1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/fs.h> 9 #include <linux/mm.h> 10 #include <linux/dcache.h> 11 #include <linux/init.h> 12 #include <linux/quotaops.h> 13 #include <linux/slab.h> 14 #include <linux/writeback.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/hash.h> 19 #include <linux/swap.h> 20 #include <linux/security.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/mount.h> 26 27 /* 28 * This is needed for the following functions: 29 * - inode_has_buffers 30 * - invalidate_inode_buffers 31 * - invalidate_bdev 32 * 33 * FIXME: remove all knowledge of the buffer layer from this file 34 */ 35 #include <linux/buffer_head.h> 36 37 /* 38 * New inode.c implementation. 39 * 40 * This implementation has the basic premise of trying 41 * to be extremely low-overhead and SMP-safe, yet be 42 * simple enough to be "obviously correct". 43 * 44 * Famous last words. 45 */ 46 47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 48 49 /* #define INODE_PARANOIA 1 */ 50 /* #define INODE_DEBUG 1 */ 51 52 /* 53 * Inode lookup is no longer as critical as it used to be: 54 * most of the lookups are going to be through the dcache. 55 */ 56 #define I_HASHBITS i_hash_shift 57 #define I_HASHMASK i_hash_mask 58 59 static unsigned int i_hash_mask; 60 static unsigned int i_hash_shift; 61 62 /* 63 * Each inode can be on two separate lists. One is 64 * the hash list of the inode, used for lookups. The 65 * other linked list is the "type" list: 66 * "in_use" - valid inode, i_count > 0, i_nlink > 0 67 * "dirty" - as "in_use" but also dirty 68 * "unused" - valid inode, i_count = 0 69 * 70 * A "dirty" list is maintained for each super block, 71 * allowing for low-overhead inode sync() operations. 72 */ 73 74 LIST_HEAD(inode_in_use); 75 LIST_HEAD(inode_unused); 76 static struct hlist_head *inode_hashtable; 77 78 /* 79 * A simple spinlock to protect the list manipulations. 80 * 81 * NOTE! You also have to own the lock if you change 82 * the i_state of an inode while it is in use.. 83 */ 84 DEFINE_SPINLOCK(inode_lock); 85 86 /* 87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 88 * icache shrinking path, and the umount path. Without this exclusion, 89 * by the time prune_icache calls iput for the inode whose pages it has 90 * been invalidating, or by the time it calls clear_inode & destroy_inode 91 * from its final dispose_list, the struct super_block they refer to 92 * (for inode->i_sb->s_op) may already have been freed and reused. 93 */ 94 DECLARE_MUTEX(iprune_sem); 95 96 /* 97 * Statistics gathering.. 98 */ 99 struct inodes_stat_t inodes_stat; 100 101 static kmem_cache_t * inode_cachep; 102 103 static struct inode *alloc_inode(struct super_block *sb) 104 { 105 static struct address_space_operations empty_aops; 106 static struct inode_operations empty_iops; 107 static struct file_operations empty_fops; 108 struct inode *inode; 109 110 if (sb->s_op->alloc_inode) 111 inode = sb->s_op->alloc_inode(sb); 112 else 113 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); 114 115 if (inode) { 116 struct address_space * const mapping = &inode->i_data; 117 118 inode->i_sb = sb; 119 inode->i_blkbits = sb->s_blocksize_bits; 120 inode->i_flags = 0; 121 atomic_set(&inode->i_count, 1); 122 inode->i_op = &empty_iops; 123 inode->i_fop = &empty_fops; 124 inode->i_nlink = 1; 125 atomic_set(&inode->i_writecount, 0); 126 inode->i_size = 0; 127 inode->i_blocks = 0; 128 inode->i_bytes = 0; 129 inode->i_generation = 0; 130 #ifdef CONFIG_QUOTA 131 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 132 #endif 133 inode->i_pipe = NULL; 134 inode->i_bdev = NULL; 135 inode->i_cdev = NULL; 136 inode->i_rdev = 0; 137 inode->i_security = NULL; 138 inode->dirtied_when = 0; 139 if (security_inode_alloc(inode)) { 140 if (inode->i_sb->s_op->destroy_inode) 141 inode->i_sb->s_op->destroy_inode(inode); 142 else 143 kmem_cache_free(inode_cachep, (inode)); 144 return NULL; 145 } 146 147 mapping->a_ops = &empty_aops; 148 mapping->host = inode; 149 mapping->flags = 0; 150 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 151 mapping->assoc_mapping = NULL; 152 mapping->backing_dev_info = &default_backing_dev_info; 153 154 /* 155 * If the block_device provides a backing_dev_info for client 156 * inodes then use that. Otherwise the inode share the bdev's 157 * backing_dev_info. 158 */ 159 if (sb->s_bdev) { 160 struct backing_dev_info *bdi; 161 162 bdi = sb->s_bdev->bd_inode_backing_dev_info; 163 if (!bdi) 164 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 165 mapping->backing_dev_info = bdi; 166 } 167 memset(&inode->u, 0, sizeof(inode->u)); 168 inode->i_mapping = mapping; 169 } 170 return inode; 171 } 172 173 void destroy_inode(struct inode *inode) 174 { 175 if (inode_has_buffers(inode)) 176 BUG(); 177 security_inode_free(inode); 178 if (inode->i_sb->s_op->destroy_inode) 179 inode->i_sb->s_op->destroy_inode(inode); 180 else 181 kmem_cache_free(inode_cachep, (inode)); 182 } 183 184 185 /* 186 * These are initializations that only need to be done 187 * once, because the fields are idempotent across use 188 * of the inode, so let the slab aware of that. 189 */ 190 void inode_init_once(struct inode *inode) 191 { 192 memset(inode, 0, sizeof(*inode)); 193 INIT_HLIST_NODE(&inode->i_hash); 194 INIT_LIST_HEAD(&inode->i_dentry); 195 INIT_LIST_HEAD(&inode->i_devices); 196 mutex_init(&inode->i_mutex); 197 init_rwsem(&inode->i_alloc_sem); 198 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 199 rwlock_init(&inode->i_data.tree_lock); 200 spin_lock_init(&inode->i_data.i_mmap_lock); 201 INIT_LIST_HEAD(&inode->i_data.private_list); 202 spin_lock_init(&inode->i_data.private_lock); 203 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 204 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 205 spin_lock_init(&inode->i_lock); 206 i_size_ordered_init(inode); 207 #ifdef CONFIG_INOTIFY 208 INIT_LIST_HEAD(&inode->inotify_watches); 209 sema_init(&inode->inotify_sem, 1); 210 #endif 211 } 212 213 EXPORT_SYMBOL(inode_init_once); 214 215 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 216 { 217 struct inode * inode = (struct inode *) foo; 218 219 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 220 SLAB_CTOR_CONSTRUCTOR) 221 inode_init_once(inode); 222 } 223 224 /* 225 * inode_lock must be held 226 */ 227 void __iget(struct inode * inode) 228 { 229 if (atomic_read(&inode->i_count)) { 230 atomic_inc(&inode->i_count); 231 return; 232 } 233 atomic_inc(&inode->i_count); 234 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 235 list_move(&inode->i_list, &inode_in_use); 236 inodes_stat.nr_unused--; 237 } 238 239 /** 240 * clear_inode - clear an inode 241 * @inode: inode to clear 242 * 243 * This is called by the filesystem to tell us 244 * that the inode is no longer useful. We just 245 * terminate it with extreme prejudice. 246 */ 247 void clear_inode(struct inode *inode) 248 { 249 might_sleep(); 250 invalidate_inode_buffers(inode); 251 252 if (inode->i_data.nrpages) 253 BUG(); 254 if (!(inode->i_state & I_FREEING)) 255 BUG(); 256 if (inode->i_state & I_CLEAR) 257 BUG(); 258 wait_on_inode(inode); 259 DQUOT_DROP(inode); 260 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 261 inode->i_sb->s_op->clear_inode(inode); 262 if (inode->i_bdev) 263 bd_forget(inode); 264 if (inode->i_cdev) 265 cd_forget(inode); 266 inode->i_state = I_CLEAR; 267 } 268 269 EXPORT_SYMBOL(clear_inode); 270 271 /* 272 * dispose_list - dispose of the contents of a local list 273 * @head: the head of the list to free 274 * 275 * Dispose-list gets a local list with local inodes in it, so it doesn't 276 * need to worry about list corruption and SMP locks. 277 */ 278 static void dispose_list(struct list_head *head) 279 { 280 int nr_disposed = 0; 281 282 while (!list_empty(head)) { 283 struct inode *inode; 284 285 inode = list_entry(head->next, struct inode, i_list); 286 list_del(&inode->i_list); 287 288 if (inode->i_data.nrpages) 289 truncate_inode_pages(&inode->i_data, 0); 290 clear_inode(inode); 291 292 spin_lock(&inode_lock); 293 hlist_del_init(&inode->i_hash); 294 list_del_init(&inode->i_sb_list); 295 spin_unlock(&inode_lock); 296 297 wake_up_inode(inode); 298 destroy_inode(inode); 299 nr_disposed++; 300 } 301 spin_lock(&inode_lock); 302 inodes_stat.nr_inodes -= nr_disposed; 303 spin_unlock(&inode_lock); 304 } 305 306 /* 307 * Invalidate all inodes for a device. 308 */ 309 static int invalidate_list(struct list_head *head, struct list_head *dispose) 310 { 311 struct list_head *next; 312 int busy = 0, count = 0; 313 314 next = head->next; 315 for (;;) { 316 struct list_head * tmp = next; 317 struct inode * inode; 318 319 /* 320 * We can reschedule here without worrying about the list's 321 * consistency because the per-sb list of inodes must not 322 * change during umount anymore, and because iprune_sem keeps 323 * shrink_icache_memory() away. 324 */ 325 cond_resched_lock(&inode_lock); 326 327 next = next->next; 328 if (tmp == head) 329 break; 330 inode = list_entry(tmp, struct inode, i_sb_list); 331 invalidate_inode_buffers(inode); 332 if (!atomic_read(&inode->i_count)) { 333 list_move(&inode->i_list, dispose); 334 inode->i_state |= I_FREEING; 335 count++; 336 continue; 337 } 338 busy = 1; 339 } 340 /* only unused inodes may be cached with i_count zero */ 341 inodes_stat.nr_unused -= count; 342 return busy; 343 } 344 345 /** 346 * invalidate_inodes - discard the inodes on a device 347 * @sb: superblock 348 * 349 * Discard all of the inodes for a given superblock. If the discard 350 * fails because there are busy inodes then a non zero value is returned. 351 * If the discard is successful all the inodes have been discarded. 352 */ 353 int invalidate_inodes(struct super_block * sb) 354 { 355 int busy; 356 LIST_HEAD(throw_away); 357 358 down(&iprune_sem); 359 spin_lock(&inode_lock); 360 inotify_unmount_inodes(&sb->s_inodes); 361 busy = invalidate_list(&sb->s_inodes, &throw_away); 362 spin_unlock(&inode_lock); 363 364 dispose_list(&throw_away); 365 up(&iprune_sem); 366 367 return busy; 368 } 369 370 EXPORT_SYMBOL(invalidate_inodes); 371 372 int __invalidate_device(struct block_device *bdev) 373 { 374 struct super_block *sb = get_super(bdev); 375 int res = 0; 376 377 if (sb) { 378 /* 379 * no need to lock the super, get_super holds the 380 * read semaphore so the filesystem cannot go away 381 * under us (->put_super runs with the write lock 382 * hold). 383 */ 384 shrink_dcache_sb(sb); 385 res = invalidate_inodes(sb); 386 drop_super(sb); 387 } 388 invalidate_bdev(bdev, 0); 389 return res; 390 } 391 EXPORT_SYMBOL(__invalidate_device); 392 393 static int can_unuse(struct inode *inode) 394 { 395 if (inode->i_state) 396 return 0; 397 if (inode_has_buffers(inode)) 398 return 0; 399 if (atomic_read(&inode->i_count)) 400 return 0; 401 if (inode->i_data.nrpages) 402 return 0; 403 return 1; 404 } 405 406 /* 407 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 408 * a temporary list and then are freed outside inode_lock by dispose_list(). 409 * 410 * Any inodes which are pinned purely because of attached pagecache have their 411 * pagecache removed. We expect the final iput() on that inode to add it to 412 * the front of the inode_unused list. So look for it there and if the 413 * inode is still freeable, proceed. The right inode is found 99.9% of the 414 * time in testing on a 4-way. 415 * 416 * If the inode has metadata buffers attached to mapping->private_list then 417 * try to remove them. 418 */ 419 static void prune_icache(int nr_to_scan) 420 { 421 LIST_HEAD(freeable); 422 int nr_pruned = 0; 423 int nr_scanned; 424 unsigned long reap = 0; 425 426 down(&iprune_sem); 427 spin_lock(&inode_lock); 428 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 429 struct inode *inode; 430 431 if (list_empty(&inode_unused)) 432 break; 433 434 inode = list_entry(inode_unused.prev, struct inode, i_list); 435 436 if (inode->i_state || atomic_read(&inode->i_count)) { 437 list_move(&inode->i_list, &inode_unused); 438 continue; 439 } 440 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 441 __iget(inode); 442 spin_unlock(&inode_lock); 443 if (remove_inode_buffers(inode)) 444 reap += invalidate_inode_pages(&inode->i_data); 445 iput(inode); 446 spin_lock(&inode_lock); 447 448 if (inode != list_entry(inode_unused.next, 449 struct inode, i_list)) 450 continue; /* wrong inode or list_empty */ 451 if (!can_unuse(inode)) 452 continue; 453 } 454 list_move(&inode->i_list, &freeable); 455 inode->i_state |= I_FREEING; 456 nr_pruned++; 457 } 458 inodes_stat.nr_unused -= nr_pruned; 459 spin_unlock(&inode_lock); 460 461 dispose_list(&freeable); 462 up(&iprune_sem); 463 464 if (current_is_kswapd()) 465 mod_page_state(kswapd_inodesteal, reap); 466 else 467 mod_page_state(pginodesteal, reap); 468 } 469 470 /* 471 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 472 * "unused" means that no dentries are referring to the inodes: the files are 473 * not open and the dcache references to those inodes have already been 474 * reclaimed. 475 * 476 * This function is passed the number of inodes to scan, and it returns the 477 * total number of remaining possibly-reclaimable inodes. 478 */ 479 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 480 { 481 if (nr) { 482 /* 483 * Nasty deadlock avoidance. We may hold various FS locks, 484 * and we don't want to recurse into the FS that called us 485 * in clear_inode() and friends.. 486 */ 487 if (!(gfp_mask & __GFP_FS)) 488 return -1; 489 prune_icache(nr); 490 } 491 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 492 } 493 494 static void __wait_on_freeing_inode(struct inode *inode); 495 /* 496 * Called with the inode lock held. 497 * NOTE: we are not increasing the inode-refcount, you must call __iget() 498 * by hand after calling find_inode now! This simplifies iunique and won't 499 * add any additional branch in the common code. 500 */ 501 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 502 { 503 struct hlist_node *node; 504 struct inode * inode = NULL; 505 506 repeat: 507 hlist_for_each (node, head) { 508 inode = hlist_entry(node, struct inode, i_hash); 509 if (inode->i_sb != sb) 510 continue; 511 if (!test(inode, data)) 512 continue; 513 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 514 __wait_on_freeing_inode(inode); 515 goto repeat; 516 } 517 break; 518 } 519 return node ? inode : NULL; 520 } 521 522 /* 523 * find_inode_fast is the fast path version of find_inode, see the comment at 524 * iget_locked for details. 525 */ 526 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 527 { 528 struct hlist_node *node; 529 struct inode * inode = NULL; 530 531 repeat: 532 hlist_for_each (node, head) { 533 inode = hlist_entry(node, struct inode, i_hash); 534 if (inode->i_ino != ino) 535 continue; 536 if (inode->i_sb != sb) 537 continue; 538 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 539 __wait_on_freeing_inode(inode); 540 goto repeat; 541 } 542 break; 543 } 544 return node ? inode : NULL; 545 } 546 547 /** 548 * new_inode - obtain an inode 549 * @sb: superblock 550 * 551 * Allocates a new inode for given superblock. 552 */ 553 struct inode *new_inode(struct super_block *sb) 554 { 555 static unsigned long last_ino; 556 struct inode * inode; 557 558 spin_lock_prefetch(&inode_lock); 559 560 inode = alloc_inode(sb); 561 if (inode) { 562 spin_lock(&inode_lock); 563 inodes_stat.nr_inodes++; 564 list_add(&inode->i_list, &inode_in_use); 565 list_add(&inode->i_sb_list, &sb->s_inodes); 566 inode->i_ino = ++last_ino; 567 inode->i_state = 0; 568 spin_unlock(&inode_lock); 569 } 570 return inode; 571 } 572 573 EXPORT_SYMBOL(new_inode); 574 575 void unlock_new_inode(struct inode *inode) 576 { 577 /* 578 * This is special! We do not need the spinlock 579 * when clearing I_LOCK, because we're guaranteed 580 * that nobody else tries to do anything about the 581 * state of the inode when it is locked, as we 582 * just created it (so there can be no old holders 583 * that haven't tested I_LOCK). 584 */ 585 inode->i_state &= ~(I_LOCK|I_NEW); 586 wake_up_inode(inode); 587 } 588 589 EXPORT_SYMBOL(unlock_new_inode); 590 591 /* 592 * This is called without the inode lock held.. Be careful. 593 * 594 * We no longer cache the sb_flags in i_flags - see fs.h 595 * -- rmk@arm.uk.linux.org 596 */ 597 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 598 { 599 struct inode * inode; 600 601 inode = alloc_inode(sb); 602 if (inode) { 603 struct inode * old; 604 605 spin_lock(&inode_lock); 606 /* We released the lock, so.. */ 607 old = find_inode(sb, head, test, data); 608 if (!old) { 609 if (set(inode, data)) 610 goto set_failed; 611 612 inodes_stat.nr_inodes++; 613 list_add(&inode->i_list, &inode_in_use); 614 list_add(&inode->i_sb_list, &sb->s_inodes); 615 hlist_add_head(&inode->i_hash, head); 616 inode->i_state = I_LOCK|I_NEW; 617 spin_unlock(&inode_lock); 618 619 /* Return the locked inode with I_NEW set, the 620 * caller is responsible for filling in the contents 621 */ 622 return inode; 623 } 624 625 /* 626 * Uhhuh, somebody else created the same inode under 627 * us. Use the old inode instead of the one we just 628 * allocated. 629 */ 630 __iget(old); 631 spin_unlock(&inode_lock); 632 destroy_inode(inode); 633 inode = old; 634 wait_on_inode(inode); 635 } 636 return inode; 637 638 set_failed: 639 spin_unlock(&inode_lock); 640 destroy_inode(inode); 641 return NULL; 642 } 643 644 /* 645 * get_new_inode_fast is the fast path version of get_new_inode, see the 646 * comment at iget_locked for details. 647 */ 648 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 649 { 650 struct inode * inode; 651 652 inode = alloc_inode(sb); 653 if (inode) { 654 struct inode * old; 655 656 spin_lock(&inode_lock); 657 /* We released the lock, so.. */ 658 old = find_inode_fast(sb, head, ino); 659 if (!old) { 660 inode->i_ino = ino; 661 inodes_stat.nr_inodes++; 662 list_add(&inode->i_list, &inode_in_use); 663 list_add(&inode->i_sb_list, &sb->s_inodes); 664 hlist_add_head(&inode->i_hash, head); 665 inode->i_state = I_LOCK|I_NEW; 666 spin_unlock(&inode_lock); 667 668 /* Return the locked inode with I_NEW set, the 669 * caller is responsible for filling in the contents 670 */ 671 return inode; 672 } 673 674 /* 675 * Uhhuh, somebody else created the same inode under 676 * us. Use the old inode instead of the one we just 677 * allocated. 678 */ 679 __iget(old); 680 spin_unlock(&inode_lock); 681 destroy_inode(inode); 682 inode = old; 683 wait_on_inode(inode); 684 } 685 return inode; 686 } 687 688 static inline unsigned long hash(struct super_block *sb, unsigned long hashval) 689 { 690 unsigned long tmp; 691 692 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 693 L1_CACHE_BYTES; 694 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 695 return tmp & I_HASHMASK; 696 } 697 698 /** 699 * iunique - get a unique inode number 700 * @sb: superblock 701 * @max_reserved: highest reserved inode number 702 * 703 * Obtain an inode number that is unique on the system for a given 704 * superblock. This is used by file systems that have no natural 705 * permanent inode numbering system. An inode number is returned that 706 * is higher than the reserved limit but unique. 707 * 708 * BUGS: 709 * With a large number of inodes live on the file system this function 710 * currently becomes quite slow. 711 */ 712 ino_t iunique(struct super_block *sb, ino_t max_reserved) 713 { 714 static ino_t counter; 715 struct inode *inode; 716 struct hlist_head * head; 717 ino_t res; 718 spin_lock(&inode_lock); 719 retry: 720 if (counter > max_reserved) { 721 head = inode_hashtable + hash(sb,counter); 722 res = counter++; 723 inode = find_inode_fast(sb, head, res); 724 if (!inode) { 725 spin_unlock(&inode_lock); 726 return res; 727 } 728 } else { 729 counter = max_reserved + 1; 730 } 731 goto retry; 732 733 } 734 735 EXPORT_SYMBOL(iunique); 736 737 struct inode *igrab(struct inode *inode) 738 { 739 spin_lock(&inode_lock); 740 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 741 __iget(inode); 742 else 743 /* 744 * Handle the case where s_op->clear_inode is not been 745 * called yet, and somebody is calling igrab 746 * while the inode is getting freed. 747 */ 748 inode = NULL; 749 spin_unlock(&inode_lock); 750 return inode; 751 } 752 753 EXPORT_SYMBOL(igrab); 754 755 /** 756 * ifind - internal function, you want ilookup5() or iget5(). 757 * @sb: super block of file system to search 758 * @head: the head of the list to search 759 * @test: callback used for comparisons between inodes 760 * @data: opaque data pointer to pass to @test 761 * @wait: if true wait for the inode to be unlocked, if false do not 762 * 763 * ifind() searches for the inode specified by @data in the inode 764 * cache. This is a generalized version of ifind_fast() for file systems where 765 * the inode number is not sufficient for unique identification of an inode. 766 * 767 * If the inode is in the cache, the inode is returned with an incremented 768 * reference count. 769 * 770 * Otherwise NULL is returned. 771 * 772 * Note, @test is called with the inode_lock held, so can't sleep. 773 */ 774 static struct inode *ifind(struct super_block *sb, 775 struct hlist_head *head, int (*test)(struct inode *, void *), 776 void *data, const int wait) 777 { 778 struct inode *inode; 779 780 spin_lock(&inode_lock); 781 inode = find_inode(sb, head, test, data); 782 if (inode) { 783 __iget(inode); 784 spin_unlock(&inode_lock); 785 if (likely(wait)) 786 wait_on_inode(inode); 787 return inode; 788 } 789 spin_unlock(&inode_lock); 790 return NULL; 791 } 792 793 /** 794 * ifind_fast - internal function, you want ilookup() or iget(). 795 * @sb: super block of file system to search 796 * @head: head of the list to search 797 * @ino: inode number to search for 798 * 799 * ifind_fast() searches for the inode @ino in the inode cache. This is for 800 * file systems where the inode number is sufficient for unique identification 801 * of an inode. 802 * 803 * If the inode is in the cache, the inode is returned with an incremented 804 * reference count. 805 * 806 * Otherwise NULL is returned. 807 */ 808 static struct inode *ifind_fast(struct super_block *sb, 809 struct hlist_head *head, unsigned long ino) 810 { 811 struct inode *inode; 812 813 spin_lock(&inode_lock); 814 inode = find_inode_fast(sb, head, ino); 815 if (inode) { 816 __iget(inode); 817 spin_unlock(&inode_lock); 818 wait_on_inode(inode); 819 return inode; 820 } 821 spin_unlock(&inode_lock); 822 return NULL; 823 } 824 825 /** 826 * ilookup5_nowait - search for an inode in the inode cache 827 * @sb: super block of file system to search 828 * @hashval: hash value (usually inode number) to search for 829 * @test: callback used for comparisons between inodes 830 * @data: opaque data pointer to pass to @test 831 * 832 * ilookup5() uses ifind() to search for the inode specified by @hashval and 833 * @data in the inode cache. This is a generalized version of ilookup() for 834 * file systems where the inode number is not sufficient for unique 835 * identification of an inode. 836 * 837 * If the inode is in the cache, the inode is returned with an incremented 838 * reference count. Note, the inode lock is not waited upon so you have to be 839 * very careful what you do with the returned inode. You probably should be 840 * using ilookup5() instead. 841 * 842 * Otherwise NULL is returned. 843 * 844 * Note, @test is called with the inode_lock held, so can't sleep. 845 */ 846 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 847 int (*test)(struct inode *, void *), void *data) 848 { 849 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 850 851 return ifind(sb, head, test, data, 0); 852 } 853 854 EXPORT_SYMBOL(ilookup5_nowait); 855 856 /** 857 * ilookup5 - search for an inode in the inode cache 858 * @sb: super block of file system to search 859 * @hashval: hash value (usually inode number) to search for 860 * @test: callback used for comparisons between inodes 861 * @data: opaque data pointer to pass to @test 862 * 863 * ilookup5() uses ifind() to search for the inode specified by @hashval and 864 * @data in the inode cache. This is a generalized version of ilookup() for 865 * file systems where the inode number is not sufficient for unique 866 * identification of an inode. 867 * 868 * If the inode is in the cache, the inode lock is waited upon and the inode is 869 * returned with an incremented reference count. 870 * 871 * Otherwise NULL is returned. 872 * 873 * Note, @test is called with the inode_lock held, so can't sleep. 874 */ 875 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 876 int (*test)(struct inode *, void *), void *data) 877 { 878 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 879 880 return ifind(sb, head, test, data, 1); 881 } 882 883 EXPORT_SYMBOL(ilookup5); 884 885 /** 886 * ilookup - search for an inode in the inode cache 887 * @sb: super block of file system to search 888 * @ino: inode number to search for 889 * 890 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 891 * This is for file systems where the inode number is sufficient for unique 892 * identification of an inode. 893 * 894 * If the inode is in the cache, the inode is returned with an incremented 895 * reference count. 896 * 897 * Otherwise NULL is returned. 898 */ 899 struct inode *ilookup(struct super_block *sb, unsigned long ino) 900 { 901 struct hlist_head *head = inode_hashtable + hash(sb, ino); 902 903 return ifind_fast(sb, head, ino); 904 } 905 906 EXPORT_SYMBOL(ilookup); 907 908 /** 909 * iget5_locked - obtain an inode from a mounted file system 910 * @sb: super block of file system 911 * @hashval: hash value (usually inode number) to get 912 * @test: callback used for comparisons between inodes 913 * @set: callback used to initialize a new struct inode 914 * @data: opaque data pointer to pass to @test and @set 915 * 916 * This is iget() without the read_inode() portion of get_new_inode(). 917 * 918 * iget5_locked() uses ifind() to search for the inode specified by @hashval 919 * and @data in the inode cache and if present it is returned with an increased 920 * reference count. This is a generalized version of iget_locked() for file 921 * systems where the inode number is not sufficient for unique identification 922 * of an inode. 923 * 924 * If the inode is not in cache, get_new_inode() is called to allocate a new 925 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 926 * file system gets to fill it in before unlocking it via unlock_new_inode(). 927 * 928 * Note both @test and @set are called with the inode_lock held, so can't sleep. 929 */ 930 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 931 int (*test)(struct inode *, void *), 932 int (*set)(struct inode *, void *), void *data) 933 { 934 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 935 struct inode *inode; 936 937 inode = ifind(sb, head, test, data, 1); 938 if (inode) 939 return inode; 940 /* 941 * get_new_inode() will do the right thing, re-trying the search 942 * in case it had to block at any point. 943 */ 944 return get_new_inode(sb, head, test, set, data); 945 } 946 947 EXPORT_SYMBOL(iget5_locked); 948 949 /** 950 * iget_locked - obtain an inode from a mounted file system 951 * @sb: super block of file system 952 * @ino: inode number to get 953 * 954 * This is iget() without the read_inode() portion of get_new_inode_fast(). 955 * 956 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 957 * the inode cache and if present it is returned with an increased reference 958 * count. This is for file systems where the inode number is sufficient for 959 * unique identification of an inode. 960 * 961 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 962 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 963 * The file system gets to fill it in before unlocking it via 964 * unlock_new_inode(). 965 */ 966 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 967 { 968 struct hlist_head *head = inode_hashtable + hash(sb, ino); 969 struct inode *inode; 970 971 inode = ifind_fast(sb, head, ino); 972 if (inode) 973 return inode; 974 /* 975 * get_new_inode_fast() will do the right thing, re-trying the search 976 * in case it had to block at any point. 977 */ 978 return get_new_inode_fast(sb, head, ino); 979 } 980 981 EXPORT_SYMBOL(iget_locked); 982 983 /** 984 * __insert_inode_hash - hash an inode 985 * @inode: unhashed inode 986 * @hashval: unsigned long value used to locate this object in the 987 * inode_hashtable. 988 * 989 * Add an inode to the inode hash for this superblock. 990 */ 991 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 992 { 993 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 994 spin_lock(&inode_lock); 995 hlist_add_head(&inode->i_hash, head); 996 spin_unlock(&inode_lock); 997 } 998 999 EXPORT_SYMBOL(__insert_inode_hash); 1000 1001 /** 1002 * remove_inode_hash - remove an inode from the hash 1003 * @inode: inode to unhash 1004 * 1005 * Remove an inode from the superblock. 1006 */ 1007 void remove_inode_hash(struct inode *inode) 1008 { 1009 spin_lock(&inode_lock); 1010 hlist_del_init(&inode->i_hash); 1011 spin_unlock(&inode_lock); 1012 } 1013 1014 EXPORT_SYMBOL(remove_inode_hash); 1015 1016 /* 1017 * Tell the filesystem that this inode is no longer of any interest and should 1018 * be completely destroyed. 1019 * 1020 * We leave the inode in the inode hash table until *after* the filesystem's 1021 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1022 * instigate) will always find up-to-date information either in the hash or on 1023 * disk. 1024 * 1025 * I_FREEING is set so that no-one will take a new reference to the inode while 1026 * it is being deleted. 1027 */ 1028 void generic_delete_inode(struct inode *inode) 1029 { 1030 struct super_operations *op = inode->i_sb->s_op; 1031 1032 list_del_init(&inode->i_list); 1033 list_del_init(&inode->i_sb_list); 1034 inode->i_state|=I_FREEING; 1035 inodes_stat.nr_inodes--; 1036 spin_unlock(&inode_lock); 1037 1038 security_inode_delete(inode); 1039 1040 if (op->delete_inode) { 1041 void (*delete)(struct inode *) = op->delete_inode; 1042 if (!is_bad_inode(inode)) 1043 DQUOT_INIT(inode); 1044 /* Filesystems implementing their own 1045 * s_op->delete_inode are required to call 1046 * truncate_inode_pages and clear_inode() 1047 * internally */ 1048 delete(inode); 1049 } else { 1050 truncate_inode_pages(&inode->i_data, 0); 1051 clear_inode(inode); 1052 } 1053 spin_lock(&inode_lock); 1054 hlist_del_init(&inode->i_hash); 1055 spin_unlock(&inode_lock); 1056 wake_up_inode(inode); 1057 if (inode->i_state != I_CLEAR) 1058 BUG(); 1059 destroy_inode(inode); 1060 } 1061 1062 EXPORT_SYMBOL(generic_delete_inode); 1063 1064 static void generic_forget_inode(struct inode *inode) 1065 { 1066 struct super_block *sb = inode->i_sb; 1067 1068 if (!hlist_unhashed(&inode->i_hash)) { 1069 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1070 list_move(&inode->i_list, &inode_unused); 1071 inodes_stat.nr_unused++; 1072 if (!sb || (sb->s_flags & MS_ACTIVE)) { 1073 spin_unlock(&inode_lock); 1074 return; 1075 } 1076 inode->i_state |= I_WILL_FREE; 1077 spin_unlock(&inode_lock); 1078 write_inode_now(inode, 1); 1079 spin_lock(&inode_lock); 1080 inode->i_state &= ~I_WILL_FREE; 1081 inodes_stat.nr_unused--; 1082 hlist_del_init(&inode->i_hash); 1083 } 1084 list_del_init(&inode->i_list); 1085 list_del_init(&inode->i_sb_list); 1086 inode->i_state |= I_FREEING; 1087 inodes_stat.nr_inodes--; 1088 spin_unlock(&inode_lock); 1089 if (inode->i_data.nrpages) 1090 truncate_inode_pages(&inode->i_data, 0); 1091 clear_inode(inode); 1092 wake_up_inode(inode); 1093 destroy_inode(inode); 1094 } 1095 1096 /* 1097 * Normal UNIX filesystem behaviour: delete the 1098 * inode when the usage count drops to zero, and 1099 * i_nlink is zero. 1100 */ 1101 void generic_drop_inode(struct inode *inode) 1102 { 1103 if (!inode->i_nlink) 1104 generic_delete_inode(inode); 1105 else 1106 generic_forget_inode(inode); 1107 } 1108 1109 EXPORT_SYMBOL_GPL(generic_drop_inode); 1110 1111 /* 1112 * Called when we're dropping the last reference 1113 * to an inode. 1114 * 1115 * Call the FS "drop()" function, defaulting to 1116 * the legacy UNIX filesystem behaviour.. 1117 * 1118 * NOTE! NOTE! NOTE! We're called with the inode lock 1119 * held, and the drop function is supposed to release 1120 * the lock! 1121 */ 1122 static inline void iput_final(struct inode *inode) 1123 { 1124 struct super_operations *op = inode->i_sb->s_op; 1125 void (*drop)(struct inode *) = generic_drop_inode; 1126 1127 if (op && op->drop_inode) 1128 drop = op->drop_inode; 1129 drop(inode); 1130 } 1131 1132 /** 1133 * iput - put an inode 1134 * @inode: inode to put 1135 * 1136 * Puts an inode, dropping its usage count. If the inode use count hits 1137 * zero, the inode is then freed and may also be destroyed. 1138 * 1139 * Consequently, iput() can sleep. 1140 */ 1141 void iput(struct inode *inode) 1142 { 1143 if (inode) { 1144 struct super_operations *op = inode->i_sb->s_op; 1145 1146 BUG_ON(inode->i_state == I_CLEAR); 1147 1148 if (op && op->put_inode) 1149 op->put_inode(inode); 1150 1151 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1152 iput_final(inode); 1153 } 1154 } 1155 1156 EXPORT_SYMBOL(iput); 1157 1158 /** 1159 * bmap - find a block number in a file 1160 * @inode: inode of file 1161 * @block: block to find 1162 * 1163 * Returns the block number on the device holding the inode that 1164 * is the disk block number for the block of the file requested. 1165 * That is, asked for block 4 of inode 1 the function will return the 1166 * disk block relative to the disk start that holds that block of the 1167 * file. 1168 */ 1169 sector_t bmap(struct inode * inode, sector_t block) 1170 { 1171 sector_t res = 0; 1172 if (inode->i_mapping->a_ops->bmap) 1173 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1174 return res; 1175 } 1176 1177 EXPORT_SYMBOL(bmap); 1178 1179 /** 1180 * touch_atime - update the access time 1181 * @mnt: mount the inode is accessed on 1182 * @dentry: dentry accessed 1183 * 1184 * Update the accessed time on an inode and mark it for writeback. 1185 * This function automatically handles read only file systems and media, 1186 * as well as the "noatime" flag and inode specific "noatime" markers. 1187 */ 1188 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1189 { 1190 struct inode *inode = dentry->d_inode; 1191 struct timespec now; 1192 1193 if (IS_RDONLY(inode)) 1194 return; 1195 1196 if ((inode->i_flags & S_NOATIME) || 1197 (inode->i_sb->s_flags & MS_NOATIME) || 1198 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 1199 return; 1200 1201 /* 1202 * We may have a NULL vfsmount when coming from NFSD 1203 */ 1204 if (mnt && 1205 ((mnt->mnt_flags & MNT_NOATIME) || 1206 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))) 1207 return; 1208 1209 now = current_fs_time(inode->i_sb); 1210 if (!timespec_equal(&inode->i_atime, &now)) { 1211 inode->i_atime = now; 1212 mark_inode_dirty_sync(inode); 1213 } 1214 } 1215 1216 EXPORT_SYMBOL(touch_atime); 1217 1218 /** 1219 * file_update_time - update mtime and ctime time 1220 * @file: file accessed 1221 * 1222 * Update the mtime and ctime members of an inode and mark the inode 1223 * for writeback. Note that this function is meant exclusively for 1224 * usage in the file write path of filesystems, and filesystems may 1225 * choose to explicitly ignore update via this function with the 1226 * S_NOCTIME inode flag, e.g. for network filesystem where these 1227 * timestamps are handled by the server. 1228 */ 1229 1230 void file_update_time(struct file *file) 1231 { 1232 struct inode *inode = file->f_dentry->d_inode; 1233 struct timespec now; 1234 int sync_it = 0; 1235 1236 if (IS_NOCMTIME(inode)) 1237 return; 1238 if (IS_RDONLY(inode)) 1239 return; 1240 1241 now = current_fs_time(inode->i_sb); 1242 if (!timespec_equal(&inode->i_mtime, &now)) 1243 sync_it = 1; 1244 inode->i_mtime = now; 1245 1246 if (!timespec_equal(&inode->i_ctime, &now)) 1247 sync_it = 1; 1248 inode->i_ctime = now; 1249 1250 if (sync_it) 1251 mark_inode_dirty_sync(inode); 1252 } 1253 1254 EXPORT_SYMBOL(file_update_time); 1255 1256 int inode_needs_sync(struct inode *inode) 1257 { 1258 if (IS_SYNC(inode)) 1259 return 1; 1260 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1261 return 1; 1262 return 0; 1263 } 1264 1265 EXPORT_SYMBOL(inode_needs_sync); 1266 1267 /* 1268 * Quota functions that want to walk the inode lists.. 1269 */ 1270 #ifdef CONFIG_QUOTA 1271 1272 /* Function back in dquot.c */ 1273 int remove_inode_dquot_ref(struct inode *, int, struct list_head *); 1274 1275 void remove_dquot_ref(struct super_block *sb, int type, 1276 struct list_head *tofree_head) 1277 { 1278 struct inode *inode; 1279 1280 if (!sb->dq_op) 1281 return; /* nothing to do */ 1282 spin_lock(&inode_lock); /* This lock is for inodes code */ 1283 1284 /* 1285 * We don't have to lock against quota code - test IS_QUOTAINIT is 1286 * just for speedup... 1287 */ 1288 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) 1289 if (!IS_NOQUOTA(inode)) 1290 remove_inode_dquot_ref(inode, type, tofree_head); 1291 1292 spin_unlock(&inode_lock); 1293 } 1294 1295 #endif 1296 1297 int inode_wait(void *word) 1298 { 1299 schedule(); 1300 return 0; 1301 } 1302 1303 /* 1304 * If we try to find an inode in the inode hash while it is being 1305 * deleted, we have to wait until the filesystem completes its 1306 * deletion before reporting that it isn't found. This function waits 1307 * until the deletion _might_ have completed. Callers are responsible 1308 * to recheck inode state. 1309 * 1310 * It doesn't matter if I_LOCK is not set initially, a call to 1311 * wake_up_inode() after removing from the hash list will DTRT. 1312 * 1313 * This is called with inode_lock held. 1314 */ 1315 static void __wait_on_freeing_inode(struct inode *inode) 1316 { 1317 wait_queue_head_t *wq; 1318 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1319 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1320 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1321 spin_unlock(&inode_lock); 1322 schedule(); 1323 finish_wait(wq, &wait.wait); 1324 spin_lock(&inode_lock); 1325 } 1326 1327 void wake_up_inode(struct inode *inode) 1328 { 1329 /* 1330 * Prevent speculative execution through spin_unlock(&inode_lock); 1331 */ 1332 smp_mb(); 1333 wake_up_bit(&inode->i_state, __I_LOCK); 1334 } 1335 1336 static __initdata unsigned long ihash_entries; 1337 static int __init set_ihash_entries(char *str) 1338 { 1339 if (!str) 1340 return 0; 1341 ihash_entries = simple_strtoul(str, &str, 0); 1342 return 1; 1343 } 1344 __setup("ihash_entries=", set_ihash_entries); 1345 1346 /* 1347 * Initialize the waitqueues and inode hash table. 1348 */ 1349 void __init inode_init_early(void) 1350 { 1351 int loop; 1352 1353 /* If hashes are distributed across NUMA nodes, defer 1354 * hash allocation until vmalloc space is available. 1355 */ 1356 if (hashdist) 1357 return; 1358 1359 inode_hashtable = 1360 alloc_large_system_hash("Inode-cache", 1361 sizeof(struct hlist_head), 1362 ihash_entries, 1363 14, 1364 HASH_EARLY, 1365 &i_hash_shift, 1366 &i_hash_mask, 1367 0); 1368 1369 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1370 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1371 } 1372 1373 void __init inode_init(unsigned long mempages) 1374 { 1375 int loop; 1376 1377 /* inode slab cache */ 1378 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 1379 0, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_once, NULL); 1380 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1381 1382 /* Hash may have been set up in inode_init_early */ 1383 if (!hashdist) 1384 return; 1385 1386 inode_hashtable = 1387 alloc_large_system_hash("Inode-cache", 1388 sizeof(struct hlist_head), 1389 ihash_entries, 1390 14, 1391 0, 1392 &i_hash_shift, 1393 &i_hash_mask, 1394 0); 1395 1396 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1397 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1398 } 1399 1400 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1401 { 1402 inode->i_mode = mode; 1403 if (S_ISCHR(mode)) { 1404 inode->i_fop = &def_chr_fops; 1405 inode->i_rdev = rdev; 1406 } else if (S_ISBLK(mode)) { 1407 inode->i_fop = &def_blk_fops; 1408 inode->i_rdev = rdev; 1409 } else if (S_ISFIFO(mode)) 1410 inode->i_fop = &def_fifo_fops; 1411 else if (S_ISSOCK(mode)) 1412 inode->i_fop = &bad_sock_fops; 1413 else 1414 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1415 mode); 1416 } 1417 EXPORT_SYMBOL(init_special_inode); 1418