1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mount.h> 27 #include <linux/async.h> 28 29 /* 30 * This is needed for the following functions: 31 * - inode_has_buffers 32 * - invalidate_inode_buffers 33 * - invalidate_bdev 34 * 35 * FIXME: remove all knowledge of the buffer layer from this file 36 */ 37 #include <linux/buffer_head.h> 38 39 /* 40 * New inode.c implementation. 41 * 42 * This implementation has the basic premise of trying 43 * to be extremely low-overhead and SMP-safe, yet be 44 * simple enough to be "obviously correct". 45 * 46 * Famous last words. 47 */ 48 49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 50 51 /* #define INODE_PARANOIA 1 */ 52 /* #define INODE_DEBUG 1 */ 53 54 /* 55 * Inode lookup is no longer as critical as it used to be: 56 * most of the lookups are going to be through the dcache. 57 */ 58 #define I_HASHBITS i_hash_shift 59 #define I_HASHMASK i_hash_mask 60 61 static unsigned int i_hash_mask __read_mostly; 62 static unsigned int i_hash_shift __read_mostly; 63 64 /* 65 * Each inode can be on two separate lists. One is 66 * the hash list of the inode, used for lookups. The 67 * other linked list is the "type" list: 68 * "in_use" - valid inode, i_count > 0, i_nlink > 0 69 * "dirty" - as "in_use" but also dirty 70 * "unused" - valid inode, i_count = 0 71 * 72 * A "dirty" list is maintained for each super block, 73 * allowing for low-overhead inode sync() operations. 74 */ 75 76 LIST_HEAD(inode_in_use); 77 LIST_HEAD(inode_unused); 78 static struct hlist_head *inode_hashtable __read_mostly; 79 80 /* 81 * A simple spinlock to protect the list manipulations. 82 * 83 * NOTE! You also have to own the lock if you change 84 * the i_state of an inode while it is in use.. 85 */ 86 DEFINE_SPINLOCK(inode_lock); 87 88 /* 89 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 90 * icache shrinking path, and the umount path. Without this exclusion, 91 * by the time prune_icache calls iput for the inode whose pages it has 92 * been invalidating, or by the time it calls clear_inode & destroy_inode 93 * from its final dispose_list, the struct super_block they refer to 94 * (for inode->i_sb->s_op) may already have been freed and reused. 95 */ 96 static DEFINE_MUTEX(iprune_mutex); 97 98 /* 99 * Statistics gathering.. 100 */ 101 struct inodes_stat_t inodes_stat; 102 103 static struct kmem_cache *inode_cachep __read_mostly; 104 105 static void wake_up_inode(struct inode *inode) 106 { 107 /* 108 * Prevent speculative execution through spin_unlock(&inode_lock); 109 */ 110 smp_mb(); 111 wake_up_bit(&inode->i_state, __I_LOCK); 112 } 113 114 /** 115 * inode_init_always - perform inode structure intialisation 116 * @sb: superblock inode belongs to 117 * @inode: inode to initialise 118 * 119 * These are initializations that need to be done on every inode 120 * allocation as the fields are not initialised by slab allocation. 121 */ 122 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 123 { 124 static const struct address_space_operations empty_aops; 125 static struct inode_operations empty_iops; 126 static const struct file_operations empty_fops; 127 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->i_nlink = 1; 137 inode->i_uid = 0; 138 inode->i_gid = 0; 139 atomic_set(&inode->i_writecount, 0); 140 inode->i_size = 0; 141 inode->i_blocks = 0; 142 inode->i_bytes = 0; 143 inode->i_generation = 0; 144 #ifdef CONFIG_QUOTA 145 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 146 #endif 147 inode->i_pipe = NULL; 148 inode->i_bdev = NULL; 149 inode->i_cdev = NULL; 150 inode->i_rdev = 0; 151 inode->dirtied_when = 0; 152 153 if (security_inode_alloc(inode)) 154 goto out_free_inode; 155 156 /* allocate and initialize an i_integrity */ 157 if (ima_inode_alloc(inode)) 158 goto out_free_security; 159 160 spin_lock_init(&inode->i_lock); 161 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 162 163 mutex_init(&inode->i_mutex); 164 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 165 166 init_rwsem(&inode->i_alloc_sem); 167 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 168 169 mapping->a_ops = &empty_aops; 170 mapping->host = inode; 171 mapping->flags = 0; 172 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 173 mapping->assoc_mapping = NULL; 174 mapping->backing_dev_info = &default_backing_dev_info; 175 mapping->writeback_index = 0; 176 177 /* 178 * If the block_device provides a backing_dev_info for client 179 * inodes then use that. Otherwise the inode share the bdev's 180 * backing_dev_info. 181 */ 182 if (sb->s_bdev) { 183 struct backing_dev_info *bdi; 184 185 bdi = sb->s_bdev->bd_inode_backing_dev_info; 186 if (!bdi) 187 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 188 mapping->backing_dev_info = bdi; 189 } 190 inode->i_private = NULL; 191 inode->i_mapping = mapping; 192 193 #ifdef CONFIG_FSNOTIFY 194 inode->i_fsnotify_mask = 0; 195 #endif 196 197 return inode; 198 199 out_free_security: 200 security_inode_free(inode); 201 out_free_inode: 202 if (inode->i_sb->s_op->destroy_inode) 203 inode->i_sb->s_op->destroy_inode(inode); 204 else 205 kmem_cache_free(inode_cachep, (inode)); 206 return NULL; 207 } 208 EXPORT_SYMBOL(inode_init_always); 209 210 static struct inode *alloc_inode(struct super_block *sb) 211 { 212 struct inode *inode; 213 214 if (sb->s_op->alloc_inode) 215 inode = sb->s_op->alloc_inode(sb); 216 else 217 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 218 219 if (inode) 220 return inode_init_always(sb, inode); 221 return NULL; 222 } 223 224 void destroy_inode(struct inode *inode) 225 { 226 BUG_ON(inode_has_buffers(inode)); 227 ima_inode_free(inode); 228 security_inode_free(inode); 229 fsnotify_inode_delete(inode); 230 if (inode->i_sb->s_op->destroy_inode) 231 inode->i_sb->s_op->destroy_inode(inode); 232 else 233 kmem_cache_free(inode_cachep, (inode)); 234 } 235 EXPORT_SYMBOL(destroy_inode); 236 237 238 /* 239 * These are initializations that only need to be done 240 * once, because the fields are idempotent across use 241 * of the inode, so let the slab aware of that. 242 */ 243 void inode_init_once(struct inode *inode) 244 { 245 memset(inode, 0, sizeof(*inode)); 246 INIT_HLIST_NODE(&inode->i_hash); 247 INIT_LIST_HEAD(&inode->i_dentry); 248 INIT_LIST_HEAD(&inode->i_devices); 249 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 250 spin_lock_init(&inode->i_data.tree_lock); 251 spin_lock_init(&inode->i_data.i_mmap_lock); 252 INIT_LIST_HEAD(&inode->i_data.private_list); 253 spin_lock_init(&inode->i_data.private_lock); 254 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 255 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 256 i_size_ordered_init(inode); 257 #ifdef CONFIG_INOTIFY 258 INIT_LIST_HEAD(&inode->inotify_watches); 259 mutex_init(&inode->inotify_mutex); 260 #endif 261 #ifdef CONFIG_FSNOTIFY 262 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 263 #endif 264 } 265 EXPORT_SYMBOL(inode_init_once); 266 267 static void init_once(void *foo) 268 { 269 struct inode *inode = (struct inode *) foo; 270 271 inode_init_once(inode); 272 } 273 274 /* 275 * inode_lock must be held 276 */ 277 void __iget(struct inode *inode) 278 { 279 if (atomic_read(&inode->i_count)) { 280 atomic_inc(&inode->i_count); 281 return; 282 } 283 atomic_inc(&inode->i_count); 284 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 285 list_move(&inode->i_list, &inode_in_use); 286 inodes_stat.nr_unused--; 287 } 288 289 /** 290 * clear_inode - clear an inode 291 * @inode: inode to clear 292 * 293 * This is called by the filesystem to tell us 294 * that the inode is no longer useful. We just 295 * terminate it with extreme prejudice. 296 */ 297 void clear_inode(struct inode *inode) 298 { 299 might_sleep(); 300 invalidate_inode_buffers(inode); 301 302 BUG_ON(inode->i_data.nrpages); 303 BUG_ON(!(inode->i_state & I_FREEING)); 304 BUG_ON(inode->i_state & I_CLEAR); 305 inode_sync_wait(inode); 306 vfs_dq_drop(inode); 307 if (inode->i_sb->s_op->clear_inode) 308 inode->i_sb->s_op->clear_inode(inode); 309 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 310 bd_forget(inode); 311 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 312 cd_forget(inode); 313 inode->i_state = I_CLEAR; 314 } 315 EXPORT_SYMBOL(clear_inode); 316 317 /* 318 * dispose_list - dispose of the contents of a local list 319 * @head: the head of the list to free 320 * 321 * Dispose-list gets a local list with local inodes in it, so it doesn't 322 * need to worry about list corruption and SMP locks. 323 */ 324 static void dispose_list(struct list_head *head) 325 { 326 int nr_disposed = 0; 327 328 while (!list_empty(head)) { 329 struct inode *inode; 330 331 inode = list_first_entry(head, struct inode, i_list); 332 list_del(&inode->i_list); 333 334 if (inode->i_data.nrpages) 335 truncate_inode_pages(&inode->i_data, 0); 336 clear_inode(inode); 337 338 spin_lock(&inode_lock); 339 hlist_del_init(&inode->i_hash); 340 list_del_init(&inode->i_sb_list); 341 spin_unlock(&inode_lock); 342 343 wake_up_inode(inode); 344 destroy_inode(inode); 345 nr_disposed++; 346 } 347 spin_lock(&inode_lock); 348 inodes_stat.nr_inodes -= nr_disposed; 349 spin_unlock(&inode_lock); 350 } 351 352 /* 353 * Invalidate all inodes for a device. 354 */ 355 static int invalidate_list(struct list_head *head, struct list_head *dispose) 356 { 357 struct list_head *next; 358 int busy = 0, count = 0; 359 360 next = head->next; 361 for (;;) { 362 struct list_head *tmp = next; 363 struct inode *inode; 364 365 /* 366 * We can reschedule here without worrying about the list's 367 * consistency because the per-sb list of inodes must not 368 * change during umount anymore, and because iprune_mutex keeps 369 * shrink_icache_memory() away. 370 */ 371 cond_resched_lock(&inode_lock); 372 373 next = next->next; 374 if (tmp == head) 375 break; 376 inode = list_entry(tmp, struct inode, i_sb_list); 377 if (inode->i_state & I_NEW) 378 continue; 379 invalidate_inode_buffers(inode); 380 if (!atomic_read(&inode->i_count)) { 381 list_move(&inode->i_list, dispose); 382 WARN_ON(inode->i_state & I_NEW); 383 inode->i_state |= I_FREEING; 384 count++; 385 continue; 386 } 387 busy = 1; 388 } 389 /* only unused inodes may be cached with i_count zero */ 390 inodes_stat.nr_unused -= count; 391 return busy; 392 } 393 394 /** 395 * invalidate_inodes - discard the inodes on a device 396 * @sb: superblock 397 * 398 * Discard all of the inodes for a given superblock. If the discard 399 * fails because there are busy inodes then a non zero value is returned. 400 * If the discard is successful all the inodes have been discarded. 401 */ 402 int invalidate_inodes(struct super_block *sb) 403 { 404 int busy; 405 LIST_HEAD(throw_away); 406 407 mutex_lock(&iprune_mutex); 408 spin_lock(&inode_lock); 409 inotify_unmount_inodes(&sb->s_inodes); 410 fsnotify_unmount_inodes(&sb->s_inodes); 411 busy = invalidate_list(&sb->s_inodes, &throw_away); 412 spin_unlock(&inode_lock); 413 414 dispose_list(&throw_away); 415 mutex_unlock(&iprune_mutex); 416 417 return busy; 418 } 419 EXPORT_SYMBOL(invalidate_inodes); 420 421 static int can_unuse(struct inode *inode) 422 { 423 if (inode->i_state) 424 return 0; 425 if (inode_has_buffers(inode)) 426 return 0; 427 if (atomic_read(&inode->i_count)) 428 return 0; 429 if (inode->i_data.nrpages) 430 return 0; 431 return 1; 432 } 433 434 /* 435 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 436 * a temporary list and then are freed outside inode_lock by dispose_list(). 437 * 438 * Any inodes which are pinned purely because of attached pagecache have their 439 * pagecache removed. We expect the final iput() on that inode to add it to 440 * the front of the inode_unused list. So look for it there and if the 441 * inode is still freeable, proceed. The right inode is found 99.9% of the 442 * time in testing on a 4-way. 443 * 444 * If the inode has metadata buffers attached to mapping->private_list then 445 * try to remove them. 446 */ 447 static void prune_icache(int nr_to_scan) 448 { 449 LIST_HEAD(freeable); 450 int nr_pruned = 0; 451 int nr_scanned; 452 unsigned long reap = 0; 453 454 mutex_lock(&iprune_mutex); 455 spin_lock(&inode_lock); 456 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 457 struct inode *inode; 458 459 if (list_empty(&inode_unused)) 460 break; 461 462 inode = list_entry(inode_unused.prev, struct inode, i_list); 463 464 if (inode->i_state || atomic_read(&inode->i_count)) { 465 list_move(&inode->i_list, &inode_unused); 466 continue; 467 } 468 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 469 __iget(inode); 470 spin_unlock(&inode_lock); 471 if (remove_inode_buffers(inode)) 472 reap += invalidate_mapping_pages(&inode->i_data, 473 0, -1); 474 iput(inode); 475 spin_lock(&inode_lock); 476 477 if (inode != list_entry(inode_unused.next, 478 struct inode, i_list)) 479 continue; /* wrong inode or list_empty */ 480 if (!can_unuse(inode)) 481 continue; 482 } 483 list_move(&inode->i_list, &freeable); 484 WARN_ON(inode->i_state & I_NEW); 485 inode->i_state |= I_FREEING; 486 nr_pruned++; 487 } 488 inodes_stat.nr_unused -= nr_pruned; 489 if (current_is_kswapd()) 490 __count_vm_events(KSWAPD_INODESTEAL, reap); 491 else 492 __count_vm_events(PGINODESTEAL, reap); 493 spin_unlock(&inode_lock); 494 495 dispose_list(&freeable); 496 mutex_unlock(&iprune_mutex); 497 } 498 499 /* 500 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 501 * "unused" means that no dentries are referring to the inodes: the files are 502 * not open and the dcache references to those inodes have already been 503 * reclaimed. 504 * 505 * This function is passed the number of inodes to scan, and it returns the 506 * total number of remaining possibly-reclaimable inodes. 507 */ 508 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 509 { 510 if (nr) { 511 /* 512 * Nasty deadlock avoidance. We may hold various FS locks, 513 * and we don't want to recurse into the FS that called us 514 * in clear_inode() and friends.. 515 */ 516 if (!(gfp_mask & __GFP_FS)) 517 return -1; 518 prune_icache(nr); 519 } 520 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 521 } 522 523 static struct shrinker icache_shrinker = { 524 .shrink = shrink_icache_memory, 525 .seeks = DEFAULT_SEEKS, 526 }; 527 528 static void __wait_on_freeing_inode(struct inode *inode); 529 /* 530 * Called with the inode lock held. 531 * NOTE: we are not increasing the inode-refcount, you must call __iget() 532 * by hand after calling find_inode now! This simplifies iunique and won't 533 * add any additional branch in the common code. 534 */ 535 static struct inode *find_inode(struct super_block *sb, 536 struct hlist_head *head, 537 int (*test)(struct inode *, void *), 538 void *data) 539 { 540 struct hlist_node *node; 541 struct inode *inode = NULL; 542 543 repeat: 544 hlist_for_each_entry(inode, node, head, i_hash) { 545 if (inode->i_sb != sb) 546 continue; 547 if (!test(inode, data)) 548 continue; 549 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 550 __wait_on_freeing_inode(inode); 551 goto repeat; 552 } 553 break; 554 } 555 return node ? inode : NULL; 556 } 557 558 /* 559 * find_inode_fast is the fast path version of find_inode, see the comment at 560 * iget_locked for details. 561 */ 562 static struct inode *find_inode_fast(struct super_block *sb, 563 struct hlist_head *head, unsigned long ino) 564 { 565 struct hlist_node *node; 566 struct inode *inode = NULL; 567 568 repeat: 569 hlist_for_each_entry(inode, node, head, i_hash) { 570 if (inode->i_ino != ino) 571 continue; 572 if (inode->i_sb != sb) 573 continue; 574 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 575 __wait_on_freeing_inode(inode); 576 goto repeat; 577 } 578 break; 579 } 580 return node ? inode : NULL; 581 } 582 583 static unsigned long hash(struct super_block *sb, unsigned long hashval) 584 { 585 unsigned long tmp; 586 587 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 588 L1_CACHE_BYTES; 589 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 590 return tmp & I_HASHMASK; 591 } 592 593 static inline void 594 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 595 struct inode *inode) 596 { 597 inodes_stat.nr_inodes++; 598 list_add(&inode->i_list, &inode_in_use); 599 list_add(&inode->i_sb_list, &sb->s_inodes); 600 if (head) 601 hlist_add_head(&inode->i_hash, head); 602 } 603 604 /** 605 * inode_add_to_lists - add a new inode to relevant lists 606 * @sb: superblock inode belongs to 607 * @inode: inode to mark in use 608 * 609 * When an inode is allocated it needs to be accounted for, added to the in use 610 * list, the owning superblock and the inode hash. This needs to be done under 611 * the inode_lock, so export a function to do this rather than the inode lock 612 * itself. We calculate the hash list to add to here so it is all internal 613 * which requires the caller to have already set up the inode number in the 614 * inode to add. 615 */ 616 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 617 { 618 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 619 620 spin_lock(&inode_lock); 621 __inode_add_to_lists(sb, head, inode); 622 spin_unlock(&inode_lock); 623 } 624 EXPORT_SYMBOL_GPL(inode_add_to_lists); 625 626 /** 627 * new_inode - obtain an inode 628 * @sb: superblock 629 * 630 * Allocates a new inode for given superblock. The default gfp_mask 631 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 632 * If HIGHMEM pages are unsuitable or it is known that pages allocated 633 * for the page cache are not reclaimable or migratable, 634 * mapping_set_gfp_mask() must be called with suitable flags on the 635 * newly created inode's mapping 636 * 637 */ 638 struct inode *new_inode(struct super_block *sb) 639 { 640 /* 641 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 642 * error if st_ino won't fit in target struct field. Use 32bit counter 643 * here to attempt to avoid that. 644 */ 645 static unsigned int last_ino; 646 struct inode *inode; 647 648 spin_lock_prefetch(&inode_lock); 649 650 inode = alloc_inode(sb); 651 if (inode) { 652 spin_lock(&inode_lock); 653 __inode_add_to_lists(sb, NULL, inode); 654 inode->i_ino = ++last_ino; 655 inode->i_state = 0; 656 spin_unlock(&inode_lock); 657 } 658 return inode; 659 } 660 EXPORT_SYMBOL(new_inode); 661 662 void unlock_new_inode(struct inode *inode) 663 { 664 #ifdef CONFIG_DEBUG_LOCK_ALLOC 665 if (inode->i_mode & S_IFDIR) { 666 struct file_system_type *type = inode->i_sb->s_type; 667 668 /* 669 * ensure nobody is actually holding i_mutex 670 */ 671 mutex_destroy(&inode->i_mutex); 672 mutex_init(&inode->i_mutex); 673 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 674 } 675 #endif 676 /* 677 * This is special! We do not need the spinlock 678 * when clearing I_LOCK, because we're guaranteed 679 * that nobody else tries to do anything about the 680 * state of the inode when it is locked, as we 681 * just created it (so there can be no old holders 682 * that haven't tested I_LOCK). 683 */ 684 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 685 inode->i_state &= ~(I_LOCK|I_NEW); 686 wake_up_inode(inode); 687 } 688 EXPORT_SYMBOL(unlock_new_inode); 689 690 /* 691 * This is called without the inode lock held.. Be careful. 692 * 693 * We no longer cache the sb_flags in i_flags - see fs.h 694 * -- rmk@arm.uk.linux.org 695 */ 696 static struct inode *get_new_inode(struct super_block *sb, 697 struct hlist_head *head, 698 int (*test)(struct inode *, void *), 699 int (*set)(struct inode *, void *), 700 void *data) 701 { 702 struct inode *inode; 703 704 inode = alloc_inode(sb); 705 if (inode) { 706 struct inode *old; 707 708 spin_lock(&inode_lock); 709 /* We released the lock, so.. */ 710 old = find_inode(sb, head, test, data); 711 if (!old) { 712 if (set(inode, data)) 713 goto set_failed; 714 715 __inode_add_to_lists(sb, head, inode); 716 inode->i_state = I_LOCK|I_NEW; 717 spin_unlock(&inode_lock); 718 719 /* Return the locked inode with I_NEW set, the 720 * caller is responsible for filling in the contents 721 */ 722 return inode; 723 } 724 725 /* 726 * Uhhuh, somebody else created the same inode under 727 * us. Use the old inode instead of the one we just 728 * allocated. 729 */ 730 __iget(old); 731 spin_unlock(&inode_lock); 732 destroy_inode(inode); 733 inode = old; 734 wait_on_inode(inode); 735 } 736 return inode; 737 738 set_failed: 739 spin_unlock(&inode_lock); 740 destroy_inode(inode); 741 return NULL; 742 } 743 744 /* 745 * get_new_inode_fast is the fast path version of get_new_inode, see the 746 * comment at iget_locked for details. 747 */ 748 static struct inode *get_new_inode_fast(struct super_block *sb, 749 struct hlist_head *head, unsigned long ino) 750 { 751 struct inode *inode; 752 753 inode = alloc_inode(sb); 754 if (inode) { 755 struct inode *old; 756 757 spin_lock(&inode_lock); 758 /* We released the lock, so.. */ 759 old = find_inode_fast(sb, head, ino); 760 if (!old) { 761 inode->i_ino = ino; 762 __inode_add_to_lists(sb, head, inode); 763 inode->i_state = I_LOCK|I_NEW; 764 spin_unlock(&inode_lock); 765 766 /* Return the locked inode with I_NEW set, the 767 * caller is responsible for filling in the contents 768 */ 769 return inode; 770 } 771 772 /* 773 * Uhhuh, somebody else created the same inode under 774 * us. Use the old inode instead of the one we just 775 * allocated. 776 */ 777 __iget(old); 778 spin_unlock(&inode_lock); 779 destroy_inode(inode); 780 inode = old; 781 wait_on_inode(inode); 782 } 783 return inode; 784 } 785 786 /** 787 * iunique - get a unique inode number 788 * @sb: superblock 789 * @max_reserved: highest reserved inode number 790 * 791 * Obtain an inode number that is unique on the system for a given 792 * superblock. This is used by file systems that have no natural 793 * permanent inode numbering system. An inode number is returned that 794 * is higher than the reserved limit but unique. 795 * 796 * BUGS: 797 * With a large number of inodes live on the file system this function 798 * currently becomes quite slow. 799 */ 800 ino_t iunique(struct super_block *sb, ino_t max_reserved) 801 { 802 /* 803 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 804 * error if st_ino won't fit in target struct field. Use 32bit counter 805 * here to attempt to avoid that. 806 */ 807 static unsigned int counter; 808 struct inode *inode; 809 struct hlist_head *head; 810 ino_t res; 811 812 spin_lock(&inode_lock); 813 do { 814 if (counter <= max_reserved) 815 counter = max_reserved + 1; 816 res = counter++; 817 head = inode_hashtable + hash(sb, res); 818 inode = find_inode_fast(sb, head, res); 819 } while (inode != NULL); 820 spin_unlock(&inode_lock); 821 822 return res; 823 } 824 EXPORT_SYMBOL(iunique); 825 826 struct inode *igrab(struct inode *inode) 827 { 828 spin_lock(&inode_lock); 829 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 830 __iget(inode); 831 else 832 /* 833 * Handle the case where s_op->clear_inode is not been 834 * called yet, and somebody is calling igrab 835 * while the inode is getting freed. 836 */ 837 inode = NULL; 838 spin_unlock(&inode_lock); 839 return inode; 840 } 841 EXPORT_SYMBOL(igrab); 842 843 /** 844 * ifind - internal function, you want ilookup5() or iget5(). 845 * @sb: super block of file system to search 846 * @head: the head of the list to search 847 * @test: callback used for comparisons between inodes 848 * @data: opaque data pointer to pass to @test 849 * @wait: if true wait for the inode to be unlocked, if false do not 850 * 851 * ifind() searches for the inode specified by @data in the inode 852 * cache. This is a generalized version of ifind_fast() for file systems where 853 * the inode number is not sufficient for unique identification of an inode. 854 * 855 * If the inode is in the cache, the inode is returned with an incremented 856 * reference count. 857 * 858 * Otherwise NULL is returned. 859 * 860 * Note, @test is called with the inode_lock held, so can't sleep. 861 */ 862 static struct inode *ifind(struct super_block *sb, 863 struct hlist_head *head, int (*test)(struct inode *, void *), 864 void *data, const int wait) 865 { 866 struct inode *inode; 867 868 spin_lock(&inode_lock); 869 inode = find_inode(sb, head, test, data); 870 if (inode) { 871 __iget(inode); 872 spin_unlock(&inode_lock); 873 if (likely(wait)) 874 wait_on_inode(inode); 875 return inode; 876 } 877 spin_unlock(&inode_lock); 878 return NULL; 879 } 880 881 /** 882 * ifind_fast - internal function, you want ilookup() or iget(). 883 * @sb: super block of file system to search 884 * @head: head of the list to search 885 * @ino: inode number to search for 886 * 887 * ifind_fast() searches for the inode @ino in the inode cache. This is for 888 * file systems where the inode number is sufficient for unique identification 889 * of an inode. 890 * 891 * If the inode is in the cache, the inode is returned with an incremented 892 * reference count. 893 * 894 * Otherwise NULL is returned. 895 */ 896 static struct inode *ifind_fast(struct super_block *sb, 897 struct hlist_head *head, unsigned long ino) 898 { 899 struct inode *inode; 900 901 spin_lock(&inode_lock); 902 inode = find_inode_fast(sb, head, ino); 903 if (inode) { 904 __iget(inode); 905 spin_unlock(&inode_lock); 906 wait_on_inode(inode); 907 return inode; 908 } 909 spin_unlock(&inode_lock); 910 return NULL; 911 } 912 913 /** 914 * ilookup5_nowait - search for an inode in the inode cache 915 * @sb: super block of file system to search 916 * @hashval: hash value (usually inode number) to search for 917 * @test: callback used for comparisons between inodes 918 * @data: opaque data pointer to pass to @test 919 * 920 * ilookup5() uses ifind() to search for the inode specified by @hashval and 921 * @data in the inode cache. This is a generalized version of ilookup() for 922 * file systems where the inode number is not sufficient for unique 923 * identification of an inode. 924 * 925 * If the inode is in the cache, the inode is returned with an incremented 926 * reference count. Note, the inode lock is not waited upon so you have to be 927 * very careful what you do with the returned inode. You probably should be 928 * using ilookup5() instead. 929 * 930 * Otherwise NULL is returned. 931 * 932 * Note, @test is called with the inode_lock held, so can't sleep. 933 */ 934 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 935 int (*test)(struct inode *, void *), void *data) 936 { 937 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 938 939 return ifind(sb, head, test, data, 0); 940 } 941 EXPORT_SYMBOL(ilookup5_nowait); 942 943 /** 944 * ilookup5 - search for an inode in the inode cache 945 * @sb: super block of file system to search 946 * @hashval: hash value (usually inode number) to search for 947 * @test: callback used for comparisons between inodes 948 * @data: opaque data pointer to pass to @test 949 * 950 * ilookup5() uses ifind() to search for the inode specified by @hashval and 951 * @data in the inode cache. This is a generalized version of ilookup() for 952 * file systems where the inode number is not sufficient for unique 953 * identification of an inode. 954 * 955 * If the inode is in the cache, the inode lock is waited upon and the inode is 956 * returned with an incremented reference count. 957 * 958 * Otherwise NULL is returned. 959 * 960 * Note, @test is called with the inode_lock held, so can't sleep. 961 */ 962 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 963 int (*test)(struct inode *, void *), void *data) 964 { 965 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 966 967 return ifind(sb, head, test, data, 1); 968 } 969 EXPORT_SYMBOL(ilookup5); 970 971 /** 972 * ilookup - search for an inode in the inode cache 973 * @sb: super block of file system to search 974 * @ino: inode number to search for 975 * 976 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 977 * This is for file systems where the inode number is sufficient for unique 978 * identification of an inode. 979 * 980 * If the inode is in the cache, the inode is returned with an incremented 981 * reference count. 982 * 983 * Otherwise NULL is returned. 984 */ 985 struct inode *ilookup(struct super_block *sb, unsigned long ino) 986 { 987 struct hlist_head *head = inode_hashtable + hash(sb, ino); 988 989 return ifind_fast(sb, head, ino); 990 } 991 EXPORT_SYMBOL(ilookup); 992 993 /** 994 * iget5_locked - obtain an inode from a mounted file system 995 * @sb: super block of file system 996 * @hashval: hash value (usually inode number) to get 997 * @test: callback used for comparisons between inodes 998 * @set: callback used to initialize a new struct inode 999 * @data: opaque data pointer to pass to @test and @set 1000 * 1001 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1002 * and @data in the inode cache and if present it is returned with an increased 1003 * reference count. This is a generalized version of iget_locked() for file 1004 * systems where the inode number is not sufficient for unique identification 1005 * of an inode. 1006 * 1007 * If the inode is not in cache, get_new_inode() is called to allocate a new 1008 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1009 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1010 * 1011 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1012 */ 1013 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1014 int (*test)(struct inode *, void *), 1015 int (*set)(struct inode *, void *), void *data) 1016 { 1017 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1018 struct inode *inode; 1019 1020 inode = ifind(sb, head, test, data, 1); 1021 if (inode) 1022 return inode; 1023 /* 1024 * get_new_inode() will do the right thing, re-trying the search 1025 * in case it had to block at any point. 1026 */ 1027 return get_new_inode(sb, head, test, set, data); 1028 } 1029 EXPORT_SYMBOL(iget5_locked); 1030 1031 /** 1032 * iget_locked - obtain an inode from a mounted file system 1033 * @sb: super block of file system 1034 * @ino: inode number to get 1035 * 1036 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1037 * the inode cache and if present it is returned with an increased reference 1038 * count. This is for file systems where the inode number is sufficient for 1039 * unique identification of an inode. 1040 * 1041 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1042 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1043 * The file system gets to fill it in before unlocking it via 1044 * unlock_new_inode(). 1045 */ 1046 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1047 { 1048 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1049 struct inode *inode; 1050 1051 inode = ifind_fast(sb, head, ino); 1052 if (inode) 1053 return inode; 1054 /* 1055 * get_new_inode_fast() will do the right thing, re-trying the search 1056 * in case it had to block at any point. 1057 */ 1058 return get_new_inode_fast(sb, head, ino); 1059 } 1060 EXPORT_SYMBOL(iget_locked); 1061 1062 int insert_inode_locked(struct inode *inode) 1063 { 1064 struct super_block *sb = inode->i_sb; 1065 ino_t ino = inode->i_ino; 1066 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1067 1068 inode->i_state |= I_LOCK|I_NEW; 1069 while (1) { 1070 struct hlist_node *node; 1071 struct inode *old = NULL; 1072 spin_lock(&inode_lock); 1073 hlist_for_each_entry(old, node, head, i_hash) { 1074 if (old->i_ino != ino) 1075 continue; 1076 if (old->i_sb != sb) 1077 continue; 1078 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1079 continue; 1080 break; 1081 } 1082 if (likely(!node)) { 1083 hlist_add_head(&inode->i_hash, head); 1084 spin_unlock(&inode_lock); 1085 return 0; 1086 } 1087 __iget(old); 1088 spin_unlock(&inode_lock); 1089 wait_on_inode(old); 1090 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1091 iput(old); 1092 return -EBUSY; 1093 } 1094 iput(old); 1095 } 1096 } 1097 EXPORT_SYMBOL(insert_inode_locked); 1098 1099 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1100 int (*test)(struct inode *, void *), void *data) 1101 { 1102 struct super_block *sb = inode->i_sb; 1103 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1104 1105 inode->i_state |= I_LOCK|I_NEW; 1106 1107 while (1) { 1108 struct hlist_node *node; 1109 struct inode *old = NULL; 1110 1111 spin_lock(&inode_lock); 1112 hlist_for_each_entry(old, node, head, i_hash) { 1113 if (old->i_sb != sb) 1114 continue; 1115 if (!test(old, data)) 1116 continue; 1117 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1118 continue; 1119 break; 1120 } 1121 if (likely(!node)) { 1122 hlist_add_head(&inode->i_hash, head); 1123 spin_unlock(&inode_lock); 1124 return 0; 1125 } 1126 __iget(old); 1127 spin_unlock(&inode_lock); 1128 wait_on_inode(old); 1129 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1130 iput(old); 1131 return -EBUSY; 1132 } 1133 iput(old); 1134 } 1135 } 1136 EXPORT_SYMBOL(insert_inode_locked4); 1137 1138 /** 1139 * __insert_inode_hash - hash an inode 1140 * @inode: unhashed inode 1141 * @hashval: unsigned long value used to locate this object in the 1142 * inode_hashtable. 1143 * 1144 * Add an inode to the inode hash for this superblock. 1145 */ 1146 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1147 { 1148 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1149 spin_lock(&inode_lock); 1150 hlist_add_head(&inode->i_hash, head); 1151 spin_unlock(&inode_lock); 1152 } 1153 EXPORT_SYMBOL(__insert_inode_hash); 1154 1155 /** 1156 * remove_inode_hash - remove an inode from the hash 1157 * @inode: inode to unhash 1158 * 1159 * Remove an inode from the superblock. 1160 */ 1161 void remove_inode_hash(struct inode *inode) 1162 { 1163 spin_lock(&inode_lock); 1164 hlist_del_init(&inode->i_hash); 1165 spin_unlock(&inode_lock); 1166 } 1167 EXPORT_SYMBOL(remove_inode_hash); 1168 1169 /* 1170 * Tell the filesystem that this inode is no longer of any interest and should 1171 * be completely destroyed. 1172 * 1173 * We leave the inode in the inode hash table until *after* the filesystem's 1174 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1175 * instigate) will always find up-to-date information either in the hash or on 1176 * disk. 1177 * 1178 * I_FREEING is set so that no-one will take a new reference to the inode while 1179 * it is being deleted. 1180 */ 1181 void generic_delete_inode(struct inode *inode) 1182 { 1183 const struct super_operations *op = inode->i_sb->s_op; 1184 1185 list_del_init(&inode->i_list); 1186 list_del_init(&inode->i_sb_list); 1187 WARN_ON(inode->i_state & I_NEW); 1188 inode->i_state |= I_FREEING; 1189 inodes_stat.nr_inodes--; 1190 spin_unlock(&inode_lock); 1191 1192 security_inode_delete(inode); 1193 1194 if (op->delete_inode) { 1195 void (*delete)(struct inode *) = op->delete_inode; 1196 if (!is_bad_inode(inode)) 1197 vfs_dq_init(inode); 1198 /* Filesystems implementing their own 1199 * s_op->delete_inode are required to call 1200 * truncate_inode_pages and clear_inode() 1201 * internally */ 1202 delete(inode); 1203 } else { 1204 truncate_inode_pages(&inode->i_data, 0); 1205 clear_inode(inode); 1206 } 1207 spin_lock(&inode_lock); 1208 hlist_del_init(&inode->i_hash); 1209 spin_unlock(&inode_lock); 1210 wake_up_inode(inode); 1211 BUG_ON(inode->i_state != I_CLEAR); 1212 destroy_inode(inode); 1213 } 1214 EXPORT_SYMBOL(generic_delete_inode); 1215 1216 static void generic_forget_inode(struct inode *inode) 1217 { 1218 struct super_block *sb = inode->i_sb; 1219 1220 if (!hlist_unhashed(&inode->i_hash)) { 1221 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1222 list_move(&inode->i_list, &inode_unused); 1223 inodes_stat.nr_unused++; 1224 if (sb->s_flags & MS_ACTIVE) { 1225 spin_unlock(&inode_lock); 1226 return; 1227 } 1228 WARN_ON(inode->i_state & I_NEW); 1229 inode->i_state |= I_WILL_FREE; 1230 spin_unlock(&inode_lock); 1231 write_inode_now(inode, 1); 1232 spin_lock(&inode_lock); 1233 WARN_ON(inode->i_state & I_NEW); 1234 inode->i_state &= ~I_WILL_FREE; 1235 inodes_stat.nr_unused--; 1236 hlist_del_init(&inode->i_hash); 1237 } 1238 list_del_init(&inode->i_list); 1239 list_del_init(&inode->i_sb_list); 1240 WARN_ON(inode->i_state & I_NEW); 1241 inode->i_state |= I_FREEING; 1242 inodes_stat.nr_inodes--; 1243 spin_unlock(&inode_lock); 1244 if (inode->i_data.nrpages) 1245 truncate_inode_pages(&inode->i_data, 0); 1246 clear_inode(inode); 1247 wake_up_inode(inode); 1248 destroy_inode(inode); 1249 } 1250 1251 /* 1252 * Normal UNIX filesystem behaviour: delete the 1253 * inode when the usage count drops to zero, and 1254 * i_nlink is zero. 1255 */ 1256 void generic_drop_inode(struct inode *inode) 1257 { 1258 if (!inode->i_nlink) 1259 generic_delete_inode(inode); 1260 else 1261 generic_forget_inode(inode); 1262 } 1263 EXPORT_SYMBOL_GPL(generic_drop_inode); 1264 1265 /* 1266 * Called when we're dropping the last reference 1267 * to an inode. 1268 * 1269 * Call the FS "drop()" function, defaulting to 1270 * the legacy UNIX filesystem behaviour.. 1271 * 1272 * NOTE! NOTE! NOTE! We're called with the inode lock 1273 * held, and the drop function is supposed to release 1274 * the lock! 1275 */ 1276 static inline void iput_final(struct inode *inode) 1277 { 1278 const struct super_operations *op = inode->i_sb->s_op; 1279 void (*drop)(struct inode *) = generic_drop_inode; 1280 1281 if (op && op->drop_inode) 1282 drop = op->drop_inode; 1283 drop(inode); 1284 } 1285 1286 /** 1287 * iput - put an inode 1288 * @inode: inode to put 1289 * 1290 * Puts an inode, dropping its usage count. If the inode use count hits 1291 * zero, the inode is then freed and may also be destroyed. 1292 * 1293 * Consequently, iput() can sleep. 1294 */ 1295 void iput(struct inode *inode) 1296 { 1297 if (inode) { 1298 BUG_ON(inode->i_state == I_CLEAR); 1299 1300 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1301 iput_final(inode); 1302 } 1303 } 1304 EXPORT_SYMBOL(iput); 1305 1306 /** 1307 * bmap - find a block number in a file 1308 * @inode: inode of file 1309 * @block: block to find 1310 * 1311 * Returns the block number on the device holding the inode that 1312 * is the disk block number for the block of the file requested. 1313 * That is, asked for block 4 of inode 1 the function will return the 1314 * disk block relative to the disk start that holds that block of the 1315 * file. 1316 */ 1317 sector_t bmap(struct inode *inode, sector_t block) 1318 { 1319 sector_t res = 0; 1320 if (inode->i_mapping->a_ops->bmap) 1321 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1322 return res; 1323 } 1324 EXPORT_SYMBOL(bmap); 1325 1326 /* 1327 * With relative atime, only update atime if the previous atime is 1328 * earlier than either the ctime or mtime or if at least a day has 1329 * passed since the last atime update. 1330 */ 1331 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1332 struct timespec now) 1333 { 1334 1335 if (!(mnt->mnt_flags & MNT_RELATIME)) 1336 return 1; 1337 /* 1338 * Is mtime younger than atime? If yes, update atime: 1339 */ 1340 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1341 return 1; 1342 /* 1343 * Is ctime younger than atime? If yes, update atime: 1344 */ 1345 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1346 return 1; 1347 1348 /* 1349 * Is the previous atime value older than a day? If yes, 1350 * update atime: 1351 */ 1352 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1353 return 1; 1354 /* 1355 * Good, we can skip the atime update: 1356 */ 1357 return 0; 1358 } 1359 1360 /** 1361 * touch_atime - update the access time 1362 * @mnt: mount the inode is accessed on 1363 * @dentry: dentry accessed 1364 * 1365 * Update the accessed time on an inode and mark it for writeback. 1366 * This function automatically handles read only file systems and media, 1367 * as well as the "noatime" flag and inode specific "noatime" markers. 1368 */ 1369 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1370 { 1371 struct inode *inode = dentry->d_inode; 1372 struct timespec now; 1373 1374 if (mnt_want_write(mnt)) 1375 return; 1376 if (inode->i_flags & S_NOATIME) 1377 goto out; 1378 if (IS_NOATIME(inode)) 1379 goto out; 1380 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1381 goto out; 1382 1383 if (mnt->mnt_flags & MNT_NOATIME) 1384 goto out; 1385 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1386 goto out; 1387 1388 now = current_fs_time(inode->i_sb); 1389 1390 if (!relatime_need_update(mnt, inode, now)) 1391 goto out; 1392 1393 if (timespec_equal(&inode->i_atime, &now)) 1394 goto out; 1395 1396 inode->i_atime = now; 1397 mark_inode_dirty_sync(inode); 1398 out: 1399 mnt_drop_write(mnt); 1400 } 1401 EXPORT_SYMBOL(touch_atime); 1402 1403 /** 1404 * file_update_time - update mtime and ctime time 1405 * @file: file accessed 1406 * 1407 * Update the mtime and ctime members of an inode and mark the inode 1408 * for writeback. Note that this function is meant exclusively for 1409 * usage in the file write path of filesystems, and filesystems may 1410 * choose to explicitly ignore update via this function with the 1411 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1412 * timestamps are handled by the server. 1413 */ 1414 1415 void file_update_time(struct file *file) 1416 { 1417 struct inode *inode = file->f_path.dentry->d_inode; 1418 struct timespec now; 1419 int sync_it = 0; 1420 int err; 1421 1422 if (IS_NOCMTIME(inode)) 1423 return; 1424 1425 err = mnt_want_write_file(file); 1426 if (err) 1427 return; 1428 1429 now = current_fs_time(inode->i_sb); 1430 if (!timespec_equal(&inode->i_mtime, &now)) { 1431 inode->i_mtime = now; 1432 sync_it = 1; 1433 } 1434 1435 if (!timespec_equal(&inode->i_ctime, &now)) { 1436 inode->i_ctime = now; 1437 sync_it = 1; 1438 } 1439 1440 if (IS_I_VERSION(inode)) { 1441 inode_inc_iversion(inode); 1442 sync_it = 1; 1443 } 1444 1445 if (sync_it) 1446 mark_inode_dirty_sync(inode); 1447 mnt_drop_write(file->f_path.mnt); 1448 } 1449 EXPORT_SYMBOL(file_update_time); 1450 1451 int inode_needs_sync(struct inode *inode) 1452 { 1453 if (IS_SYNC(inode)) 1454 return 1; 1455 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1456 return 1; 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(inode_needs_sync); 1460 1461 int inode_wait(void *word) 1462 { 1463 schedule(); 1464 return 0; 1465 } 1466 EXPORT_SYMBOL(inode_wait); 1467 1468 /* 1469 * If we try to find an inode in the inode hash while it is being 1470 * deleted, we have to wait until the filesystem completes its 1471 * deletion before reporting that it isn't found. This function waits 1472 * until the deletion _might_ have completed. Callers are responsible 1473 * to recheck inode state. 1474 * 1475 * It doesn't matter if I_LOCK is not set initially, a call to 1476 * wake_up_inode() after removing from the hash list will DTRT. 1477 * 1478 * This is called with inode_lock held. 1479 */ 1480 static void __wait_on_freeing_inode(struct inode *inode) 1481 { 1482 wait_queue_head_t *wq; 1483 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1484 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1485 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1486 spin_unlock(&inode_lock); 1487 schedule(); 1488 finish_wait(wq, &wait.wait); 1489 spin_lock(&inode_lock); 1490 } 1491 1492 static __initdata unsigned long ihash_entries; 1493 static int __init set_ihash_entries(char *str) 1494 { 1495 if (!str) 1496 return 0; 1497 ihash_entries = simple_strtoul(str, &str, 0); 1498 return 1; 1499 } 1500 __setup("ihash_entries=", set_ihash_entries); 1501 1502 /* 1503 * Initialize the waitqueues and inode hash table. 1504 */ 1505 void __init inode_init_early(void) 1506 { 1507 int loop; 1508 1509 /* If hashes are distributed across NUMA nodes, defer 1510 * hash allocation until vmalloc space is available. 1511 */ 1512 if (hashdist) 1513 return; 1514 1515 inode_hashtable = 1516 alloc_large_system_hash("Inode-cache", 1517 sizeof(struct hlist_head), 1518 ihash_entries, 1519 14, 1520 HASH_EARLY, 1521 &i_hash_shift, 1522 &i_hash_mask, 1523 0); 1524 1525 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1526 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1527 } 1528 1529 void __init inode_init(void) 1530 { 1531 int loop; 1532 1533 /* inode slab cache */ 1534 inode_cachep = kmem_cache_create("inode_cache", 1535 sizeof(struct inode), 1536 0, 1537 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1538 SLAB_MEM_SPREAD), 1539 init_once); 1540 register_shrinker(&icache_shrinker); 1541 1542 /* Hash may have been set up in inode_init_early */ 1543 if (!hashdist) 1544 return; 1545 1546 inode_hashtable = 1547 alloc_large_system_hash("Inode-cache", 1548 sizeof(struct hlist_head), 1549 ihash_entries, 1550 14, 1551 0, 1552 &i_hash_shift, 1553 &i_hash_mask, 1554 0); 1555 1556 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1557 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1558 } 1559 1560 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1561 { 1562 inode->i_mode = mode; 1563 if (S_ISCHR(mode)) { 1564 inode->i_fop = &def_chr_fops; 1565 inode->i_rdev = rdev; 1566 } else if (S_ISBLK(mode)) { 1567 inode->i_fop = &def_blk_fops; 1568 inode->i_rdev = rdev; 1569 } else if (S_ISFIFO(mode)) 1570 inode->i_fop = &def_fifo_fops; 1571 else if (S_ISSOCK(mode)) 1572 inode->i_fop = &bad_sock_fops; 1573 else 1574 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1575 mode); 1576 } 1577 EXPORT_SYMBOL(init_special_inode); 1578