xref: /linux/fs/inode.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 
27 /*
28  * This is needed for the following functions:
29  *  - inode_has_buffers
30  *  - invalidate_inode_buffers
31  *  - invalidate_bdev
32  *
33  * FIXME: remove all knowledge of the buffer layer from this file
34  */
35 #include <linux/buffer_head.h>
36 
37 /*
38  * New inode.c implementation.
39  *
40  * This implementation has the basic premise of trying
41  * to be extremely low-overhead and SMP-safe, yet be
42  * simple enough to be "obviously correct".
43  *
44  * Famous last words.
45  */
46 
47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 
49 /* #define INODE_PARANOIA 1 */
50 /* #define INODE_DEBUG 1 */
51 
52 /*
53  * Inode lookup is no longer as critical as it used to be:
54  * most of the lookups are going to be through the dcache.
55  */
56 #define I_HASHBITS	i_hash_shift
57 #define I_HASHMASK	i_hash_mask
58 
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 
62 /*
63  * Each inode can be on two separate lists. One is
64  * the hash list of the inode, used for lookups. The
65  * other linked list is the "type" list:
66  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
67  *  "dirty"  - as "in_use" but also dirty
68  *  "unused" - valid inode, i_count = 0
69  *
70  * A "dirty" list is maintained for each super block,
71  * allowing for low-overhead inode sync() operations.
72  */
73 
74 LIST_HEAD(inode_in_use);
75 LIST_HEAD(inode_unused);
76 static struct hlist_head *inode_hashtable __read_mostly;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
88  * icache shrinking path, and the umount path.  Without this exclusion,
89  * by the time prune_icache calls iput for the inode whose pages it has
90  * been invalidating, or by the time it calls clear_inode & destroy_inode
91  * from its final dispose_list, the struct super_block they refer to
92  * (for inode->i_sb->s_op) may already have been freed and reused.
93  */
94 static DEFINE_MUTEX(iprune_mutex);
95 
96 /*
97  * Statistics gathering..
98  */
99 struct inodes_stat_t inodes_stat;
100 
101 static kmem_cache_t * inode_cachep __read_mostly;
102 
103 static struct inode *alloc_inode(struct super_block *sb)
104 {
105 	static struct address_space_operations empty_aops;
106 	static struct inode_operations empty_iops;
107 	static const struct file_operations empty_fops;
108 	struct inode *inode;
109 
110 	if (sb->s_op->alloc_inode)
111 		inode = sb->s_op->alloc_inode(sb);
112 	else
113 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
114 
115 	if (inode) {
116 		struct address_space * const mapping = &inode->i_data;
117 
118 		inode->i_sb = sb;
119 		inode->i_blkbits = sb->s_blocksize_bits;
120 		inode->i_flags = 0;
121 		atomic_set(&inode->i_count, 1);
122 		inode->i_op = &empty_iops;
123 		inode->i_fop = &empty_fops;
124 		inode->i_nlink = 1;
125 		atomic_set(&inode->i_writecount, 0);
126 		inode->i_size = 0;
127 		inode->i_blocks = 0;
128 		inode->i_bytes = 0;
129 		inode->i_generation = 0;
130 #ifdef CONFIG_QUOTA
131 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 #endif
133 		inode->i_pipe = NULL;
134 		inode->i_bdev = NULL;
135 		inode->i_cdev = NULL;
136 		inode->i_rdev = 0;
137 		inode->i_security = NULL;
138 		inode->dirtied_when = 0;
139 		if (security_inode_alloc(inode)) {
140 			if (inode->i_sb->s_op->destroy_inode)
141 				inode->i_sb->s_op->destroy_inode(inode);
142 			else
143 				kmem_cache_free(inode_cachep, (inode));
144 			return NULL;
145 		}
146 
147 		mapping->a_ops = &empty_aops;
148  		mapping->host = inode;
149 		mapping->flags = 0;
150 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
151 		mapping->assoc_mapping = NULL;
152 		mapping->backing_dev_info = &default_backing_dev_info;
153 
154 		/*
155 		 * If the block_device provides a backing_dev_info for client
156 		 * inodes then use that.  Otherwise the inode share the bdev's
157 		 * backing_dev_info.
158 		 */
159 		if (sb->s_bdev) {
160 			struct backing_dev_info *bdi;
161 
162 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
163 			if (!bdi)
164 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
165 			mapping->backing_dev_info = bdi;
166 		}
167 		memset(&inode->u, 0, sizeof(inode->u));
168 		inode->i_mapping = mapping;
169 	}
170 	return inode;
171 }
172 
173 void destroy_inode(struct inode *inode)
174 {
175 	BUG_ON(inode_has_buffers(inode));
176 	security_inode_free(inode);
177 	if (inode->i_sb->s_op->destroy_inode)
178 		inode->i_sb->s_op->destroy_inode(inode);
179 	else
180 		kmem_cache_free(inode_cachep, (inode));
181 }
182 
183 
184 /*
185  * These are initializations that only need to be done
186  * once, because the fields are idempotent across use
187  * of the inode, so let the slab aware of that.
188  */
189 void inode_init_once(struct inode *inode)
190 {
191 	memset(inode, 0, sizeof(*inode));
192 	INIT_HLIST_NODE(&inode->i_hash);
193 	INIT_LIST_HEAD(&inode->i_dentry);
194 	INIT_LIST_HEAD(&inode->i_devices);
195 	mutex_init(&inode->i_mutex);
196 	init_rwsem(&inode->i_alloc_sem);
197 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
198 	rwlock_init(&inode->i_data.tree_lock);
199 	spin_lock_init(&inode->i_data.i_mmap_lock);
200 	INIT_LIST_HEAD(&inode->i_data.private_list);
201 	spin_lock_init(&inode->i_data.private_lock);
202 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
203 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
204 	spin_lock_init(&inode->i_lock);
205 	i_size_ordered_init(inode);
206 #ifdef CONFIG_INOTIFY
207 	INIT_LIST_HEAD(&inode->inotify_watches);
208 	mutex_init(&inode->inotify_mutex);
209 #endif
210 }
211 
212 EXPORT_SYMBOL(inode_init_once);
213 
214 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
215 {
216 	struct inode * inode = (struct inode *) foo;
217 
218 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
219 	    SLAB_CTOR_CONSTRUCTOR)
220 		inode_init_once(inode);
221 }
222 
223 /*
224  * inode_lock must be held
225  */
226 void __iget(struct inode * inode)
227 {
228 	if (atomic_read(&inode->i_count)) {
229 		atomic_inc(&inode->i_count);
230 		return;
231 	}
232 	atomic_inc(&inode->i_count);
233 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
234 		list_move(&inode->i_list, &inode_in_use);
235 	inodes_stat.nr_unused--;
236 }
237 
238 /**
239  * clear_inode - clear an inode
240  * @inode: inode to clear
241  *
242  * This is called by the filesystem to tell us
243  * that the inode is no longer useful. We just
244  * terminate it with extreme prejudice.
245  */
246 void clear_inode(struct inode *inode)
247 {
248 	might_sleep();
249 	invalidate_inode_buffers(inode);
250 
251 	BUG_ON(inode->i_data.nrpages);
252 	BUG_ON(!(inode->i_state & I_FREEING));
253 	BUG_ON(inode->i_state & I_CLEAR);
254 	wait_on_inode(inode);
255 	DQUOT_DROP(inode);
256 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
257 		inode->i_sb->s_op->clear_inode(inode);
258 	if (inode->i_bdev)
259 		bd_forget(inode);
260 	if (inode->i_cdev)
261 		cd_forget(inode);
262 	inode->i_state = I_CLEAR;
263 }
264 
265 EXPORT_SYMBOL(clear_inode);
266 
267 /*
268  * dispose_list - dispose of the contents of a local list
269  * @head: the head of the list to free
270  *
271  * Dispose-list gets a local list with local inodes in it, so it doesn't
272  * need to worry about list corruption and SMP locks.
273  */
274 static void dispose_list(struct list_head *head)
275 {
276 	int nr_disposed = 0;
277 
278 	while (!list_empty(head)) {
279 		struct inode *inode;
280 
281 		inode = list_entry(head->next, struct inode, i_list);
282 		list_del(&inode->i_list);
283 
284 		if (inode->i_data.nrpages)
285 			truncate_inode_pages(&inode->i_data, 0);
286 		clear_inode(inode);
287 
288 		spin_lock(&inode_lock);
289 		hlist_del_init(&inode->i_hash);
290 		list_del_init(&inode->i_sb_list);
291 		spin_unlock(&inode_lock);
292 
293 		wake_up_inode(inode);
294 		destroy_inode(inode);
295 		nr_disposed++;
296 	}
297 	spin_lock(&inode_lock);
298 	inodes_stat.nr_inodes -= nr_disposed;
299 	spin_unlock(&inode_lock);
300 }
301 
302 /*
303  * Invalidate all inodes for a device.
304  */
305 static int invalidate_list(struct list_head *head, struct list_head *dispose)
306 {
307 	struct list_head *next;
308 	int busy = 0, count = 0;
309 
310 	next = head->next;
311 	for (;;) {
312 		struct list_head * tmp = next;
313 		struct inode * inode;
314 
315 		/*
316 		 * We can reschedule here without worrying about the list's
317 		 * consistency because the per-sb list of inodes must not
318 		 * change during umount anymore, and because iprune_mutex keeps
319 		 * shrink_icache_memory() away.
320 		 */
321 		cond_resched_lock(&inode_lock);
322 
323 		next = next->next;
324 		if (tmp == head)
325 			break;
326 		inode = list_entry(tmp, struct inode, i_sb_list);
327 		invalidate_inode_buffers(inode);
328 		if (!atomic_read(&inode->i_count)) {
329 			list_move(&inode->i_list, dispose);
330 			inode->i_state |= I_FREEING;
331 			count++;
332 			continue;
333 		}
334 		busy = 1;
335 	}
336 	/* only unused inodes may be cached with i_count zero */
337 	inodes_stat.nr_unused -= count;
338 	return busy;
339 }
340 
341 /**
342  *	invalidate_inodes	- discard the inodes on a device
343  *	@sb: superblock
344  *
345  *	Discard all of the inodes for a given superblock. If the discard
346  *	fails because there are busy inodes then a non zero value is returned.
347  *	If the discard is successful all the inodes have been discarded.
348  */
349 int invalidate_inodes(struct super_block * sb)
350 {
351 	int busy;
352 	LIST_HEAD(throw_away);
353 
354 	mutex_lock(&iprune_mutex);
355 	spin_lock(&inode_lock);
356 	inotify_unmount_inodes(&sb->s_inodes);
357 	busy = invalidate_list(&sb->s_inodes, &throw_away);
358 	spin_unlock(&inode_lock);
359 
360 	dispose_list(&throw_away);
361 	mutex_unlock(&iprune_mutex);
362 
363 	return busy;
364 }
365 
366 EXPORT_SYMBOL(invalidate_inodes);
367 
368 int __invalidate_device(struct block_device *bdev)
369 {
370 	struct super_block *sb = get_super(bdev);
371 	int res = 0;
372 
373 	if (sb) {
374 		/*
375 		 * no need to lock the super, get_super holds the
376 		 * read mutex so the filesystem cannot go away
377 		 * under us (->put_super runs with the write lock
378 		 * hold).
379 		 */
380 		shrink_dcache_sb(sb);
381 		res = invalidate_inodes(sb);
382 		drop_super(sb);
383 	}
384 	invalidate_bdev(bdev, 0);
385 	return res;
386 }
387 EXPORT_SYMBOL(__invalidate_device);
388 
389 static int can_unuse(struct inode *inode)
390 {
391 	if (inode->i_state)
392 		return 0;
393 	if (inode_has_buffers(inode))
394 		return 0;
395 	if (atomic_read(&inode->i_count))
396 		return 0;
397 	if (inode->i_data.nrpages)
398 		return 0;
399 	return 1;
400 }
401 
402 /*
403  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
404  * a temporary list and then are freed outside inode_lock by dispose_list().
405  *
406  * Any inodes which are pinned purely because of attached pagecache have their
407  * pagecache removed.  We expect the final iput() on that inode to add it to
408  * the front of the inode_unused list.  So look for it there and if the
409  * inode is still freeable, proceed.  The right inode is found 99.9% of the
410  * time in testing on a 4-way.
411  *
412  * If the inode has metadata buffers attached to mapping->private_list then
413  * try to remove them.
414  */
415 static void prune_icache(int nr_to_scan)
416 {
417 	LIST_HEAD(freeable);
418 	int nr_pruned = 0;
419 	int nr_scanned;
420 	unsigned long reap = 0;
421 
422 	mutex_lock(&iprune_mutex);
423 	spin_lock(&inode_lock);
424 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
425 		struct inode *inode;
426 
427 		if (list_empty(&inode_unused))
428 			break;
429 
430 		inode = list_entry(inode_unused.prev, struct inode, i_list);
431 
432 		if (inode->i_state || atomic_read(&inode->i_count)) {
433 			list_move(&inode->i_list, &inode_unused);
434 			continue;
435 		}
436 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
437 			__iget(inode);
438 			spin_unlock(&inode_lock);
439 			if (remove_inode_buffers(inode))
440 				reap += invalidate_inode_pages(&inode->i_data);
441 			iput(inode);
442 			spin_lock(&inode_lock);
443 
444 			if (inode != list_entry(inode_unused.next,
445 						struct inode, i_list))
446 				continue;	/* wrong inode or list_empty */
447 			if (!can_unuse(inode))
448 				continue;
449 		}
450 		list_move(&inode->i_list, &freeable);
451 		inode->i_state |= I_FREEING;
452 		nr_pruned++;
453 	}
454 	inodes_stat.nr_unused -= nr_pruned;
455 	spin_unlock(&inode_lock);
456 
457 	dispose_list(&freeable);
458 	mutex_unlock(&iprune_mutex);
459 
460 	if (current_is_kswapd())
461 		mod_page_state(kswapd_inodesteal, reap);
462 	else
463 		mod_page_state(pginodesteal, reap);
464 }
465 
466 /*
467  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
468  * "unused" means that no dentries are referring to the inodes: the files are
469  * not open and the dcache references to those inodes have already been
470  * reclaimed.
471  *
472  * This function is passed the number of inodes to scan, and it returns the
473  * total number of remaining possibly-reclaimable inodes.
474  */
475 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
476 {
477 	if (nr) {
478 		/*
479 		 * Nasty deadlock avoidance.  We may hold various FS locks,
480 		 * and we don't want to recurse into the FS that called us
481 		 * in clear_inode() and friends..
482 	 	 */
483 		if (!(gfp_mask & __GFP_FS))
484 			return -1;
485 		prune_icache(nr);
486 	}
487 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
488 }
489 
490 static void __wait_on_freeing_inode(struct inode *inode);
491 /*
492  * Called with the inode lock held.
493  * NOTE: we are not increasing the inode-refcount, you must call __iget()
494  * by hand after calling find_inode now! This simplifies iunique and won't
495  * add any additional branch in the common code.
496  */
497 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
498 {
499 	struct hlist_node *node;
500 	struct inode * inode = NULL;
501 
502 repeat:
503 	hlist_for_each (node, head) {
504 		inode = hlist_entry(node, struct inode, i_hash);
505 		if (inode->i_sb != sb)
506 			continue;
507 		if (!test(inode, data))
508 			continue;
509 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
510 			__wait_on_freeing_inode(inode);
511 			goto repeat;
512 		}
513 		break;
514 	}
515 	return node ? inode : NULL;
516 }
517 
518 /*
519  * find_inode_fast is the fast path version of find_inode, see the comment at
520  * iget_locked for details.
521  */
522 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
523 {
524 	struct hlist_node *node;
525 	struct inode * inode = NULL;
526 
527 repeat:
528 	hlist_for_each (node, head) {
529 		inode = hlist_entry(node, struct inode, i_hash);
530 		if (inode->i_ino != ino)
531 			continue;
532 		if (inode->i_sb != sb)
533 			continue;
534 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
535 			__wait_on_freeing_inode(inode);
536 			goto repeat;
537 		}
538 		break;
539 	}
540 	return node ? inode : NULL;
541 }
542 
543 /**
544  *	new_inode 	- obtain an inode
545  *	@sb: superblock
546  *
547  *	Allocates a new inode for given superblock.
548  */
549 struct inode *new_inode(struct super_block *sb)
550 {
551 	static unsigned long last_ino;
552 	struct inode * inode;
553 
554 	spin_lock_prefetch(&inode_lock);
555 
556 	inode = alloc_inode(sb);
557 	if (inode) {
558 		spin_lock(&inode_lock);
559 		inodes_stat.nr_inodes++;
560 		list_add(&inode->i_list, &inode_in_use);
561 		list_add(&inode->i_sb_list, &sb->s_inodes);
562 		inode->i_ino = ++last_ino;
563 		inode->i_state = 0;
564 		spin_unlock(&inode_lock);
565 	}
566 	return inode;
567 }
568 
569 EXPORT_SYMBOL(new_inode);
570 
571 void unlock_new_inode(struct inode *inode)
572 {
573 	/*
574 	 * This is special!  We do not need the spinlock
575 	 * when clearing I_LOCK, because we're guaranteed
576 	 * that nobody else tries to do anything about the
577 	 * state of the inode when it is locked, as we
578 	 * just created it (so there can be no old holders
579 	 * that haven't tested I_LOCK).
580 	 */
581 	inode->i_state &= ~(I_LOCK|I_NEW);
582 	wake_up_inode(inode);
583 }
584 
585 EXPORT_SYMBOL(unlock_new_inode);
586 
587 /*
588  * This is called without the inode lock held.. Be careful.
589  *
590  * We no longer cache the sb_flags in i_flags - see fs.h
591  *	-- rmk@arm.uk.linux.org
592  */
593 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
594 {
595 	struct inode * inode;
596 
597 	inode = alloc_inode(sb);
598 	if (inode) {
599 		struct inode * old;
600 
601 		spin_lock(&inode_lock);
602 		/* We released the lock, so.. */
603 		old = find_inode(sb, head, test, data);
604 		if (!old) {
605 			if (set(inode, data))
606 				goto set_failed;
607 
608 			inodes_stat.nr_inodes++;
609 			list_add(&inode->i_list, &inode_in_use);
610 			list_add(&inode->i_sb_list, &sb->s_inodes);
611 			hlist_add_head(&inode->i_hash, head);
612 			inode->i_state = I_LOCK|I_NEW;
613 			spin_unlock(&inode_lock);
614 
615 			/* Return the locked inode with I_NEW set, the
616 			 * caller is responsible for filling in the contents
617 			 */
618 			return inode;
619 		}
620 
621 		/*
622 		 * Uhhuh, somebody else created the same inode under
623 		 * us. Use the old inode instead of the one we just
624 		 * allocated.
625 		 */
626 		__iget(old);
627 		spin_unlock(&inode_lock);
628 		destroy_inode(inode);
629 		inode = old;
630 		wait_on_inode(inode);
631 	}
632 	return inode;
633 
634 set_failed:
635 	spin_unlock(&inode_lock);
636 	destroy_inode(inode);
637 	return NULL;
638 }
639 
640 /*
641  * get_new_inode_fast is the fast path version of get_new_inode, see the
642  * comment at iget_locked for details.
643  */
644 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
645 {
646 	struct inode * inode;
647 
648 	inode = alloc_inode(sb);
649 	if (inode) {
650 		struct inode * old;
651 
652 		spin_lock(&inode_lock);
653 		/* We released the lock, so.. */
654 		old = find_inode_fast(sb, head, ino);
655 		if (!old) {
656 			inode->i_ino = ino;
657 			inodes_stat.nr_inodes++;
658 			list_add(&inode->i_list, &inode_in_use);
659 			list_add(&inode->i_sb_list, &sb->s_inodes);
660 			hlist_add_head(&inode->i_hash, head);
661 			inode->i_state = I_LOCK|I_NEW;
662 			spin_unlock(&inode_lock);
663 
664 			/* Return the locked inode with I_NEW set, the
665 			 * caller is responsible for filling in the contents
666 			 */
667 			return inode;
668 		}
669 
670 		/*
671 		 * Uhhuh, somebody else created the same inode under
672 		 * us. Use the old inode instead of the one we just
673 		 * allocated.
674 		 */
675 		__iget(old);
676 		spin_unlock(&inode_lock);
677 		destroy_inode(inode);
678 		inode = old;
679 		wait_on_inode(inode);
680 	}
681 	return inode;
682 }
683 
684 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
685 {
686 	unsigned long tmp;
687 
688 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
689 			L1_CACHE_BYTES;
690 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
691 	return tmp & I_HASHMASK;
692 }
693 
694 /**
695  *	iunique - get a unique inode number
696  *	@sb: superblock
697  *	@max_reserved: highest reserved inode number
698  *
699  *	Obtain an inode number that is unique on the system for a given
700  *	superblock. This is used by file systems that have no natural
701  *	permanent inode numbering system. An inode number is returned that
702  *	is higher than the reserved limit but unique.
703  *
704  *	BUGS:
705  *	With a large number of inodes live on the file system this function
706  *	currently becomes quite slow.
707  */
708 ino_t iunique(struct super_block *sb, ino_t max_reserved)
709 {
710 	static ino_t counter;
711 	struct inode *inode;
712 	struct hlist_head * head;
713 	ino_t res;
714 	spin_lock(&inode_lock);
715 retry:
716 	if (counter > max_reserved) {
717 		head = inode_hashtable + hash(sb,counter);
718 		res = counter++;
719 		inode = find_inode_fast(sb, head, res);
720 		if (!inode) {
721 			spin_unlock(&inode_lock);
722 			return res;
723 		}
724 	} else {
725 		counter = max_reserved + 1;
726 	}
727 	goto retry;
728 
729 }
730 
731 EXPORT_SYMBOL(iunique);
732 
733 struct inode *igrab(struct inode *inode)
734 {
735 	spin_lock(&inode_lock);
736 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
737 		__iget(inode);
738 	else
739 		/*
740 		 * Handle the case where s_op->clear_inode is not been
741 		 * called yet, and somebody is calling igrab
742 		 * while the inode is getting freed.
743 		 */
744 		inode = NULL;
745 	spin_unlock(&inode_lock);
746 	return inode;
747 }
748 
749 EXPORT_SYMBOL(igrab);
750 
751 /**
752  * ifind - internal function, you want ilookup5() or iget5().
753  * @sb:		super block of file system to search
754  * @head:       the head of the list to search
755  * @test:	callback used for comparisons between inodes
756  * @data:	opaque data pointer to pass to @test
757  * @wait:	if true wait for the inode to be unlocked, if false do not
758  *
759  * ifind() searches for the inode specified by @data in the inode
760  * cache. This is a generalized version of ifind_fast() for file systems where
761  * the inode number is not sufficient for unique identification of an inode.
762  *
763  * If the inode is in the cache, the inode is returned with an incremented
764  * reference count.
765  *
766  * Otherwise NULL is returned.
767  *
768  * Note, @test is called with the inode_lock held, so can't sleep.
769  */
770 static struct inode *ifind(struct super_block *sb,
771 		struct hlist_head *head, int (*test)(struct inode *, void *),
772 		void *data, const int wait)
773 {
774 	struct inode *inode;
775 
776 	spin_lock(&inode_lock);
777 	inode = find_inode(sb, head, test, data);
778 	if (inode) {
779 		__iget(inode);
780 		spin_unlock(&inode_lock);
781 		if (likely(wait))
782 			wait_on_inode(inode);
783 		return inode;
784 	}
785 	spin_unlock(&inode_lock);
786 	return NULL;
787 }
788 
789 /**
790  * ifind_fast - internal function, you want ilookup() or iget().
791  * @sb:		super block of file system to search
792  * @head:       head of the list to search
793  * @ino:	inode number to search for
794  *
795  * ifind_fast() searches for the inode @ino in the inode cache. This is for
796  * file systems where the inode number is sufficient for unique identification
797  * of an inode.
798  *
799  * If the inode is in the cache, the inode is returned with an incremented
800  * reference count.
801  *
802  * Otherwise NULL is returned.
803  */
804 static struct inode *ifind_fast(struct super_block *sb,
805 		struct hlist_head *head, unsigned long ino)
806 {
807 	struct inode *inode;
808 
809 	spin_lock(&inode_lock);
810 	inode = find_inode_fast(sb, head, ino);
811 	if (inode) {
812 		__iget(inode);
813 		spin_unlock(&inode_lock);
814 		wait_on_inode(inode);
815 		return inode;
816 	}
817 	spin_unlock(&inode_lock);
818 	return NULL;
819 }
820 
821 /**
822  * ilookup5_nowait - search for an inode in the inode cache
823  * @sb:		super block of file system to search
824  * @hashval:	hash value (usually inode number) to search for
825  * @test:	callback used for comparisons between inodes
826  * @data:	opaque data pointer to pass to @test
827  *
828  * ilookup5() uses ifind() to search for the inode specified by @hashval and
829  * @data in the inode cache. This is a generalized version of ilookup() for
830  * file systems where the inode number is not sufficient for unique
831  * identification of an inode.
832  *
833  * If the inode is in the cache, the inode is returned with an incremented
834  * reference count.  Note, the inode lock is not waited upon so you have to be
835  * very careful what you do with the returned inode.  You probably should be
836  * using ilookup5() instead.
837  *
838  * Otherwise NULL is returned.
839  *
840  * Note, @test is called with the inode_lock held, so can't sleep.
841  */
842 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
843 		int (*test)(struct inode *, void *), void *data)
844 {
845 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
846 
847 	return ifind(sb, head, test, data, 0);
848 }
849 
850 EXPORT_SYMBOL(ilookup5_nowait);
851 
852 /**
853  * ilookup5 - search for an inode in the inode cache
854  * @sb:		super block of file system to search
855  * @hashval:	hash value (usually inode number) to search for
856  * @test:	callback used for comparisons between inodes
857  * @data:	opaque data pointer to pass to @test
858  *
859  * ilookup5() uses ifind() to search for the inode specified by @hashval and
860  * @data in the inode cache. This is a generalized version of ilookup() for
861  * file systems where the inode number is not sufficient for unique
862  * identification of an inode.
863  *
864  * If the inode is in the cache, the inode lock is waited upon and the inode is
865  * returned with an incremented reference count.
866  *
867  * Otherwise NULL is returned.
868  *
869  * Note, @test is called with the inode_lock held, so can't sleep.
870  */
871 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
872 		int (*test)(struct inode *, void *), void *data)
873 {
874 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
875 
876 	return ifind(sb, head, test, data, 1);
877 }
878 
879 EXPORT_SYMBOL(ilookup5);
880 
881 /**
882  * ilookup - search for an inode in the inode cache
883  * @sb:		super block of file system to search
884  * @ino:	inode number to search for
885  *
886  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
887  * This is for file systems where the inode number is sufficient for unique
888  * identification of an inode.
889  *
890  * If the inode is in the cache, the inode is returned with an incremented
891  * reference count.
892  *
893  * Otherwise NULL is returned.
894  */
895 struct inode *ilookup(struct super_block *sb, unsigned long ino)
896 {
897 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
898 
899 	return ifind_fast(sb, head, ino);
900 }
901 
902 EXPORT_SYMBOL(ilookup);
903 
904 /**
905  * iget5_locked - obtain an inode from a mounted file system
906  * @sb:		super block of file system
907  * @hashval:	hash value (usually inode number) to get
908  * @test:	callback used for comparisons between inodes
909  * @set:	callback used to initialize a new struct inode
910  * @data:	opaque data pointer to pass to @test and @set
911  *
912  * This is iget() without the read_inode() portion of get_new_inode().
913  *
914  * iget5_locked() uses ifind() to search for the inode specified by @hashval
915  * and @data in the inode cache and if present it is returned with an increased
916  * reference count. This is a generalized version of iget_locked() for file
917  * systems where the inode number is not sufficient for unique identification
918  * of an inode.
919  *
920  * If the inode is not in cache, get_new_inode() is called to allocate a new
921  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
922  * file system gets to fill it in before unlocking it via unlock_new_inode().
923  *
924  * Note both @test and @set are called with the inode_lock held, so can't sleep.
925  */
926 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
927 		int (*test)(struct inode *, void *),
928 		int (*set)(struct inode *, void *), void *data)
929 {
930 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
931 	struct inode *inode;
932 
933 	inode = ifind(sb, head, test, data, 1);
934 	if (inode)
935 		return inode;
936 	/*
937 	 * get_new_inode() will do the right thing, re-trying the search
938 	 * in case it had to block at any point.
939 	 */
940 	return get_new_inode(sb, head, test, set, data);
941 }
942 
943 EXPORT_SYMBOL(iget5_locked);
944 
945 /**
946  * iget_locked - obtain an inode from a mounted file system
947  * @sb:		super block of file system
948  * @ino:	inode number to get
949  *
950  * This is iget() without the read_inode() portion of get_new_inode_fast().
951  *
952  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
953  * the inode cache and if present it is returned with an increased reference
954  * count. This is for file systems where the inode number is sufficient for
955  * unique identification of an inode.
956  *
957  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
958  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
959  * The file system gets to fill it in before unlocking it via
960  * unlock_new_inode().
961  */
962 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
963 {
964 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
965 	struct inode *inode;
966 
967 	inode = ifind_fast(sb, head, ino);
968 	if (inode)
969 		return inode;
970 	/*
971 	 * get_new_inode_fast() will do the right thing, re-trying the search
972 	 * in case it had to block at any point.
973 	 */
974 	return get_new_inode_fast(sb, head, ino);
975 }
976 
977 EXPORT_SYMBOL(iget_locked);
978 
979 /**
980  *	__insert_inode_hash - hash an inode
981  *	@inode: unhashed inode
982  *	@hashval: unsigned long value used to locate this object in the
983  *		inode_hashtable.
984  *
985  *	Add an inode to the inode hash for this superblock.
986  */
987 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
988 {
989 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
990 	spin_lock(&inode_lock);
991 	hlist_add_head(&inode->i_hash, head);
992 	spin_unlock(&inode_lock);
993 }
994 
995 EXPORT_SYMBOL(__insert_inode_hash);
996 
997 /**
998  *	remove_inode_hash - remove an inode from the hash
999  *	@inode: inode to unhash
1000  *
1001  *	Remove an inode from the superblock.
1002  */
1003 void remove_inode_hash(struct inode *inode)
1004 {
1005 	spin_lock(&inode_lock);
1006 	hlist_del_init(&inode->i_hash);
1007 	spin_unlock(&inode_lock);
1008 }
1009 
1010 EXPORT_SYMBOL(remove_inode_hash);
1011 
1012 /*
1013  * Tell the filesystem that this inode is no longer of any interest and should
1014  * be completely destroyed.
1015  *
1016  * We leave the inode in the inode hash table until *after* the filesystem's
1017  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1018  * instigate) will always find up-to-date information either in the hash or on
1019  * disk.
1020  *
1021  * I_FREEING is set so that no-one will take a new reference to the inode while
1022  * it is being deleted.
1023  */
1024 void generic_delete_inode(struct inode *inode)
1025 {
1026 	struct super_operations *op = inode->i_sb->s_op;
1027 
1028 	list_del_init(&inode->i_list);
1029 	list_del_init(&inode->i_sb_list);
1030 	inode->i_state|=I_FREEING;
1031 	inodes_stat.nr_inodes--;
1032 	spin_unlock(&inode_lock);
1033 
1034 	security_inode_delete(inode);
1035 
1036 	if (op->delete_inode) {
1037 		void (*delete)(struct inode *) = op->delete_inode;
1038 		if (!is_bad_inode(inode))
1039 			DQUOT_INIT(inode);
1040 		/* Filesystems implementing their own
1041 		 * s_op->delete_inode are required to call
1042 		 * truncate_inode_pages and clear_inode()
1043 		 * internally */
1044 		delete(inode);
1045 	} else {
1046 		truncate_inode_pages(&inode->i_data, 0);
1047 		clear_inode(inode);
1048 	}
1049 	spin_lock(&inode_lock);
1050 	hlist_del_init(&inode->i_hash);
1051 	spin_unlock(&inode_lock);
1052 	wake_up_inode(inode);
1053 	BUG_ON(inode->i_state != I_CLEAR);
1054 	destroy_inode(inode);
1055 }
1056 
1057 EXPORT_SYMBOL(generic_delete_inode);
1058 
1059 static void generic_forget_inode(struct inode *inode)
1060 {
1061 	struct super_block *sb = inode->i_sb;
1062 
1063 	if (!hlist_unhashed(&inode->i_hash)) {
1064 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1065 			list_move(&inode->i_list, &inode_unused);
1066 		inodes_stat.nr_unused++;
1067 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1068 			spin_unlock(&inode_lock);
1069 			return;
1070 		}
1071 		inode->i_state |= I_WILL_FREE;
1072 		spin_unlock(&inode_lock);
1073 		write_inode_now(inode, 1);
1074 		spin_lock(&inode_lock);
1075 		inode->i_state &= ~I_WILL_FREE;
1076 		inodes_stat.nr_unused--;
1077 		hlist_del_init(&inode->i_hash);
1078 	}
1079 	list_del_init(&inode->i_list);
1080 	list_del_init(&inode->i_sb_list);
1081 	inode->i_state |= I_FREEING;
1082 	inodes_stat.nr_inodes--;
1083 	spin_unlock(&inode_lock);
1084 	if (inode->i_data.nrpages)
1085 		truncate_inode_pages(&inode->i_data, 0);
1086 	clear_inode(inode);
1087 	wake_up_inode(inode);
1088 	destroy_inode(inode);
1089 }
1090 
1091 /*
1092  * Normal UNIX filesystem behaviour: delete the
1093  * inode when the usage count drops to zero, and
1094  * i_nlink is zero.
1095  */
1096 void generic_drop_inode(struct inode *inode)
1097 {
1098 	if (!inode->i_nlink)
1099 		generic_delete_inode(inode);
1100 	else
1101 		generic_forget_inode(inode);
1102 }
1103 
1104 EXPORT_SYMBOL_GPL(generic_drop_inode);
1105 
1106 /*
1107  * Called when we're dropping the last reference
1108  * to an inode.
1109  *
1110  * Call the FS "drop()" function, defaulting to
1111  * the legacy UNIX filesystem behaviour..
1112  *
1113  * NOTE! NOTE! NOTE! We're called with the inode lock
1114  * held, and the drop function is supposed to release
1115  * the lock!
1116  */
1117 static inline void iput_final(struct inode *inode)
1118 {
1119 	struct super_operations *op = inode->i_sb->s_op;
1120 	void (*drop)(struct inode *) = generic_drop_inode;
1121 
1122 	if (op && op->drop_inode)
1123 		drop = op->drop_inode;
1124 	drop(inode);
1125 }
1126 
1127 /**
1128  *	iput	- put an inode
1129  *	@inode: inode to put
1130  *
1131  *	Puts an inode, dropping its usage count. If the inode use count hits
1132  *	zero, the inode is then freed and may also be destroyed.
1133  *
1134  *	Consequently, iput() can sleep.
1135  */
1136 void iput(struct inode *inode)
1137 {
1138 	if (inode) {
1139 		struct super_operations *op = inode->i_sb->s_op;
1140 
1141 		BUG_ON(inode->i_state == I_CLEAR);
1142 
1143 		if (op && op->put_inode)
1144 			op->put_inode(inode);
1145 
1146 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1147 			iput_final(inode);
1148 	}
1149 }
1150 
1151 EXPORT_SYMBOL(iput);
1152 
1153 /**
1154  *	bmap	- find a block number in a file
1155  *	@inode: inode of file
1156  *	@block: block to find
1157  *
1158  *	Returns the block number on the device holding the inode that
1159  *	is the disk block number for the block of the file requested.
1160  *	That is, asked for block 4 of inode 1 the function will return the
1161  *	disk block relative to the disk start that holds that block of the
1162  *	file.
1163  */
1164 sector_t bmap(struct inode * inode, sector_t block)
1165 {
1166 	sector_t res = 0;
1167 	if (inode->i_mapping->a_ops->bmap)
1168 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1169 	return res;
1170 }
1171 
1172 EXPORT_SYMBOL(bmap);
1173 
1174 /**
1175  *	touch_atime	-	update the access time
1176  *	@mnt: mount the inode is accessed on
1177  *	@dentry: dentry accessed
1178  *
1179  *	Update the accessed time on an inode and mark it for writeback.
1180  *	This function automatically handles read only file systems and media,
1181  *	as well as the "noatime" flag and inode specific "noatime" markers.
1182  */
1183 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1184 {
1185 	struct inode *inode = dentry->d_inode;
1186 	struct timespec now;
1187 
1188 	if (IS_RDONLY(inode))
1189 		return;
1190 
1191 	if ((inode->i_flags & S_NOATIME) ||
1192 	    (inode->i_sb->s_flags & MS_NOATIME) ||
1193 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
1194 		return;
1195 
1196 	/*
1197 	 * We may have a NULL vfsmount when coming from NFSD
1198 	 */
1199 	if (mnt &&
1200 	    ((mnt->mnt_flags & MNT_NOATIME) ||
1201 	     ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))))
1202 		return;
1203 
1204 	now = current_fs_time(inode->i_sb);
1205 	if (!timespec_equal(&inode->i_atime, &now)) {
1206 		inode->i_atime = now;
1207 		mark_inode_dirty_sync(inode);
1208 	}
1209 }
1210 
1211 EXPORT_SYMBOL(touch_atime);
1212 
1213 /**
1214  *	file_update_time	-	update mtime and ctime time
1215  *	@file: file accessed
1216  *
1217  *	Update the mtime and ctime members of an inode and mark the inode
1218  *	for writeback.  Note that this function is meant exclusively for
1219  *	usage in the file write path of filesystems, and filesystems may
1220  *	choose to explicitly ignore update via this function with the
1221  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1222  *	timestamps are handled by the server.
1223  */
1224 
1225 void file_update_time(struct file *file)
1226 {
1227 	struct inode *inode = file->f_dentry->d_inode;
1228 	struct timespec now;
1229 	int sync_it = 0;
1230 
1231 	if (IS_NOCMTIME(inode))
1232 		return;
1233 	if (IS_RDONLY(inode))
1234 		return;
1235 
1236 	now = current_fs_time(inode->i_sb);
1237 	if (!timespec_equal(&inode->i_mtime, &now))
1238 		sync_it = 1;
1239 	inode->i_mtime = now;
1240 
1241 	if (!timespec_equal(&inode->i_ctime, &now))
1242 		sync_it = 1;
1243 	inode->i_ctime = now;
1244 
1245 	if (sync_it)
1246 		mark_inode_dirty_sync(inode);
1247 }
1248 
1249 EXPORT_SYMBOL(file_update_time);
1250 
1251 int inode_needs_sync(struct inode *inode)
1252 {
1253 	if (IS_SYNC(inode))
1254 		return 1;
1255 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1256 		return 1;
1257 	return 0;
1258 }
1259 
1260 EXPORT_SYMBOL(inode_needs_sync);
1261 
1262 /*
1263  *	Quota functions that want to walk the inode lists..
1264  */
1265 #ifdef CONFIG_QUOTA
1266 
1267 /* Function back in dquot.c */
1268 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1269 
1270 void remove_dquot_ref(struct super_block *sb, int type,
1271 			struct list_head *tofree_head)
1272 {
1273 	struct inode *inode;
1274 
1275 	if (!sb->dq_op)
1276 		return;	/* nothing to do */
1277 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1278 
1279 	/*
1280 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1281 	 * just for speedup...
1282 	 */
1283 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1284 		if (!IS_NOQUOTA(inode))
1285 			remove_inode_dquot_ref(inode, type, tofree_head);
1286 
1287 	spin_unlock(&inode_lock);
1288 }
1289 
1290 #endif
1291 
1292 int inode_wait(void *word)
1293 {
1294 	schedule();
1295 	return 0;
1296 }
1297 
1298 /*
1299  * If we try to find an inode in the inode hash while it is being
1300  * deleted, we have to wait until the filesystem completes its
1301  * deletion before reporting that it isn't found.  This function waits
1302  * until the deletion _might_ have completed.  Callers are responsible
1303  * to recheck inode state.
1304  *
1305  * It doesn't matter if I_LOCK is not set initially, a call to
1306  * wake_up_inode() after removing from the hash list will DTRT.
1307  *
1308  * This is called with inode_lock held.
1309  */
1310 static void __wait_on_freeing_inode(struct inode *inode)
1311 {
1312 	wait_queue_head_t *wq;
1313 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1314 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1315 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1316 	spin_unlock(&inode_lock);
1317 	schedule();
1318 	finish_wait(wq, &wait.wait);
1319 	spin_lock(&inode_lock);
1320 }
1321 
1322 void wake_up_inode(struct inode *inode)
1323 {
1324 	/*
1325 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1326 	 */
1327 	smp_mb();
1328 	wake_up_bit(&inode->i_state, __I_LOCK);
1329 }
1330 
1331 static __initdata unsigned long ihash_entries;
1332 static int __init set_ihash_entries(char *str)
1333 {
1334 	if (!str)
1335 		return 0;
1336 	ihash_entries = simple_strtoul(str, &str, 0);
1337 	return 1;
1338 }
1339 __setup("ihash_entries=", set_ihash_entries);
1340 
1341 /*
1342  * Initialize the waitqueues and inode hash table.
1343  */
1344 void __init inode_init_early(void)
1345 {
1346 	int loop;
1347 
1348 	/* If hashes are distributed across NUMA nodes, defer
1349 	 * hash allocation until vmalloc space is available.
1350 	 */
1351 	if (hashdist)
1352 		return;
1353 
1354 	inode_hashtable =
1355 		alloc_large_system_hash("Inode-cache",
1356 					sizeof(struct hlist_head),
1357 					ihash_entries,
1358 					14,
1359 					HASH_EARLY,
1360 					&i_hash_shift,
1361 					&i_hash_mask,
1362 					0);
1363 
1364 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1365 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1366 }
1367 
1368 void __init inode_init(unsigned long mempages)
1369 {
1370 	int loop;
1371 
1372 	/* inode slab cache */
1373 	inode_cachep = kmem_cache_create("inode_cache",
1374 					 sizeof(struct inode),
1375 					 0,
1376 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1377 					 SLAB_MEM_SPREAD),
1378 					 init_once,
1379 					 NULL);
1380 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1381 
1382 	/* Hash may have been set up in inode_init_early */
1383 	if (!hashdist)
1384 		return;
1385 
1386 	inode_hashtable =
1387 		alloc_large_system_hash("Inode-cache",
1388 					sizeof(struct hlist_head),
1389 					ihash_entries,
1390 					14,
1391 					0,
1392 					&i_hash_shift,
1393 					&i_hash_mask,
1394 					0);
1395 
1396 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1397 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1398 }
1399 
1400 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1401 {
1402 	inode->i_mode = mode;
1403 	if (S_ISCHR(mode)) {
1404 		inode->i_fop = &def_chr_fops;
1405 		inode->i_rdev = rdev;
1406 	} else if (S_ISBLK(mode)) {
1407 		inode->i_fop = &def_blk_fops;
1408 		inode->i_rdev = rdev;
1409 	} else if (S_ISFIFO(mode))
1410 		inode->i_fop = &def_fifo_fops;
1411 	else if (S_ISSOCK(mode))
1412 		inode->i_fop = &bad_sock_fops;
1413 	else
1414 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1415 		       mode);
1416 }
1417 EXPORT_SYMBOL(init_special_inode);
1418