1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/fs.h> 9 #include <linux/mm.h> 10 #include <linux/dcache.h> 11 #include <linux/init.h> 12 #include <linux/quotaops.h> 13 #include <linux/slab.h> 14 #include <linux/writeback.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/hash.h> 19 #include <linux/swap.h> 20 #include <linux/security.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/mount.h> 26 27 /* 28 * This is needed for the following functions: 29 * - inode_has_buffers 30 * - invalidate_inode_buffers 31 * - invalidate_bdev 32 * 33 * FIXME: remove all knowledge of the buffer layer from this file 34 */ 35 #include <linux/buffer_head.h> 36 37 /* 38 * New inode.c implementation. 39 * 40 * This implementation has the basic premise of trying 41 * to be extremely low-overhead and SMP-safe, yet be 42 * simple enough to be "obviously correct". 43 * 44 * Famous last words. 45 */ 46 47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 48 49 /* #define INODE_PARANOIA 1 */ 50 /* #define INODE_DEBUG 1 */ 51 52 /* 53 * Inode lookup is no longer as critical as it used to be: 54 * most of the lookups are going to be through the dcache. 55 */ 56 #define I_HASHBITS i_hash_shift 57 #define I_HASHMASK i_hash_mask 58 59 static unsigned int i_hash_mask __read_mostly; 60 static unsigned int i_hash_shift __read_mostly; 61 62 /* 63 * Each inode can be on two separate lists. One is 64 * the hash list of the inode, used for lookups. The 65 * other linked list is the "type" list: 66 * "in_use" - valid inode, i_count > 0, i_nlink > 0 67 * "dirty" - as "in_use" but also dirty 68 * "unused" - valid inode, i_count = 0 69 * 70 * A "dirty" list is maintained for each super block, 71 * allowing for low-overhead inode sync() operations. 72 */ 73 74 LIST_HEAD(inode_in_use); 75 LIST_HEAD(inode_unused); 76 static struct hlist_head *inode_hashtable __read_mostly; 77 78 /* 79 * A simple spinlock to protect the list manipulations. 80 * 81 * NOTE! You also have to own the lock if you change 82 * the i_state of an inode while it is in use.. 83 */ 84 DEFINE_SPINLOCK(inode_lock); 85 86 /* 87 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 88 * icache shrinking path, and the umount path. Without this exclusion, 89 * by the time prune_icache calls iput for the inode whose pages it has 90 * been invalidating, or by the time it calls clear_inode & destroy_inode 91 * from its final dispose_list, the struct super_block they refer to 92 * (for inode->i_sb->s_op) may already have been freed and reused. 93 */ 94 static DEFINE_MUTEX(iprune_mutex); 95 96 /* 97 * Statistics gathering.. 98 */ 99 struct inodes_stat_t inodes_stat; 100 101 static kmem_cache_t * inode_cachep __read_mostly; 102 103 static struct inode *alloc_inode(struct super_block *sb) 104 { 105 static struct address_space_operations empty_aops; 106 static struct inode_operations empty_iops; 107 static const struct file_operations empty_fops; 108 struct inode *inode; 109 110 if (sb->s_op->alloc_inode) 111 inode = sb->s_op->alloc_inode(sb); 112 else 113 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); 114 115 if (inode) { 116 struct address_space * const mapping = &inode->i_data; 117 118 inode->i_sb = sb; 119 inode->i_blkbits = sb->s_blocksize_bits; 120 inode->i_flags = 0; 121 atomic_set(&inode->i_count, 1); 122 inode->i_op = &empty_iops; 123 inode->i_fop = &empty_fops; 124 inode->i_nlink = 1; 125 atomic_set(&inode->i_writecount, 0); 126 inode->i_size = 0; 127 inode->i_blocks = 0; 128 inode->i_bytes = 0; 129 inode->i_generation = 0; 130 #ifdef CONFIG_QUOTA 131 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 132 #endif 133 inode->i_pipe = NULL; 134 inode->i_bdev = NULL; 135 inode->i_cdev = NULL; 136 inode->i_rdev = 0; 137 inode->i_security = NULL; 138 inode->dirtied_when = 0; 139 if (security_inode_alloc(inode)) { 140 if (inode->i_sb->s_op->destroy_inode) 141 inode->i_sb->s_op->destroy_inode(inode); 142 else 143 kmem_cache_free(inode_cachep, (inode)); 144 return NULL; 145 } 146 147 mapping->a_ops = &empty_aops; 148 mapping->host = inode; 149 mapping->flags = 0; 150 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 151 mapping->assoc_mapping = NULL; 152 mapping->backing_dev_info = &default_backing_dev_info; 153 154 /* 155 * If the block_device provides a backing_dev_info for client 156 * inodes then use that. Otherwise the inode share the bdev's 157 * backing_dev_info. 158 */ 159 if (sb->s_bdev) { 160 struct backing_dev_info *bdi; 161 162 bdi = sb->s_bdev->bd_inode_backing_dev_info; 163 if (!bdi) 164 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 165 mapping->backing_dev_info = bdi; 166 } 167 memset(&inode->u, 0, sizeof(inode->u)); 168 inode->i_mapping = mapping; 169 } 170 return inode; 171 } 172 173 void destroy_inode(struct inode *inode) 174 { 175 BUG_ON(inode_has_buffers(inode)); 176 security_inode_free(inode); 177 if (inode->i_sb->s_op->destroy_inode) 178 inode->i_sb->s_op->destroy_inode(inode); 179 else 180 kmem_cache_free(inode_cachep, (inode)); 181 } 182 183 184 /* 185 * These are initializations that only need to be done 186 * once, because the fields are idempotent across use 187 * of the inode, so let the slab aware of that. 188 */ 189 void inode_init_once(struct inode *inode) 190 { 191 memset(inode, 0, sizeof(*inode)); 192 INIT_HLIST_NODE(&inode->i_hash); 193 INIT_LIST_HEAD(&inode->i_dentry); 194 INIT_LIST_HEAD(&inode->i_devices); 195 mutex_init(&inode->i_mutex); 196 init_rwsem(&inode->i_alloc_sem); 197 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 198 rwlock_init(&inode->i_data.tree_lock); 199 spin_lock_init(&inode->i_data.i_mmap_lock); 200 INIT_LIST_HEAD(&inode->i_data.private_list); 201 spin_lock_init(&inode->i_data.private_lock); 202 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 203 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 204 spin_lock_init(&inode->i_lock); 205 i_size_ordered_init(inode); 206 #ifdef CONFIG_INOTIFY 207 INIT_LIST_HEAD(&inode->inotify_watches); 208 mutex_init(&inode->inotify_mutex); 209 #endif 210 } 211 212 EXPORT_SYMBOL(inode_init_once); 213 214 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 215 { 216 struct inode * inode = (struct inode *) foo; 217 218 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 219 SLAB_CTOR_CONSTRUCTOR) 220 inode_init_once(inode); 221 } 222 223 /* 224 * inode_lock must be held 225 */ 226 void __iget(struct inode * inode) 227 { 228 if (atomic_read(&inode->i_count)) { 229 atomic_inc(&inode->i_count); 230 return; 231 } 232 atomic_inc(&inode->i_count); 233 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 234 list_move(&inode->i_list, &inode_in_use); 235 inodes_stat.nr_unused--; 236 } 237 238 /** 239 * clear_inode - clear an inode 240 * @inode: inode to clear 241 * 242 * This is called by the filesystem to tell us 243 * that the inode is no longer useful. We just 244 * terminate it with extreme prejudice. 245 */ 246 void clear_inode(struct inode *inode) 247 { 248 might_sleep(); 249 invalidate_inode_buffers(inode); 250 251 BUG_ON(inode->i_data.nrpages); 252 BUG_ON(!(inode->i_state & I_FREEING)); 253 BUG_ON(inode->i_state & I_CLEAR); 254 wait_on_inode(inode); 255 DQUOT_DROP(inode); 256 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 257 inode->i_sb->s_op->clear_inode(inode); 258 if (inode->i_bdev) 259 bd_forget(inode); 260 if (inode->i_cdev) 261 cd_forget(inode); 262 inode->i_state = I_CLEAR; 263 } 264 265 EXPORT_SYMBOL(clear_inode); 266 267 /* 268 * dispose_list - dispose of the contents of a local list 269 * @head: the head of the list to free 270 * 271 * Dispose-list gets a local list with local inodes in it, so it doesn't 272 * need to worry about list corruption and SMP locks. 273 */ 274 static void dispose_list(struct list_head *head) 275 { 276 int nr_disposed = 0; 277 278 while (!list_empty(head)) { 279 struct inode *inode; 280 281 inode = list_entry(head->next, struct inode, i_list); 282 list_del(&inode->i_list); 283 284 if (inode->i_data.nrpages) 285 truncate_inode_pages(&inode->i_data, 0); 286 clear_inode(inode); 287 288 spin_lock(&inode_lock); 289 hlist_del_init(&inode->i_hash); 290 list_del_init(&inode->i_sb_list); 291 spin_unlock(&inode_lock); 292 293 wake_up_inode(inode); 294 destroy_inode(inode); 295 nr_disposed++; 296 } 297 spin_lock(&inode_lock); 298 inodes_stat.nr_inodes -= nr_disposed; 299 spin_unlock(&inode_lock); 300 } 301 302 /* 303 * Invalidate all inodes for a device. 304 */ 305 static int invalidate_list(struct list_head *head, struct list_head *dispose) 306 { 307 struct list_head *next; 308 int busy = 0, count = 0; 309 310 next = head->next; 311 for (;;) { 312 struct list_head * tmp = next; 313 struct inode * inode; 314 315 /* 316 * We can reschedule here without worrying about the list's 317 * consistency because the per-sb list of inodes must not 318 * change during umount anymore, and because iprune_mutex keeps 319 * shrink_icache_memory() away. 320 */ 321 cond_resched_lock(&inode_lock); 322 323 next = next->next; 324 if (tmp == head) 325 break; 326 inode = list_entry(tmp, struct inode, i_sb_list); 327 invalidate_inode_buffers(inode); 328 if (!atomic_read(&inode->i_count)) { 329 list_move(&inode->i_list, dispose); 330 inode->i_state |= I_FREEING; 331 count++; 332 continue; 333 } 334 busy = 1; 335 } 336 /* only unused inodes may be cached with i_count zero */ 337 inodes_stat.nr_unused -= count; 338 return busy; 339 } 340 341 /** 342 * invalidate_inodes - discard the inodes on a device 343 * @sb: superblock 344 * 345 * Discard all of the inodes for a given superblock. If the discard 346 * fails because there are busy inodes then a non zero value is returned. 347 * If the discard is successful all the inodes have been discarded. 348 */ 349 int invalidate_inodes(struct super_block * sb) 350 { 351 int busy; 352 LIST_HEAD(throw_away); 353 354 mutex_lock(&iprune_mutex); 355 spin_lock(&inode_lock); 356 inotify_unmount_inodes(&sb->s_inodes); 357 busy = invalidate_list(&sb->s_inodes, &throw_away); 358 spin_unlock(&inode_lock); 359 360 dispose_list(&throw_away); 361 mutex_unlock(&iprune_mutex); 362 363 return busy; 364 } 365 366 EXPORT_SYMBOL(invalidate_inodes); 367 368 int __invalidate_device(struct block_device *bdev) 369 { 370 struct super_block *sb = get_super(bdev); 371 int res = 0; 372 373 if (sb) { 374 /* 375 * no need to lock the super, get_super holds the 376 * read mutex so the filesystem cannot go away 377 * under us (->put_super runs with the write lock 378 * hold). 379 */ 380 shrink_dcache_sb(sb); 381 res = invalidate_inodes(sb); 382 drop_super(sb); 383 } 384 invalidate_bdev(bdev, 0); 385 return res; 386 } 387 EXPORT_SYMBOL(__invalidate_device); 388 389 static int can_unuse(struct inode *inode) 390 { 391 if (inode->i_state) 392 return 0; 393 if (inode_has_buffers(inode)) 394 return 0; 395 if (atomic_read(&inode->i_count)) 396 return 0; 397 if (inode->i_data.nrpages) 398 return 0; 399 return 1; 400 } 401 402 /* 403 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 404 * a temporary list and then are freed outside inode_lock by dispose_list(). 405 * 406 * Any inodes which are pinned purely because of attached pagecache have their 407 * pagecache removed. We expect the final iput() on that inode to add it to 408 * the front of the inode_unused list. So look for it there and if the 409 * inode is still freeable, proceed. The right inode is found 99.9% of the 410 * time in testing on a 4-way. 411 * 412 * If the inode has metadata buffers attached to mapping->private_list then 413 * try to remove them. 414 */ 415 static void prune_icache(int nr_to_scan) 416 { 417 LIST_HEAD(freeable); 418 int nr_pruned = 0; 419 int nr_scanned; 420 unsigned long reap = 0; 421 422 mutex_lock(&iprune_mutex); 423 spin_lock(&inode_lock); 424 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 425 struct inode *inode; 426 427 if (list_empty(&inode_unused)) 428 break; 429 430 inode = list_entry(inode_unused.prev, struct inode, i_list); 431 432 if (inode->i_state || atomic_read(&inode->i_count)) { 433 list_move(&inode->i_list, &inode_unused); 434 continue; 435 } 436 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 437 __iget(inode); 438 spin_unlock(&inode_lock); 439 if (remove_inode_buffers(inode)) 440 reap += invalidate_inode_pages(&inode->i_data); 441 iput(inode); 442 spin_lock(&inode_lock); 443 444 if (inode != list_entry(inode_unused.next, 445 struct inode, i_list)) 446 continue; /* wrong inode or list_empty */ 447 if (!can_unuse(inode)) 448 continue; 449 } 450 list_move(&inode->i_list, &freeable); 451 inode->i_state |= I_FREEING; 452 nr_pruned++; 453 } 454 inodes_stat.nr_unused -= nr_pruned; 455 spin_unlock(&inode_lock); 456 457 dispose_list(&freeable); 458 mutex_unlock(&iprune_mutex); 459 460 if (current_is_kswapd()) 461 mod_page_state(kswapd_inodesteal, reap); 462 else 463 mod_page_state(pginodesteal, reap); 464 } 465 466 /* 467 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 468 * "unused" means that no dentries are referring to the inodes: the files are 469 * not open and the dcache references to those inodes have already been 470 * reclaimed. 471 * 472 * This function is passed the number of inodes to scan, and it returns the 473 * total number of remaining possibly-reclaimable inodes. 474 */ 475 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 476 { 477 if (nr) { 478 /* 479 * Nasty deadlock avoidance. We may hold various FS locks, 480 * and we don't want to recurse into the FS that called us 481 * in clear_inode() and friends.. 482 */ 483 if (!(gfp_mask & __GFP_FS)) 484 return -1; 485 prune_icache(nr); 486 } 487 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 488 } 489 490 static void __wait_on_freeing_inode(struct inode *inode); 491 /* 492 * Called with the inode lock held. 493 * NOTE: we are not increasing the inode-refcount, you must call __iget() 494 * by hand after calling find_inode now! This simplifies iunique and won't 495 * add any additional branch in the common code. 496 */ 497 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 498 { 499 struct hlist_node *node; 500 struct inode * inode = NULL; 501 502 repeat: 503 hlist_for_each (node, head) { 504 inode = hlist_entry(node, struct inode, i_hash); 505 if (inode->i_sb != sb) 506 continue; 507 if (!test(inode, data)) 508 continue; 509 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 510 __wait_on_freeing_inode(inode); 511 goto repeat; 512 } 513 break; 514 } 515 return node ? inode : NULL; 516 } 517 518 /* 519 * find_inode_fast is the fast path version of find_inode, see the comment at 520 * iget_locked for details. 521 */ 522 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 523 { 524 struct hlist_node *node; 525 struct inode * inode = NULL; 526 527 repeat: 528 hlist_for_each (node, head) { 529 inode = hlist_entry(node, struct inode, i_hash); 530 if (inode->i_ino != ino) 531 continue; 532 if (inode->i_sb != sb) 533 continue; 534 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 535 __wait_on_freeing_inode(inode); 536 goto repeat; 537 } 538 break; 539 } 540 return node ? inode : NULL; 541 } 542 543 /** 544 * new_inode - obtain an inode 545 * @sb: superblock 546 * 547 * Allocates a new inode for given superblock. 548 */ 549 struct inode *new_inode(struct super_block *sb) 550 { 551 static unsigned long last_ino; 552 struct inode * inode; 553 554 spin_lock_prefetch(&inode_lock); 555 556 inode = alloc_inode(sb); 557 if (inode) { 558 spin_lock(&inode_lock); 559 inodes_stat.nr_inodes++; 560 list_add(&inode->i_list, &inode_in_use); 561 list_add(&inode->i_sb_list, &sb->s_inodes); 562 inode->i_ino = ++last_ino; 563 inode->i_state = 0; 564 spin_unlock(&inode_lock); 565 } 566 return inode; 567 } 568 569 EXPORT_SYMBOL(new_inode); 570 571 void unlock_new_inode(struct inode *inode) 572 { 573 /* 574 * This is special! We do not need the spinlock 575 * when clearing I_LOCK, because we're guaranteed 576 * that nobody else tries to do anything about the 577 * state of the inode when it is locked, as we 578 * just created it (so there can be no old holders 579 * that haven't tested I_LOCK). 580 */ 581 inode->i_state &= ~(I_LOCK|I_NEW); 582 wake_up_inode(inode); 583 } 584 585 EXPORT_SYMBOL(unlock_new_inode); 586 587 /* 588 * This is called without the inode lock held.. Be careful. 589 * 590 * We no longer cache the sb_flags in i_flags - see fs.h 591 * -- rmk@arm.uk.linux.org 592 */ 593 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 594 { 595 struct inode * inode; 596 597 inode = alloc_inode(sb); 598 if (inode) { 599 struct inode * old; 600 601 spin_lock(&inode_lock); 602 /* We released the lock, so.. */ 603 old = find_inode(sb, head, test, data); 604 if (!old) { 605 if (set(inode, data)) 606 goto set_failed; 607 608 inodes_stat.nr_inodes++; 609 list_add(&inode->i_list, &inode_in_use); 610 list_add(&inode->i_sb_list, &sb->s_inodes); 611 hlist_add_head(&inode->i_hash, head); 612 inode->i_state = I_LOCK|I_NEW; 613 spin_unlock(&inode_lock); 614 615 /* Return the locked inode with I_NEW set, the 616 * caller is responsible for filling in the contents 617 */ 618 return inode; 619 } 620 621 /* 622 * Uhhuh, somebody else created the same inode under 623 * us. Use the old inode instead of the one we just 624 * allocated. 625 */ 626 __iget(old); 627 spin_unlock(&inode_lock); 628 destroy_inode(inode); 629 inode = old; 630 wait_on_inode(inode); 631 } 632 return inode; 633 634 set_failed: 635 spin_unlock(&inode_lock); 636 destroy_inode(inode); 637 return NULL; 638 } 639 640 /* 641 * get_new_inode_fast is the fast path version of get_new_inode, see the 642 * comment at iget_locked for details. 643 */ 644 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 645 { 646 struct inode * inode; 647 648 inode = alloc_inode(sb); 649 if (inode) { 650 struct inode * old; 651 652 spin_lock(&inode_lock); 653 /* We released the lock, so.. */ 654 old = find_inode_fast(sb, head, ino); 655 if (!old) { 656 inode->i_ino = ino; 657 inodes_stat.nr_inodes++; 658 list_add(&inode->i_list, &inode_in_use); 659 list_add(&inode->i_sb_list, &sb->s_inodes); 660 hlist_add_head(&inode->i_hash, head); 661 inode->i_state = I_LOCK|I_NEW; 662 spin_unlock(&inode_lock); 663 664 /* Return the locked inode with I_NEW set, the 665 * caller is responsible for filling in the contents 666 */ 667 return inode; 668 } 669 670 /* 671 * Uhhuh, somebody else created the same inode under 672 * us. Use the old inode instead of the one we just 673 * allocated. 674 */ 675 __iget(old); 676 spin_unlock(&inode_lock); 677 destroy_inode(inode); 678 inode = old; 679 wait_on_inode(inode); 680 } 681 return inode; 682 } 683 684 static inline unsigned long hash(struct super_block *sb, unsigned long hashval) 685 { 686 unsigned long tmp; 687 688 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 689 L1_CACHE_BYTES; 690 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 691 return tmp & I_HASHMASK; 692 } 693 694 /** 695 * iunique - get a unique inode number 696 * @sb: superblock 697 * @max_reserved: highest reserved inode number 698 * 699 * Obtain an inode number that is unique on the system for a given 700 * superblock. This is used by file systems that have no natural 701 * permanent inode numbering system. An inode number is returned that 702 * is higher than the reserved limit but unique. 703 * 704 * BUGS: 705 * With a large number of inodes live on the file system this function 706 * currently becomes quite slow. 707 */ 708 ino_t iunique(struct super_block *sb, ino_t max_reserved) 709 { 710 static ino_t counter; 711 struct inode *inode; 712 struct hlist_head * head; 713 ino_t res; 714 spin_lock(&inode_lock); 715 retry: 716 if (counter > max_reserved) { 717 head = inode_hashtable + hash(sb,counter); 718 res = counter++; 719 inode = find_inode_fast(sb, head, res); 720 if (!inode) { 721 spin_unlock(&inode_lock); 722 return res; 723 } 724 } else { 725 counter = max_reserved + 1; 726 } 727 goto retry; 728 729 } 730 731 EXPORT_SYMBOL(iunique); 732 733 struct inode *igrab(struct inode *inode) 734 { 735 spin_lock(&inode_lock); 736 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 737 __iget(inode); 738 else 739 /* 740 * Handle the case where s_op->clear_inode is not been 741 * called yet, and somebody is calling igrab 742 * while the inode is getting freed. 743 */ 744 inode = NULL; 745 spin_unlock(&inode_lock); 746 return inode; 747 } 748 749 EXPORT_SYMBOL(igrab); 750 751 /** 752 * ifind - internal function, you want ilookup5() or iget5(). 753 * @sb: super block of file system to search 754 * @head: the head of the list to search 755 * @test: callback used for comparisons between inodes 756 * @data: opaque data pointer to pass to @test 757 * @wait: if true wait for the inode to be unlocked, if false do not 758 * 759 * ifind() searches for the inode specified by @data in the inode 760 * cache. This is a generalized version of ifind_fast() for file systems where 761 * the inode number is not sufficient for unique identification of an inode. 762 * 763 * If the inode is in the cache, the inode is returned with an incremented 764 * reference count. 765 * 766 * Otherwise NULL is returned. 767 * 768 * Note, @test is called with the inode_lock held, so can't sleep. 769 */ 770 static struct inode *ifind(struct super_block *sb, 771 struct hlist_head *head, int (*test)(struct inode *, void *), 772 void *data, const int wait) 773 { 774 struct inode *inode; 775 776 spin_lock(&inode_lock); 777 inode = find_inode(sb, head, test, data); 778 if (inode) { 779 __iget(inode); 780 spin_unlock(&inode_lock); 781 if (likely(wait)) 782 wait_on_inode(inode); 783 return inode; 784 } 785 spin_unlock(&inode_lock); 786 return NULL; 787 } 788 789 /** 790 * ifind_fast - internal function, you want ilookup() or iget(). 791 * @sb: super block of file system to search 792 * @head: head of the list to search 793 * @ino: inode number to search for 794 * 795 * ifind_fast() searches for the inode @ino in the inode cache. This is for 796 * file systems where the inode number is sufficient for unique identification 797 * of an inode. 798 * 799 * If the inode is in the cache, the inode is returned with an incremented 800 * reference count. 801 * 802 * Otherwise NULL is returned. 803 */ 804 static struct inode *ifind_fast(struct super_block *sb, 805 struct hlist_head *head, unsigned long ino) 806 { 807 struct inode *inode; 808 809 spin_lock(&inode_lock); 810 inode = find_inode_fast(sb, head, ino); 811 if (inode) { 812 __iget(inode); 813 spin_unlock(&inode_lock); 814 wait_on_inode(inode); 815 return inode; 816 } 817 spin_unlock(&inode_lock); 818 return NULL; 819 } 820 821 /** 822 * ilookup5_nowait - search for an inode in the inode cache 823 * @sb: super block of file system to search 824 * @hashval: hash value (usually inode number) to search for 825 * @test: callback used for comparisons between inodes 826 * @data: opaque data pointer to pass to @test 827 * 828 * ilookup5() uses ifind() to search for the inode specified by @hashval and 829 * @data in the inode cache. This is a generalized version of ilookup() for 830 * file systems where the inode number is not sufficient for unique 831 * identification of an inode. 832 * 833 * If the inode is in the cache, the inode is returned with an incremented 834 * reference count. Note, the inode lock is not waited upon so you have to be 835 * very careful what you do with the returned inode. You probably should be 836 * using ilookup5() instead. 837 * 838 * Otherwise NULL is returned. 839 * 840 * Note, @test is called with the inode_lock held, so can't sleep. 841 */ 842 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 843 int (*test)(struct inode *, void *), void *data) 844 { 845 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 846 847 return ifind(sb, head, test, data, 0); 848 } 849 850 EXPORT_SYMBOL(ilookup5_nowait); 851 852 /** 853 * ilookup5 - search for an inode in the inode cache 854 * @sb: super block of file system to search 855 * @hashval: hash value (usually inode number) to search for 856 * @test: callback used for comparisons between inodes 857 * @data: opaque data pointer to pass to @test 858 * 859 * ilookup5() uses ifind() to search for the inode specified by @hashval and 860 * @data in the inode cache. This is a generalized version of ilookup() for 861 * file systems where the inode number is not sufficient for unique 862 * identification of an inode. 863 * 864 * If the inode is in the cache, the inode lock is waited upon and the inode is 865 * returned with an incremented reference count. 866 * 867 * Otherwise NULL is returned. 868 * 869 * Note, @test is called with the inode_lock held, so can't sleep. 870 */ 871 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 872 int (*test)(struct inode *, void *), void *data) 873 { 874 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 875 876 return ifind(sb, head, test, data, 1); 877 } 878 879 EXPORT_SYMBOL(ilookup5); 880 881 /** 882 * ilookup - search for an inode in the inode cache 883 * @sb: super block of file system to search 884 * @ino: inode number to search for 885 * 886 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 887 * This is for file systems where the inode number is sufficient for unique 888 * identification of an inode. 889 * 890 * If the inode is in the cache, the inode is returned with an incremented 891 * reference count. 892 * 893 * Otherwise NULL is returned. 894 */ 895 struct inode *ilookup(struct super_block *sb, unsigned long ino) 896 { 897 struct hlist_head *head = inode_hashtable + hash(sb, ino); 898 899 return ifind_fast(sb, head, ino); 900 } 901 902 EXPORT_SYMBOL(ilookup); 903 904 /** 905 * iget5_locked - obtain an inode from a mounted file system 906 * @sb: super block of file system 907 * @hashval: hash value (usually inode number) to get 908 * @test: callback used for comparisons between inodes 909 * @set: callback used to initialize a new struct inode 910 * @data: opaque data pointer to pass to @test and @set 911 * 912 * This is iget() without the read_inode() portion of get_new_inode(). 913 * 914 * iget5_locked() uses ifind() to search for the inode specified by @hashval 915 * and @data in the inode cache and if present it is returned with an increased 916 * reference count. This is a generalized version of iget_locked() for file 917 * systems where the inode number is not sufficient for unique identification 918 * of an inode. 919 * 920 * If the inode is not in cache, get_new_inode() is called to allocate a new 921 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 922 * file system gets to fill it in before unlocking it via unlock_new_inode(). 923 * 924 * Note both @test and @set are called with the inode_lock held, so can't sleep. 925 */ 926 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 927 int (*test)(struct inode *, void *), 928 int (*set)(struct inode *, void *), void *data) 929 { 930 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 931 struct inode *inode; 932 933 inode = ifind(sb, head, test, data, 1); 934 if (inode) 935 return inode; 936 /* 937 * get_new_inode() will do the right thing, re-trying the search 938 * in case it had to block at any point. 939 */ 940 return get_new_inode(sb, head, test, set, data); 941 } 942 943 EXPORT_SYMBOL(iget5_locked); 944 945 /** 946 * iget_locked - obtain an inode from a mounted file system 947 * @sb: super block of file system 948 * @ino: inode number to get 949 * 950 * This is iget() without the read_inode() portion of get_new_inode_fast(). 951 * 952 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 953 * the inode cache and if present it is returned with an increased reference 954 * count. This is for file systems where the inode number is sufficient for 955 * unique identification of an inode. 956 * 957 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 958 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 959 * The file system gets to fill it in before unlocking it via 960 * unlock_new_inode(). 961 */ 962 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 963 { 964 struct hlist_head *head = inode_hashtable + hash(sb, ino); 965 struct inode *inode; 966 967 inode = ifind_fast(sb, head, ino); 968 if (inode) 969 return inode; 970 /* 971 * get_new_inode_fast() will do the right thing, re-trying the search 972 * in case it had to block at any point. 973 */ 974 return get_new_inode_fast(sb, head, ino); 975 } 976 977 EXPORT_SYMBOL(iget_locked); 978 979 /** 980 * __insert_inode_hash - hash an inode 981 * @inode: unhashed inode 982 * @hashval: unsigned long value used to locate this object in the 983 * inode_hashtable. 984 * 985 * Add an inode to the inode hash for this superblock. 986 */ 987 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 988 { 989 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 990 spin_lock(&inode_lock); 991 hlist_add_head(&inode->i_hash, head); 992 spin_unlock(&inode_lock); 993 } 994 995 EXPORT_SYMBOL(__insert_inode_hash); 996 997 /** 998 * remove_inode_hash - remove an inode from the hash 999 * @inode: inode to unhash 1000 * 1001 * Remove an inode from the superblock. 1002 */ 1003 void remove_inode_hash(struct inode *inode) 1004 { 1005 spin_lock(&inode_lock); 1006 hlist_del_init(&inode->i_hash); 1007 spin_unlock(&inode_lock); 1008 } 1009 1010 EXPORT_SYMBOL(remove_inode_hash); 1011 1012 /* 1013 * Tell the filesystem that this inode is no longer of any interest and should 1014 * be completely destroyed. 1015 * 1016 * We leave the inode in the inode hash table until *after* the filesystem's 1017 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1018 * instigate) will always find up-to-date information either in the hash or on 1019 * disk. 1020 * 1021 * I_FREEING is set so that no-one will take a new reference to the inode while 1022 * it is being deleted. 1023 */ 1024 void generic_delete_inode(struct inode *inode) 1025 { 1026 struct super_operations *op = inode->i_sb->s_op; 1027 1028 list_del_init(&inode->i_list); 1029 list_del_init(&inode->i_sb_list); 1030 inode->i_state|=I_FREEING; 1031 inodes_stat.nr_inodes--; 1032 spin_unlock(&inode_lock); 1033 1034 security_inode_delete(inode); 1035 1036 if (op->delete_inode) { 1037 void (*delete)(struct inode *) = op->delete_inode; 1038 if (!is_bad_inode(inode)) 1039 DQUOT_INIT(inode); 1040 /* Filesystems implementing their own 1041 * s_op->delete_inode are required to call 1042 * truncate_inode_pages and clear_inode() 1043 * internally */ 1044 delete(inode); 1045 } else { 1046 truncate_inode_pages(&inode->i_data, 0); 1047 clear_inode(inode); 1048 } 1049 spin_lock(&inode_lock); 1050 hlist_del_init(&inode->i_hash); 1051 spin_unlock(&inode_lock); 1052 wake_up_inode(inode); 1053 BUG_ON(inode->i_state != I_CLEAR); 1054 destroy_inode(inode); 1055 } 1056 1057 EXPORT_SYMBOL(generic_delete_inode); 1058 1059 static void generic_forget_inode(struct inode *inode) 1060 { 1061 struct super_block *sb = inode->i_sb; 1062 1063 if (!hlist_unhashed(&inode->i_hash)) { 1064 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1065 list_move(&inode->i_list, &inode_unused); 1066 inodes_stat.nr_unused++; 1067 if (!sb || (sb->s_flags & MS_ACTIVE)) { 1068 spin_unlock(&inode_lock); 1069 return; 1070 } 1071 inode->i_state |= I_WILL_FREE; 1072 spin_unlock(&inode_lock); 1073 write_inode_now(inode, 1); 1074 spin_lock(&inode_lock); 1075 inode->i_state &= ~I_WILL_FREE; 1076 inodes_stat.nr_unused--; 1077 hlist_del_init(&inode->i_hash); 1078 } 1079 list_del_init(&inode->i_list); 1080 list_del_init(&inode->i_sb_list); 1081 inode->i_state |= I_FREEING; 1082 inodes_stat.nr_inodes--; 1083 spin_unlock(&inode_lock); 1084 if (inode->i_data.nrpages) 1085 truncate_inode_pages(&inode->i_data, 0); 1086 clear_inode(inode); 1087 wake_up_inode(inode); 1088 destroy_inode(inode); 1089 } 1090 1091 /* 1092 * Normal UNIX filesystem behaviour: delete the 1093 * inode when the usage count drops to zero, and 1094 * i_nlink is zero. 1095 */ 1096 void generic_drop_inode(struct inode *inode) 1097 { 1098 if (!inode->i_nlink) 1099 generic_delete_inode(inode); 1100 else 1101 generic_forget_inode(inode); 1102 } 1103 1104 EXPORT_SYMBOL_GPL(generic_drop_inode); 1105 1106 /* 1107 * Called when we're dropping the last reference 1108 * to an inode. 1109 * 1110 * Call the FS "drop()" function, defaulting to 1111 * the legacy UNIX filesystem behaviour.. 1112 * 1113 * NOTE! NOTE! NOTE! We're called with the inode lock 1114 * held, and the drop function is supposed to release 1115 * the lock! 1116 */ 1117 static inline void iput_final(struct inode *inode) 1118 { 1119 struct super_operations *op = inode->i_sb->s_op; 1120 void (*drop)(struct inode *) = generic_drop_inode; 1121 1122 if (op && op->drop_inode) 1123 drop = op->drop_inode; 1124 drop(inode); 1125 } 1126 1127 /** 1128 * iput - put an inode 1129 * @inode: inode to put 1130 * 1131 * Puts an inode, dropping its usage count. If the inode use count hits 1132 * zero, the inode is then freed and may also be destroyed. 1133 * 1134 * Consequently, iput() can sleep. 1135 */ 1136 void iput(struct inode *inode) 1137 { 1138 if (inode) { 1139 struct super_operations *op = inode->i_sb->s_op; 1140 1141 BUG_ON(inode->i_state == I_CLEAR); 1142 1143 if (op && op->put_inode) 1144 op->put_inode(inode); 1145 1146 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1147 iput_final(inode); 1148 } 1149 } 1150 1151 EXPORT_SYMBOL(iput); 1152 1153 /** 1154 * bmap - find a block number in a file 1155 * @inode: inode of file 1156 * @block: block to find 1157 * 1158 * Returns the block number on the device holding the inode that 1159 * is the disk block number for the block of the file requested. 1160 * That is, asked for block 4 of inode 1 the function will return the 1161 * disk block relative to the disk start that holds that block of the 1162 * file. 1163 */ 1164 sector_t bmap(struct inode * inode, sector_t block) 1165 { 1166 sector_t res = 0; 1167 if (inode->i_mapping->a_ops->bmap) 1168 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1169 return res; 1170 } 1171 1172 EXPORT_SYMBOL(bmap); 1173 1174 /** 1175 * touch_atime - update the access time 1176 * @mnt: mount the inode is accessed on 1177 * @dentry: dentry accessed 1178 * 1179 * Update the accessed time on an inode and mark it for writeback. 1180 * This function automatically handles read only file systems and media, 1181 * as well as the "noatime" flag and inode specific "noatime" markers. 1182 */ 1183 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1184 { 1185 struct inode *inode = dentry->d_inode; 1186 struct timespec now; 1187 1188 if (IS_RDONLY(inode)) 1189 return; 1190 1191 if ((inode->i_flags & S_NOATIME) || 1192 (inode->i_sb->s_flags & MS_NOATIME) || 1193 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 1194 return; 1195 1196 /* 1197 * We may have a NULL vfsmount when coming from NFSD 1198 */ 1199 if (mnt && 1200 ((mnt->mnt_flags & MNT_NOATIME) || 1201 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))) 1202 return; 1203 1204 now = current_fs_time(inode->i_sb); 1205 if (!timespec_equal(&inode->i_atime, &now)) { 1206 inode->i_atime = now; 1207 mark_inode_dirty_sync(inode); 1208 } 1209 } 1210 1211 EXPORT_SYMBOL(touch_atime); 1212 1213 /** 1214 * file_update_time - update mtime and ctime time 1215 * @file: file accessed 1216 * 1217 * Update the mtime and ctime members of an inode and mark the inode 1218 * for writeback. Note that this function is meant exclusively for 1219 * usage in the file write path of filesystems, and filesystems may 1220 * choose to explicitly ignore update via this function with the 1221 * S_NOCTIME inode flag, e.g. for network filesystem where these 1222 * timestamps are handled by the server. 1223 */ 1224 1225 void file_update_time(struct file *file) 1226 { 1227 struct inode *inode = file->f_dentry->d_inode; 1228 struct timespec now; 1229 int sync_it = 0; 1230 1231 if (IS_NOCMTIME(inode)) 1232 return; 1233 if (IS_RDONLY(inode)) 1234 return; 1235 1236 now = current_fs_time(inode->i_sb); 1237 if (!timespec_equal(&inode->i_mtime, &now)) 1238 sync_it = 1; 1239 inode->i_mtime = now; 1240 1241 if (!timespec_equal(&inode->i_ctime, &now)) 1242 sync_it = 1; 1243 inode->i_ctime = now; 1244 1245 if (sync_it) 1246 mark_inode_dirty_sync(inode); 1247 } 1248 1249 EXPORT_SYMBOL(file_update_time); 1250 1251 int inode_needs_sync(struct inode *inode) 1252 { 1253 if (IS_SYNC(inode)) 1254 return 1; 1255 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1256 return 1; 1257 return 0; 1258 } 1259 1260 EXPORT_SYMBOL(inode_needs_sync); 1261 1262 /* 1263 * Quota functions that want to walk the inode lists.. 1264 */ 1265 #ifdef CONFIG_QUOTA 1266 1267 /* Function back in dquot.c */ 1268 int remove_inode_dquot_ref(struct inode *, int, struct list_head *); 1269 1270 void remove_dquot_ref(struct super_block *sb, int type, 1271 struct list_head *tofree_head) 1272 { 1273 struct inode *inode; 1274 1275 if (!sb->dq_op) 1276 return; /* nothing to do */ 1277 spin_lock(&inode_lock); /* This lock is for inodes code */ 1278 1279 /* 1280 * We don't have to lock against quota code - test IS_QUOTAINIT is 1281 * just for speedup... 1282 */ 1283 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) 1284 if (!IS_NOQUOTA(inode)) 1285 remove_inode_dquot_ref(inode, type, tofree_head); 1286 1287 spin_unlock(&inode_lock); 1288 } 1289 1290 #endif 1291 1292 int inode_wait(void *word) 1293 { 1294 schedule(); 1295 return 0; 1296 } 1297 1298 /* 1299 * If we try to find an inode in the inode hash while it is being 1300 * deleted, we have to wait until the filesystem completes its 1301 * deletion before reporting that it isn't found. This function waits 1302 * until the deletion _might_ have completed. Callers are responsible 1303 * to recheck inode state. 1304 * 1305 * It doesn't matter if I_LOCK is not set initially, a call to 1306 * wake_up_inode() after removing from the hash list will DTRT. 1307 * 1308 * This is called with inode_lock held. 1309 */ 1310 static void __wait_on_freeing_inode(struct inode *inode) 1311 { 1312 wait_queue_head_t *wq; 1313 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1314 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1315 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1316 spin_unlock(&inode_lock); 1317 schedule(); 1318 finish_wait(wq, &wait.wait); 1319 spin_lock(&inode_lock); 1320 } 1321 1322 void wake_up_inode(struct inode *inode) 1323 { 1324 /* 1325 * Prevent speculative execution through spin_unlock(&inode_lock); 1326 */ 1327 smp_mb(); 1328 wake_up_bit(&inode->i_state, __I_LOCK); 1329 } 1330 1331 static __initdata unsigned long ihash_entries; 1332 static int __init set_ihash_entries(char *str) 1333 { 1334 if (!str) 1335 return 0; 1336 ihash_entries = simple_strtoul(str, &str, 0); 1337 return 1; 1338 } 1339 __setup("ihash_entries=", set_ihash_entries); 1340 1341 /* 1342 * Initialize the waitqueues and inode hash table. 1343 */ 1344 void __init inode_init_early(void) 1345 { 1346 int loop; 1347 1348 /* If hashes are distributed across NUMA nodes, defer 1349 * hash allocation until vmalloc space is available. 1350 */ 1351 if (hashdist) 1352 return; 1353 1354 inode_hashtable = 1355 alloc_large_system_hash("Inode-cache", 1356 sizeof(struct hlist_head), 1357 ihash_entries, 1358 14, 1359 HASH_EARLY, 1360 &i_hash_shift, 1361 &i_hash_mask, 1362 0); 1363 1364 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1365 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1366 } 1367 1368 void __init inode_init(unsigned long mempages) 1369 { 1370 int loop; 1371 1372 /* inode slab cache */ 1373 inode_cachep = kmem_cache_create("inode_cache", 1374 sizeof(struct inode), 1375 0, 1376 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1377 SLAB_MEM_SPREAD), 1378 init_once, 1379 NULL); 1380 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1381 1382 /* Hash may have been set up in inode_init_early */ 1383 if (!hashdist) 1384 return; 1385 1386 inode_hashtable = 1387 alloc_large_system_hash("Inode-cache", 1388 sizeof(struct hlist_head), 1389 ihash_entries, 1390 14, 1391 0, 1392 &i_hash_shift, 1393 &i_hash_mask, 1394 0); 1395 1396 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1397 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1398 } 1399 1400 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1401 { 1402 inode->i_mode = mode; 1403 if (S_ISCHR(mode)) { 1404 inode->i_fop = &def_chr_fops; 1405 inode->i_rdev = rdev; 1406 } else if (S_ISBLK(mode)) { 1407 inode->i_fop = &def_blk_fops; 1408 inode->i_rdev = rdev; 1409 } else if (S_ISFIFO(mode)) 1410 inode->i_fop = &def_fifo_fops; 1411 else if (S_ISSOCK(mode)) 1412 inode->i_fop = &bad_sock_fops; 1413 else 1414 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1415 mode); 1416 } 1417 EXPORT_SYMBOL(init_special_inode); 1418