; 1634 again: 1635 inode = find_inode_fast(sb, head, ino, false); 1636 1637 if (inode) { 1638 if (IS_ERR(inode)) 1639 return NULL; 1640 wait_on_inode(inode); 1641 if (unlikely(inode_unhashed(inode))) { 1642 iput(inode); 1643 goto again; 1644 } 1645 } 1646 return inode; 1647 } 1648 EXPORT_SYMBOL(ilookup); 1649 1650 /** 1651 * find_inode_nowait - find an inode in the inode cache 1652 * @sb: super block of file system to search 1653 * @hashval: hash value (usually inode number) to search for 1654 * @match: callback used for comparisons between inodes 1655 * @data: opaque data pointer to pass to @match 1656 * 1657 * Search for the inode specified by @hashval and @data in the inode 1658 * cache, where the helper function @match will return 0 if the inode 1659 * does not match, 1 if the inode does match, and -1 if the search 1660 * should be stopped. The @match function must be responsible for 1661 * taking the i_lock spin_lock and checking i_state for an inode being 1662 * freed or being initialized, and incrementing the reference count 1663 * before returning 1. It also must not sleep, since it is called with 1664 * the inode_hash_lock spinlock held. 1665 * 1666 * This is a even more generalized version of ilookup5() when the 1667 * function must never block --- find_inode() can block in 1668 * __wait_on_freeing_inode() --- or when the caller can not increment 1669 * the reference count because the resulting iput() might cause an 1670 * inode eviction. The tradeoff is that the @match funtion must be 1671 * very carefully implemented. 1672 */ 1673 struct inode *find_inode_nowait(struct super_block *sb, 1674 unsigned long hashval, 1675 int (*match)(struct inode *, unsigned long, 1676 void *), 1677 void *data) 1678 { 1679 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1680 struct inode *inode, *ret_inode = NULL; 1681 int mval; 1682 1683 spin_lock(&inode_hash_lock); 1684 hlist_for_each_entry(inode, head, i_hash) { 1685 if (inode->i_sb != sb) 1686 continue; 1687 mval = match(inode, hashval, data); 1688 if (mval == 0) 1689 continue; 1690 if (mval == 1) 1691 ret_inode = inode; 1692 goto out; 1693 } 1694 out: 1695 spin_unlock(&inode_hash_lock); 1696 return ret_inode; 1697 } 1698 EXPORT_SYMBOL(find_inode_nowait); 1699 1700 /** 1701 * find_inode_rcu - find an inode in the inode cache 1702 * @sb: Super block of file system to search 1703 * @hashval: Key to hash 1704 * @test: Function to test match on an inode 1705 * @data: Data for test function 1706 * 1707 * Search for the inode specified by @hashval and @data in the inode cache, 1708 * where the helper function @test will return 0 if the inode does not match 1709 * and 1 if it does. The @test function must be responsible for taking the 1710 * i_lock spin_lock and checking i_state for an inode being freed or being 1711 * initialized. 1712 * 1713 * If successful, this will return the inode for which the @test function 1714 * returned 1 and NULL otherwise. 1715 * 1716 * The @test function is not permitted to take a ref on any inode presented. 1717 * It is also not permitted to sleep. 1718 * 1719 * The caller must hold the RCU read lock. 1720 */ 1721 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1722 int (*test)(struct inode *, void *), void *data) 1723 { 1724 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1725 struct inode *inode; 1726 1727 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1728 "suspicious find_inode_rcu() usage"); 1729 1730 hlist_for_each_entry_rcu(inode, head, i_hash) { 1731 if (inode->i_sb == sb && 1732 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1733 test(inode, data)) 1734 return inode; 1735 } 1736 return NULL; 1737 } 1738 EXPORT_SYMBOL(find_inode_rcu); 1739 1740 /** 1741 * find_inode_by_ino_rcu - Find an inode in the inode cache 1742 * @sb: Super block of file system to search 1743 * @ino: The inode number to match 1744 * 1745 * Search for the inode specified by @hashval and @data in the inode cache, 1746 * where the helper function @test will return 0 if the inode does not match 1747 * and 1 if it does. The @test function must be responsible for taking the 1748 * i_lock spin_lock and checking i_state for an inode being freed or being 1749 * initialized. 1750 * 1751 * If successful, this will return the inode for which the @test function 1752 * returned 1 and NULL otherwise. 1753 * 1754 * The @test function is not permitted to take a ref on any inode presented. 1755 * It is also not permitted to sleep. 1756 * 1757 * The caller must hold the RCU read lock. 1758 */ 1759 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1760 unsigned long ino) 1761 { 1762 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1763 struct inode *inode; 1764 1765 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1766 "suspicious find_inode_by_ino_rcu() usage"); 1767 1768 hlist_for_each_entry_rcu(inode, head, i_hash) { 1769 if (inode->i_ino == ino && 1770 inode->i_sb == sb && 1771 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1772 return inode; 1773 } 1774 return NULL; 1775 } 1776 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1777 1778 int insert_inode_locked(struct inode *inode) 1779 { 1780 struct super_block *sb = inode->i_sb; 1781 ino_t ino = inode->i_ino; 1782 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1783 1784 while (1) { 1785 struct inode *old = NULL; 1786 spin_lock(&inode_hash_lock); 1787 hlist_for_each_entry(old, head, i_hash) { 1788 if (old->i_ino != ino) 1789 continue; 1790 if (old->i_sb != sb) 1791 continue; 1792 spin_lock(&old->i_lock); 1793 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1794 spin_unlock(&old->i_lock); 1795 continue; 1796 } 1797 break; 1798 } 1799 if (likely(!old)) { 1800 spin_lock(&inode->i_lock); 1801 inode->i_state |= I_NEW | I_CREATING; 1802 hlist_add_head_rcu(&inode->i_hash, head); 1803 spin_unlock(&inode->i_lock); 1804 spin_unlock(&inode_hash_lock); 1805 return 0; 1806 } 1807 if (unlikely(old->i_state & I_CREATING)) { 1808 spin_unlock(&old->i_lock); 1809 spin_unlock(&inode_hash_lock); 1810 return -EBUSY; 1811 } 1812 __iget(old); 1813 spin_unlock(&old->i_lock); 1814 spin_unlock(&inode_hash_lock); 1815 wait_on_inode(old); 1816 if (unlikely(!inode_unhashed(old))) { 1817 iput(old); 1818 return -EBUSY; 1819 } 1820 iput(old); 1821 } 1822 } 1823 EXPORT_SYMBOL(insert_inode_locked); 1824 1825 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1826 int (*test)(struct inode *, void *), void *data) 1827 { 1828 struct inode *old; 1829 1830 inode->i_state |= I_CREATING; 1831 old = inode_insert5(inode, hashval, test, NULL, data); 1832 1833 if (old != inode) { 1834 iput(old); 1835 return -EBUSY; 1836 } 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(insert_inode_locked4); 1840 1841 1842 int generic_delete_inode(struct inode *inode) 1843 { 1844 return 1; 1845 } 1846 EXPORT_SYMBOL(generic_delete_inode); 1847 1848 /* 1849 * Called when we're dropping the last reference 1850 * to an inode. 1851 * 1852 * Call the FS "drop_inode()" function, defaulting to 1853 * the legacy UNIX filesystem behaviour. If it tells 1854 * us to evict inode, do so. Otherwise, retain inode 1855 * in cache if fs is alive, sync and evict if fs is 1856 * shutting down. 1857 */ 1858 static void iput_final(struct inode *inode) 1859 { 1860 struct super_block *sb = inode->i_sb; 1861 const struct super_operations *op = inode->i_sb->s_op; 1862 unsigned long state; 1863 int drop; 1864 1865 WARN_ON(inode->i_state & I_NEW); 1866 1867 if (op->drop_inode) 1868 drop = op->drop_inode(inode); 1869 else 1870 drop = generic_drop_inode(inode); 1871 1872 if (!drop && 1873 !(inode->i_state & I_DONTCACHE) && 1874 (sb->s_flags & SB_ACTIVE)) { 1875 __inode_add_lru(inode, true); 1876 spin_unlock(&inode->i_lock); 1877 return; 1878 } 1879 1880 state = inode->i_state; 1881 if (!drop) { 1882 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1883 spin_unlock(&inode->i_lock); 1884 1885 write_inode_now(inode, 1); 1886 1887 spin_lock(&inode->i_lock); 1888 state = inode->i_state; 1889 WARN_ON(state & I_NEW); 1890 state &= ~I_WILL_FREE; 1891 } 1892 1893 WRITE_ONCE(inode->i_state, state | I_FREEING); 1894 if (!list_empty(&inode->i_lru)) 1895 inode_lru_list_del(inode); 1896 spin_unlock(&inode->i_lock); 1897 1898 evict(inode); 1899 } 1900 1901 /** 1902 * iput - put an inode 1903 * @inode: inode to put 1904 * 1905 * Puts an inode, dropping its usage count. If the inode use count hits 1906 * zero, the inode is then freed and may also be destroyed. 1907 * 1908 * Consequently, iput() can sleep. 1909 */ 1910 void iput(struct inode *inode) 1911 { 1912 if (!inode) 1913 return; 1914 BUG_ON(inode->i_state & I_CLEAR); 1915 retry: 1916 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1917 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1918 atomic_inc(&inode->i_count); 1919 spin_unlock(&inode->i_lock); 1920 trace_writeback_lazytime_iput(inode); 1921 mark_inode_dirty_sync(inode); 1922 goto retry; 1923 } 1924 iput_final(inode); 1925 } 1926 } 1927 EXPORT_SYMBOL(iput); 1928 1929 #ifdef CONFIG_BLOCK 1930 /** 1931 * bmap - find a block number in a file 1932 * @inode: inode owning the block number being requested 1933 * @block: pointer containing the block to find 1934 * 1935 * Replaces the value in ``*block`` with the block number on the device holding 1936 * corresponding to the requested block number in the file. 1937 * That is, asked for block 4 of inode 1 the function will replace the 1938 * 4 in ``*block``, with disk block relative to the disk start that holds that 1939 * block of the file. 1940 * 1941 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1942 * hole, returns 0 and ``*block`` is also set to 0. 1943 */ 1944 int bmap(struct inode *inode, sector_t *block) 1945 { 1946 if (!inode->i_mapping->a_ops->bmap) 1947 return -EINVAL; 1948 1949 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1950 return 0; 1951 } 1952 EXPORT_SYMBOL(bmap); 1953 #endif 1954 1955 /* 1956 * With relative atime, only update atime if the previous atime is 1957 * earlier than or equal to either the ctime or mtime, 1958 * or if at least a day has passed since the last atime update. 1959 */ 1960 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1961 struct timespec64 now) 1962 { 1963 struct timespec64 atime, mtime, ctime; 1964 1965 if (!(mnt->mnt_flags & MNT_RELATIME)) 1966 return true; 1967 /* 1968 * Is mtime younger than or equal to atime? If yes, update atime: 1969 */ 1970 atime = inode_get_atime(inode); 1971 mtime = inode_get_mtime(inode); 1972 if (timespec64_compare(&mtime, &atime) >= 0) 1973 return true; 1974 /* 1975 * Is ctime younger than or equal to atime? If yes, update atime: 1976 */ 1977 ctime = inode_get_ctime(inode); 1978 if (timespec64_compare(&ctime, &atime) >= 0) 1979 return true; 1980 1981 /* 1982 * Is the previous atime value older than a day? If yes, 1983 * update atime: 1984 */ 1985 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1986 return true; 1987 /* 1988 * Good, we can skip the atime update: 1989 */ 1990 return false; 1991 } 1992 1993 /** 1994 * inode_update_timestamps - update the timestamps on the inode 1995 * @inode: inode to be updated 1996 * @flags: S_* flags that needed to be updated 1997 * 1998 * The update_time function is called when an inode's timestamps need to be 1999 * updated for a read or write operation. This function handles updating the 2000 * actual timestamps. It's up to the caller to ensure that the inode is marked 2001 * dirty appropriately. 2002 * 2003 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 2004 * attempt to update all three of them. S_ATIME updates can be handled 2005 * independently of the rest. 2006 * 2007 * Returns a set of S_* flags indicating which values changed. 2008 */ 2009 int inode_update_timestamps(struct inode *inode, int flags) 2010 { 2011 int updated = 0; 2012 struct timespec64 now; 2013 2014 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2015 struct timespec64 ctime = inode_get_ctime(inode); 2016 struct timespec64 mtime = inode_get_mtime(inode); 2017 2018 now = inode_set_ctime_current(inode); 2019 if (!timespec64_equal(&now, &ctime)) 2020 updated |= S_CTIME; 2021 if (!timespec64_equal(&now, &mtime)) { 2022 inode_set_mtime_to_ts(inode, now); 2023 updated |= S_MTIME; 2024 } 2025 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2026 updated |= S_VERSION; 2027 } else { 2028 now = current_time(inode); 2029 } 2030 2031 if (flags & S_ATIME) { 2032 struct timespec64 atime = inode_get_atime(inode); 2033 2034 if (!timespec64_equal(&now, &atime)) { 2035 inode_set_atime_to_ts(inode, now); 2036 updated |= S_ATIME; 2037 } 2038 } 2039 return updated; 2040 } 2041 EXPORT_SYMBOL(inode_update_timestamps); 2042 2043 /** 2044 * generic_update_time - update the timestamps on the inode 2045 * @inode: inode to be updated 2046 * @flags: S_* flags that needed to be updated 2047 * 2048 * The update_time function is called when an inode's timestamps need to be 2049 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2050 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2051 * updates can be handled done independently of the rest. 2052 * 2053 * Returns a S_* mask indicating which fields were updated. 2054 */ 2055 int generic_update_time(struct inode *inode, int flags) 2056 { 2057 int updated = inode_update_timestamps(inode, flags); 2058 int dirty_flags = 0; 2059 2060 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2061 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2062 if (updated & S_VERSION) 2063 dirty_flags |= I_DIRTY_SYNC; 2064 __mark_inode_dirty(inode, dirty_flags); 2065 return updated; 2066 } 2067 EXPORT_SYMBOL(generic_update_time); 2068 2069 /* 2070 * This does the actual work of updating an inodes time or version. Must have 2071 * had called mnt_want_write() before calling this. 2072 */ 2073 int inode_update_time(struct inode *inode, int flags) 2074 { 2075 if (inode->i_op->update_time) 2076 return inode->i_op->update_time(inode, flags); 2077 generic_update_time(inode, flags); 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(inode_update_time); 2081 2082 /** 2083 * atime_needs_update - update the access time 2084 * @path: the &struct path to update 2085 * @inode: inode to update 2086 * 2087 * Update the accessed time on an inode and mark it for writeback. 2088 * This function automatically handles read only file systems and media, 2089 * as well as the "noatime" flag and inode specific "noatime" markers. 2090 */ 2091 bool atime_needs_update(const struct path *path, struct inode *inode) 2092 { 2093 struct vfsmount *mnt = path->mnt; 2094 struct timespec64 now, atime; 2095 2096 if (inode->i_flags & S_NOATIME) 2097 return false; 2098 2099 /* Atime updates will likely cause i_uid and i_gid to be written 2100 * back improprely if their true value is unknown to the vfs. 2101 */ 2102 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2103 return false; 2104 2105 if (IS_NOATIME(inode)) 2106 return false; 2107 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2108 return false; 2109 2110 if (mnt->mnt_flags & MNT_NOATIME) 2111 return false; 2112 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2113 return false; 2114 2115 now = current_time(inode); 2116 2117 if (!relatime_need_update(mnt, inode, now)) 2118 return false; 2119 2120 atime = inode_get_atime(inode); 2121 if (timespec64_equal(&atime, &now)) 2122 return false; 2123 2124 return true; 2125 } 2126 2127 void touch_atime(const struct path *path) 2128 { 2129 struct vfsmount *mnt = path->mnt; 2130 struct inode *inode = d_inode(path->dentry); 2131 2132 if (!atime_needs_update(path, inode)) 2133 return; 2134 2135 if (!sb_start_write_trylock(inode->i_sb)) 2136 return; 2137 2138 if (mnt_get_write_access(mnt) != 0) 2139 goto skip_update; 2140 /* 2141 * File systems can error out when updating inodes if they need to 2142 * allocate new space to modify an inode (such is the case for 2143 * Btrfs), but since we touch atime while walking down the path we 2144 * really don't care if we failed to update the atime of the file, 2145 * so just ignore the return value. 2146 * We may also fail on filesystems that have the ability to make parts 2147 * of the fs read only, e.g. subvolumes in Btrfs. 2148 */ 2149 inode_update_time(inode, S_ATIME); 2150 mnt_put_write_access(mnt); 2151 skip_update: 2152 sb_end_write(inode->i_sb); 2153 } 2154 EXPORT_SYMBOL(touch_atime); 2155 2156 /* 2157 * Return mask of changes for notify_change() that need to be done as a 2158 * response to write or truncate. Return 0 if nothing has to be changed. 2159 * Negative value on error (change should be denied). 2160 */ 2161 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2162 struct dentry *dentry) 2163 { 2164 struct inode *inode = d_inode(dentry); 2165 int mask = 0; 2166 int ret; 2167 2168 if (IS_NOSEC(inode)) 2169 return 0; 2170 2171 mask = setattr_should_drop_suidgid(idmap, inode); 2172 ret = security_inode_need_killpriv(dentry); 2173 if (ret < 0) 2174 return ret; 2175 if (ret) 2176 mask |= ATTR_KILL_PRIV; 2177 return mask; 2178 } 2179 2180 static int __remove_privs(struct mnt_idmap *idmap, 2181 struct dentry *dentry, int kill) 2182 { 2183 struct iattr newattrs; 2184 2185 newattrs.ia_valid = ATTR_FORCE | kill; 2186 /* 2187 * Note we call this on write, so notify_change will not 2188 * encounter any conflicting delegations: 2189 */ 2190 return notify_change(idmap, dentry, &newattrs, NULL); 2191 } 2192 2193 int file_remove_privs_flags(struct file *file, unsigned int flags) 2194 { 2195 struct dentry *dentry = file_dentry(file); 2196 struct inode *inode = file_inode(file); 2197 int error = 0; 2198 int kill; 2199 2200 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2201 return 0; 2202 2203 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2204 if (kill < 0) 2205 return kill; 2206 2207 if (kill) { 2208 if (flags & IOCB_NOWAIT) 2209 return -EAGAIN; 2210 2211 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2212 } 2213 2214 if (!error) 2215 inode_has_no_xattr(inode); 2216 return error; 2217 } 2218 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2219 2220 /** 2221 * file_remove_privs - remove special file privileges (suid, capabilities) 2222 * @file: file to remove privileges from 2223 * 2224 * When file is modified by a write or truncation ensure that special 2225 * file privileges are removed. 2226 * 2227 * Return: 0 on success, negative errno on failure. 2228 */ 2229 int file_remove_privs(struct file *file) 2230 { 2231 return file_remove_privs_flags(file, 0); 2232 } 2233 EXPORT_SYMBOL(file_remove_privs); 2234 2235 /** 2236 * current_time - Return FS time (possibly fine-grained) 2237 * @inode: inode. 2238 * 2239 * Return the current time truncated to the time granularity supported by 2240 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2241 * as having been QUERIED, get a fine-grained timestamp, but don't update 2242 * the floor. 2243 * 2244 * For a multigrain inode, this is effectively an estimate of the timestamp 2245 * that a file would receive. An actual update must go through 2246 * inode_set_ctime_current(). 2247 */ 2248 struct timespec64 current_time(struct inode *inode) 2249 { 2250 struct timespec64 now; 2251 u32 cns; 2252 2253 ktime_get_coarse_real_ts64_mg(&now); 2254 2255 if (!is_mgtime(inode)) 2256 goto out; 2257 2258 /* If nothing has queried it, then coarse time is fine */ 2259 cns = smp_load_acquire(&inode->i_ctime_nsec); 2260 if (cns & I_CTIME_QUERIED) { 2261 /* 2262 * If there is no apparent change, then get a fine-grained 2263 * timestamp. 2264 */ 2265 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2266 ktime_get_real_ts64(&now); 2267 } 2268 out: 2269 return timestamp_truncate(now, inode); 2270 } 2271 EXPORT_SYMBOL(current_time); 2272 2273 static int inode_needs_update_time(struct inode *inode) 2274 { 2275 struct timespec64 now, ts; 2276 int sync_it = 0; 2277 2278 /* First try to exhaust all avenues to not sync */ 2279 if (IS_NOCMTIME(inode)) 2280 return 0; 2281 2282 now = current_time(inode); 2283 2284 ts = inode_get_mtime(inode); 2285 if (!timespec64_equal(&ts, &now)) 2286 sync_it |= S_MTIME; 2287 2288 ts = inode_get_ctime(inode); 2289 if (!timespec64_equal(&ts, &now)) 2290 sync_it |= S_CTIME; 2291 2292 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2293 sync_it |= S_VERSION; 2294 2295 return sync_it; 2296 } 2297 2298 static int __file_update_time(struct file *file, int sync_mode) 2299 { 2300 int ret = 0; 2301 struct inode *inode = file_inode(file); 2302 2303 /* try to update time settings */ 2304 if (!mnt_get_write_access_file(file)) { 2305 ret = inode_update_time(inode, sync_mode); 2306 mnt_put_write_access_file(file); 2307 } 2308 2309 return ret; 2310 } 2311 2312 /** 2313 * file_update_time - update mtime and ctime time 2314 * @file: file accessed 2315 * 2316 * Update the mtime and ctime members of an inode and mark the inode for 2317 * writeback. Note that this function is meant exclusively for usage in 2318 * the file write path of filesystems, and filesystems may choose to 2319 * explicitly ignore updates via this function with the _NOCMTIME inode 2320 * flag, e.g. for network filesystem where these imestamps are handled 2321 * by the server. This can return an error for file systems who need to 2322 * allocate space in order to update an inode. 2323 * 2324 * Return: 0 on success, negative errno on failure. 2325 */ 2326 int file_update_time(struct file *file) 2327 { 2328 int ret; 2329 struct inode *inode = file_inode(file); 2330 2331 ret = inode_needs_update_time(inode); 2332 if (ret <= 0) 2333 return ret; 2334 2335 return __file_update_time(file, ret); 2336 } 2337 EXPORT_SYMBOL(file_update_time); 2338 2339 /** 2340 * file_modified_flags - handle mandated vfs changes when modifying a file 2341 * @file: file that was modified 2342 * @flags: kiocb flags 2343 * 2344 * When file has been modified ensure that special 2345 * file privileges are removed and time settings are updated. 2346 * 2347 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2348 * time settings will not be updated. It will return -EAGAIN. 2349 * 2350 * Context: Caller must hold the file's inode lock. 2351 * 2352 * Return: 0 on success, negative errno on failure. 2353 */ 2354 static int file_modified_flags(struct file *file, int flags) 2355 { 2356 int ret; 2357 struct inode *inode = file_inode(file); 2358 2359 /* 2360 * Clear the security bits if the process is not being run by root. 2361 * This keeps people from modifying setuid and setgid binaries. 2362 */ 2363 ret = file_remove_privs_flags(file, flags); 2364 if (ret) 2365 return ret; 2366 2367 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2368 return 0; 2369 2370 ret = inode_needs_update_time(inode); 2371 if (ret <= 0) 2372 return ret; 2373 if (flags & IOCB_NOWAIT) 2374 return -EAGAIN; 2375 2376 return __file_update_time(file, ret); 2377 } 2378 2379 /** 2380 * file_modified - handle mandated vfs changes when modifying a file 2381 * @file: file that was modified 2382 * 2383 * When file has been modified ensure that special 2384 * file privileges are removed and time settings are updated. 2385 * 2386 * Context: Caller must hold the file's inode lock. 2387 * 2388 * Return: 0 on success, negative errno on failure. 2389 */ 2390 int file_modified(struct file *file) 2391 { 2392 return file_modified_flags(file, 0); 2393 } 2394 EXPORT_SYMBOL(file_modified); 2395 2396 /** 2397 * kiocb_modified - handle mandated vfs changes when modifying a file 2398 * @iocb: iocb that was modified 2399 * 2400 * When file has been modified ensure that special 2401 * file privileges are removed and time settings are updated. 2402 * 2403 * Context: Caller must hold the file's inode lock. 2404 * 2405 * Return: 0 on success, negative errno on failure. 2406 */ 2407 int kiocb_modified(struct kiocb *iocb) 2408 { 2409 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2410 } 2411 EXPORT_SYMBOL_GPL(kiocb_modified); 2412 2413 int inode_needs_sync(struct inode *inode) 2414 { 2415 if (IS_SYNC(inode)) 2416 return 1; 2417 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2418 return 1; 2419 return 0; 2420 } 2421 EXPORT_SYMBOL(inode_needs_sync); 2422 2423 /* 2424 * If we try to find an inode in the inode hash while it is being 2425 * deleted, we have to wait until the filesystem completes its 2426 * deletion before reporting that it isn't found. This function waits 2427 * until the deletion _might_ have completed. Callers are responsible 2428 * to recheck inode state. 2429 * 2430 * It doesn't matter if I_NEW is not set initially, a call to 2431 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2432 * will DTRT. 2433 */ 2434 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2435 { 2436 struct wait_bit_queue_entry wqe; 2437 struct wait_queue_head *wq_head; 2438 2439 /* 2440 * Handle racing against evict(), see that routine for more details. 2441 */ 2442 if (unlikely(inode_unhashed(inode))) { 2443 WARN_ON(is_inode_hash_locked); 2444 spin_unlock(&inode->i_lock); 2445 return; 2446 } 2447 2448 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2449 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2450 spin_unlock(&inode->i_lock); 2451 rcu_read_unlock(); 2452 if (is_inode_hash_locked) 2453 spin_unlock(&inode_hash_lock); 2454 schedule(); 2455 finish_wait(wq_head, &wqe.wq_entry); 2456 if (is_inode_hash_locked) 2457 spin_lock(&inode_hash_lock); 2458 rcu_read_lock(); 2459 } 2460 2461 static __initdata unsigned long ihash_entries; 2462 static int __init set_ihash_entries(char *str) 2463 { 2464 if (!str) 2465 return 0; 2466 ihash_entries = simple_strtoul(str, &str, 0); 2467 return 1; 2468 } 2469 __setup("ihash_entries=", set_ihash_entries); 2470 2471 /* 2472 * Initialize the waitqueues and inode hash table. 2473 */ 2474 void __init inode_init_early(void) 2475 { 2476 /* If hashes are distributed across NUMA nodes, defer 2477 * hash allocation until vmalloc space is available. 2478 */ 2479 if (hashdist) 2480 return; 2481 2482 inode_hashtable = 2483 alloc_large_system_hash("Inode-cache", 2484 sizeof(struct hlist_head), 2485 ihash_entries, 2486 14, 2487 HASH_EARLY | HASH_ZERO, 2488 &i_hash_shift, 2489 &i_hash_mask, 2490 0, 2491 0); 2492 } 2493 2494 void __init inode_init(void) 2495 { 2496 /* inode slab cache */ 2497 inode_cachep = kmem_cache_create("inode_cache", 2498 sizeof(struct inode), 2499 0, 2500 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2501 SLAB_ACCOUNT), 2502 init_once); 2503 2504 /* Hash may have been set up in inode_init_early */ 2505 if (!hashdist) 2506 return; 2507 2508 inode_hashtable = 2509 alloc_large_system_hash("Inode-cache", 2510 sizeof(struct hlist_head), 2511 ihash_entries, 2512 14, 2513 HASH_ZERO, 2514 &i_hash_shift, 2515 &i_hash_mask, 2516 0, 2517 0); 2518 } 2519 2520 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2521 { 2522 inode->i_mode = mode; 2523 if (S_ISCHR(mode)) { 2524 inode->i_fop = &def_chr_fops; 2525 inode->i_rdev = rdev; 2526 } else if (S_ISBLK(mode)) { 2527 if (IS_ENABLED(CONFIG_BLOCK)) 2528 inode->i_fop = &def_blk_fops; 2529 inode->i_rdev = rdev; 2530 } else if (S_ISFIFO(mode)) 2531 inode->i_fop = &pipefifo_fops; 2532 else if (S_ISSOCK(mode)) 2533 ; /* leave it no_open_fops */ 2534 else 2535 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2536 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2537 inode->i_ino); 2538 } 2539 EXPORT_SYMBOL(init_special_inode); 2540 2541 /** 2542 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2543 * @idmap: idmap of the mount the inode was created from 2544 * @inode: New inode 2545 * @dir: Directory inode 2546 * @mode: mode of the new inode 2547 * 2548 * If the inode has been created through an idmapped mount the idmap of 2549 * the vfsmount must be passed through @idmap. This function will then take 2550 * care to map the inode according to @idmap before checking permissions 2551 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2552 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2553 */ 2554 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2555 const struct inode *dir, umode_t mode) 2556 { 2557 inode_fsuid_set(inode, idmap); 2558 if (dir && dir->i_mode & S_ISGID) { 2559 inode->i_gid = dir->i_gid; 2560 2561 /* Directories are special, and always inherit S_ISGID */ 2562 if (S_ISDIR(mode)) 2563 mode |= S_ISGID; 2564 } else 2565 inode_fsgid_set(inode, idmap); 2566 inode->i_mode = mode; 2567 } 2568 EXPORT_SYMBOL(inode_init_owner); 2569 2570 /** 2571 * inode_owner_or_capable - check current task permissions to inode 2572 * @idmap: idmap of the mount the inode was found from 2573 * @inode: inode being checked 2574 * 2575 * Return true if current either has CAP_FOWNER in a namespace with the 2576 * inode owner uid mapped, or owns the file. 2577 * 2578 * If the inode has been found through an idmapped mount the idmap of 2579 * the vfsmount must be passed through @idmap. This function will then take 2580 * care to map the inode according to @idmap before checking permissions. 2581 * On non-idmapped mounts or if permission checking is to be performed on the 2582 * raw inode simply pass @nop_mnt_idmap. 2583 */ 2584 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2585 const struct inode *inode) 2586 { 2587 vfsuid_t vfsuid; 2588 struct user_namespace *ns; 2589 2590 vfsuid = i_uid_into_vfsuid(idmap, inode); 2591 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2592 return true; 2593 2594 ns = current_user_ns(); 2595 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2596 return true; 2597 return false; 2598 } 2599 EXPORT_SYMBOL(inode_owner_or_capable); 2600 2601 /* 2602 * Direct i/o helper functions 2603 */ 2604 bool inode_dio_finished(const struct inode *inode) 2605 { 2606 return atomic_read(&inode->i_dio_count) == 0; 2607 } 2608 EXPORT_SYMBOL(inode_dio_finished); 2609 2610 /** 2611 * inode_dio_wait - wait for outstanding DIO requests to finish 2612 * @inode: inode to wait for 2613 * 2614 * Waits for all pending direct I/O requests to finish so that we can 2615 * proceed with a truncate or equivalent operation. 2616 * 2617 * Must be called under a lock that serializes taking new references 2618 * to i_dio_count, usually by inode->i_mutex. 2619 */ 2620 void inode_dio_wait(struct inode *inode) 2621 { 2622 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2623 } 2624 EXPORT_SYMBOL(inode_dio_wait); 2625 2626 void inode_dio_wait_interruptible(struct inode *inode) 2627 { 2628 wait_var_event_interruptible(&inode->i_dio_count, 2629 inode_dio_finished(inode)); 2630 } 2631 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2632 2633 /* 2634 * inode_set_flags - atomically set some inode flags 2635 * 2636 * Note: the caller should be holding i_mutex, or else be sure that 2637 * they have exclusive access to the inode structure (i.e., while the 2638 * inode is being instantiated). The reason for the cmpxchg() loop 2639 * --- which wouldn't be necessary if all code paths which modify 2640 * i_flags actually followed this rule, is that there is at least one 2641 * code path which doesn't today so we use cmpxchg() out of an abundance 2642 * of caution. 2643 * 2644 * In the long run, i_mutex is overkill, and we should probably look 2645 * at using the i_lock spinlock to protect i_flags, and then make sure 2646 * it is so documented in include/linux/fs.h and that all code follows 2647 * the locking convention!! 2648 */ 2649 void inode_set_flags(struct inode *inode, unsigned int flags, 2650 unsigned int mask) 2651 { 2652 WARN_ON_ONCE(flags & ~mask); 2653 set_mask_bits(&inode->i_flags, mask, flags); 2654 } 2655 EXPORT_SYMBOL(inode_set_flags); 2656 2657 void inode_nohighmem(struct inode *inode) 2658 { 2659 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2660 } 2661 EXPORT_SYMBOL(inode_nohighmem); 2662 2663 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2664 { 2665 trace_inode_set_ctime_to_ts(inode, &ts); 2666 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2667 inode->i_ctime_sec = ts.tv_sec; 2668 inode->i_ctime_nsec = ts.tv_nsec; 2669 return ts; 2670 } 2671 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2672 2673 /** 2674 * timestamp_truncate - Truncate timespec to a granularity 2675 * @t: Timespec 2676 * @inode: inode being updated 2677 * 2678 * Truncate a timespec to the granularity supported by the fs 2679 * containing the inode. Always rounds down. gran must 2680 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2681 */ 2682 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2683 { 2684 struct super_block *sb = inode->i_sb; 2685 unsigned int gran = sb->s_time_gran; 2686 2687 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2688 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2689 t.tv_nsec = 0; 2690 2691 /* Avoid division in the common cases 1 ns and 1 s. */ 2692 if (gran == 1) 2693 ; /* nothing */ 2694 else if (gran == NSEC_PER_SEC) 2695 t.tv_nsec = 0; 2696 else if (gran > 1 && gran < NSEC_PER_SEC) 2697 t.tv_nsec -= t.tv_nsec % gran; 2698 else 2699 WARN(1, "invalid file time granularity: %u", gran); 2700 return t; 2701 } 2702 EXPORT_SYMBOL(timestamp_truncate); 2703 2704 /** 2705 * inode_set_ctime_current - set the ctime to current_time 2706 * @inode: inode 2707 * 2708 * Set the inode's ctime to the current value for the inode. Returns the 2709 * current value that was assigned. If this is not a multigrain inode, then we 2710 * set it to the later of the coarse time and floor value. 2711 * 2712 * If it is multigrain, then we first see if the coarse-grained timestamp is 2713 * distinct from what is already there. If so, then use that. Otherwise, get a 2714 * fine-grained timestamp. 2715 * 2716 * After that, try to swap the new value into i_ctime_nsec. Accept the 2717 * resulting ctime, regardless of the outcome of the swap. If it has 2718 * already been replaced, then that timestamp is later than the earlier 2719 * unacceptable one, and is thus acceptable. 2720 */ 2721 struct timespec64 inode_set_ctime_current(struct inode *inode) 2722 { 2723 struct timespec64 now; 2724 u32 cns, cur; 2725 2726 ktime_get_coarse_real_ts64_mg(&now); 2727 now = timestamp_truncate(now, inode); 2728 2729 /* Just return that if this is not a multigrain fs */ 2730 if (!is_mgtime(inode)) { 2731 inode_set_ctime_to_ts(inode, now); 2732 goto out; 2733 } 2734 2735 /* 2736 * A fine-grained time is only needed if someone has queried 2737 * for timestamps, and the current coarse grained time isn't 2738 * later than what's already there. 2739 */ 2740 cns = smp_load_acquire(&inode->i_ctime_nsec); 2741 if (cns & I_CTIME_QUERIED) { 2742 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2743 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2744 2745 if (timespec64_compare(&now, &ctime) <= 0) { 2746 ktime_get_real_ts64_mg(&now); 2747 now = timestamp_truncate(now, inode); 2748 mgtime_counter_inc(mg_fine_stamps); 2749 } 2750 } 2751 mgtime_counter_inc(mg_ctime_updates); 2752 2753 /* No need to cmpxchg if it's exactly the same */ 2754 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2755 trace_ctime_xchg_skip(inode, &now); 2756 goto out; 2757 } 2758 cur = cns; 2759 retry: 2760 /* Try to swap the nsec value into place. */ 2761 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2762 /* If swap occurred, then we're (mostly) done */ 2763 inode->i_ctime_sec = now.tv_sec; 2764 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2765 mgtime_counter_inc(mg_ctime_swaps); 2766 } else { 2767 /* 2768 * Was the change due to someone marking the old ctime QUERIED? 2769 * If so then retry the swap. This can only happen once since 2770 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2771 * with a new ctime. 2772 */ 2773 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2774 cns = cur; 2775 goto retry; 2776 } 2777 /* Otherwise, keep the existing ctime */ 2778 now.tv_sec = inode->i_ctime_sec; 2779 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2780 } 2781 out: 2782 return now; 2783 } 2784 EXPORT_SYMBOL(inode_set_ctime_current); 2785 2786 /** 2787 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2788 * @inode: inode to update 2789 * @update: timespec64 to set the ctime 2790 * 2791 * Attempt to atomically update the ctime on behalf of a delegation holder. 2792 * 2793 * The nfs server can call back the holder of a delegation to get updated 2794 * inode attributes, including the mtime. When updating the mtime, update 2795 * the ctime to a value at least equal to that. 2796 * 2797 * This can race with concurrent updates to the inode, in which 2798 * case the update is skipped. 2799 * 2800 * Note that this works even when multigrain timestamps are not enabled, 2801 * so it is used in either case. 2802 */ 2803 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2804 { 2805 struct timespec64 now, cur_ts; 2806 u32 cur, old; 2807 2808 /* pairs with try_cmpxchg below */ 2809 cur = smp_load_acquire(&inode->i_ctime_nsec); 2810 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2811 cur_ts.tv_sec = inode->i_ctime_sec; 2812 2813 /* If the update is older than the existing value, skip it. */ 2814 if (timespec64_compare(&update, &cur_ts) <= 0) 2815 return cur_ts; 2816 2817 ktime_get_coarse_real_ts64_mg(&now); 2818 2819 /* Clamp the update to "now" if it's in the future */ 2820 if (timespec64_compare(&update, &now) > 0) 2821 update = now; 2822 2823 update = timestamp_truncate(update, inode); 2824 2825 /* No need to update if the values are already the same */ 2826 if (timespec64_equal(&update, &cur_ts)) 2827 return cur_ts; 2828 2829 /* 2830 * Try to swap the nsec value into place. If it fails, that means 2831 * it raced with an update due to a write or similar activity. That 2832 * stamp takes precedence, so just skip the update. 2833 */ 2834 retry: 2835 old = cur; 2836 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2837 inode->i_ctime_sec = update.tv_sec; 2838 mgtime_counter_inc(mg_ctime_swaps); 2839 return update; 2840 } 2841 2842 /* 2843 * Was the change due to another task marking the old ctime QUERIED? 2844 * 2845 * If so, then retry the swap. This can only happen once since 2846 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2847 * with a new ctime. 2848 */ 2849 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2850 goto retry; 2851 2852 /* Otherwise, it was a new timestamp. */ 2853 cur_ts.tv_sec = inode->i_ctime_sec; 2854 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2855 return cur_ts; 2856 } 2857 EXPORT_SYMBOL(inode_set_ctime_deleg); 2858 2859 /** 2860 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2861 * @idmap: idmap of the mount @inode was found from 2862 * @inode: inode to check 2863 * @vfsgid: the new/current vfsgid of @inode 2864 * 2865 * Check whether @vfsgid is in the caller's group list or if the caller is 2866 * privileged with CAP_FSETID over @inode. This can be used to determine 2867 * whether the setgid bit can be kept or must be dropped. 2868 * 2869 * Return: true if the caller is sufficiently privileged, false if not. 2870 */ 2871 bool in_group_or_capable(struct mnt_idmap *idmap, 2872 const struct inode *inode, vfsgid_t vfsgid) 2873 { 2874 if (vfsgid_in_group_p(vfsgid)) 2875 return true; 2876 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2877 return true; 2878 return false; 2879 } 2880 EXPORT_SYMBOL(in_group_or_capable); 2881 2882 /** 2883 * mode_strip_sgid - handle the sgid bit for non-directories 2884 * @idmap: idmap of the mount the inode was created from 2885 * @dir: parent directory inode 2886 * @mode: mode of the file to be created in @dir 2887 * 2888 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2889 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2890 * either in the group of the parent directory or they have CAP_FSETID 2891 * in their user namespace and are privileged over the parent directory. 2892 * In all other cases, strip the S_ISGID bit from @mode. 2893 * 2894 * Return: the new mode to use for the file 2895 */ 2896 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2897 const struct inode *dir, umode_t mode) 2898 { 2899 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2900 return mode; 2901 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2902 return mode; 2903 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2904 return mode; 2905 return mode & ~S_ISGID; 2906 } 2907 EXPORT_SYMBOL(mode_strip_sgid); 2908 2909 #ifdef CONFIG_DEBUG_VFS 2910 /* 2911 * Dump an inode. 2912 * 2913 * TODO: add a proper inode dumping routine, this is a stub to get debug off the 2914 * ground. 2915 */ 2916 void dump_inode(struct inode *inode, const char *reason) 2917 { 2918 pr_warn("%s encountered for inode %px", reason, inode); 2919 } 2920 2921 EXPORT_SYMBOL(dump_inode); 2922 #endif 2923