1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->i_private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 if (sb->s_iflags & SB_I_STABLE_WRITES) 219 mapping_set_stable_writes(mapping); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 232 if (unlikely(security_inode_alloc(inode))) 233 return -ENOMEM; 234 this_cpu_inc(nr_inodes); 235 236 return 0; 237 } 238 EXPORT_SYMBOL(inode_init_always); 239 240 void free_inode_nonrcu(struct inode *inode) 241 { 242 kmem_cache_free(inode_cachep, inode); 243 } 244 EXPORT_SYMBOL(free_inode_nonrcu); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 if (inode->free_inode) 250 inode->free_inode(inode); 251 else 252 free_inode_nonrcu(inode); 253 } 254 255 static struct inode *alloc_inode(struct super_block *sb) 256 { 257 const struct super_operations *ops = sb->s_op; 258 struct inode *inode; 259 260 if (ops->alloc_inode) 261 inode = ops->alloc_inode(sb); 262 else 263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 264 265 if (!inode) 266 return NULL; 267 268 if (unlikely(inode_init_always(sb, inode))) { 269 if (ops->destroy_inode) { 270 ops->destroy_inode(inode); 271 if (!ops->free_inode) 272 return NULL; 273 } 274 inode->free_inode = ops->free_inode; 275 i_callback(&inode->i_rcu); 276 return NULL; 277 } 278 279 return inode; 280 } 281 282 void __destroy_inode(struct inode *inode) 283 { 284 BUG_ON(inode_has_buffers(inode)); 285 inode_detach_wb(inode); 286 security_inode_free(inode); 287 fsnotify_inode_delete(inode); 288 locks_free_lock_context(inode); 289 if (!inode->i_nlink) { 290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 291 atomic_long_dec(&inode->i_sb->s_remove_count); 292 } 293 294 #ifdef CONFIG_FS_POSIX_ACL 295 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 296 posix_acl_release(inode->i_acl); 297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 298 posix_acl_release(inode->i_default_acl); 299 #endif 300 this_cpu_dec(nr_inodes); 301 } 302 EXPORT_SYMBOL(__destroy_inode); 303 304 static void destroy_inode(struct inode *inode) 305 { 306 const struct super_operations *ops = inode->i_sb->s_op; 307 308 BUG_ON(!list_empty(&inode->i_lru)); 309 __destroy_inode(inode); 310 if (ops->destroy_inode) { 311 ops->destroy_inode(inode); 312 if (!ops->free_inode) 313 return; 314 } 315 inode->free_inode = ops->free_inode; 316 call_rcu(&inode->i_rcu, i_callback); 317 } 318 319 /** 320 * drop_nlink - directly drop an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. In cases 325 * where we are attempting to track writes to the 326 * filesystem, a decrement to zero means an imminent 327 * write when the file is truncated and actually unlinked 328 * on the filesystem. 329 */ 330 void drop_nlink(struct inode *inode) 331 { 332 WARN_ON(inode->i_nlink == 0); 333 inode->__i_nlink--; 334 if (!inode->i_nlink) 335 atomic_long_inc(&inode->i_sb->s_remove_count); 336 } 337 EXPORT_SYMBOL(drop_nlink); 338 339 /** 340 * clear_nlink - directly zero an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. See 345 * drop_nlink() for why we care about i_nlink hitting zero. 346 */ 347 void clear_nlink(struct inode *inode) 348 { 349 if (inode->i_nlink) { 350 inode->__i_nlink = 0; 351 atomic_long_inc(&inode->i_sb->s_remove_count); 352 } 353 } 354 EXPORT_SYMBOL(clear_nlink); 355 356 /** 357 * set_nlink - directly set an inode's link count 358 * @inode: inode 359 * @nlink: new nlink (should be non-zero) 360 * 361 * This is a low-level filesystem helper to replace any 362 * direct filesystem manipulation of i_nlink. 363 */ 364 void set_nlink(struct inode *inode, unsigned int nlink) 365 { 366 if (!nlink) { 367 clear_nlink(inode); 368 } else { 369 /* Yes, some filesystems do change nlink from zero to one */ 370 if (inode->i_nlink == 0) 371 atomic_long_dec(&inode->i_sb->s_remove_count); 372 373 inode->__i_nlink = nlink; 374 } 375 } 376 EXPORT_SYMBOL(set_nlink); 377 378 /** 379 * inc_nlink - directly increment an inode's link count 380 * @inode: inode 381 * 382 * This is a low-level filesystem helper to replace any 383 * direct filesystem manipulation of i_nlink. Currently, 384 * it is only here for parity with dec_nlink(). 385 */ 386 void inc_nlink(struct inode *inode) 387 { 388 if (unlikely(inode->i_nlink == 0)) { 389 WARN_ON(!(inode->i_state & I_LINKABLE)); 390 atomic_long_dec(&inode->i_sb->s_remove_count); 391 } 392 393 inode->__i_nlink++; 394 } 395 EXPORT_SYMBOL(inc_nlink); 396 397 static void __address_space_init_once(struct address_space *mapping) 398 { 399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 400 init_rwsem(&mapping->i_mmap_rwsem); 401 INIT_LIST_HEAD(&mapping->i_private_list); 402 spin_lock_init(&mapping->i_private_lock); 403 mapping->i_mmap = RB_ROOT_CACHED; 404 } 405 406 void address_space_init_once(struct address_space *mapping) 407 { 408 memset(mapping, 0, sizeof(*mapping)); 409 __address_space_init_once(mapping); 410 } 411 EXPORT_SYMBOL(address_space_init_once); 412 413 /* 414 * These are initializations that only need to be done 415 * once, because the fields are idempotent across use 416 * of the inode, so let the slab aware of that. 417 */ 418 void inode_init_once(struct inode *inode) 419 { 420 memset(inode, 0, sizeof(*inode)); 421 INIT_HLIST_NODE(&inode->i_hash); 422 INIT_LIST_HEAD(&inode->i_devices); 423 INIT_LIST_HEAD(&inode->i_io_list); 424 INIT_LIST_HEAD(&inode->i_wb_list); 425 INIT_LIST_HEAD(&inode->i_lru); 426 INIT_LIST_HEAD(&inode->i_sb_list); 427 __address_space_init_once(&inode->i_data); 428 i_size_ordered_init(inode); 429 } 430 EXPORT_SYMBOL(inode_init_once); 431 432 static void init_once(void *foo) 433 { 434 struct inode *inode = (struct inode *) foo; 435 436 inode_init_once(inode); 437 } 438 439 /* 440 * inode->i_lock must be held 441 */ 442 void __iget(struct inode *inode) 443 { 444 atomic_inc(&inode->i_count); 445 } 446 447 /* 448 * get additional reference to inode; caller must already hold one. 449 */ 450 void ihold(struct inode *inode) 451 { 452 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 453 } 454 EXPORT_SYMBOL(ihold); 455 456 static void __inode_add_lru(struct inode *inode, bool rotate) 457 { 458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 459 return; 460 if (atomic_read(&inode->i_count)) 461 return; 462 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 463 return; 464 if (!mapping_shrinkable(&inode->i_data)) 465 return; 466 467 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 468 this_cpu_inc(nr_unused); 469 else if (rotate) 470 inode->i_state |= I_REFERENCED; 471 } 472 473 /* 474 * Add inode to LRU if needed (inode is unused and clean). 475 * 476 * Needs inode->i_lock held. 477 */ 478 void inode_add_lru(struct inode *inode) 479 { 480 __inode_add_lru(inode, false); 481 } 482 483 static void inode_lru_list_del(struct inode *inode) 484 { 485 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 486 this_cpu_dec(nr_unused); 487 } 488 489 /** 490 * inode_sb_list_add - add inode to the superblock list of inodes 491 * @inode: inode to add 492 */ 493 void inode_sb_list_add(struct inode *inode) 494 { 495 spin_lock(&inode->i_sb->s_inode_list_lock); 496 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 497 spin_unlock(&inode->i_sb->s_inode_list_lock); 498 } 499 EXPORT_SYMBOL_GPL(inode_sb_list_add); 500 501 static inline void inode_sb_list_del(struct inode *inode) 502 { 503 if (!list_empty(&inode->i_sb_list)) { 504 spin_lock(&inode->i_sb->s_inode_list_lock); 505 list_del_init(&inode->i_sb_list); 506 spin_unlock(&inode->i_sb->s_inode_list_lock); 507 } 508 } 509 510 static unsigned long hash(struct super_block *sb, unsigned long hashval) 511 { 512 unsigned long tmp; 513 514 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 515 L1_CACHE_BYTES; 516 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 517 return tmp & i_hash_mask; 518 } 519 520 /** 521 * __insert_inode_hash - hash an inode 522 * @inode: unhashed inode 523 * @hashval: unsigned long value used to locate this object in the 524 * inode_hashtable. 525 * 526 * Add an inode to the inode hash for this superblock. 527 */ 528 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 529 { 530 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 531 532 spin_lock(&inode_hash_lock); 533 spin_lock(&inode->i_lock); 534 hlist_add_head_rcu(&inode->i_hash, b); 535 spin_unlock(&inode->i_lock); 536 spin_unlock(&inode_hash_lock); 537 } 538 EXPORT_SYMBOL(__insert_inode_hash); 539 540 /** 541 * __remove_inode_hash - remove an inode from the hash 542 * @inode: inode to unhash 543 * 544 * Remove an inode from the superblock. 545 */ 546 void __remove_inode_hash(struct inode *inode) 547 { 548 spin_lock(&inode_hash_lock); 549 spin_lock(&inode->i_lock); 550 hlist_del_init_rcu(&inode->i_hash); 551 spin_unlock(&inode->i_lock); 552 spin_unlock(&inode_hash_lock); 553 } 554 EXPORT_SYMBOL(__remove_inode_hash); 555 556 void dump_mapping(const struct address_space *mapping) 557 { 558 struct inode *host; 559 const struct address_space_operations *a_ops; 560 struct hlist_node *dentry_first; 561 struct dentry *dentry_ptr; 562 struct dentry dentry; 563 unsigned long ino; 564 565 /* 566 * If mapping is an invalid pointer, we don't want to crash 567 * accessing it, so probe everything depending on it carefully. 568 */ 569 if (get_kernel_nofault(host, &mapping->host) || 570 get_kernel_nofault(a_ops, &mapping->a_ops)) { 571 pr_warn("invalid mapping:%px\n", mapping); 572 return; 573 } 574 575 if (!host) { 576 pr_warn("aops:%ps\n", a_ops); 577 return; 578 } 579 580 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 581 get_kernel_nofault(ino, &host->i_ino)) { 582 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 583 return; 584 } 585 586 if (!dentry_first) { 587 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 588 return; 589 } 590 591 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 592 if (get_kernel_nofault(dentry, dentry_ptr) || 593 !dentry.d_parent || !dentry.d_name.name) { 594 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 595 a_ops, ino, dentry_ptr); 596 return; 597 } 598 599 /* 600 * if dentry is corrupted, the %pd handler may still crash, 601 * but it's unlikely that we reach here with a corrupt mapping 602 */ 603 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 604 } 605 606 void clear_inode(struct inode *inode) 607 { 608 /* 609 * We have to cycle the i_pages lock here because reclaim can be in the 610 * process of removing the last page (in __filemap_remove_folio()) 611 * and we must not free the mapping under it. 612 */ 613 xa_lock_irq(&inode->i_data.i_pages); 614 BUG_ON(inode->i_data.nrpages); 615 /* 616 * Almost always, mapping_empty(&inode->i_data) here; but there are 617 * two known and long-standing ways in which nodes may get left behind 618 * (when deep radix-tree node allocation failed partway; or when THP 619 * collapse_file() failed). Until those two known cases are cleaned up, 620 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 621 * nor even WARN_ON(!mapping_empty). 622 */ 623 xa_unlock_irq(&inode->i_data.i_pages); 624 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 625 BUG_ON(!(inode->i_state & I_FREEING)); 626 BUG_ON(inode->i_state & I_CLEAR); 627 BUG_ON(!list_empty(&inode->i_wb_list)); 628 /* don't need i_lock here, no concurrent mods to i_state */ 629 inode->i_state = I_FREEING | I_CLEAR; 630 } 631 EXPORT_SYMBOL(clear_inode); 632 633 /* 634 * Free the inode passed in, removing it from the lists it is still connected 635 * to. We remove any pages still attached to the inode and wait for any IO that 636 * is still in progress before finally destroying the inode. 637 * 638 * An inode must already be marked I_FREEING so that we avoid the inode being 639 * moved back onto lists if we race with other code that manipulates the lists 640 * (e.g. writeback_single_inode). The caller is responsible for setting this. 641 * 642 * An inode must already be removed from the LRU list before being evicted from 643 * the cache. This should occur atomically with setting the I_FREEING state 644 * flag, so no inodes here should ever be on the LRU when being evicted. 645 */ 646 static void evict(struct inode *inode) 647 { 648 const struct super_operations *op = inode->i_sb->s_op; 649 650 BUG_ON(!(inode->i_state & I_FREEING)); 651 BUG_ON(!list_empty(&inode->i_lru)); 652 653 if (!list_empty(&inode->i_io_list)) 654 inode_io_list_del(inode); 655 656 inode_sb_list_del(inode); 657 658 /* 659 * Wait for flusher thread to be done with the inode so that filesystem 660 * does not start destroying it while writeback is still running. Since 661 * the inode has I_FREEING set, flusher thread won't start new work on 662 * the inode. We just have to wait for running writeback to finish. 663 */ 664 inode_wait_for_writeback(inode); 665 666 if (op->evict_inode) { 667 op->evict_inode(inode); 668 } else { 669 truncate_inode_pages_final(&inode->i_data); 670 clear_inode(inode); 671 } 672 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 673 cd_forget(inode); 674 675 remove_inode_hash(inode); 676 677 spin_lock(&inode->i_lock); 678 wake_up_bit(&inode->i_state, __I_NEW); 679 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 680 spin_unlock(&inode->i_lock); 681 682 destroy_inode(inode); 683 } 684 685 /* 686 * dispose_list - dispose of the contents of a local list 687 * @head: the head of the list to free 688 * 689 * Dispose-list gets a local list with local inodes in it, so it doesn't 690 * need to worry about list corruption and SMP locks. 691 */ 692 static void dispose_list(struct list_head *head) 693 { 694 while (!list_empty(head)) { 695 struct inode *inode; 696 697 inode = list_first_entry(head, struct inode, i_lru); 698 list_del_init(&inode->i_lru); 699 700 evict(inode); 701 cond_resched(); 702 } 703 } 704 705 /** 706 * evict_inodes - evict all evictable inodes for a superblock 707 * @sb: superblock to operate on 708 * 709 * Make sure that no inodes with zero refcount are retained. This is 710 * called by superblock shutdown after having SB_ACTIVE flag removed, 711 * so any inode reaching zero refcount during or after that call will 712 * be immediately evicted. 713 */ 714 void evict_inodes(struct super_block *sb) 715 { 716 struct inode *inode, *next; 717 LIST_HEAD(dispose); 718 719 again: 720 spin_lock(&sb->s_inode_list_lock); 721 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 722 if (atomic_read(&inode->i_count)) 723 continue; 724 725 spin_lock(&inode->i_lock); 726 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 727 spin_unlock(&inode->i_lock); 728 continue; 729 } 730 731 inode->i_state |= I_FREEING; 732 inode_lru_list_del(inode); 733 spin_unlock(&inode->i_lock); 734 list_add(&inode->i_lru, &dispose); 735 736 /* 737 * We can have a ton of inodes to evict at unmount time given 738 * enough memory, check to see if we need to go to sleep for a 739 * bit so we don't livelock. 740 */ 741 if (need_resched()) { 742 spin_unlock(&sb->s_inode_list_lock); 743 cond_resched(); 744 dispose_list(&dispose); 745 goto again; 746 } 747 } 748 spin_unlock(&sb->s_inode_list_lock); 749 750 dispose_list(&dispose); 751 } 752 EXPORT_SYMBOL_GPL(evict_inodes); 753 754 /** 755 * invalidate_inodes - attempt to free all inodes on a superblock 756 * @sb: superblock to operate on 757 * 758 * Attempts to free all inodes (including dirty inodes) for a given superblock. 759 */ 760 void invalidate_inodes(struct super_block *sb) 761 { 762 struct inode *inode, *next; 763 LIST_HEAD(dispose); 764 765 again: 766 spin_lock(&sb->s_inode_list_lock); 767 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 768 spin_lock(&inode->i_lock); 769 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 770 spin_unlock(&inode->i_lock); 771 continue; 772 } 773 if (atomic_read(&inode->i_count)) { 774 spin_unlock(&inode->i_lock); 775 continue; 776 } 777 778 inode->i_state |= I_FREEING; 779 inode_lru_list_del(inode); 780 spin_unlock(&inode->i_lock); 781 list_add(&inode->i_lru, &dispose); 782 if (need_resched()) { 783 spin_unlock(&sb->s_inode_list_lock); 784 cond_resched(); 785 dispose_list(&dispose); 786 goto again; 787 } 788 } 789 spin_unlock(&sb->s_inode_list_lock); 790 791 dispose_list(&dispose); 792 } 793 794 /* 795 * Isolate the inode from the LRU in preparation for freeing it. 796 * 797 * If the inode has the I_REFERENCED flag set, then it means that it has been 798 * used recently - the flag is set in iput_final(). When we encounter such an 799 * inode, clear the flag and move it to the back of the LRU so it gets another 800 * pass through the LRU before it gets reclaimed. This is necessary because of 801 * the fact we are doing lazy LRU updates to minimise lock contention so the 802 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 803 * with this flag set because they are the inodes that are out of order. 804 */ 805 static enum lru_status inode_lru_isolate(struct list_head *item, 806 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 807 { 808 struct list_head *freeable = arg; 809 struct inode *inode = container_of(item, struct inode, i_lru); 810 811 /* 812 * We are inverting the lru lock/inode->i_lock here, so use a 813 * trylock. If we fail to get the lock, just skip it. 814 */ 815 if (!spin_trylock(&inode->i_lock)) 816 return LRU_SKIP; 817 818 /* 819 * Inodes can get referenced, redirtied, or repopulated while 820 * they're already on the LRU, and this can make them 821 * unreclaimable for a while. Remove them lazily here; iput, 822 * sync, or the last page cache deletion will requeue them. 823 */ 824 if (atomic_read(&inode->i_count) || 825 (inode->i_state & ~I_REFERENCED) || 826 !mapping_shrinkable(&inode->i_data)) { 827 list_lru_isolate(lru, &inode->i_lru); 828 spin_unlock(&inode->i_lock); 829 this_cpu_dec(nr_unused); 830 return LRU_REMOVED; 831 } 832 833 /* Recently referenced inodes get one more pass */ 834 if (inode->i_state & I_REFERENCED) { 835 inode->i_state &= ~I_REFERENCED; 836 spin_unlock(&inode->i_lock); 837 return LRU_ROTATE; 838 } 839 840 /* 841 * On highmem systems, mapping_shrinkable() permits dropping 842 * page cache in order to free up struct inodes: lowmem might 843 * be under pressure before the cache inside the highmem zone. 844 */ 845 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 846 __iget(inode); 847 spin_unlock(&inode->i_lock); 848 spin_unlock(lru_lock); 849 if (remove_inode_buffers(inode)) { 850 unsigned long reap; 851 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 852 if (current_is_kswapd()) 853 __count_vm_events(KSWAPD_INODESTEAL, reap); 854 else 855 __count_vm_events(PGINODESTEAL, reap); 856 mm_account_reclaimed_pages(reap); 857 } 858 iput(inode); 859 spin_lock(lru_lock); 860 return LRU_RETRY; 861 } 862 863 WARN_ON(inode->i_state & I_NEW); 864 inode->i_state |= I_FREEING; 865 list_lru_isolate_move(lru, &inode->i_lru, freeable); 866 spin_unlock(&inode->i_lock); 867 868 this_cpu_dec(nr_unused); 869 return LRU_REMOVED; 870 } 871 872 /* 873 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 874 * This is called from the superblock shrinker function with a number of inodes 875 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 876 * then are freed outside inode_lock by dispose_list(). 877 */ 878 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 879 { 880 LIST_HEAD(freeable); 881 long freed; 882 883 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 884 inode_lru_isolate, &freeable); 885 dispose_list(&freeable); 886 return freed; 887 } 888 889 static void __wait_on_freeing_inode(struct inode *inode); 890 /* 891 * Called with the inode lock held. 892 */ 893 static struct inode *find_inode(struct super_block *sb, 894 struct hlist_head *head, 895 int (*test)(struct inode *, void *), 896 void *data) 897 { 898 struct inode *inode = NULL; 899 900 repeat: 901 hlist_for_each_entry(inode, head, i_hash) { 902 if (inode->i_sb != sb) 903 continue; 904 if (!test(inode, data)) 905 continue; 906 spin_lock(&inode->i_lock); 907 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 908 __wait_on_freeing_inode(inode); 909 goto repeat; 910 } 911 if (unlikely(inode->i_state & I_CREATING)) { 912 spin_unlock(&inode->i_lock); 913 return ERR_PTR(-ESTALE); 914 } 915 __iget(inode); 916 spin_unlock(&inode->i_lock); 917 return inode; 918 } 919 return NULL; 920 } 921 922 /* 923 * find_inode_fast is the fast path version of find_inode, see the comment at 924 * iget_locked for details. 925 */ 926 static struct inode *find_inode_fast(struct super_block *sb, 927 struct hlist_head *head, unsigned long ino) 928 { 929 struct inode *inode = NULL; 930 931 repeat: 932 hlist_for_each_entry(inode, head, i_hash) { 933 if (inode->i_ino != ino) 934 continue; 935 if (inode->i_sb != sb) 936 continue; 937 spin_lock(&inode->i_lock); 938 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 939 __wait_on_freeing_inode(inode); 940 goto repeat; 941 } 942 if (unlikely(inode->i_state & I_CREATING)) { 943 spin_unlock(&inode->i_lock); 944 return ERR_PTR(-ESTALE); 945 } 946 __iget(inode); 947 spin_unlock(&inode->i_lock); 948 return inode; 949 } 950 return NULL; 951 } 952 953 /* 954 * Each cpu owns a range of LAST_INO_BATCH numbers. 955 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 956 * to renew the exhausted range. 957 * 958 * This does not significantly increase overflow rate because every CPU can 959 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 960 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 961 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 962 * overflow rate by 2x, which does not seem too significant. 963 * 964 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 965 * error if st_ino won't fit in target struct field. Use 32bit counter 966 * here to attempt to avoid that. 967 */ 968 #define LAST_INO_BATCH 1024 969 static DEFINE_PER_CPU(unsigned int, last_ino); 970 971 unsigned int get_next_ino(void) 972 { 973 unsigned int *p = &get_cpu_var(last_ino); 974 unsigned int res = *p; 975 976 #ifdef CONFIG_SMP 977 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 978 static atomic_t shared_last_ino; 979 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 980 981 res = next - LAST_INO_BATCH; 982 } 983 #endif 984 985 res++; 986 /* get_next_ino should not provide a 0 inode number */ 987 if (unlikely(!res)) 988 res++; 989 *p = res; 990 put_cpu_var(last_ino); 991 return res; 992 } 993 EXPORT_SYMBOL(get_next_ino); 994 995 /** 996 * new_inode_pseudo - obtain an inode 997 * @sb: superblock 998 * 999 * Allocates a new inode for given superblock. 1000 * Inode wont be chained in superblock s_inodes list 1001 * This means : 1002 * - fs can't be unmount 1003 * - quotas, fsnotify, writeback can't work 1004 */ 1005 struct inode *new_inode_pseudo(struct super_block *sb) 1006 { 1007 struct inode *inode = alloc_inode(sb); 1008 1009 if (inode) { 1010 spin_lock(&inode->i_lock); 1011 inode->i_state = 0; 1012 spin_unlock(&inode->i_lock); 1013 } 1014 return inode; 1015 } 1016 1017 /** 1018 * new_inode - obtain an inode 1019 * @sb: superblock 1020 * 1021 * Allocates a new inode for given superblock. The default gfp_mask 1022 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1023 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1024 * for the page cache are not reclaimable or migratable, 1025 * mapping_set_gfp_mask() must be called with suitable flags on the 1026 * newly created inode's mapping 1027 * 1028 */ 1029 struct inode *new_inode(struct super_block *sb) 1030 { 1031 struct inode *inode; 1032 1033 inode = new_inode_pseudo(sb); 1034 if (inode) 1035 inode_sb_list_add(inode); 1036 return inode; 1037 } 1038 EXPORT_SYMBOL(new_inode); 1039 1040 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1041 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1042 { 1043 if (S_ISDIR(inode->i_mode)) { 1044 struct file_system_type *type = inode->i_sb->s_type; 1045 1046 /* Set new key only if filesystem hasn't already changed it */ 1047 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1048 /* 1049 * ensure nobody is actually holding i_mutex 1050 */ 1051 // mutex_destroy(&inode->i_mutex); 1052 init_rwsem(&inode->i_rwsem); 1053 lockdep_set_class(&inode->i_rwsem, 1054 &type->i_mutex_dir_key); 1055 } 1056 } 1057 } 1058 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1059 #endif 1060 1061 /** 1062 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1063 * @inode: new inode to unlock 1064 * 1065 * Called when the inode is fully initialised to clear the new state of the 1066 * inode and wake up anyone waiting for the inode to finish initialisation. 1067 */ 1068 void unlock_new_inode(struct inode *inode) 1069 { 1070 lockdep_annotate_inode_mutex_key(inode); 1071 spin_lock(&inode->i_lock); 1072 WARN_ON(!(inode->i_state & I_NEW)); 1073 inode->i_state &= ~I_NEW & ~I_CREATING; 1074 smp_mb(); 1075 wake_up_bit(&inode->i_state, __I_NEW); 1076 spin_unlock(&inode->i_lock); 1077 } 1078 EXPORT_SYMBOL(unlock_new_inode); 1079 1080 void discard_new_inode(struct inode *inode) 1081 { 1082 lockdep_annotate_inode_mutex_key(inode); 1083 spin_lock(&inode->i_lock); 1084 WARN_ON(!(inode->i_state & I_NEW)); 1085 inode->i_state &= ~I_NEW; 1086 smp_mb(); 1087 wake_up_bit(&inode->i_state, __I_NEW); 1088 spin_unlock(&inode->i_lock); 1089 iput(inode); 1090 } 1091 EXPORT_SYMBOL(discard_new_inode); 1092 1093 /** 1094 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1095 * 1096 * Lock any non-NULL argument. Passed objects must not be directories. 1097 * Zero, one or two objects may be locked by this function. 1098 * 1099 * @inode1: first inode to lock 1100 * @inode2: second inode to lock 1101 */ 1102 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1103 { 1104 if (inode1) 1105 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1106 if (inode2) 1107 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1108 if (inode1 > inode2) 1109 swap(inode1, inode2); 1110 if (inode1) 1111 inode_lock(inode1); 1112 if (inode2 && inode2 != inode1) 1113 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1114 } 1115 EXPORT_SYMBOL(lock_two_nondirectories); 1116 1117 /** 1118 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1119 * @inode1: first inode to unlock 1120 * @inode2: second inode to unlock 1121 */ 1122 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1123 { 1124 if (inode1) { 1125 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1126 inode_unlock(inode1); 1127 } 1128 if (inode2 && inode2 != inode1) { 1129 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1130 inode_unlock(inode2); 1131 } 1132 } 1133 EXPORT_SYMBOL(unlock_two_nondirectories); 1134 1135 /** 1136 * inode_insert5 - obtain an inode from a mounted file system 1137 * @inode: pre-allocated inode to use for insert to cache 1138 * @hashval: hash value (usually inode number) to get 1139 * @test: callback used for comparisons between inodes 1140 * @set: callback used to initialize a new struct inode 1141 * @data: opaque data pointer to pass to @test and @set 1142 * 1143 * Search for the inode specified by @hashval and @data in the inode cache, 1144 * and if present it is return it with an increased reference count. This is 1145 * a variant of iget5_locked() for callers that don't want to fail on memory 1146 * allocation of inode. 1147 * 1148 * If the inode is not in cache, insert the pre-allocated inode to cache and 1149 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1150 * to fill it in before unlocking it via unlock_new_inode(). 1151 * 1152 * Note both @test and @set are called with the inode_hash_lock held, so can't 1153 * sleep. 1154 */ 1155 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1156 int (*test)(struct inode *, void *), 1157 int (*set)(struct inode *, void *), void *data) 1158 { 1159 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1160 struct inode *old; 1161 1162 again: 1163 spin_lock(&inode_hash_lock); 1164 old = find_inode(inode->i_sb, head, test, data); 1165 if (unlikely(old)) { 1166 /* 1167 * Uhhuh, somebody else created the same inode under us. 1168 * Use the old inode instead of the preallocated one. 1169 */ 1170 spin_unlock(&inode_hash_lock); 1171 if (IS_ERR(old)) 1172 return NULL; 1173 wait_on_inode(old); 1174 if (unlikely(inode_unhashed(old))) { 1175 iput(old); 1176 goto again; 1177 } 1178 return old; 1179 } 1180 1181 if (set && unlikely(set(inode, data))) { 1182 inode = NULL; 1183 goto unlock; 1184 } 1185 1186 /* 1187 * Return the locked inode with I_NEW set, the 1188 * caller is responsible for filling in the contents 1189 */ 1190 spin_lock(&inode->i_lock); 1191 inode->i_state |= I_NEW; 1192 hlist_add_head_rcu(&inode->i_hash, head); 1193 spin_unlock(&inode->i_lock); 1194 1195 /* 1196 * Add inode to the sb list if it's not already. It has I_NEW at this 1197 * point, so it should be safe to test i_sb_list locklessly. 1198 */ 1199 if (list_empty(&inode->i_sb_list)) 1200 inode_sb_list_add(inode); 1201 unlock: 1202 spin_unlock(&inode_hash_lock); 1203 1204 return inode; 1205 } 1206 EXPORT_SYMBOL(inode_insert5); 1207 1208 /** 1209 * iget5_locked - obtain an inode from a mounted file system 1210 * @sb: super block of file system 1211 * @hashval: hash value (usually inode number) to get 1212 * @test: callback used for comparisons between inodes 1213 * @set: callback used to initialize a new struct inode 1214 * @data: opaque data pointer to pass to @test and @set 1215 * 1216 * Search for the inode specified by @hashval and @data in the inode cache, 1217 * and if present it is return it with an increased reference count. This is 1218 * a generalized version of iget_locked() for file systems where the inode 1219 * number is not sufficient for unique identification of an inode. 1220 * 1221 * If the inode is not in cache, allocate a new inode and return it locked, 1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1223 * before unlocking it via unlock_new_inode(). 1224 * 1225 * Note both @test and @set are called with the inode_hash_lock held, so can't 1226 * sleep. 1227 */ 1228 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1229 int (*test)(struct inode *, void *), 1230 int (*set)(struct inode *, void *), void *data) 1231 { 1232 struct inode *inode = ilookup5(sb, hashval, test, data); 1233 1234 if (!inode) { 1235 struct inode *new = alloc_inode(sb); 1236 1237 if (new) { 1238 new->i_state = 0; 1239 inode = inode_insert5(new, hashval, test, set, data); 1240 if (unlikely(inode != new)) 1241 destroy_inode(new); 1242 } 1243 } 1244 return inode; 1245 } 1246 EXPORT_SYMBOL(iget5_locked); 1247 1248 /** 1249 * iget_locked - obtain an inode from a mounted file system 1250 * @sb: super block of file system 1251 * @ino: inode number to get 1252 * 1253 * Search for the inode specified by @ino in the inode cache and if present 1254 * return it with an increased reference count. This is for file systems 1255 * where the inode number is sufficient for unique identification of an inode. 1256 * 1257 * If the inode is not in cache, allocate a new inode and return it locked, 1258 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1259 * before unlocking it via unlock_new_inode(). 1260 */ 1261 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1262 { 1263 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1264 struct inode *inode; 1265 again: 1266 spin_lock(&inode_hash_lock); 1267 inode = find_inode_fast(sb, head, ino); 1268 spin_unlock(&inode_hash_lock); 1269 if (inode) { 1270 if (IS_ERR(inode)) 1271 return NULL; 1272 wait_on_inode(inode); 1273 if (unlikely(inode_unhashed(inode))) { 1274 iput(inode); 1275 goto again; 1276 } 1277 return inode; 1278 } 1279 1280 inode = alloc_inode(sb); 1281 if (inode) { 1282 struct inode *old; 1283 1284 spin_lock(&inode_hash_lock); 1285 /* We released the lock, so.. */ 1286 old = find_inode_fast(sb, head, ino); 1287 if (!old) { 1288 inode->i_ino = ino; 1289 spin_lock(&inode->i_lock); 1290 inode->i_state = I_NEW; 1291 hlist_add_head_rcu(&inode->i_hash, head); 1292 spin_unlock(&inode->i_lock); 1293 inode_sb_list_add(inode); 1294 spin_unlock(&inode_hash_lock); 1295 1296 /* Return the locked inode with I_NEW set, the 1297 * caller is responsible for filling in the contents 1298 */ 1299 return inode; 1300 } 1301 1302 /* 1303 * Uhhuh, somebody else created the same inode under 1304 * us. Use the old inode instead of the one we just 1305 * allocated. 1306 */ 1307 spin_unlock(&inode_hash_lock); 1308 destroy_inode(inode); 1309 if (IS_ERR(old)) 1310 return NULL; 1311 inode = old; 1312 wait_on_inode(inode); 1313 if (unlikely(inode_unhashed(inode))) { 1314 iput(inode); 1315 goto again; 1316 } 1317 } 1318 return inode; 1319 } 1320 EXPORT_SYMBOL(iget_locked); 1321 1322 /* 1323 * search the inode cache for a matching inode number. 1324 * If we find one, then the inode number we are trying to 1325 * allocate is not unique and so we should not use it. 1326 * 1327 * Returns 1 if the inode number is unique, 0 if it is not. 1328 */ 1329 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1330 { 1331 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1332 struct inode *inode; 1333 1334 hlist_for_each_entry_rcu(inode, b, i_hash) { 1335 if (inode->i_ino == ino && inode->i_sb == sb) 1336 return 0; 1337 } 1338 return 1; 1339 } 1340 1341 /** 1342 * iunique - get a unique inode number 1343 * @sb: superblock 1344 * @max_reserved: highest reserved inode number 1345 * 1346 * Obtain an inode number that is unique on the system for a given 1347 * superblock. This is used by file systems that have no natural 1348 * permanent inode numbering system. An inode number is returned that 1349 * is higher than the reserved limit but unique. 1350 * 1351 * BUGS: 1352 * With a large number of inodes live on the file system this function 1353 * currently becomes quite slow. 1354 */ 1355 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1356 { 1357 /* 1358 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1359 * error if st_ino won't fit in target struct field. Use 32bit counter 1360 * here to attempt to avoid that. 1361 */ 1362 static DEFINE_SPINLOCK(iunique_lock); 1363 static unsigned int counter; 1364 ino_t res; 1365 1366 rcu_read_lock(); 1367 spin_lock(&iunique_lock); 1368 do { 1369 if (counter <= max_reserved) 1370 counter = max_reserved + 1; 1371 res = counter++; 1372 } while (!test_inode_iunique(sb, res)); 1373 spin_unlock(&iunique_lock); 1374 rcu_read_unlock(); 1375 1376 return res; 1377 } 1378 EXPORT_SYMBOL(iunique); 1379 1380 struct inode *igrab(struct inode *inode) 1381 { 1382 spin_lock(&inode->i_lock); 1383 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1384 __iget(inode); 1385 spin_unlock(&inode->i_lock); 1386 } else { 1387 spin_unlock(&inode->i_lock); 1388 /* 1389 * Handle the case where s_op->clear_inode is not been 1390 * called yet, and somebody is calling igrab 1391 * while the inode is getting freed. 1392 */ 1393 inode = NULL; 1394 } 1395 return inode; 1396 } 1397 EXPORT_SYMBOL(igrab); 1398 1399 /** 1400 * ilookup5_nowait - search for an inode in the inode cache 1401 * @sb: super block of file system to search 1402 * @hashval: hash value (usually inode number) to search for 1403 * @test: callback used for comparisons between inodes 1404 * @data: opaque data pointer to pass to @test 1405 * 1406 * Search for the inode specified by @hashval and @data in the inode cache. 1407 * If the inode is in the cache, the inode is returned with an incremented 1408 * reference count. 1409 * 1410 * Note: I_NEW is not waited upon so you have to be very careful what you do 1411 * with the returned inode. You probably should be using ilookup5() instead. 1412 * 1413 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1414 */ 1415 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1416 int (*test)(struct inode *, void *), void *data) 1417 { 1418 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1419 struct inode *inode; 1420 1421 spin_lock(&inode_hash_lock); 1422 inode = find_inode(sb, head, test, data); 1423 spin_unlock(&inode_hash_lock); 1424 1425 return IS_ERR(inode) ? NULL : inode; 1426 } 1427 EXPORT_SYMBOL(ilookup5_nowait); 1428 1429 /** 1430 * ilookup5 - search for an inode in the inode cache 1431 * @sb: super block of file system to search 1432 * @hashval: hash value (usually inode number) to search for 1433 * @test: callback used for comparisons between inodes 1434 * @data: opaque data pointer to pass to @test 1435 * 1436 * Search for the inode specified by @hashval and @data in the inode cache, 1437 * and if the inode is in the cache, return the inode with an incremented 1438 * reference count. Waits on I_NEW before returning the inode. 1439 * returned with an incremented reference count. 1440 * 1441 * This is a generalized version of ilookup() for file systems where the 1442 * inode number is not sufficient for unique identification of an inode. 1443 * 1444 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1445 */ 1446 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1447 int (*test)(struct inode *, void *), void *data) 1448 { 1449 struct inode *inode; 1450 again: 1451 inode = ilookup5_nowait(sb, hashval, test, data); 1452 if (inode) { 1453 wait_on_inode(inode); 1454 if (unlikely(inode_unhashed(inode))) { 1455 iput(inode); 1456 goto again; 1457 } 1458 } 1459 return inode; 1460 } 1461 EXPORT_SYMBOL(ilookup5); 1462 1463 /** 1464 * ilookup - search for an inode in the inode cache 1465 * @sb: super block of file system to search 1466 * @ino: inode number to search for 1467 * 1468 * Search for the inode @ino in the inode cache, and if the inode is in the 1469 * cache, the inode is returned with an incremented reference count. 1470 */ 1471 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1472 { 1473 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1474 struct inode *inode; 1475 again: 1476 spin_lock(&inode_hash_lock); 1477 inode = find_inode_fast(sb, head, ino); 1478 spin_unlock(&inode_hash_lock); 1479 1480 if (inode) { 1481 if (IS_ERR(inode)) 1482 return NULL; 1483 wait_on_inode(inode); 1484 if (unlikely(inode_unhashed(inode))) { 1485 iput(inode); 1486 goto again; 1487 } 1488 } 1489 return inode; 1490 } 1491 EXPORT_SYMBOL(ilookup); 1492 1493 /** 1494 * find_inode_nowait - find an inode in the inode cache 1495 * @sb: super block of file system to search 1496 * @hashval: hash value (usually inode number) to search for 1497 * @match: callback used for comparisons between inodes 1498 * @data: opaque data pointer to pass to @match 1499 * 1500 * Search for the inode specified by @hashval and @data in the inode 1501 * cache, where the helper function @match will return 0 if the inode 1502 * does not match, 1 if the inode does match, and -1 if the search 1503 * should be stopped. The @match function must be responsible for 1504 * taking the i_lock spin_lock and checking i_state for an inode being 1505 * freed or being initialized, and incrementing the reference count 1506 * before returning 1. It also must not sleep, since it is called with 1507 * the inode_hash_lock spinlock held. 1508 * 1509 * This is a even more generalized version of ilookup5() when the 1510 * function must never block --- find_inode() can block in 1511 * __wait_on_freeing_inode() --- or when the caller can not increment 1512 * the reference count because the resulting iput() might cause an 1513 * inode eviction. The tradeoff is that the @match funtion must be 1514 * very carefully implemented. 1515 */ 1516 struct inode *find_inode_nowait(struct super_block *sb, 1517 unsigned long hashval, 1518 int (*match)(struct inode *, unsigned long, 1519 void *), 1520 void *data) 1521 { 1522 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1523 struct inode *inode, *ret_inode = NULL; 1524 int mval; 1525 1526 spin_lock(&inode_hash_lock); 1527 hlist_for_each_entry(inode, head, i_hash) { 1528 if (inode->i_sb != sb) 1529 continue; 1530 mval = match(inode, hashval, data); 1531 if (mval == 0) 1532 continue; 1533 if (mval == 1) 1534 ret_inode = inode; 1535 goto out; 1536 } 1537 out: 1538 spin_unlock(&inode_hash_lock); 1539 return ret_inode; 1540 } 1541 EXPORT_SYMBOL(find_inode_nowait); 1542 1543 /** 1544 * find_inode_rcu - find an inode in the inode cache 1545 * @sb: Super block of file system to search 1546 * @hashval: Key to hash 1547 * @test: Function to test match on an inode 1548 * @data: Data for test function 1549 * 1550 * Search for the inode specified by @hashval and @data in the inode cache, 1551 * where the helper function @test will return 0 if the inode does not match 1552 * and 1 if it does. The @test function must be responsible for taking the 1553 * i_lock spin_lock and checking i_state for an inode being freed or being 1554 * initialized. 1555 * 1556 * If successful, this will return the inode for which the @test function 1557 * returned 1 and NULL otherwise. 1558 * 1559 * The @test function is not permitted to take a ref on any inode presented. 1560 * It is also not permitted to sleep. 1561 * 1562 * The caller must hold the RCU read lock. 1563 */ 1564 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1565 int (*test)(struct inode *, void *), void *data) 1566 { 1567 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1568 struct inode *inode; 1569 1570 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1571 "suspicious find_inode_rcu() usage"); 1572 1573 hlist_for_each_entry_rcu(inode, head, i_hash) { 1574 if (inode->i_sb == sb && 1575 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1576 test(inode, data)) 1577 return inode; 1578 } 1579 return NULL; 1580 } 1581 EXPORT_SYMBOL(find_inode_rcu); 1582 1583 /** 1584 * find_inode_by_ino_rcu - Find an inode in the inode cache 1585 * @sb: Super block of file system to search 1586 * @ino: The inode number to match 1587 * 1588 * Search for the inode specified by @hashval and @data in the inode cache, 1589 * where the helper function @test will return 0 if the inode does not match 1590 * and 1 if it does. The @test function must be responsible for taking the 1591 * i_lock spin_lock and checking i_state for an inode being freed or being 1592 * initialized. 1593 * 1594 * If successful, this will return the inode for which the @test function 1595 * returned 1 and NULL otherwise. 1596 * 1597 * The @test function is not permitted to take a ref on any inode presented. 1598 * It is also not permitted to sleep. 1599 * 1600 * The caller must hold the RCU read lock. 1601 */ 1602 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1603 unsigned long ino) 1604 { 1605 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1606 struct inode *inode; 1607 1608 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1609 "suspicious find_inode_by_ino_rcu() usage"); 1610 1611 hlist_for_each_entry_rcu(inode, head, i_hash) { 1612 if (inode->i_ino == ino && 1613 inode->i_sb == sb && 1614 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1615 return inode; 1616 } 1617 return NULL; 1618 } 1619 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1620 1621 int insert_inode_locked(struct inode *inode) 1622 { 1623 struct super_block *sb = inode->i_sb; 1624 ino_t ino = inode->i_ino; 1625 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1626 1627 while (1) { 1628 struct inode *old = NULL; 1629 spin_lock(&inode_hash_lock); 1630 hlist_for_each_entry(old, head, i_hash) { 1631 if (old->i_ino != ino) 1632 continue; 1633 if (old->i_sb != sb) 1634 continue; 1635 spin_lock(&old->i_lock); 1636 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1637 spin_unlock(&old->i_lock); 1638 continue; 1639 } 1640 break; 1641 } 1642 if (likely(!old)) { 1643 spin_lock(&inode->i_lock); 1644 inode->i_state |= I_NEW | I_CREATING; 1645 hlist_add_head_rcu(&inode->i_hash, head); 1646 spin_unlock(&inode->i_lock); 1647 spin_unlock(&inode_hash_lock); 1648 return 0; 1649 } 1650 if (unlikely(old->i_state & I_CREATING)) { 1651 spin_unlock(&old->i_lock); 1652 spin_unlock(&inode_hash_lock); 1653 return -EBUSY; 1654 } 1655 __iget(old); 1656 spin_unlock(&old->i_lock); 1657 spin_unlock(&inode_hash_lock); 1658 wait_on_inode(old); 1659 if (unlikely(!inode_unhashed(old))) { 1660 iput(old); 1661 return -EBUSY; 1662 } 1663 iput(old); 1664 } 1665 } 1666 EXPORT_SYMBOL(insert_inode_locked); 1667 1668 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1669 int (*test)(struct inode *, void *), void *data) 1670 { 1671 struct inode *old; 1672 1673 inode->i_state |= I_CREATING; 1674 old = inode_insert5(inode, hashval, test, NULL, data); 1675 1676 if (old != inode) { 1677 iput(old); 1678 return -EBUSY; 1679 } 1680 return 0; 1681 } 1682 EXPORT_SYMBOL(insert_inode_locked4); 1683 1684 1685 int generic_delete_inode(struct inode *inode) 1686 { 1687 return 1; 1688 } 1689 EXPORT_SYMBOL(generic_delete_inode); 1690 1691 /* 1692 * Called when we're dropping the last reference 1693 * to an inode. 1694 * 1695 * Call the FS "drop_inode()" function, defaulting to 1696 * the legacy UNIX filesystem behaviour. If it tells 1697 * us to evict inode, do so. Otherwise, retain inode 1698 * in cache if fs is alive, sync and evict if fs is 1699 * shutting down. 1700 */ 1701 static void iput_final(struct inode *inode) 1702 { 1703 struct super_block *sb = inode->i_sb; 1704 const struct super_operations *op = inode->i_sb->s_op; 1705 unsigned long state; 1706 int drop; 1707 1708 WARN_ON(inode->i_state & I_NEW); 1709 1710 if (op->drop_inode) 1711 drop = op->drop_inode(inode); 1712 else 1713 drop = generic_drop_inode(inode); 1714 1715 if (!drop && 1716 !(inode->i_state & I_DONTCACHE) && 1717 (sb->s_flags & SB_ACTIVE)) { 1718 __inode_add_lru(inode, true); 1719 spin_unlock(&inode->i_lock); 1720 return; 1721 } 1722 1723 state = inode->i_state; 1724 if (!drop) { 1725 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1726 spin_unlock(&inode->i_lock); 1727 1728 write_inode_now(inode, 1); 1729 1730 spin_lock(&inode->i_lock); 1731 state = inode->i_state; 1732 WARN_ON(state & I_NEW); 1733 state &= ~I_WILL_FREE; 1734 } 1735 1736 WRITE_ONCE(inode->i_state, state | I_FREEING); 1737 if (!list_empty(&inode->i_lru)) 1738 inode_lru_list_del(inode); 1739 spin_unlock(&inode->i_lock); 1740 1741 evict(inode); 1742 } 1743 1744 /** 1745 * iput - put an inode 1746 * @inode: inode to put 1747 * 1748 * Puts an inode, dropping its usage count. If the inode use count hits 1749 * zero, the inode is then freed and may also be destroyed. 1750 * 1751 * Consequently, iput() can sleep. 1752 */ 1753 void iput(struct inode *inode) 1754 { 1755 if (!inode) 1756 return; 1757 BUG_ON(inode->i_state & I_CLEAR); 1758 retry: 1759 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1760 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1761 atomic_inc(&inode->i_count); 1762 spin_unlock(&inode->i_lock); 1763 trace_writeback_lazytime_iput(inode); 1764 mark_inode_dirty_sync(inode); 1765 goto retry; 1766 } 1767 iput_final(inode); 1768 } 1769 } 1770 EXPORT_SYMBOL(iput); 1771 1772 #ifdef CONFIG_BLOCK 1773 /** 1774 * bmap - find a block number in a file 1775 * @inode: inode owning the block number being requested 1776 * @block: pointer containing the block to find 1777 * 1778 * Replaces the value in ``*block`` with the block number on the device holding 1779 * corresponding to the requested block number in the file. 1780 * That is, asked for block 4 of inode 1 the function will replace the 1781 * 4 in ``*block``, with disk block relative to the disk start that holds that 1782 * block of the file. 1783 * 1784 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1785 * hole, returns 0 and ``*block`` is also set to 0. 1786 */ 1787 int bmap(struct inode *inode, sector_t *block) 1788 { 1789 if (!inode->i_mapping->a_ops->bmap) 1790 return -EINVAL; 1791 1792 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1793 return 0; 1794 } 1795 EXPORT_SYMBOL(bmap); 1796 #endif 1797 1798 /* 1799 * With relative atime, only update atime if the previous atime is 1800 * earlier than or equal to either the ctime or mtime, 1801 * or if at least a day has passed since the last atime update. 1802 */ 1803 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1804 struct timespec64 now) 1805 { 1806 struct timespec64 atime, mtime, ctime; 1807 1808 if (!(mnt->mnt_flags & MNT_RELATIME)) 1809 return true; 1810 /* 1811 * Is mtime younger than or equal to atime? If yes, update atime: 1812 */ 1813 atime = inode_get_atime(inode); 1814 mtime = inode_get_mtime(inode); 1815 if (timespec64_compare(&mtime, &atime) >= 0) 1816 return true; 1817 /* 1818 * Is ctime younger than or equal to atime? If yes, update atime: 1819 */ 1820 ctime = inode_get_ctime(inode); 1821 if (timespec64_compare(&ctime, &atime) >= 0) 1822 return true; 1823 1824 /* 1825 * Is the previous atime value older than a day? If yes, 1826 * update atime: 1827 */ 1828 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1829 return true; 1830 /* 1831 * Good, we can skip the atime update: 1832 */ 1833 return false; 1834 } 1835 1836 /** 1837 * inode_update_timestamps - update the timestamps on the inode 1838 * @inode: inode to be updated 1839 * @flags: S_* flags that needed to be updated 1840 * 1841 * The update_time function is called when an inode's timestamps need to be 1842 * updated for a read or write operation. This function handles updating the 1843 * actual timestamps. It's up to the caller to ensure that the inode is marked 1844 * dirty appropriately. 1845 * 1846 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1847 * attempt to update all three of them. S_ATIME updates can be handled 1848 * independently of the rest. 1849 * 1850 * Returns a set of S_* flags indicating which values changed. 1851 */ 1852 int inode_update_timestamps(struct inode *inode, int flags) 1853 { 1854 int updated = 0; 1855 struct timespec64 now; 1856 1857 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1858 struct timespec64 ctime = inode_get_ctime(inode); 1859 struct timespec64 mtime = inode_get_mtime(inode); 1860 1861 now = inode_set_ctime_current(inode); 1862 if (!timespec64_equal(&now, &ctime)) 1863 updated |= S_CTIME; 1864 if (!timespec64_equal(&now, &mtime)) { 1865 inode_set_mtime_to_ts(inode, now); 1866 updated |= S_MTIME; 1867 } 1868 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1869 updated |= S_VERSION; 1870 } else { 1871 now = current_time(inode); 1872 } 1873 1874 if (flags & S_ATIME) { 1875 struct timespec64 atime = inode_get_atime(inode); 1876 1877 if (!timespec64_equal(&now, &atime)) { 1878 inode_set_atime_to_ts(inode, now); 1879 updated |= S_ATIME; 1880 } 1881 } 1882 return updated; 1883 } 1884 EXPORT_SYMBOL(inode_update_timestamps); 1885 1886 /** 1887 * generic_update_time - update the timestamps on the inode 1888 * @inode: inode to be updated 1889 * @flags: S_* flags that needed to be updated 1890 * 1891 * The update_time function is called when an inode's timestamps need to be 1892 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1893 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1894 * updates can be handled done independently of the rest. 1895 * 1896 * Returns a S_* mask indicating which fields were updated. 1897 */ 1898 int generic_update_time(struct inode *inode, int flags) 1899 { 1900 int updated = inode_update_timestamps(inode, flags); 1901 int dirty_flags = 0; 1902 1903 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1904 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1905 if (updated & S_VERSION) 1906 dirty_flags |= I_DIRTY_SYNC; 1907 __mark_inode_dirty(inode, dirty_flags); 1908 return updated; 1909 } 1910 EXPORT_SYMBOL(generic_update_time); 1911 1912 /* 1913 * This does the actual work of updating an inodes time or version. Must have 1914 * had called mnt_want_write() before calling this. 1915 */ 1916 int inode_update_time(struct inode *inode, int flags) 1917 { 1918 if (inode->i_op->update_time) 1919 return inode->i_op->update_time(inode, flags); 1920 generic_update_time(inode, flags); 1921 return 0; 1922 } 1923 EXPORT_SYMBOL(inode_update_time); 1924 1925 /** 1926 * atime_needs_update - update the access time 1927 * @path: the &struct path to update 1928 * @inode: inode to update 1929 * 1930 * Update the accessed time on an inode and mark it for writeback. 1931 * This function automatically handles read only file systems and media, 1932 * as well as the "noatime" flag and inode specific "noatime" markers. 1933 */ 1934 bool atime_needs_update(const struct path *path, struct inode *inode) 1935 { 1936 struct vfsmount *mnt = path->mnt; 1937 struct timespec64 now, atime; 1938 1939 if (inode->i_flags & S_NOATIME) 1940 return false; 1941 1942 /* Atime updates will likely cause i_uid and i_gid to be written 1943 * back improprely if their true value is unknown to the vfs. 1944 */ 1945 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1946 return false; 1947 1948 if (IS_NOATIME(inode)) 1949 return false; 1950 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1951 return false; 1952 1953 if (mnt->mnt_flags & MNT_NOATIME) 1954 return false; 1955 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1956 return false; 1957 1958 now = current_time(inode); 1959 1960 if (!relatime_need_update(mnt, inode, now)) 1961 return false; 1962 1963 atime = inode_get_atime(inode); 1964 if (timespec64_equal(&atime, &now)) 1965 return false; 1966 1967 return true; 1968 } 1969 1970 void touch_atime(const struct path *path) 1971 { 1972 struct vfsmount *mnt = path->mnt; 1973 struct inode *inode = d_inode(path->dentry); 1974 1975 if (!atime_needs_update(path, inode)) 1976 return; 1977 1978 if (!sb_start_write_trylock(inode->i_sb)) 1979 return; 1980 1981 if (mnt_get_write_access(mnt) != 0) 1982 goto skip_update; 1983 /* 1984 * File systems can error out when updating inodes if they need to 1985 * allocate new space to modify an inode (such is the case for 1986 * Btrfs), but since we touch atime while walking down the path we 1987 * really don't care if we failed to update the atime of the file, 1988 * so just ignore the return value. 1989 * We may also fail on filesystems that have the ability to make parts 1990 * of the fs read only, e.g. subvolumes in Btrfs. 1991 */ 1992 inode_update_time(inode, S_ATIME); 1993 mnt_put_write_access(mnt); 1994 skip_update: 1995 sb_end_write(inode->i_sb); 1996 } 1997 EXPORT_SYMBOL(touch_atime); 1998 1999 /* 2000 * Return mask of changes for notify_change() that need to be done as a 2001 * response to write or truncate. Return 0 if nothing has to be changed. 2002 * Negative value on error (change should be denied). 2003 */ 2004 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2005 struct dentry *dentry) 2006 { 2007 struct inode *inode = d_inode(dentry); 2008 int mask = 0; 2009 int ret; 2010 2011 if (IS_NOSEC(inode)) 2012 return 0; 2013 2014 mask = setattr_should_drop_suidgid(idmap, inode); 2015 ret = security_inode_need_killpriv(dentry); 2016 if (ret < 0) 2017 return ret; 2018 if (ret) 2019 mask |= ATTR_KILL_PRIV; 2020 return mask; 2021 } 2022 2023 static int __remove_privs(struct mnt_idmap *idmap, 2024 struct dentry *dentry, int kill) 2025 { 2026 struct iattr newattrs; 2027 2028 newattrs.ia_valid = ATTR_FORCE | kill; 2029 /* 2030 * Note we call this on write, so notify_change will not 2031 * encounter any conflicting delegations: 2032 */ 2033 return notify_change(idmap, dentry, &newattrs, NULL); 2034 } 2035 2036 int file_remove_privs_flags(struct file *file, unsigned int flags) 2037 { 2038 struct dentry *dentry = file_dentry(file); 2039 struct inode *inode = file_inode(file); 2040 int error = 0; 2041 int kill; 2042 2043 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2044 return 0; 2045 2046 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2047 if (kill < 0) 2048 return kill; 2049 2050 if (kill) { 2051 if (flags & IOCB_NOWAIT) 2052 return -EAGAIN; 2053 2054 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2055 } 2056 2057 if (!error) 2058 inode_has_no_xattr(inode); 2059 return error; 2060 } 2061 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2062 2063 /** 2064 * file_remove_privs - remove special file privileges (suid, capabilities) 2065 * @file: file to remove privileges from 2066 * 2067 * When file is modified by a write or truncation ensure that special 2068 * file privileges are removed. 2069 * 2070 * Return: 0 on success, negative errno on failure. 2071 */ 2072 int file_remove_privs(struct file *file) 2073 { 2074 return file_remove_privs_flags(file, 0); 2075 } 2076 EXPORT_SYMBOL(file_remove_privs); 2077 2078 static int inode_needs_update_time(struct inode *inode) 2079 { 2080 int sync_it = 0; 2081 struct timespec64 now = current_time(inode); 2082 struct timespec64 ts; 2083 2084 /* First try to exhaust all avenues to not sync */ 2085 if (IS_NOCMTIME(inode)) 2086 return 0; 2087 2088 ts = inode_get_mtime(inode); 2089 if (!timespec64_equal(&ts, &now)) 2090 sync_it = S_MTIME; 2091 2092 ts = inode_get_ctime(inode); 2093 if (!timespec64_equal(&ts, &now)) 2094 sync_it |= S_CTIME; 2095 2096 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2097 sync_it |= S_VERSION; 2098 2099 return sync_it; 2100 } 2101 2102 static int __file_update_time(struct file *file, int sync_mode) 2103 { 2104 int ret = 0; 2105 struct inode *inode = file_inode(file); 2106 2107 /* try to update time settings */ 2108 if (!mnt_get_write_access_file(file)) { 2109 ret = inode_update_time(inode, sync_mode); 2110 mnt_put_write_access_file(file); 2111 } 2112 2113 return ret; 2114 } 2115 2116 /** 2117 * file_update_time - update mtime and ctime time 2118 * @file: file accessed 2119 * 2120 * Update the mtime and ctime members of an inode and mark the inode for 2121 * writeback. Note that this function is meant exclusively for usage in 2122 * the file write path of filesystems, and filesystems may choose to 2123 * explicitly ignore updates via this function with the _NOCMTIME inode 2124 * flag, e.g. for network filesystem where these imestamps are handled 2125 * by the server. This can return an error for file systems who need to 2126 * allocate space in order to update an inode. 2127 * 2128 * Return: 0 on success, negative errno on failure. 2129 */ 2130 int file_update_time(struct file *file) 2131 { 2132 int ret; 2133 struct inode *inode = file_inode(file); 2134 2135 ret = inode_needs_update_time(inode); 2136 if (ret <= 0) 2137 return ret; 2138 2139 return __file_update_time(file, ret); 2140 } 2141 EXPORT_SYMBOL(file_update_time); 2142 2143 /** 2144 * file_modified_flags - handle mandated vfs changes when modifying a file 2145 * @file: file that was modified 2146 * @flags: kiocb flags 2147 * 2148 * When file has been modified ensure that special 2149 * file privileges are removed and time settings are updated. 2150 * 2151 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2152 * time settings will not be updated. It will return -EAGAIN. 2153 * 2154 * Context: Caller must hold the file's inode lock. 2155 * 2156 * Return: 0 on success, negative errno on failure. 2157 */ 2158 static int file_modified_flags(struct file *file, int flags) 2159 { 2160 int ret; 2161 struct inode *inode = file_inode(file); 2162 2163 /* 2164 * Clear the security bits if the process is not being run by root. 2165 * This keeps people from modifying setuid and setgid binaries. 2166 */ 2167 ret = file_remove_privs_flags(file, flags); 2168 if (ret) 2169 return ret; 2170 2171 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2172 return 0; 2173 2174 ret = inode_needs_update_time(inode); 2175 if (ret <= 0) 2176 return ret; 2177 if (flags & IOCB_NOWAIT) 2178 return -EAGAIN; 2179 2180 return __file_update_time(file, ret); 2181 } 2182 2183 /** 2184 * file_modified - handle mandated vfs changes when modifying a file 2185 * @file: file that was modified 2186 * 2187 * When file has been modified ensure that special 2188 * file privileges are removed and time settings are updated. 2189 * 2190 * Context: Caller must hold the file's inode lock. 2191 * 2192 * Return: 0 on success, negative errno on failure. 2193 */ 2194 int file_modified(struct file *file) 2195 { 2196 return file_modified_flags(file, 0); 2197 } 2198 EXPORT_SYMBOL(file_modified); 2199 2200 /** 2201 * kiocb_modified - handle mandated vfs changes when modifying a file 2202 * @iocb: iocb that was modified 2203 * 2204 * When file has been modified ensure that special 2205 * file privileges are removed and time settings are updated. 2206 * 2207 * Context: Caller must hold the file's inode lock. 2208 * 2209 * Return: 0 on success, negative errno on failure. 2210 */ 2211 int kiocb_modified(struct kiocb *iocb) 2212 { 2213 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2214 } 2215 EXPORT_SYMBOL_GPL(kiocb_modified); 2216 2217 int inode_needs_sync(struct inode *inode) 2218 { 2219 if (IS_SYNC(inode)) 2220 return 1; 2221 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2222 return 1; 2223 return 0; 2224 } 2225 EXPORT_SYMBOL(inode_needs_sync); 2226 2227 /* 2228 * If we try to find an inode in the inode hash while it is being 2229 * deleted, we have to wait until the filesystem completes its 2230 * deletion before reporting that it isn't found. This function waits 2231 * until the deletion _might_ have completed. Callers are responsible 2232 * to recheck inode state. 2233 * 2234 * It doesn't matter if I_NEW is not set initially, a call to 2235 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2236 * will DTRT. 2237 */ 2238 static void __wait_on_freeing_inode(struct inode *inode) 2239 { 2240 wait_queue_head_t *wq; 2241 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2242 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2243 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2244 spin_unlock(&inode->i_lock); 2245 spin_unlock(&inode_hash_lock); 2246 schedule(); 2247 finish_wait(wq, &wait.wq_entry); 2248 spin_lock(&inode_hash_lock); 2249 } 2250 2251 static __initdata unsigned long ihash_entries; 2252 static int __init set_ihash_entries(char *str) 2253 { 2254 if (!str) 2255 return 0; 2256 ihash_entries = simple_strtoul(str, &str, 0); 2257 return 1; 2258 } 2259 __setup("ihash_entries=", set_ihash_entries); 2260 2261 /* 2262 * Initialize the waitqueues and inode hash table. 2263 */ 2264 void __init inode_init_early(void) 2265 { 2266 /* If hashes are distributed across NUMA nodes, defer 2267 * hash allocation until vmalloc space is available. 2268 */ 2269 if (hashdist) 2270 return; 2271 2272 inode_hashtable = 2273 alloc_large_system_hash("Inode-cache", 2274 sizeof(struct hlist_head), 2275 ihash_entries, 2276 14, 2277 HASH_EARLY | HASH_ZERO, 2278 &i_hash_shift, 2279 &i_hash_mask, 2280 0, 2281 0); 2282 } 2283 2284 void __init inode_init(void) 2285 { 2286 /* inode slab cache */ 2287 inode_cachep = kmem_cache_create("inode_cache", 2288 sizeof(struct inode), 2289 0, 2290 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2291 SLAB_ACCOUNT), 2292 init_once); 2293 2294 /* Hash may have been set up in inode_init_early */ 2295 if (!hashdist) 2296 return; 2297 2298 inode_hashtable = 2299 alloc_large_system_hash("Inode-cache", 2300 sizeof(struct hlist_head), 2301 ihash_entries, 2302 14, 2303 HASH_ZERO, 2304 &i_hash_shift, 2305 &i_hash_mask, 2306 0, 2307 0); 2308 } 2309 2310 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2311 { 2312 inode->i_mode = mode; 2313 if (S_ISCHR(mode)) { 2314 inode->i_fop = &def_chr_fops; 2315 inode->i_rdev = rdev; 2316 } else if (S_ISBLK(mode)) { 2317 if (IS_ENABLED(CONFIG_BLOCK)) 2318 inode->i_fop = &def_blk_fops; 2319 inode->i_rdev = rdev; 2320 } else if (S_ISFIFO(mode)) 2321 inode->i_fop = &pipefifo_fops; 2322 else if (S_ISSOCK(mode)) 2323 ; /* leave it no_open_fops */ 2324 else 2325 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2326 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2327 inode->i_ino); 2328 } 2329 EXPORT_SYMBOL(init_special_inode); 2330 2331 /** 2332 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2333 * @idmap: idmap of the mount the inode was created from 2334 * @inode: New inode 2335 * @dir: Directory inode 2336 * @mode: mode of the new inode 2337 * 2338 * If the inode has been created through an idmapped mount the idmap of 2339 * the vfsmount must be passed through @idmap. This function will then take 2340 * care to map the inode according to @idmap before checking permissions 2341 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2342 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2343 */ 2344 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2345 const struct inode *dir, umode_t mode) 2346 { 2347 inode_fsuid_set(inode, idmap); 2348 if (dir && dir->i_mode & S_ISGID) { 2349 inode->i_gid = dir->i_gid; 2350 2351 /* Directories are special, and always inherit S_ISGID */ 2352 if (S_ISDIR(mode)) 2353 mode |= S_ISGID; 2354 } else 2355 inode_fsgid_set(inode, idmap); 2356 inode->i_mode = mode; 2357 } 2358 EXPORT_SYMBOL(inode_init_owner); 2359 2360 /** 2361 * inode_owner_or_capable - check current task permissions to inode 2362 * @idmap: idmap of the mount the inode was found from 2363 * @inode: inode being checked 2364 * 2365 * Return true if current either has CAP_FOWNER in a namespace with the 2366 * inode owner uid mapped, or owns the file. 2367 * 2368 * If the inode has been found through an idmapped mount the idmap of 2369 * the vfsmount must be passed through @idmap. This function will then take 2370 * care to map the inode according to @idmap before checking permissions. 2371 * On non-idmapped mounts or if permission checking is to be performed on the 2372 * raw inode simply pass @nop_mnt_idmap. 2373 */ 2374 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2375 const struct inode *inode) 2376 { 2377 vfsuid_t vfsuid; 2378 struct user_namespace *ns; 2379 2380 vfsuid = i_uid_into_vfsuid(idmap, inode); 2381 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2382 return true; 2383 2384 ns = current_user_ns(); 2385 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2386 return true; 2387 return false; 2388 } 2389 EXPORT_SYMBOL(inode_owner_or_capable); 2390 2391 /* 2392 * Direct i/o helper functions 2393 */ 2394 static void __inode_dio_wait(struct inode *inode) 2395 { 2396 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2397 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2398 2399 do { 2400 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2401 if (atomic_read(&inode->i_dio_count)) 2402 schedule(); 2403 } while (atomic_read(&inode->i_dio_count)); 2404 finish_wait(wq, &q.wq_entry); 2405 } 2406 2407 /** 2408 * inode_dio_wait - wait for outstanding DIO requests to finish 2409 * @inode: inode to wait for 2410 * 2411 * Waits for all pending direct I/O requests to finish so that we can 2412 * proceed with a truncate or equivalent operation. 2413 * 2414 * Must be called under a lock that serializes taking new references 2415 * to i_dio_count, usually by inode->i_mutex. 2416 */ 2417 void inode_dio_wait(struct inode *inode) 2418 { 2419 if (atomic_read(&inode->i_dio_count)) 2420 __inode_dio_wait(inode); 2421 } 2422 EXPORT_SYMBOL(inode_dio_wait); 2423 2424 /* 2425 * inode_set_flags - atomically set some inode flags 2426 * 2427 * Note: the caller should be holding i_mutex, or else be sure that 2428 * they have exclusive access to the inode structure (i.e., while the 2429 * inode is being instantiated). The reason for the cmpxchg() loop 2430 * --- which wouldn't be necessary if all code paths which modify 2431 * i_flags actually followed this rule, is that there is at least one 2432 * code path which doesn't today so we use cmpxchg() out of an abundance 2433 * of caution. 2434 * 2435 * In the long run, i_mutex is overkill, and we should probably look 2436 * at using the i_lock spinlock to protect i_flags, and then make sure 2437 * it is so documented in include/linux/fs.h and that all code follows 2438 * the locking convention!! 2439 */ 2440 void inode_set_flags(struct inode *inode, unsigned int flags, 2441 unsigned int mask) 2442 { 2443 WARN_ON_ONCE(flags & ~mask); 2444 set_mask_bits(&inode->i_flags, mask, flags); 2445 } 2446 EXPORT_SYMBOL(inode_set_flags); 2447 2448 void inode_nohighmem(struct inode *inode) 2449 { 2450 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2451 } 2452 EXPORT_SYMBOL(inode_nohighmem); 2453 2454 /** 2455 * timestamp_truncate - Truncate timespec to a granularity 2456 * @t: Timespec 2457 * @inode: inode being updated 2458 * 2459 * Truncate a timespec to the granularity supported by the fs 2460 * containing the inode. Always rounds down. gran must 2461 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2462 */ 2463 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2464 { 2465 struct super_block *sb = inode->i_sb; 2466 unsigned int gran = sb->s_time_gran; 2467 2468 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2469 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2470 t.tv_nsec = 0; 2471 2472 /* Avoid division in the common cases 1 ns and 1 s. */ 2473 if (gran == 1) 2474 ; /* nothing */ 2475 else if (gran == NSEC_PER_SEC) 2476 t.tv_nsec = 0; 2477 else if (gran > 1 && gran < NSEC_PER_SEC) 2478 t.tv_nsec -= t.tv_nsec % gran; 2479 else 2480 WARN(1, "invalid file time granularity: %u", gran); 2481 return t; 2482 } 2483 EXPORT_SYMBOL(timestamp_truncate); 2484 2485 /** 2486 * current_time - Return FS time 2487 * @inode: inode. 2488 * 2489 * Return the current time truncated to the time granularity supported by 2490 * the fs. 2491 * 2492 * Note that inode and inode->sb cannot be NULL. 2493 * Otherwise, the function warns and returns time without truncation. 2494 */ 2495 struct timespec64 current_time(struct inode *inode) 2496 { 2497 struct timespec64 now; 2498 2499 ktime_get_coarse_real_ts64(&now); 2500 return timestamp_truncate(now, inode); 2501 } 2502 EXPORT_SYMBOL(current_time); 2503 2504 /** 2505 * inode_set_ctime_current - set the ctime to current_time 2506 * @inode: inode 2507 * 2508 * Set the inode->i_ctime to the current value for the inode. Returns 2509 * the current value that was assigned to i_ctime. 2510 */ 2511 struct timespec64 inode_set_ctime_current(struct inode *inode) 2512 { 2513 struct timespec64 now = current_time(inode); 2514 2515 inode_set_ctime_to_ts(inode, now); 2516 return now; 2517 } 2518 EXPORT_SYMBOL(inode_set_ctime_current); 2519 2520 /** 2521 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2522 * @idmap: idmap of the mount @inode was found from 2523 * @inode: inode to check 2524 * @vfsgid: the new/current vfsgid of @inode 2525 * 2526 * Check wether @vfsgid is in the caller's group list or if the caller is 2527 * privileged with CAP_FSETID over @inode. This can be used to determine 2528 * whether the setgid bit can be kept or must be dropped. 2529 * 2530 * Return: true if the caller is sufficiently privileged, false if not. 2531 */ 2532 bool in_group_or_capable(struct mnt_idmap *idmap, 2533 const struct inode *inode, vfsgid_t vfsgid) 2534 { 2535 if (vfsgid_in_group_p(vfsgid)) 2536 return true; 2537 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2538 return true; 2539 return false; 2540 } 2541 2542 /** 2543 * mode_strip_sgid - handle the sgid bit for non-directories 2544 * @idmap: idmap of the mount the inode was created from 2545 * @dir: parent directory inode 2546 * @mode: mode of the file to be created in @dir 2547 * 2548 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2549 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2550 * either in the group of the parent directory or they have CAP_FSETID 2551 * in their user namespace and are privileged over the parent directory. 2552 * In all other cases, strip the S_ISGID bit from @mode. 2553 * 2554 * Return: the new mode to use for the file 2555 */ 2556 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2557 const struct inode *dir, umode_t mode) 2558 { 2559 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2560 return mode; 2561 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2562 return mode; 2563 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2564 return mode; 2565 return mode & ~S_ISGID; 2566 } 2567 EXPORT_SYMBOL(mode_strip_sgid); 2568