xref: /linux/fs/inode.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_inode_buffers
33  *  - invalidate_bdev
34  *
35  * FIXME: remove all knowledge of the buffer layer from this file
36  */
37 #include <linux/buffer_head.h>
38 
39 /*
40  * New inode.c implementation.
41  *
42  * This implementation has the basic premise of trying
43  * to be extremely low-overhead and SMP-safe, yet be
44  * simple enough to be "obviously correct".
45  *
46  * Famous last words.
47  */
48 
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53 
54 /*
55  * Inode lookup is no longer as critical as it used to be:
56  * most of the lookups are going to be through the dcache.
57  */
58 #define I_HASHBITS	i_hash_shift
59 #define I_HASHMASK	i_hash_mask
60 
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63 
64 /*
65  * Each inode can be on two separate lists. One is
66  * the hash list of the inode, used for lookups. The
67  * other linked list is the "type" list:
68  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
69  *  "dirty"  - as "in_use" but also dirty
70  *  "unused" - valid inode, i_count = 0
71  *
72  * A "dirty" list is maintained for each super block,
73  * allowing for low-overhead inode sync() operations.
74  */
75 
76 LIST_HEAD(inode_in_use);
77 LIST_HEAD(inode_unused);
78 static struct hlist_head *inode_hashtable __read_mostly;
79 
80 /*
81  * A simple spinlock to protect the list manipulations.
82  *
83  * NOTE! You also have to own the lock if you change
84  * the i_state of an inode while it is in use..
85  */
86 DEFINE_SPINLOCK(inode_lock);
87 
88 /*
89  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
90  * icache shrinking path, and the umount path.  Without this exclusion,
91  * by the time prune_icache calls iput for the inode whose pages it has
92  * been invalidating, or by the time it calls clear_inode & destroy_inode
93  * from its final dispose_list, the struct super_block they refer to
94  * (for inode->i_sb->s_op) may already have been freed and reused.
95  */
96 static DEFINE_MUTEX(iprune_mutex);
97 
98 /*
99  * Statistics gathering..
100  */
101 struct inodes_stat_t inodes_stat;
102 
103 static struct kmem_cache *inode_cachep __read_mostly;
104 
105 static void wake_up_inode(struct inode *inode)
106 {
107 	/*
108 	 * Prevent speculative execution through spin_unlock(&inode_lock);
109 	 */
110 	smp_mb();
111 	wake_up_bit(&inode->i_state, __I_LOCK);
112 }
113 
114 /**
115  * inode_init_always - perform inode structure intialisation
116  * @sb: superblock inode belongs to
117  * @inode: inode to initialise
118  *
119  * These are initializations that need to be done on every inode
120  * allocation as the fields are not initialised by slab allocation.
121  */
122 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
123 {
124 	static const struct address_space_operations empty_aops;
125 	static struct inode_operations empty_iops;
126 	static const struct file_operations empty_fops;
127 
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->i_nlink = 1;
137 	inode->i_uid = 0;
138 	inode->i_gid = 0;
139 	atomic_set(&inode->i_writecount, 0);
140 	inode->i_size = 0;
141 	inode->i_blocks = 0;
142 	inode->i_bytes = 0;
143 	inode->i_generation = 0;
144 #ifdef CONFIG_QUOTA
145 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
146 #endif
147 	inode->i_pipe = NULL;
148 	inode->i_bdev = NULL;
149 	inode->i_cdev = NULL;
150 	inode->i_rdev = 0;
151 	inode->dirtied_when = 0;
152 
153 	if (security_inode_alloc(inode))
154 		goto out_free_inode;
155 
156 	/* allocate and initialize an i_integrity */
157 	if (ima_inode_alloc(inode))
158 		goto out_free_security;
159 
160 	spin_lock_init(&inode->i_lock);
161 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
162 
163 	mutex_init(&inode->i_mutex);
164 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
165 
166 	init_rwsem(&inode->i_alloc_sem);
167 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
168 
169 	mapping->a_ops = &empty_aops;
170 	mapping->host = inode;
171 	mapping->flags = 0;
172 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
173 	mapping->assoc_mapping = NULL;
174 	mapping->backing_dev_info = &default_backing_dev_info;
175 	mapping->writeback_index = 0;
176 
177 	/*
178 	 * If the block_device provides a backing_dev_info for client
179 	 * inodes then use that.  Otherwise the inode share the bdev's
180 	 * backing_dev_info.
181 	 */
182 	if (sb->s_bdev) {
183 		struct backing_dev_info *bdi;
184 
185 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
186 		if (!bdi)
187 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
188 		mapping->backing_dev_info = bdi;
189 	}
190 	inode->i_private = NULL;
191 	inode->i_mapping = mapping;
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 
197 	return inode;
198 
199 out_free_security:
200 	security_inode_free(inode);
201 out_free_inode:
202 	if (inode->i_sb->s_op->destroy_inode)
203 		inode->i_sb->s_op->destroy_inode(inode);
204 	else
205 		kmem_cache_free(inode_cachep, (inode));
206 	return NULL;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209 
210 static struct inode *alloc_inode(struct super_block *sb)
211 {
212 	struct inode *inode;
213 
214 	if (sb->s_op->alloc_inode)
215 		inode = sb->s_op->alloc_inode(sb);
216 	else
217 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
218 
219 	if (inode)
220 		return inode_init_always(sb, inode);
221 	return NULL;
222 }
223 
224 void destroy_inode(struct inode *inode)
225 {
226 	BUG_ON(inode_has_buffers(inode));
227 	ima_inode_free(inode);
228 	security_inode_free(inode);
229 	fsnotify_inode_delete(inode);
230 	if (inode->i_sb->s_op->destroy_inode)
231 		inode->i_sb->s_op->destroy_inode(inode);
232 	else
233 		kmem_cache_free(inode_cachep, (inode));
234 }
235 EXPORT_SYMBOL(destroy_inode);
236 
237 
238 /*
239  * These are initializations that only need to be done
240  * once, because the fields are idempotent across use
241  * of the inode, so let the slab aware of that.
242  */
243 void inode_init_once(struct inode *inode)
244 {
245 	memset(inode, 0, sizeof(*inode));
246 	INIT_HLIST_NODE(&inode->i_hash);
247 	INIT_LIST_HEAD(&inode->i_dentry);
248 	INIT_LIST_HEAD(&inode->i_devices);
249 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
250 	spin_lock_init(&inode->i_data.tree_lock);
251 	spin_lock_init(&inode->i_data.i_mmap_lock);
252 	INIT_LIST_HEAD(&inode->i_data.private_list);
253 	spin_lock_init(&inode->i_data.private_lock);
254 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
255 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
256 	i_size_ordered_init(inode);
257 #ifdef CONFIG_INOTIFY
258 	INIT_LIST_HEAD(&inode->inotify_watches);
259 	mutex_init(&inode->inotify_mutex);
260 #endif
261 #ifdef CONFIG_FSNOTIFY
262 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
263 #endif
264 }
265 EXPORT_SYMBOL(inode_init_once);
266 
267 static void init_once(void *foo)
268 {
269 	struct inode *inode = (struct inode *) foo;
270 
271 	inode_init_once(inode);
272 }
273 
274 /*
275  * inode_lock must be held
276  */
277 void __iget(struct inode *inode)
278 {
279 	if (atomic_read(&inode->i_count)) {
280 		atomic_inc(&inode->i_count);
281 		return;
282 	}
283 	atomic_inc(&inode->i_count);
284 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
285 		list_move(&inode->i_list, &inode_in_use);
286 	inodes_stat.nr_unused--;
287 }
288 
289 /**
290  * clear_inode - clear an inode
291  * @inode: inode to clear
292  *
293  * This is called by the filesystem to tell us
294  * that the inode is no longer useful. We just
295  * terminate it with extreme prejudice.
296  */
297 void clear_inode(struct inode *inode)
298 {
299 	might_sleep();
300 	invalidate_inode_buffers(inode);
301 
302 	BUG_ON(inode->i_data.nrpages);
303 	BUG_ON(!(inode->i_state & I_FREEING));
304 	BUG_ON(inode->i_state & I_CLEAR);
305 	inode_sync_wait(inode);
306 	vfs_dq_drop(inode);
307 	if (inode->i_sb->s_op->clear_inode)
308 		inode->i_sb->s_op->clear_inode(inode);
309 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
310 		bd_forget(inode);
311 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
312 		cd_forget(inode);
313 	inode->i_state = I_CLEAR;
314 }
315 EXPORT_SYMBOL(clear_inode);
316 
317 /*
318  * dispose_list - dispose of the contents of a local list
319  * @head: the head of the list to free
320  *
321  * Dispose-list gets a local list with local inodes in it, so it doesn't
322  * need to worry about list corruption and SMP locks.
323  */
324 static void dispose_list(struct list_head *head)
325 {
326 	int nr_disposed = 0;
327 
328 	while (!list_empty(head)) {
329 		struct inode *inode;
330 
331 		inode = list_first_entry(head, struct inode, i_list);
332 		list_del(&inode->i_list);
333 
334 		if (inode->i_data.nrpages)
335 			truncate_inode_pages(&inode->i_data, 0);
336 		clear_inode(inode);
337 
338 		spin_lock(&inode_lock);
339 		hlist_del_init(&inode->i_hash);
340 		list_del_init(&inode->i_sb_list);
341 		spin_unlock(&inode_lock);
342 
343 		wake_up_inode(inode);
344 		destroy_inode(inode);
345 		nr_disposed++;
346 	}
347 	spin_lock(&inode_lock);
348 	inodes_stat.nr_inodes -= nr_disposed;
349 	spin_unlock(&inode_lock);
350 }
351 
352 /*
353  * Invalidate all inodes for a device.
354  */
355 static int invalidate_list(struct list_head *head, struct list_head *dispose)
356 {
357 	struct list_head *next;
358 	int busy = 0, count = 0;
359 
360 	next = head->next;
361 	for (;;) {
362 		struct list_head *tmp = next;
363 		struct inode *inode;
364 
365 		/*
366 		 * We can reschedule here without worrying about the list's
367 		 * consistency because the per-sb list of inodes must not
368 		 * change during umount anymore, and because iprune_mutex keeps
369 		 * shrink_icache_memory() away.
370 		 */
371 		cond_resched_lock(&inode_lock);
372 
373 		next = next->next;
374 		if (tmp == head)
375 			break;
376 		inode = list_entry(tmp, struct inode, i_sb_list);
377 		if (inode->i_state & I_NEW)
378 			continue;
379 		invalidate_inode_buffers(inode);
380 		if (!atomic_read(&inode->i_count)) {
381 			list_move(&inode->i_list, dispose);
382 			WARN_ON(inode->i_state & I_NEW);
383 			inode->i_state |= I_FREEING;
384 			count++;
385 			continue;
386 		}
387 		busy = 1;
388 	}
389 	/* only unused inodes may be cached with i_count zero */
390 	inodes_stat.nr_unused -= count;
391 	return busy;
392 }
393 
394 /**
395  *	invalidate_inodes	- discard the inodes on a device
396  *	@sb: superblock
397  *
398  *	Discard all of the inodes for a given superblock. If the discard
399  *	fails because there are busy inodes then a non zero value is returned.
400  *	If the discard is successful all the inodes have been discarded.
401  */
402 int invalidate_inodes(struct super_block *sb)
403 {
404 	int busy;
405 	LIST_HEAD(throw_away);
406 
407 	mutex_lock(&iprune_mutex);
408 	spin_lock(&inode_lock);
409 	inotify_unmount_inodes(&sb->s_inodes);
410 	fsnotify_unmount_inodes(&sb->s_inodes);
411 	busy = invalidate_list(&sb->s_inodes, &throw_away);
412 	spin_unlock(&inode_lock);
413 
414 	dispose_list(&throw_away);
415 	mutex_unlock(&iprune_mutex);
416 
417 	return busy;
418 }
419 EXPORT_SYMBOL(invalidate_inodes);
420 
421 static int can_unuse(struct inode *inode)
422 {
423 	if (inode->i_state)
424 		return 0;
425 	if (inode_has_buffers(inode))
426 		return 0;
427 	if (atomic_read(&inode->i_count))
428 		return 0;
429 	if (inode->i_data.nrpages)
430 		return 0;
431 	return 1;
432 }
433 
434 /*
435  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
436  * a temporary list and then are freed outside inode_lock by dispose_list().
437  *
438  * Any inodes which are pinned purely because of attached pagecache have their
439  * pagecache removed.  We expect the final iput() on that inode to add it to
440  * the front of the inode_unused list.  So look for it there and if the
441  * inode is still freeable, proceed.  The right inode is found 99.9% of the
442  * time in testing on a 4-way.
443  *
444  * If the inode has metadata buffers attached to mapping->private_list then
445  * try to remove them.
446  */
447 static void prune_icache(int nr_to_scan)
448 {
449 	LIST_HEAD(freeable);
450 	int nr_pruned = 0;
451 	int nr_scanned;
452 	unsigned long reap = 0;
453 
454 	mutex_lock(&iprune_mutex);
455 	spin_lock(&inode_lock);
456 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
457 		struct inode *inode;
458 
459 		if (list_empty(&inode_unused))
460 			break;
461 
462 		inode = list_entry(inode_unused.prev, struct inode, i_list);
463 
464 		if (inode->i_state || atomic_read(&inode->i_count)) {
465 			list_move(&inode->i_list, &inode_unused);
466 			continue;
467 		}
468 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
469 			__iget(inode);
470 			spin_unlock(&inode_lock);
471 			if (remove_inode_buffers(inode))
472 				reap += invalidate_mapping_pages(&inode->i_data,
473 								0, -1);
474 			iput(inode);
475 			spin_lock(&inode_lock);
476 
477 			if (inode != list_entry(inode_unused.next,
478 						struct inode, i_list))
479 				continue;	/* wrong inode or list_empty */
480 			if (!can_unuse(inode))
481 				continue;
482 		}
483 		list_move(&inode->i_list, &freeable);
484 		WARN_ON(inode->i_state & I_NEW);
485 		inode->i_state |= I_FREEING;
486 		nr_pruned++;
487 	}
488 	inodes_stat.nr_unused -= nr_pruned;
489 	if (current_is_kswapd())
490 		__count_vm_events(KSWAPD_INODESTEAL, reap);
491 	else
492 		__count_vm_events(PGINODESTEAL, reap);
493 	spin_unlock(&inode_lock);
494 
495 	dispose_list(&freeable);
496 	mutex_unlock(&iprune_mutex);
497 }
498 
499 /*
500  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
501  * "unused" means that no dentries are referring to the inodes: the files are
502  * not open and the dcache references to those inodes have already been
503  * reclaimed.
504  *
505  * This function is passed the number of inodes to scan, and it returns the
506  * total number of remaining possibly-reclaimable inodes.
507  */
508 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
509 {
510 	if (nr) {
511 		/*
512 		 * Nasty deadlock avoidance.  We may hold various FS locks,
513 		 * and we don't want to recurse into the FS that called us
514 		 * in clear_inode() and friends..
515 		 */
516 		if (!(gfp_mask & __GFP_FS))
517 			return -1;
518 		prune_icache(nr);
519 	}
520 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
521 }
522 
523 static struct shrinker icache_shrinker = {
524 	.shrink = shrink_icache_memory,
525 	.seeks = DEFAULT_SEEKS,
526 };
527 
528 static void __wait_on_freeing_inode(struct inode *inode);
529 /*
530  * Called with the inode lock held.
531  * NOTE: we are not increasing the inode-refcount, you must call __iget()
532  * by hand after calling find_inode now! This simplifies iunique and won't
533  * add any additional branch in the common code.
534  */
535 static struct inode *find_inode(struct super_block *sb,
536 				struct hlist_head *head,
537 				int (*test)(struct inode *, void *),
538 				void *data)
539 {
540 	struct hlist_node *node;
541 	struct inode *inode = NULL;
542 
543 repeat:
544 	hlist_for_each_entry(inode, node, head, i_hash) {
545 		if (inode->i_sb != sb)
546 			continue;
547 		if (!test(inode, data))
548 			continue;
549 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
550 			__wait_on_freeing_inode(inode);
551 			goto repeat;
552 		}
553 		break;
554 	}
555 	return node ? inode : NULL;
556 }
557 
558 /*
559  * find_inode_fast is the fast path version of find_inode, see the comment at
560  * iget_locked for details.
561  */
562 static struct inode *find_inode_fast(struct super_block *sb,
563 				struct hlist_head *head, unsigned long ino)
564 {
565 	struct hlist_node *node;
566 	struct inode *inode = NULL;
567 
568 repeat:
569 	hlist_for_each_entry(inode, node, head, i_hash) {
570 		if (inode->i_ino != ino)
571 			continue;
572 		if (inode->i_sb != sb)
573 			continue;
574 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
575 			__wait_on_freeing_inode(inode);
576 			goto repeat;
577 		}
578 		break;
579 	}
580 	return node ? inode : NULL;
581 }
582 
583 static unsigned long hash(struct super_block *sb, unsigned long hashval)
584 {
585 	unsigned long tmp;
586 
587 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
588 			L1_CACHE_BYTES;
589 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
590 	return tmp & I_HASHMASK;
591 }
592 
593 static inline void
594 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
595 			struct inode *inode)
596 {
597 	inodes_stat.nr_inodes++;
598 	list_add(&inode->i_list, &inode_in_use);
599 	list_add(&inode->i_sb_list, &sb->s_inodes);
600 	if (head)
601 		hlist_add_head(&inode->i_hash, head);
602 }
603 
604 /**
605  * inode_add_to_lists - add a new inode to relevant lists
606  * @sb: superblock inode belongs to
607  * @inode: inode to mark in use
608  *
609  * When an inode is allocated it needs to be accounted for, added to the in use
610  * list, the owning superblock and the inode hash. This needs to be done under
611  * the inode_lock, so export a function to do this rather than the inode lock
612  * itself. We calculate the hash list to add to here so it is all internal
613  * which requires the caller to have already set up the inode number in the
614  * inode to add.
615  */
616 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
617 {
618 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
619 
620 	spin_lock(&inode_lock);
621 	__inode_add_to_lists(sb, head, inode);
622 	spin_unlock(&inode_lock);
623 }
624 EXPORT_SYMBOL_GPL(inode_add_to_lists);
625 
626 /**
627  *	new_inode 	- obtain an inode
628  *	@sb: superblock
629  *
630  *	Allocates a new inode for given superblock. The default gfp_mask
631  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
632  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
633  *	for the page cache are not reclaimable or migratable,
634  *	mapping_set_gfp_mask() must be called with suitable flags on the
635  *	newly created inode's mapping
636  *
637  */
638 struct inode *new_inode(struct super_block *sb)
639 {
640 	/*
641 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
642 	 * error if st_ino won't fit in target struct field. Use 32bit counter
643 	 * here to attempt to avoid that.
644 	 */
645 	static unsigned int last_ino;
646 	struct inode *inode;
647 
648 	spin_lock_prefetch(&inode_lock);
649 
650 	inode = alloc_inode(sb);
651 	if (inode) {
652 		spin_lock(&inode_lock);
653 		__inode_add_to_lists(sb, NULL, inode);
654 		inode->i_ino = ++last_ino;
655 		inode->i_state = 0;
656 		spin_unlock(&inode_lock);
657 	}
658 	return inode;
659 }
660 EXPORT_SYMBOL(new_inode);
661 
662 void unlock_new_inode(struct inode *inode)
663 {
664 #ifdef CONFIG_DEBUG_LOCK_ALLOC
665 	if (inode->i_mode & S_IFDIR) {
666 		struct file_system_type *type = inode->i_sb->s_type;
667 
668 		/*
669 		 * ensure nobody is actually holding i_mutex
670 		 */
671 		mutex_destroy(&inode->i_mutex);
672 		mutex_init(&inode->i_mutex);
673 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
674 	}
675 #endif
676 	/*
677 	 * This is special!  We do not need the spinlock
678 	 * when clearing I_LOCK, because we're guaranteed
679 	 * that nobody else tries to do anything about the
680 	 * state of the inode when it is locked, as we
681 	 * just created it (so there can be no old holders
682 	 * that haven't tested I_LOCK).
683 	 */
684 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
685 	inode->i_state &= ~(I_LOCK|I_NEW);
686 	wake_up_inode(inode);
687 }
688 EXPORT_SYMBOL(unlock_new_inode);
689 
690 /*
691  * This is called without the inode lock held.. Be careful.
692  *
693  * We no longer cache the sb_flags in i_flags - see fs.h
694  *	-- rmk@arm.uk.linux.org
695  */
696 static struct inode *get_new_inode(struct super_block *sb,
697 				struct hlist_head *head,
698 				int (*test)(struct inode *, void *),
699 				int (*set)(struct inode *, void *),
700 				void *data)
701 {
702 	struct inode *inode;
703 
704 	inode = alloc_inode(sb);
705 	if (inode) {
706 		struct inode *old;
707 
708 		spin_lock(&inode_lock);
709 		/* We released the lock, so.. */
710 		old = find_inode(sb, head, test, data);
711 		if (!old) {
712 			if (set(inode, data))
713 				goto set_failed;
714 
715 			__inode_add_to_lists(sb, head, inode);
716 			inode->i_state = I_LOCK|I_NEW;
717 			spin_unlock(&inode_lock);
718 
719 			/* Return the locked inode with I_NEW set, the
720 			 * caller is responsible for filling in the contents
721 			 */
722 			return inode;
723 		}
724 
725 		/*
726 		 * Uhhuh, somebody else created the same inode under
727 		 * us. Use the old inode instead of the one we just
728 		 * allocated.
729 		 */
730 		__iget(old);
731 		spin_unlock(&inode_lock);
732 		destroy_inode(inode);
733 		inode = old;
734 		wait_on_inode(inode);
735 	}
736 	return inode;
737 
738 set_failed:
739 	spin_unlock(&inode_lock);
740 	destroy_inode(inode);
741 	return NULL;
742 }
743 
744 /*
745  * get_new_inode_fast is the fast path version of get_new_inode, see the
746  * comment at iget_locked for details.
747  */
748 static struct inode *get_new_inode_fast(struct super_block *sb,
749 				struct hlist_head *head, unsigned long ino)
750 {
751 	struct inode *inode;
752 
753 	inode = alloc_inode(sb);
754 	if (inode) {
755 		struct inode *old;
756 
757 		spin_lock(&inode_lock);
758 		/* We released the lock, so.. */
759 		old = find_inode_fast(sb, head, ino);
760 		if (!old) {
761 			inode->i_ino = ino;
762 			__inode_add_to_lists(sb, head, inode);
763 			inode->i_state = I_LOCK|I_NEW;
764 			spin_unlock(&inode_lock);
765 
766 			/* Return the locked inode with I_NEW set, the
767 			 * caller is responsible for filling in the contents
768 			 */
769 			return inode;
770 		}
771 
772 		/*
773 		 * Uhhuh, somebody else created the same inode under
774 		 * us. Use the old inode instead of the one we just
775 		 * allocated.
776 		 */
777 		__iget(old);
778 		spin_unlock(&inode_lock);
779 		destroy_inode(inode);
780 		inode = old;
781 		wait_on_inode(inode);
782 	}
783 	return inode;
784 }
785 
786 /**
787  *	iunique - get a unique inode number
788  *	@sb: superblock
789  *	@max_reserved: highest reserved inode number
790  *
791  *	Obtain an inode number that is unique on the system for a given
792  *	superblock. This is used by file systems that have no natural
793  *	permanent inode numbering system. An inode number is returned that
794  *	is higher than the reserved limit but unique.
795  *
796  *	BUGS:
797  *	With a large number of inodes live on the file system this function
798  *	currently becomes quite slow.
799  */
800 ino_t iunique(struct super_block *sb, ino_t max_reserved)
801 {
802 	/*
803 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
804 	 * error if st_ino won't fit in target struct field. Use 32bit counter
805 	 * here to attempt to avoid that.
806 	 */
807 	static unsigned int counter;
808 	struct inode *inode;
809 	struct hlist_head *head;
810 	ino_t res;
811 
812 	spin_lock(&inode_lock);
813 	do {
814 		if (counter <= max_reserved)
815 			counter = max_reserved + 1;
816 		res = counter++;
817 		head = inode_hashtable + hash(sb, res);
818 		inode = find_inode_fast(sb, head, res);
819 	} while (inode != NULL);
820 	spin_unlock(&inode_lock);
821 
822 	return res;
823 }
824 EXPORT_SYMBOL(iunique);
825 
826 struct inode *igrab(struct inode *inode)
827 {
828 	spin_lock(&inode_lock);
829 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
830 		__iget(inode);
831 	else
832 		/*
833 		 * Handle the case where s_op->clear_inode is not been
834 		 * called yet, and somebody is calling igrab
835 		 * while the inode is getting freed.
836 		 */
837 		inode = NULL;
838 	spin_unlock(&inode_lock);
839 	return inode;
840 }
841 EXPORT_SYMBOL(igrab);
842 
843 /**
844  * ifind - internal function, you want ilookup5() or iget5().
845  * @sb:		super block of file system to search
846  * @head:       the head of the list to search
847  * @test:	callback used for comparisons between inodes
848  * @data:	opaque data pointer to pass to @test
849  * @wait:	if true wait for the inode to be unlocked, if false do not
850  *
851  * ifind() searches for the inode specified by @data in the inode
852  * cache. This is a generalized version of ifind_fast() for file systems where
853  * the inode number is not sufficient for unique identification of an inode.
854  *
855  * If the inode is in the cache, the inode is returned with an incremented
856  * reference count.
857  *
858  * Otherwise NULL is returned.
859  *
860  * Note, @test is called with the inode_lock held, so can't sleep.
861  */
862 static struct inode *ifind(struct super_block *sb,
863 		struct hlist_head *head, int (*test)(struct inode *, void *),
864 		void *data, const int wait)
865 {
866 	struct inode *inode;
867 
868 	spin_lock(&inode_lock);
869 	inode = find_inode(sb, head, test, data);
870 	if (inode) {
871 		__iget(inode);
872 		spin_unlock(&inode_lock);
873 		if (likely(wait))
874 			wait_on_inode(inode);
875 		return inode;
876 	}
877 	spin_unlock(&inode_lock);
878 	return NULL;
879 }
880 
881 /**
882  * ifind_fast - internal function, you want ilookup() or iget().
883  * @sb:		super block of file system to search
884  * @head:       head of the list to search
885  * @ino:	inode number to search for
886  *
887  * ifind_fast() searches for the inode @ino in the inode cache. This is for
888  * file systems where the inode number is sufficient for unique identification
889  * of an inode.
890  *
891  * If the inode is in the cache, the inode is returned with an incremented
892  * reference count.
893  *
894  * Otherwise NULL is returned.
895  */
896 static struct inode *ifind_fast(struct super_block *sb,
897 		struct hlist_head *head, unsigned long ino)
898 {
899 	struct inode *inode;
900 
901 	spin_lock(&inode_lock);
902 	inode = find_inode_fast(sb, head, ino);
903 	if (inode) {
904 		__iget(inode);
905 		spin_unlock(&inode_lock);
906 		wait_on_inode(inode);
907 		return inode;
908 	}
909 	spin_unlock(&inode_lock);
910 	return NULL;
911 }
912 
913 /**
914  * ilookup5_nowait - search for an inode in the inode cache
915  * @sb:		super block of file system to search
916  * @hashval:	hash value (usually inode number) to search for
917  * @test:	callback used for comparisons between inodes
918  * @data:	opaque data pointer to pass to @test
919  *
920  * ilookup5() uses ifind() to search for the inode specified by @hashval and
921  * @data in the inode cache. This is a generalized version of ilookup() for
922  * file systems where the inode number is not sufficient for unique
923  * identification of an inode.
924  *
925  * If the inode is in the cache, the inode is returned with an incremented
926  * reference count.  Note, the inode lock is not waited upon so you have to be
927  * very careful what you do with the returned inode.  You probably should be
928  * using ilookup5() instead.
929  *
930  * Otherwise NULL is returned.
931  *
932  * Note, @test is called with the inode_lock held, so can't sleep.
933  */
934 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
935 		int (*test)(struct inode *, void *), void *data)
936 {
937 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
938 
939 	return ifind(sb, head, test, data, 0);
940 }
941 EXPORT_SYMBOL(ilookup5_nowait);
942 
943 /**
944  * ilookup5 - search for an inode in the inode cache
945  * @sb:		super block of file system to search
946  * @hashval:	hash value (usually inode number) to search for
947  * @test:	callback used for comparisons between inodes
948  * @data:	opaque data pointer to pass to @test
949  *
950  * ilookup5() uses ifind() to search for the inode specified by @hashval and
951  * @data in the inode cache. This is a generalized version of ilookup() for
952  * file systems where the inode number is not sufficient for unique
953  * identification of an inode.
954  *
955  * If the inode is in the cache, the inode lock is waited upon and the inode is
956  * returned with an incremented reference count.
957  *
958  * Otherwise NULL is returned.
959  *
960  * Note, @test is called with the inode_lock held, so can't sleep.
961  */
962 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
963 		int (*test)(struct inode *, void *), void *data)
964 {
965 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
966 
967 	return ifind(sb, head, test, data, 1);
968 }
969 EXPORT_SYMBOL(ilookup5);
970 
971 /**
972  * ilookup - search for an inode in the inode cache
973  * @sb:		super block of file system to search
974  * @ino:	inode number to search for
975  *
976  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
977  * This is for file systems where the inode number is sufficient for unique
978  * identification of an inode.
979  *
980  * If the inode is in the cache, the inode is returned with an incremented
981  * reference count.
982  *
983  * Otherwise NULL is returned.
984  */
985 struct inode *ilookup(struct super_block *sb, unsigned long ino)
986 {
987 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
988 
989 	return ifind_fast(sb, head, ino);
990 }
991 EXPORT_SYMBOL(ilookup);
992 
993 /**
994  * iget5_locked - obtain an inode from a mounted file system
995  * @sb:		super block of file system
996  * @hashval:	hash value (usually inode number) to get
997  * @test:	callback used for comparisons between inodes
998  * @set:	callback used to initialize a new struct inode
999  * @data:	opaque data pointer to pass to @test and @set
1000  *
1001  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1002  * and @data in the inode cache and if present it is returned with an increased
1003  * reference count. This is a generalized version of iget_locked() for file
1004  * systems where the inode number is not sufficient for unique identification
1005  * of an inode.
1006  *
1007  * If the inode is not in cache, get_new_inode() is called to allocate a new
1008  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1009  * file system gets to fill it in before unlocking it via unlock_new_inode().
1010  *
1011  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1012  */
1013 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1014 		int (*test)(struct inode *, void *),
1015 		int (*set)(struct inode *, void *), void *data)
1016 {
1017 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1018 	struct inode *inode;
1019 
1020 	inode = ifind(sb, head, test, data, 1);
1021 	if (inode)
1022 		return inode;
1023 	/*
1024 	 * get_new_inode() will do the right thing, re-trying the search
1025 	 * in case it had to block at any point.
1026 	 */
1027 	return get_new_inode(sb, head, test, set, data);
1028 }
1029 EXPORT_SYMBOL(iget5_locked);
1030 
1031 /**
1032  * iget_locked - obtain an inode from a mounted file system
1033  * @sb:		super block of file system
1034  * @ino:	inode number to get
1035  *
1036  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1037  * the inode cache and if present it is returned with an increased reference
1038  * count. This is for file systems where the inode number is sufficient for
1039  * unique identification of an inode.
1040  *
1041  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1042  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1043  * The file system gets to fill it in before unlocking it via
1044  * unlock_new_inode().
1045  */
1046 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1047 {
1048 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1049 	struct inode *inode;
1050 
1051 	inode = ifind_fast(sb, head, ino);
1052 	if (inode)
1053 		return inode;
1054 	/*
1055 	 * get_new_inode_fast() will do the right thing, re-trying the search
1056 	 * in case it had to block at any point.
1057 	 */
1058 	return get_new_inode_fast(sb, head, ino);
1059 }
1060 EXPORT_SYMBOL(iget_locked);
1061 
1062 int insert_inode_locked(struct inode *inode)
1063 {
1064 	struct super_block *sb = inode->i_sb;
1065 	ino_t ino = inode->i_ino;
1066 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1067 
1068 	inode->i_state |= I_LOCK|I_NEW;
1069 	while (1) {
1070 		struct hlist_node *node;
1071 		struct inode *old = NULL;
1072 		spin_lock(&inode_lock);
1073 		hlist_for_each_entry(old, node, head, i_hash) {
1074 			if (old->i_ino != ino)
1075 				continue;
1076 			if (old->i_sb != sb)
1077 				continue;
1078 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1079 				continue;
1080 			break;
1081 		}
1082 		if (likely(!node)) {
1083 			hlist_add_head(&inode->i_hash, head);
1084 			spin_unlock(&inode_lock);
1085 			return 0;
1086 		}
1087 		__iget(old);
1088 		spin_unlock(&inode_lock);
1089 		wait_on_inode(old);
1090 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1091 			iput(old);
1092 			return -EBUSY;
1093 		}
1094 		iput(old);
1095 	}
1096 }
1097 EXPORT_SYMBOL(insert_inode_locked);
1098 
1099 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1100 		int (*test)(struct inode *, void *), void *data)
1101 {
1102 	struct super_block *sb = inode->i_sb;
1103 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1104 
1105 	inode->i_state |= I_LOCK|I_NEW;
1106 
1107 	while (1) {
1108 		struct hlist_node *node;
1109 		struct inode *old = NULL;
1110 
1111 		spin_lock(&inode_lock);
1112 		hlist_for_each_entry(old, node, head, i_hash) {
1113 			if (old->i_sb != sb)
1114 				continue;
1115 			if (!test(old, data))
1116 				continue;
1117 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1118 				continue;
1119 			break;
1120 		}
1121 		if (likely(!node)) {
1122 			hlist_add_head(&inode->i_hash, head);
1123 			spin_unlock(&inode_lock);
1124 			return 0;
1125 		}
1126 		__iget(old);
1127 		spin_unlock(&inode_lock);
1128 		wait_on_inode(old);
1129 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1130 			iput(old);
1131 			return -EBUSY;
1132 		}
1133 		iput(old);
1134 	}
1135 }
1136 EXPORT_SYMBOL(insert_inode_locked4);
1137 
1138 /**
1139  *	__insert_inode_hash - hash an inode
1140  *	@inode: unhashed inode
1141  *	@hashval: unsigned long value used to locate this object in the
1142  *		inode_hashtable.
1143  *
1144  *	Add an inode to the inode hash for this superblock.
1145  */
1146 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1147 {
1148 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1149 	spin_lock(&inode_lock);
1150 	hlist_add_head(&inode->i_hash, head);
1151 	spin_unlock(&inode_lock);
1152 }
1153 EXPORT_SYMBOL(__insert_inode_hash);
1154 
1155 /**
1156  *	remove_inode_hash - remove an inode from the hash
1157  *	@inode: inode to unhash
1158  *
1159  *	Remove an inode from the superblock.
1160  */
1161 void remove_inode_hash(struct inode *inode)
1162 {
1163 	spin_lock(&inode_lock);
1164 	hlist_del_init(&inode->i_hash);
1165 	spin_unlock(&inode_lock);
1166 }
1167 EXPORT_SYMBOL(remove_inode_hash);
1168 
1169 /*
1170  * Tell the filesystem that this inode is no longer of any interest and should
1171  * be completely destroyed.
1172  *
1173  * We leave the inode in the inode hash table until *after* the filesystem's
1174  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1175  * instigate) will always find up-to-date information either in the hash or on
1176  * disk.
1177  *
1178  * I_FREEING is set so that no-one will take a new reference to the inode while
1179  * it is being deleted.
1180  */
1181 void generic_delete_inode(struct inode *inode)
1182 {
1183 	const struct super_operations *op = inode->i_sb->s_op;
1184 
1185 	list_del_init(&inode->i_list);
1186 	list_del_init(&inode->i_sb_list);
1187 	WARN_ON(inode->i_state & I_NEW);
1188 	inode->i_state |= I_FREEING;
1189 	inodes_stat.nr_inodes--;
1190 	spin_unlock(&inode_lock);
1191 
1192 	security_inode_delete(inode);
1193 
1194 	if (op->delete_inode) {
1195 		void (*delete)(struct inode *) = op->delete_inode;
1196 		if (!is_bad_inode(inode))
1197 			vfs_dq_init(inode);
1198 		/* Filesystems implementing their own
1199 		 * s_op->delete_inode are required to call
1200 		 * truncate_inode_pages and clear_inode()
1201 		 * internally */
1202 		delete(inode);
1203 	} else {
1204 		truncate_inode_pages(&inode->i_data, 0);
1205 		clear_inode(inode);
1206 	}
1207 	spin_lock(&inode_lock);
1208 	hlist_del_init(&inode->i_hash);
1209 	spin_unlock(&inode_lock);
1210 	wake_up_inode(inode);
1211 	BUG_ON(inode->i_state != I_CLEAR);
1212 	destroy_inode(inode);
1213 }
1214 EXPORT_SYMBOL(generic_delete_inode);
1215 
1216 static void generic_forget_inode(struct inode *inode)
1217 {
1218 	struct super_block *sb = inode->i_sb;
1219 
1220 	if (!hlist_unhashed(&inode->i_hash)) {
1221 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1222 			list_move(&inode->i_list, &inode_unused);
1223 		inodes_stat.nr_unused++;
1224 		if (sb->s_flags & MS_ACTIVE) {
1225 			spin_unlock(&inode_lock);
1226 			return;
1227 		}
1228 		WARN_ON(inode->i_state & I_NEW);
1229 		inode->i_state |= I_WILL_FREE;
1230 		spin_unlock(&inode_lock);
1231 		write_inode_now(inode, 1);
1232 		spin_lock(&inode_lock);
1233 		WARN_ON(inode->i_state & I_NEW);
1234 		inode->i_state &= ~I_WILL_FREE;
1235 		inodes_stat.nr_unused--;
1236 		hlist_del_init(&inode->i_hash);
1237 	}
1238 	list_del_init(&inode->i_list);
1239 	list_del_init(&inode->i_sb_list);
1240 	WARN_ON(inode->i_state & I_NEW);
1241 	inode->i_state |= I_FREEING;
1242 	inodes_stat.nr_inodes--;
1243 	spin_unlock(&inode_lock);
1244 	if (inode->i_data.nrpages)
1245 		truncate_inode_pages(&inode->i_data, 0);
1246 	clear_inode(inode);
1247 	wake_up_inode(inode);
1248 	destroy_inode(inode);
1249 }
1250 
1251 /*
1252  * Normal UNIX filesystem behaviour: delete the
1253  * inode when the usage count drops to zero, and
1254  * i_nlink is zero.
1255  */
1256 void generic_drop_inode(struct inode *inode)
1257 {
1258 	if (!inode->i_nlink)
1259 		generic_delete_inode(inode);
1260 	else
1261 		generic_forget_inode(inode);
1262 }
1263 EXPORT_SYMBOL_GPL(generic_drop_inode);
1264 
1265 /*
1266  * Called when we're dropping the last reference
1267  * to an inode.
1268  *
1269  * Call the FS "drop()" function, defaulting to
1270  * the legacy UNIX filesystem behaviour..
1271  *
1272  * NOTE! NOTE! NOTE! We're called with the inode lock
1273  * held, and the drop function is supposed to release
1274  * the lock!
1275  */
1276 static inline void iput_final(struct inode *inode)
1277 {
1278 	const struct super_operations *op = inode->i_sb->s_op;
1279 	void (*drop)(struct inode *) = generic_drop_inode;
1280 
1281 	if (op && op->drop_inode)
1282 		drop = op->drop_inode;
1283 	drop(inode);
1284 }
1285 
1286 /**
1287  *	iput	- put an inode
1288  *	@inode: inode to put
1289  *
1290  *	Puts an inode, dropping its usage count. If the inode use count hits
1291  *	zero, the inode is then freed and may also be destroyed.
1292  *
1293  *	Consequently, iput() can sleep.
1294  */
1295 void iput(struct inode *inode)
1296 {
1297 	if (inode) {
1298 		BUG_ON(inode->i_state == I_CLEAR);
1299 
1300 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1301 			iput_final(inode);
1302 	}
1303 }
1304 EXPORT_SYMBOL(iput);
1305 
1306 /**
1307  *	bmap	- find a block number in a file
1308  *	@inode: inode of file
1309  *	@block: block to find
1310  *
1311  *	Returns the block number on the device holding the inode that
1312  *	is the disk block number for the block of the file requested.
1313  *	That is, asked for block 4 of inode 1 the function will return the
1314  *	disk block relative to the disk start that holds that block of the
1315  *	file.
1316  */
1317 sector_t bmap(struct inode *inode, sector_t block)
1318 {
1319 	sector_t res = 0;
1320 	if (inode->i_mapping->a_ops->bmap)
1321 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1322 	return res;
1323 }
1324 EXPORT_SYMBOL(bmap);
1325 
1326 /*
1327  * With relative atime, only update atime if the previous atime is
1328  * earlier than either the ctime or mtime or if at least a day has
1329  * passed since the last atime update.
1330  */
1331 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1332 			     struct timespec now)
1333 {
1334 
1335 	if (!(mnt->mnt_flags & MNT_RELATIME))
1336 		return 1;
1337 	/*
1338 	 * Is mtime younger than atime? If yes, update atime:
1339 	 */
1340 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1341 		return 1;
1342 	/*
1343 	 * Is ctime younger than atime? If yes, update atime:
1344 	 */
1345 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1346 		return 1;
1347 
1348 	/*
1349 	 * Is the previous atime value older than a day? If yes,
1350 	 * update atime:
1351 	 */
1352 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1353 		return 1;
1354 	/*
1355 	 * Good, we can skip the atime update:
1356 	 */
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	touch_atime	-	update the access time
1362  *	@mnt: mount the inode is accessed on
1363  *	@dentry: dentry accessed
1364  *
1365  *	Update the accessed time on an inode and mark it for writeback.
1366  *	This function automatically handles read only file systems and media,
1367  *	as well as the "noatime" flag and inode specific "noatime" markers.
1368  */
1369 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1370 {
1371 	struct inode *inode = dentry->d_inode;
1372 	struct timespec now;
1373 
1374 	if (mnt_want_write(mnt))
1375 		return;
1376 	if (inode->i_flags & S_NOATIME)
1377 		goto out;
1378 	if (IS_NOATIME(inode))
1379 		goto out;
1380 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1381 		goto out;
1382 
1383 	if (mnt->mnt_flags & MNT_NOATIME)
1384 		goto out;
1385 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1386 		goto out;
1387 
1388 	now = current_fs_time(inode->i_sb);
1389 
1390 	if (!relatime_need_update(mnt, inode, now))
1391 		goto out;
1392 
1393 	if (timespec_equal(&inode->i_atime, &now))
1394 		goto out;
1395 
1396 	inode->i_atime = now;
1397 	mark_inode_dirty_sync(inode);
1398 out:
1399 	mnt_drop_write(mnt);
1400 }
1401 EXPORT_SYMBOL(touch_atime);
1402 
1403 /**
1404  *	file_update_time	-	update mtime and ctime time
1405  *	@file: file accessed
1406  *
1407  *	Update the mtime and ctime members of an inode and mark the inode
1408  *	for writeback.  Note that this function is meant exclusively for
1409  *	usage in the file write path of filesystems, and filesystems may
1410  *	choose to explicitly ignore update via this function with the
1411  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1412  *	timestamps are handled by the server.
1413  */
1414 
1415 void file_update_time(struct file *file)
1416 {
1417 	struct inode *inode = file->f_path.dentry->d_inode;
1418 	struct timespec now;
1419 	int sync_it = 0;
1420 	int err;
1421 
1422 	if (IS_NOCMTIME(inode))
1423 		return;
1424 
1425 	err = mnt_want_write_file(file);
1426 	if (err)
1427 		return;
1428 
1429 	now = current_fs_time(inode->i_sb);
1430 	if (!timespec_equal(&inode->i_mtime, &now)) {
1431 		inode->i_mtime = now;
1432 		sync_it = 1;
1433 	}
1434 
1435 	if (!timespec_equal(&inode->i_ctime, &now)) {
1436 		inode->i_ctime = now;
1437 		sync_it = 1;
1438 	}
1439 
1440 	if (IS_I_VERSION(inode)) {
1441 		inode_inc_iversion(inode);
1442 		sync_it = 1;
1443 	}
1444 
1445 	if (sync_it)
1446 		mark_inode_dirty_sync(inode);
1447 	mnt_drop_write(file->f_path.mnt);
1448 }
1449 EXPORT_SYMBOL(file_update_time);
1450 
1451 int inode_needs_sync(struct inode *inode)
1452 {
1453 	if (IS_SYNC(inode))
1454 		return 1;
1455 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1456 		return 1;
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(inode_needs_sync);
1460 
1461 int inode_wait(void *word)
1462 {
1463 	schedule();
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL(inode_wait);
1467 
1468 /*
1469  * If we try to find an inode in the inode hash while it is being
1470  * deleted, we have to wait until the filesystem completes its
1471  * deletion before reporting that it isn't found.  This function waits
1472  * until the deletion _might_ have completed.  Callers are responsible
1473  * to recheck inode state.
1474  *
1475  * It doesn't matter if I_LOCK is not set initially, a call to
1476  * wake_up_inode() after removing from the hash list will DTRT.
1477  *
1478  * This is called with inode_lock held.
1479  */
1480 static void __wait_on_freeing_inode(struct inode *inode)
1481 {
1482 	wait_queue_head_t *wq;
1483 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1484 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1485 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1486 	spin_unlock(&inode_lock);
1487 	schedule();
1488 	finish_wait(wq, &wait.wait);
1489 	spin_lock(&inode_lock);
1490 }
1491 
1492 static __initdata unsigned long ihash_entries;
1493 static int __init set_ihash_entries(char *str)
1494 {
1495 	if (!str)
1496 		return 0;
1497 	ihash_entries = simple_strtoul(str, &str, 0);
1498 	return 1;
1499 }
1500 __setup("ihash_entries=", set_ihash_entries);
1501 
1502 /*
1503  * Initialize the waitqueues and inode hash table.
1504  */
1505 void __init inode_init_early(void)
1506 {
1507 	int loop;
1508 
1509 	/* If hashes are distributed across NUMA nodes, defer
1510 	 * hash allocation until vmalloc space is available.
1511 	 */
1512 	if (hashdist)
1513 		return;
1514 
1515 	inode_hashtable =
1516 		alloc_large_system_hash("Inode-cache",
1517 					sizeof(struct hlist_head),
1518 					ihash_entries,
1519 					14,
1520 					HASH_EARLY,
1521 					&i_hash_shift,
1522 					&i_hash_mask,
1523 					0);
1524 
1525 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1526 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1527 }
1528 
1529 void __init inode_init(void)
1530 {
1531 	int loop;
1532 
1533 	/* inode slab cache */
1534 	inode_cachep = kmem_cache_create("inode_cache",
1535 					 sizeof(struct inode),
1536 					 0,
1537 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1538 					 SLAB_MEM_SPREAD),
1539 					 init_once);
1540 	register_shrinker(&icache_shrinker);
1541 
1542 	/* Hash may have been set up in inode_init_early */
1543 	if (!hashdist)
1544 		return;
1545 
1546 	inode_hashtable =
1547 		alloc_large_system_hash("Inode-cache",
1548 					sizeof(struct hlist_head),
1549 					ihash_entries,
1550 					14,
1551 					0,
1552 					&i_hash_shift,
1553 					&i_hash_mask,
1554 					0);
1555 
1556 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1557 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1558 }
1559 
1560 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1561 {
1562 	inode->i_mode = mode;
1563 	if (S_ISCHR(mode)) {
1564 		inode->i_fop = &def_chr_fops;
1565 		inode->i_rdev = rdev;
1566 	} else if (S_ISBLK(mode)) {
1567 		inode->i_fop = &def_blk_fops;
1568 		inode->i_rdev = rdev;
1569 	} else if (S_ISFIFO(mode))
1570 		inode->i_fop = &def_fifo_fops;
1571 	else if (S_ISSOCK(mode))
1572 		inode->i_fop = &bad_sock_fops;
1573 	else
1574 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1575 		       mode);
1576 }
1577 EXPORT_SYMBOL(init_special_inode);
1578