xref: /linux/fs/inode.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 
27 /*
28  * This is needed for the following functions:
29  *  - inode_has_buffers
30  *  - invalidate_inode_buffers
31  *  - invalidate_bdev
32  *
33  * FIXME: remove all knowledge of the buffer layer from this file
34  */
35 #include <linux/buffer_head.h>
36 
37 /*
38  * New inode.c implementation.
39  *
40  * This implementation has the basic premise of trying
41  * to be extremely low-overhead and SMP-safe, yet be
42  * simple enough to be "obviously correct".
43  *
44  * Famous last words.
45  */
46 
47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 
49 /* #define INODE_PARANOIA 1 */
50 /* #define INODE_DEBUG 1 */
51 
52 /*
53  * Inode lookup is no longer as critical as it used to be:
54  * most of the lookups are going to be through the dcache.
55  */
56 #define I_HASHBITS	i_hash_shift
57 #define I_HASHMASK	i_hash_mask
58 
59 static unsigned int i_hash_mask;
60 static unsigned int i_hash_shift;
61 
62 /*
63  * Each inode can be on two separate lists. One is
64  * the hash list of the inode, used for lookups. The
65  * other linked list is the "type" list:
66  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
67  *  "dirty"  - as "in_use" but also dirty
68  *  "unused" - valid inode, i_count = 0
69  *
70  * A "dirty" list is maintained for each super block,
71  * allowing for low-overhead inode sync() operations.
72  */
73 
74 LIST_HEAD(inode_in_use);
75 LIST_HEAD(inode_unused);
76 static struct hlist_head *inode_hashtable;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88  * icache shrinking path, and the umount path.  Without this exclusion,
89  * by the time prune_icache calls iput for the inode whose pages it has
90  * been invalidating, or by the time it calls clear_inode & destroy_inode
91  * from its final dispose_list, the struct super_block they refer to
92  * (for inode->i_sb->s_op) may already have been freed and reused.
93  */
94 DECLARE_MUTEX(iprune_sem);
95 
96 /*
97  * Statistics gathering..
98  */
99 struct inodes_stat_t inodes_stat;
100 
101 static kmem_cache_t * inode_cachep;
102 
103 static struct inode *alloc_inode(struct super_block *sb)
104 {
105 	static struct address_space_operations empty_aops;
106 	static struct inode_operations empty_iops;
107 	static struct file_operations empty_fops;
108 	struct inode *inode;
109 
110 	if (sb->s_op->alloc_inode)
111 		inode = sb->s_op->alloc_inode(sb);
112 	else
113 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
114 
115 	if (inode) {
116 		struct address_space * const mapping = &inode->i_data;
117 
118 		inode->i_sb = sb;
119 		inode->i_blkbits = sb->s_blocksize_bits;
120 		inode->i_flags = 0;
121 		atomic_set(&inode->i_count, 1);
122 		inode->i_op = &empty_iops;
123 		inode->i_fop = &empty_fops;
124 		inode->i_nlink = 1;
125 		atomic_set(&inode->i_writecount, 0);
126 		inode->i_size = 0;
127 		inode->i_blocks = 0;
128 		inode->i_bytes = 0;
129 		inode->i_generation = 0;
130 #ifdef CONFIG_QUOTA
131 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 #endif
133 		inode->i_pipe = NULL;
134 		inode->i_bdev = NULL;
135 		inode->i_cdev = NULL;
136 		inode->i_rdev = 0;
137 		inode->i_security = NULL;
138 		inode->dirtied_when = 0;
139 		if (security_inode_alloc(inode)) {
140 			if (inode->i_sb->s_op->destroy_inode)
141 				inode->i_sb->s_op->destroy_inode(inode);
142 			else
143 				kmem_cache_free(inode_cachep, (inode));
144 			return NULL;
145 		}
146 
147 		mapping->a_ops = &empty_aops;
148  		mapping->host = inode;
149 		mapping->flags = 0;
150 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
151 		mapping->assoc_mapping = NULL;
152 		mapping->backing_dev_info = &default_backing_dev_info;
153 
154 		/*
155 		 * If the block_device provides a backing_dev_info for client
156 		 * inodes then use that.  Otherwise the inode share the bdev's
157 		 * backing_dev_info.
158 		 */
159 		if (sb->s_bdev) {
160 			struct backing_dev_info *bdi;
161 
162 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
163 			if (!bdi)
164 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
165 			mapping->backing_dev_info = bdi;
166 		}
167 		memset(&inode->u, 0, sizeof(inode->u));
168 		inode->i_mapping = mapping;
169 	}
170 	return inode;
171 }
172 
173 void destroy_inode(struct inode *inode)
174 {
175 	if (inode_has_buffers(inode))
176 		BUG();
177 	security_inode_free(inode);
178 	if (inode->i_sb->s_op->destroy_inode)
179 		inode->i_sb->s_op->destroy_inode(inode);
180 	else
181 		kmem_cache_free(inode_cachep, (inode));
182 }
183 
184 
185 /*
186  * These are initializations that only need to be done
187  * once, because the fields are idempotent across use
188  * of the inode, so let the slab aware of that.
189  */
190 void inode_init_once(struct inode *inode)
191 {
192 	memset(inode, 0, sizeof(*inode));
193 	INIT_HLIST_NODE(&inode->i_hash);
194 	INIT_LIST_HEAD(&inode->i_dentry);
195 	INIT_LIST_HEAD(&inode->i_devices);
196 	mutex_init(&inode->i_mutex);
197 	init_rwsem(&inode->i_alloc_sem);
198 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
199 	rwlock_init(&inode->i_data.tree_lock);
200 	spin_lock_init(&inode->i_data.i_mmap_lock);
201 	INIT_LIST_HEAD(&inode->i_data.private_list);
202 	spin_lock_init(&inode->i_data.private_lock);
203 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
204 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
205 	spin_lock_init(&inode->i_lock);
206 	i_size_ordered_init(inode);
207 #ifdef CONFIG_INOTIFY
208 	INIT_LIST_HEAD(&inode->inotify_watches);
209 	sema_init(&inode->inotify_sem, 1);
210 #endif
211 }
212 
213 EXPORT_SYMBOL(inode_init_once);
214 
215 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
216 {
217 	struct inode * inode = (struct inode *) foo;
218 
219 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
220 	    SLAB_CTOR_CONSTRUCTOR)
221 		inode_init_once(inode);
222 }
223 
224 /*
225  * inode_lock must be held
226  */
227 void __iget(struct inode * inode)
228 {
229 	if (atomic_read(&inode->i_count)) {
230 		atomic_inc(&inode->i_count);
231 		return;
232 	}
233 	atomic_inc(&inode->i_count);
234 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
235 		list_move(&inode->i_list, &inode_in_use);
236 	inodes_stat.nr_unused--;
237 }
238 
239 /**
240  * clear_inode - clear an inode
241  * @inode: inode to clear
242  *
243  * This is called by the filesystem to tell us
244  * that the inode is no longer useful. We just
245  * terminate it with extreme prejudice.
246  */
247 void clear_inode(struct inode *inode)
248 {
249 	might_sleep();
250 	invalidate_inode_buffers(inode);
251 
252 	if (inode->i_data.nrpages)
253 		BUG();
254 	if (!(inode->i_state & I_FREEING))
255 		BUG();
256 	if (inode->i_state & I_CLEAR)
257 		BUG();
258 	wait_on_inode(inode);
259 	DQUOT_DROP(inode);
260 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
261 		inode->i_sb->s_op->clear_inode(inode);
262 	if (inode->i_bdev)
263 		bd_forget(inode);
264 	if (inode->i_cdev)
265 		cd_forget(inode);
266 	inode->i_state = I_CLEAR;
267 }
268 
269 EXPORT_SYMBOL(clear_inode);
270 
271 /*
272  * dispose_list - dispose of the contents of a local list
273  * @head: the head of the list to free
274  *
275  * Dispose-list gets a local list with local inodes in it, so it doesn't
276  * need to worry about list corruption and SMP locks.
277  */
278 static void dispose_list(struct list_head *head)
279 {
280 	int nr_disposed = 0;
281 
282 	while (!list_empty(head)) {
283 		struct inode *inode;
284 
285 		inode = list_entry(head->next, struct inode, i_list);
286 		list_del(&inode->i_list);
287 
288 		if (inode->i_data.nrpages)
289 			truncate_inode_pages(&inode->i_data, 0);
290 		clear_inode(inode);
291 
292 		spin_lock(&inode_lock);
293 		hlist_del_init(&inode->i_hash);
294 		list_del_init(&inode->i_sb_list);
295 		spin_unlock(&inode_lock);
296 
297 		wake_up_inode(inode);
298 		destroy_inode(inode);
299 		nr_disposed++;
300 	}
301 	spin_lock(&inode_lock);
302 	inodes_stat.nr_inodes -= nr_disposed;
303 	spin_unlock(&inode_lock);
304 }
305 
306 /*
307  * Invalidate all inodes for a device.
308  */
309 static int invalidate_list(struct list_head *head, struct list_head *dispose)
310 {
311 	struct list_head *next;
312 	int busy = 0, count = 0;
313 
314 	next = head->next;
315 	for (;;) {
316 		struct list_head * tmp = next;
317 		struct inode * inode;
318 
319 		/*
320 		 * We can reschedule here without worrying about the list's
321 		 * consistency because the per-sb list of inodes must not
322 		 * change during umount anymore, and because iprune_sem keeps
323 		 * shrink_icache_memory() away.
324 		 */
325 		cond_resched_lock(&inode_lock);
326 
327 		next = next->next;
328 		if (tmp == head)
329 			break;
330 		inode = list_entry(tmp, struct inode, i_sb_list);
331 		invalidate_inode_buffers(inode);
332 		if (!atomic_read(&inode->i_count)) {
333 			list_move(&inode->i_list, dispose);
334 			inode->i_state |= I_FREEING;
335 			count++;
336 			continue;
337 		}
338 		busy = 1;
339 	}
340 	/* only unused inodes may be cached with i_count zero */
341 	inodes_stat.nr_unused -= count;
342 	return busy;
343 }
344 
345 /**
346  *	invalidate_inodes	- discard the inodes on a device
347  *	@sb: superblock
348  *
349  *	Discard all of the inodes for a given superblock. If the discard
350  *	fails because there are busy inodes then a non zero value is returned.
351  *	If the discard is successful all the inodes have been discarded.
352  */
353 int invalidate_inodes(struct super_block * sb)
354 {
355 	int busy;
356 	LIST_HEAD(throw_away);
357 
358 	down(&iprune_sem);
359 	spin_lock(&inode_lock);
360 	inotify_unmount_inodes(&sb->s_inodes);
361 	busy = invalidate_list(&sb->s_inodes, &throw_away);
362 	spin_unlock(&inode_lock);
363 
364 	dispose_list(&throw_away);
365 	up(&iprune_sem);
366 
367 	return busy;
368 }
369 
370 EXPORT_SYMBOL(invalidate_inodes);
371 
372 int __invalidate_device(struct block_device *bdev)
373 {
374 	struct super_block *sb = get_super(bdev);
375 	int res = 0;
376 
377 	if (sb) {
378 		/*
379 		 * no need to lock the super, get_super holds the
380 		 * read semaphore so the filesystem cannot go away
381 		 * under us (->put_super runs with the write lock
382 		 * hold).
383 		 */
384 		shrink_dcache_sb(sb);
385 		res = invalidate_inodes(sb);
386 		drop_super(sb);
387 	}
388 	invalidate_bdev(bdev, 0);
389 	return res;
390 }
391 EXPORT_SYMBOL(__invalidate_device);
392 
393 static int can_unuse(struct inode *inode)
394 {
395 	if (inode->i_state)
396 		return 0;
397 	if (inode_has_buffers(inode))
398 		return 0;
399 	if (atomic_read(&inode->i_count))
400 		return 0;
401 	if (inode->i_data.nrpages)
402 		return 0;
403 	return 1;
404 }
405 
406 /*
407  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
408  * a temporary list and then are freed outside inode_lock by dispose_list().
409  *
410  * Any inodes which are pinned purely because of attached pagecache have their
411  * pagecache removed.  We expect the final iput() on that inode to add it to
412  * the front of the inode_unused list.  So look for it there and if the
413  * inode is still freeable, proceed.  The right inode is found 99.9% of the
414  * time in testing on a 4-way.
415  *
416  * If the inode has metadata buffers attached to mapping->private_list then
417  * try to remove them.
418  */
419 static void prune_icache(int nr_to_scan)
420 {
421 	LIST_HEAD(freeable);
422 	int nr_pruned = 0;
423 	int nr_scanned;
424 	unsigned long reap = 0;
425 
426 	down(&iprune_sem);
427 	spin_lock(&inode_lock);
428 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
429 		struct inode *inode;
430 
431 		if (list_empty(&inode_unused))
432 			break;
433 
434 		inode = list_entry(inode_unused.prev, struct inode, i_list);
435 
436 		if (inode->i_state || atomic_read(&inode->i_count)) {
437 			list_move(&inode->i_list, &inode_unused);
438 			continue;
439 		}
440 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
441 			__iget(inode);
442 			spin_unlock(&inode_lock);
443 			if (remove_inode_buffers(inode))
444 				reap += invalidate_inode_pages(&inode->i_data);
445 			iput(inode);
446 			spin_lock(&inode_lock);
447 
448 			if (inode != list_entry(inode_unused.next,
449 						struct inode, i_list))
450 				continue;	/* wrong inode or list_empty */
451 			if (!can_unuse(inode))
452 				continue;
453 		}
454 		list_move(&inode->i_list, &freeable);
455 		inode->i_state |= I_FREEING;
456 		nr_pruned++;
457 	}
458 	inodes_stat.nr_unused -= nr_pruned;
459 	spin_unlock(&inode_lock);
460 
461 	dispose_list(&freeable);
462 	up(&iprune_sem);
463 
464 	if (current_is_kswapd())
465 		mod_page_state(kswapd_inodesteal, reap);
466 	else
467 		mod_page_state(pginodesteal, reap);
468 }
469 
470 /*
471  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
472  * "unused" means that no dentries are referring to the inodes: the files are
473  * not open and the dcache references to those inodes have already been
474  * reclaimed.
475  *
476  * This function is passed the number of inodes to scan, and it returns the
477  * total number of remaining possibly-reclaimable inodes.
478  */
479 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
480 {
481 	if (nr) {
482 		/*
483 		 * Nasty deadlock avoidance.  We may hold various FS locks,
484 		 * and we don't want to recurse into the FS that called us
485 		 * in clear_inode() and friends..
486 	 	 */
487 		if (!(gfp_mask & __GFP_FS))
488 			return -1;
489 		prune_icache(nr);
490 	}
491 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
492 }
493 
494 static void __wait_on_freeing_inode(struct inode *inode);
495 /*
496  * Called with the inode lock held.
497  * NOTE: we are not increasing the inode-refcount, you must call __iget()
498  * by hand after calling find_inode now! This simplifies iunique and won't
499  * add any additional branch in the common code.
500  */
501 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
502 {
503 	struct hlist_node *node;
504 	struct inode * inode = NULL;
505 
506 repeat:
507 	hlist_for_each (node, head) {
508 		inode = hlist_entry(node, struct inode, i_hash);
509 		if (inode->i_sb != sb)
510 			continue;
511 		if (!test(inode, data))
512 			continue;
513 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
514 			__wait_on_freeing_inode(inode);
515 			goto repeat;
516 		}
517 		break;
518 	}
519 	return node ? inode : NULL;
520 }
521 
522 /*
523  * find_inode_fast is the fast path version of find_inode, see the comment at
524  * iget_locked for details.
525  */
526 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
527 {
528 	struct hlist_node *node;
529 	struct inode * inode = NULL;
530 
531 repeat:
532 	hlist_for_each (node, head) {
533 		inode = hlist_entry(node, struct inode, i_hash);
534 		if (inode->i_ino != ino)
535 			continue;
536 		if (inode->i_sb != sb)
537 			continue;
538 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
539 			__wait_on_freeing_inode(inode);
540 			goto repeat;
541 		}
542 		break;
543 	}
544 	return node ? inode : NULL;
545 }
546 
547 /**
548  *	new_inode 	- obtain an inode
549  *	@sb: superblock
550  *
551  *	Allocates a new inode for given superblock.
552  */
553 struct inode *new_inode(struct super_block *sb)
554 {
555 	static unsigned long last_ino;
556 	struct inode * inode;
557 
558 	spin_lock_prefetch(&inode_lock);
559 
560 	inode = alloc_inode(sb);
561 	if (inode) {
562 		spin_lock(&inode_lock);
563 		inodes_stat.nr_inodes++;
564 		list_add(&inode->i_list, &inode_in_use);
565 		list_add(&inode->i_sb_list, &sb->s_inodes);
566 		inode->i_ino = ++last_ino;
567 		inode->i_state = 0;
568 		spin_unlock(&inode_lock);
569 	}
570 	return inode;
571 }
572 
573 EXPORT_SYMBOL(new_inode);
574 
575 void unlock_new_inode(struct inode *inode)
576 {
577 	/*
578 	 * This is special!  We do not need the spinlock
579 	 * when clearing I_LOCK, because we're guaranteed
580 	 * that nobody else tries to do anything about the
581 	 * state of the inode when it is locked, as we
582 	 * just created it (so there can be no old holders
583 	 * that haven't tested I_LOCK).
584 	 */
585 	inode->i_state &= ~(I_LOCK|I_NEW);
586 	wake_up_inode(inode);
587 }
588 
589 EXPORT_SYMBOL(unlock_new_inode);
590 
591 /*
592  * This is called without the inode lock held.. Be careful.
593  *
594  * We no longer cache the sb_flags in i_flags - see fs.h
595  *	-- rmk@arm.uk.linux.org
596  */
597 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
598 {
599 	struct inode * inode;
600 
601 	inode = alloc_inode(sb);
602 	if (inode) {
603 		struct inode * old;
604 
605 		spin_lock(&inode_lock);
606 		/* We released the lock, so.. */
607 		old = find_inode(sb, head, test, data);
608 		if (!old) {
609 			if (set(inode, data))
610 				goto set_failed;
611 
612 			inodes_stat.nr_inodes++;
613 			list_add(&inode->i_list, &inode_in_use);
614 			list_add(&inode->i_sb_list, &sb->s_inodes);
615 			hlist_add_head(&inode->i_hash, head);
616 			inode->i_state = I_LOCK|I_NEW;
617 			spin_unlock(&inode_lock);
618 
619 			/* Return the locked inode with I_NEW set, the
620 			 * caller is responsible for filling in the contents
621 			 */
622 			return inode;
623 		}
624 
625 		/*
626 		 * Uhhuh, somebody else created the same inode under
627 		 * us. Use the old inode instead of the one we just
628 		 * allocated.
629 		 */
630 		__iget(old);
631 		spin_unlock(&inode_lock);
632 		destroy_inode(inode);
633 		inode = old;
634 		wait_on_inode(inode);
635 	}
636 	return inode;
637 
638 set_failed:
639 	spin_unlock(&inode_lock);
640 	destroy_inode(inode);
641 	return NULL;
642 }
643 
644 /*
645  * get_new_inode_fast is the fast path version of get_new_inode, see the
646  * comment at iget_locked for details.
647  */
648 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
649 {
650 	struct inode * inode;
651 
652 	inode = alloc_inode(sb);
653 	if (inode) {
654 		struct inode * old;
655 
656 		spin_lock(&inode_lock);
657 		/* We released the lock, so.. */
658 		old = find_inode_fast(sb, head, ino);
659 		if (!old) {
660 			inode->i_ino = ino;
661 			inodes_stat.nr_inodes++;
662 			list_add(&inode->i_list, &inode_in_use);
663 			list_add(&inode->i_sb_list, &sb->s_inodes);
664 			hlist_add_head(&inode->i_hash, head);
665 			inode->i_state = I_LOCK|I_NEW;
666 			spin_unlock(&inode_lock);
667 
668 			/* Return the locked inode with I_NEW set, the
669 			 * caller is responsible for filling in the contents
670 			 */
671 			return inode;
672 		}
673 
674 		/*
675 		 * Uhhuh, somebody else created the same inode under
676 		 * us. Use the old inode instead of the one we just
677 		 * allocated.
678 		 */
679 		__iget(old);
680 		spin_unlock(&inode_lock);
681 		destroy_inode(inode);
682 		inode = old;
683 		wait_on_inode(inode);
684 	}
685 	return inode;
686 }
687 
688 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
689 {
690 	unsigned long tmp;
691 
692 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
693 			L1_CACHE_BYTES;
694 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
695 	return tmp & I_HASHMASK;
696 }
697 
698 /**
699  *	iunique - get a unique inode number
700  *	@sb: superblock
701  *	@max_reserved: highest reserved inode number
702  *
703  *	Obtain an inode number that is unique on the system for a given
704  *	superblock. This is used by file systems that have no natural
705  *	permanent inode numbering system. An inode number is returned that
706  *	is higher than the reserved limit but unique.
707  *
708  *	BUGS:
709  *	With a large number of inodes live on the file system this function
710  *	currently becomes quite slow.
711  */
712 ino_t iunique(struct super_block *sb, ino_t max_reserved)
713 {
714 	static ino_t counter;
715 	struct inode *inode;
716 	struct hlist_head * head;
717 	ino_t res;
718 	spin_lock(&inode_lock);
719 retry:
720 	if (counter > max_reserved) {
721 		head = inode_hashtable + hash(sb,counter);
722 		res = counter++;
723 		inode = find_inode_fast(sb, head, res);
724 		if (!inode) {
725 			spin_unlock(&inode_lock);
726 			return res;
727 		}
728 	} else {
729 		counter = max_reserved + 1;
730 	}
731 	goto retry;
732 
733 }
734 
735 EXPORT_SYMBOL(iunique);
736 
737 struct inode *igrab(struct inode *inode)
738 {
739 	spin_lock(&inode_lock);
740 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
741 		__iget(inode);
742 	else
743 		/*
744 		 * Handle the case where s_op->clear_inode is not been
745 		 * called yet, and somebody is calling igrab
746 		 * while the inode is getting freed.
747 		 */
748 		inode = NULL;
749 	spin_unlock(&inode_lock);
750 	return inode;
751 }
752 
753 EXPORT_SYMBOL(igrab);
754 
755 /**
756  * ifind - internal function, you want ilookup5() or iget5().
757  * @sb:		super block of file system to search
758  * @head:       the head of the list to search
759  * @test:	callback used for comparisons between inodes
760  * @data:	opaque data pointer to pass to @test
761  * @wait:	if true wait for the inode to be unlocked, if false do not
762  *
763  * ifind() searches for the inode specified by @data in the inode
764  * cache. This is a generalized version of ifind_fast() for file systems where
765  * the inode number is not sufficient for unique identification of an inode.
766  *
767  * If the inode is in the cache, the inode is returned with an incremented
768  * reference count.
769  *
770  * Otherwise NULL is returned.
771  *
772  * Note, @test is called with the inode_lock held, so can't sleep.
773  */
774 static struct inode *ifind(struct super_block *sb,
775 		struct hlist_head *head, int (*test)(struct inode *, void *),
776 		void *data, const int wait)
777 {
778 	struct inode *inode;
779 
780 	spin_lock(&inode_lock);
781 	inode = find_inode(sb, head, test, data);
782 	if (inode) {
783 		__iget(inode);
784 		spin_unlock(&inode_lock);
785 		if (likely(wait))
786 			wait_on_inode(inode);
787 		return inode;
788 	}
789 	spin_unlock(&inode_lock);
790 	return NULL;
791 }
792 
793 /**
794  * ifind_fast - internal function, you want ilookup() or iget().
795  * @sb:		super block of file system to search
796  * @head:       head of the list to search
797  * @ino:	inode number to search for
798  *
799  * ifind_fast() searches for the inode @ino in the inode cache. This is for
800  * file systems where the inode number is sufficient for unique identification
801  * of an inode.
802  *
803  * If the inode is in the cache, the inode is returned with an incremented
804  * reference count.
805  *
806  * Otherwise NULL is returned.
807  */
808 static struct inode *ifind_fast(struct super_block *sb,
809 		struct hlist_head *head, unsigned long ino)
810 {
811 	struct inode *inode;
812 
813 	spin_lock(&inode_lock);
814 	inode = find_inode_fast(sb, head, ino);
815 	if (inode) {
816 		__iget(inode);
817 		spin_unlock(&inode_lock);
818 		wait_on_inode(inode);
819 		return inode;
820 	}
821 	spin_unlock(&inode_lock);
822 	return NULL;
823 }
824 
825 /**
826  * ilookup5_nowait - search for an inode in the inode cache
827  * @sb:		super block of file system to search
828  * @hashval:	hash value (usually inode number) to search for
829  * @test:	callback used for comparisons between inodes
830  * @data:	opaque data pointer to pass to @test
831  *
832  * ilookup5() uses ifind() to search for the inode specified by @hashval and
833  * @data in the inode cache. This is a generalized version of ilookup() for
834  * file systems where the inode number is not sufficient for unique
835  * identification of an inode.
836  *
837  * If the inode is in the cache, the inode is returned with an incremented
838  * reference count.  Note, the inode lock is not waited upon so you have to be
839  * very careful what you do with the returned inode.  You probably should be
840  * using ilookup5() instead.
841  *
842  * Otherwise NULL is returned.
843  *
844  * Note, @test is called with the inode_lock held, so can't sleep.
845  */
846 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
847 		int (*test)(struct inode *, void *), void *data)
848 {
849 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
850 
851 	return ifind(sb, head, test, data, 0);
852 }
853 
854 EXPORT_SYMBOL(ilookup5_nowait);
855 
856 /**
857  * ilookup5 - search for an inode in the inode cache
858  * @sb:		super block of file system to search
859  * @hashval:	hash value (usually inode number) to search for
860  * @test:	callback used for comparisons between inodes
861  * @data:	opaque data pointer to pass to @test
862  *
863  * ilookup5() uses ifind() to search for the inode specified by @hashval and
864  * @data in the inode cache. This is a generalized version of ilookup() for
865  * file systems where the inode number is not sufficient for unique
866  * identification of an inode.
867  *
868  * If the inode is in the cache, the inode lock is waited upon and the inode is
869  * returned with an incremented reference count.
870  *
871  * Otherwise NULL is returned.
872  *
873  * Note, @test is called with the inode_lock held, so can't sleep.
874  */
875 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
876 		int (*test)(struct inode *, void *), void *data)
877 {
878 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
879 
880 	return ifind(sb, head, test, data, 1);
881 }
882 
883 EXPORT_SYMBOL(ilookup5);
884 
885 /**
886  * ilookup - search for an inode in the inode cache
887  * @sb:		super block of file system to search
888  * @ino:	inode number to search for
889  *
890  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
891  * This is for file systems where the inode number is sufficient for unique
892  * identification of an inode.
893  *
894  * If the inode is in the cache, the inode is returned with an incremented
895  * reference count.
896  *
897  * Otherwise NULL is returned.
898  */
899 struct inode *ilookup(struct super_block *sb, unsigned long ino)
900 {
901 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
902 
903 	return ifind_fast(sb, head, ino);
904 }
905 
906 EXPORT_SYMBOL(ilookup);
907 
908 /**
909  * iget5_locked - obtain an inode from a mounted file system
910  * @sb:		super block of file system
911  * @hashval:	hash value (usually inode number) to get
912  * @test:	callback used for comparisons between inodes
913  * @set:	callback used to initialize a new struct inode
914  * @data:	opaque data pointer to pass to @test and @set
915  *
916  * This is iget() without the read_inode() portion of get_new_inode().
917  *
918  * iget5_locked() uses ifind() to search for the inode specified by @hashval
919  * and @data in the inode cache and if present it is returned with an increased
920  * reference count. This is a generalized version of iget_locked() for file
921  * systems where the inode number is not sufficient for unique identification
922  * of an inode.
923  *
924  * If the inode is not in cache, get_new_inode() is called to allocate a new
925  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
926  * file system gets to fill it in before unlocking it via unlock_new_inode().
927  *
928  * Note both @test and @set are called with the inode_lock held, so can't sleep.
929  */
930 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
931 		int (*test)(struct inode *, void *),
932 		int (*set)(struct inode *, void *), void *data)
933 {
934 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
935 	struct inode *inode;
936 
937 	inode = ifind(sb, head, test, data, 1);
938 	if (inode)
939 		return inode;
940 	/*
941 	 * get_new_inode() will do the right thing, re-trying the search
942 	 * in case it had to block at any point.
943 	 */
944 	return get_new_inode(sb, head, test, set, data);
945 }
946 
947 EXPORT_SYMBOL(iget5_locked);
948 
949 /**
950  * iget_locked - obtain an inode from a mounted file system
951  * @sb:		super block of file system
952  * @ino:	inode number to get
953  *
954  * This is iget() without the read_inode() portion of get_new_inode_fast().
955  *
956  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
957  * the inode cache and if present it is returned with an increased reference
958  * count. This is for file systems where the inode number is sufficient for
959  * unique identification of an inode.
960  *
961  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
962  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
963  * The file system gets to fill it in before unlocking it via
964  * unlock_new_inode().
965  */
966 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
967 {
968 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
969 	struct inode *inode;
970 
971 	inode = ifind_fast(sb, head, ino);
972 	if (inode)
973 		return inode;
974 	/*
975 	 * get_new_inode_fast() will do the right thing, re-trying the search
976 	 * in case it had to block at any point.
977 	 */
978 	return get_new_inode_fast(sb, head, ino);
979 }
980 
981 EXPORT_SYMBOL(iget_locked);
982 
983 /**
984  *	__insert_inode_hash - hash an inode
985  *	@inode: unhashed inode
986  *	@hashval: unsigned long value used to locate this object in the
987  *		inode_hashtable.
988  *
989  *	Add an inode to the inode hash for this superblock.
990  */
991 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
992 {
993 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
994 	spin_lock(&inode_lock);
995 	hlist_add_head(&inode->i_hash, head);
996 	spin_unlock(&inode_lock);
997 }
998 
999 EXPORT_SYMBOL(__insert_inode_hash);
1000 
1001 /**
1002  *	remove_inode_hash - remove an inode from the hash
1003  *	@inode: inode to unhash
1004  *
1005  *	Remove an inode from the superblock.
1006  */
1007 void remove_inode_hash(struct inode *inode)
1008 {
1009 	spin_lock(&inode_lock);
1010 	hlist_del_init(&inode->i_hash);
1011 	spin_unlock(&inode_lock);
1012 }
1013 
1014 EXPORT_SYMBOL(remove_inode_hash);
1015 
1016 /*
1017  * Tell the filesystem that this inode is no longer of any interest and should
1018  * be completely destroyed.
1019  *
1020  * We leave the inode in the inode hash table until *after* the filesystem's
1021  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1022  * instigate) will always find up-to-date information either in the hash or on
1023  * disk.
1024  *
1025  * I_FREEING is set so that no-one will take a new reference to the inode while
1026  * it is being deleted.
1027  */
1028 void generic_delete_inode(struct inode *inode)
1029 {
1030 	struct super_operations *op = inode->i_sb->s_op;
1031 
1032 	list_del_init(&inode->i_list);
1033 	list_del_init(&inode->i_sb_list);
1034 	inode->i_state|=I_FREEING;
1035 	inodes_stat.nr_inodes--;
1036 	spin_unlock(&inode_lock);
1037 
1038 	security_inode_delete(inode);
1039 
1040 	if (op->delete_inode) {
1041 		void (*delete)(struct inode *) = op->delete_inode;
1042 		if (!is_bad_inode(inode))
1043 			DQUOT_INIT(inode);
1044 		/* Filesystems implementing their own
1045 		 * s_op->delete_inode are required to call
1046 		 * truncate_inode_pages and clear_inode()
1047 		 * internally */
1048 		delete(inode);
1049 	} else {
1050 		truncate_inode_pages(&inode->i_data, 0);
1051 		clear_inode(inode);
1052 	}
1053 	spin_lock(&inode_lock);
1054 	hlist_del_init(&inode->i_hash);
1055 	spin_unlock(&inode_lock);
1056 	wake_up_inode(inode);
1057 	if (inode->i_state != I_CLEAR)
1058 		BUG();
1059 	destroy_inode(inode);
1060 }
1061 
1062 EXPORT_SYMBOL(generic_delete_inode);
1063 
1064 static void generic_forget_inode(struct inode *inode)
1065 {
1066 	struct super_block *sb = inode->i_sb;
1067 
1068 	if (!hlist_unhashed(&inode->i_hash)) {
1069 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1070 			list_move(&inode->i_list, &inode_unused);
1071 		inodes_stat.nr_unused++;
1072 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1073 			spin_unlock(&inode_lock);
1074 			return;
1075 		}
1076 		inode->i_state |= I_WILL_FREE;
1077 		spin_unlock(&inode_lock);
1078 		write_inode_now(inode, 1);
1079 		spin_lock(&inode_lock);
1080 		inode->i_state &= ~I_WILL_FREE;
1081 		inodes_stat.nr_unused--;
1082 		hlist_del_init(&inode->i_hash);
1083 	}
1084 	list_del_init(&inode->i_list);
1085 	list_del_init(&inode->i_sb_list);
1086 	inode->i_state |= I_FREEING;
1087 	inodes_stat.nr_inodes--;
1088 	spin_unlock(&inode_lock);
1089 	if (inode->i_data.nrpages)
1090 		truncate_inode_pages(&inode->i_data, 0);
1091 	clear_inode(inode);
1092 	wake_up_inode(inode);
1093 	destroy_inode(inode);
1094 }
1095 
1096 /*
1097  * Normal UNIX filesystem behaviour: delete the
1098  * inode when the usage count drops to zero, and
1099  * i_nlink is zero.
1100  */
1101 void generic_drop_inode(struct inode *inode)
1102 {
1103 	if (!inode->i_nlink)
1104 		generic_delete_inode(inode);
1105 	else
1106 		generic_forget_inode(inode);
1107 }
1108 
1109 EXPORT_SYMBOL_GPL(generic_drop_inode);
1110 
1111 /*
1112  * Called when we're dropping the last reference
1113  * to an inode.
1114  *
1115  * Call the FS "drop()" function, defaulting to
1116  * the legacy UNIX filesystem behaviour..
1117  *
1118  * NOTE! NOTE! NOTE! We're called with the inode lock
1119  * held, and the drop function is supposed to release
1120  * the lock!
1121  */
1122 static inline void iput_final(struct inode *inode)
1123 {
1124 	struct super_operations *op = inode->i_sb->s_op;
1125 	void (*drop)(struct inode *) = generic_drop_inode;
1126 
1127 	if (op && op->drop_inode)
1128 		drop = op->drop_inode;
1129 	drop(inode);
1130 }
1131 
1132 /**
1133  *	iput	- put an inode
1134  *	@inode: inode to put
1135  *
1136  *	Puts an inode, dropping its usage count. If the inode use count hits
1137  *	zero, the inode is then freed and may also be destroyed.
1138  *
1139  *	Consequently, iput() can sleep.
1140  */
1141 void iput(struct inode *inode)
1142 {
1143 	if (inode) {
1144 		struct super_operations *op = inode->i_sb->s_op;
1145 
1146 		BUG_ON(inode->i_state == I_CLEAR);
1147 
1148 		if (op && op->put_inode)
1149 			op->put_inode(inode);
1150 
1151 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1152 			iput_final(inode);
1153 	}
1154 }
1155 
1156 EXPORT_SYMBOL(iput);
1157 
1158 /**
1159  *	bmap	- find a block number in a file
1160  *	@inode: inode of file
1161  *	@block: block to find
1162  *
1163  *	Returns the block number on the device holding the inode that
1164  *	is the disk block number for the block of the file requested.
1165  *	That is, asked for block 4 of inode 1 the function will return the
1166  *	disk block relative to the disk start that holds that block of the
1167  *	file.
1168  */
1169 sector_t bmap(struct inode * inode, sector_t block)
1170 {
1171 	sector_t res = 0;
1172 	if (inode->i_mapping->a_ops->bmap)
1173 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1174 	return res;
1175 }
1176 
1177 EXPORT_SYMBOL(bmap);
1178 
1179 /**
1180  *	touch_atime	-	update the access time
1181  *	@mnt: mount the inode is accessed on
1182  *	@dentry: dentry accessed
1183  *
1184  *	Update the accessed time on an inode and mark it for writeback.
1185  *	This function automatically handles read only file systems and media,
1186  *	as well as the "noatime" flag and inode specific "noatime" markers.
1187  */
1188 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1189 {
1190 	struct inode *inode = dentry->d_inode;
1191 	struct timespec now;
1192 
1193 	if (IS_RDONLY(inode))
1194 		return;
1195 
1196 	if ((inode->i_flags & S_NOATIME) ||
1197 	    (inode->i_sb->s_flags & MS_NOATIME) ||
1198 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
1199 		return;
1200 
1201 	/*
1202 	 * We may have a NULL vfsmount when coming from NFSD
1203 	 */
1204 	if (mnt &&
1205 	    ((mnt->mnt_flags & MNT_NOATIME) ||
1206 	     ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))))
1207 		return;
1208 
1209 	now = current_fs_time(inode->i_sb);
1210 	if (!timespec_equal(&inode->i_atime, &now)) {
1211 		inode->i_atime = now;
1212 		mark_inode_dirty_sync(inode);
1213 	}
1214 }
1215 
1216 EXPORT_SYMBOL(touch_atime);
1217 
1218 /**
1219  *	file_update_time	-	update mtime and ctime time
1220  *	@file: file accessed
1221  *
1222  *	Update the mtime and ctime members of an inode and mark the inode
1223  *	for writeback.  Note that this function is meant exclusively for
1224  *	usage in the file write path of filesystems, and filesystems may
1225  *	choose to explicitly ignore update via this function with the
1226  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1227  *	timestamps are handled by the server.
1228  */
1229 
1230 void file_update_time(struct file *file)
1231 {
1232 	struct inode *inode = file->f_dentry->d_inode;
1233 	struct timespec now;
1234 	int sync_it = 0;
1235 
1236 	if (IS_NOCMTIME(inode))
1237 		return;
1238 	if (IS_RDONLY(inode))
1239 		return;
1240 
1241 	now = current_fs_time(inode->i_sb);
1242 	if (!timespec_equal(&inode->i_mtime, &now))
1243 		sync_it = 1;
1244 	inode->i_mtime = now;
1245 
1246 	if (!timespec_equal(&inode->i_ctime, &now))
1247 		sync_it = 1;
1248 	inode->i_ctime = now;
1249 
1250 	if (sync_it)
1251 		mark_inode_dirty_sync(inode);
1252 }
1253 
1254 EXPORT_SYMBOL(file_update_time);
1255 
1256 int inode_needs_sync(struct inode *inode)
1257 {
1258 	if (IS_SYNC(inode))
1259 		return 1;
1260 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1261 		return 1;
1262 	return 0;
1263 }
1264 
1265 EXPORT_SYMBOL(inode_needs_sync);
1266 
1267 /*
1268  *	Quota functions that want to walk the inode lists..
1269  */
1270 #ifdef CONFIG_QUOTA
1271 
1272 /* Function back in dquot.c */
1273 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1274 
1275 void remove_dquot_ref(struct super_block *sb, int type,
1276 			struct list_head *tofree_head)
1277 {
1278 	struct inode *inode;
1279 
1280 	if (!sb->dq_op)
1281 		return;	/* nothing to do */
1282 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1283 
1284 	/*
1285 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1286 	 * just for speedup...
1287 	 */
1288 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1289 		if (!IS_NOQUOTA(inode))
1290 			remove_inode_dquot_ref(inode, type, tofree_head);
1291 
1292 	spin_unlock(&inode_lock);
1293 }
1294 
1295 #endif
1296 
1297 int inode_wait(void *word)
1298 {
1299 	schedule();
1300 	return 0;
1301 }
1302 
1303 /*
1304  * If we try to find an inode in the inode hash while it is being
1305  * deleted, we have to wait until the filesystem completes its
1306  * deletion before reporting that it isn't found.  This function waits
1307  * until the deletion _might_ have completed.  Callers are responsible
1308  * to recheck inode state.
1309  *
1310  * It doesn't matter if I_LOCK is not set initially, a call to
1311  * wake_up_inode() after removing from the hash list will DTRT.
1312  *
1313  * This is called with inode_lock held.
1314  */
1315 static void __wait_on_freeing_inode(struct inode *inode)
1316 {
1317 	wait_queue_head_t *wq;
1318 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1319 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1320 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1321 	spin_unlock(&inode_lock);
1322 	schedule();
1323 	finish_wait(wq, &wait.wait);
1324 	spin_lock(&inode_lock);
1325 }
1326 
1327 void wake_up_inode(struct inode *inode)
1328 {
1329 	/*
1330 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1331 	 */
1332 	smp_mb();
1333 	wake_up_bit(&inode->i_state, __I_LOCK);
1334 }
1335 
1336 static __initdata unsigned long ihash_entries;
1337 static int __init set_ihash_entries(char *str)
1338 {
1339 	if (!str)
1340 		return 0;
1341 	ihash_entries = simple_strtoul(str, &str, 0);
1342 	return 1;
1343 }
1344 __setup("ihash_entries=", set_ihash_entries);
1345 
1346 /*
1347  * Initialize the waitqueues and inode hash table.
1348  */
1349 void __init inode_init_early(void)
1350 {
1351 	int loop;
1352 
1353 	/* If hashes are distributed across NUMA nodes, defer
1354 	 * hash allocation until vmalloc space is available.
1355 	 */
1356 	if (hashdist)
1357 		return;
1358 
1359 	inode_hashtable =
1360 		alloc_large_system_hash("Inode-cache",
1361 					sizeof(struct hlist_head),
1362 					ihash_entries,
1363 					14,
1364 					HASH_EARLY,
1365 					&i_hash_shift,
1366 					&i_hash_mask,
1367 					0);
1368 
1369 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1370 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1371 }
1372 
1373 void __init inode_init(unsigned long mempages)
1374 {
1375 	int loop;
1376 
1377 	/* inode slab cache */
1378 	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
1379 				0, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_once, NULL);
1380 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1381 
1382 	/* Hash may have been set up in inode_init_early */
1383 	if (!hashdist)
1384 		return;
1385 
1386 	inode_hashtable =
1387 		alloc_large_system_hash("Inode-cache",
1388 					sizeof(struct hlist_head),
1389 					ihash_entries,
1390 					14,
1391 					0,
1392 					&i_hash_shift,
1393 					&i_hash_mask,
1394 					0);
1395 
1396 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1397 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1398 }
1399 
1400 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1401 {
1402 	inode->i_mode = mode;
1403 	if (S_ISCHR(mode)) {
1404 		inode->i_fop = &def_chr_fops;
1405 		inode->i_rdev = rdev;
1406 	} else if (S_ISBLK(mode)) {
1407 		inode->i_fop = &def_blk_fops;
1408 		inode->i_rdev = rdev;
1409 	} else if (S_ISFIFO(mode))
1410 		inode->i_fop = &def_fifo_fops;
1411 	else if (S_ISSOCK(mode))
1412 		inode->i_fop = &bad_sock_fops;
1413 	else
1414 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1415 		       mode);
1416 }
1417 EXPORT_SYMBOL(init_special_inode);
1418