1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 #include <linux/posix_acl.h> 27 28 /* 29 * This is needed for the following functions: 30 * - inode_has_buffers 31 * - invalidate_inode_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 LIST_HEAD(inode_in_use); 76 LIST_HEAD(inode_unused); 77 static struct hlist_head *inode_hashtable __read_mostly; 78 79 /* 80 * A simple spinlock to protect the list manipulations. 81 * 82 * NOTE! You also have to own the lock if you change 83 * the i_state of an inode while it is in use.. 84 */ 85 DEFINE_SPINLOCK(inode_lock); 86 87 /* 88 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 89 * icache shrinking path, and the umount path. Without this exclusion, 90 * by the time prune_icache calls iput for the inode whose pages it has 91 * been invalidating, or by the time it calls clear_inode & destroy_inode 92 * from its final dispose_list, the struct super_block they refer to 93 * (for inode->i_sb->s_op) may already have been freed and reused. 94 * 95 * We make this an rwsem because the fastpath is icache shrinking. In 96 * some cases a filesystem may be doing a significant amount of work in 97 * its inode reclaim code, so this should improve parallelism. 98 */ 99 static DECLARE_RWSEM(iprune_sem); 100 101 /* 102 * Statistics gathering.. 103 */ 104 struct inodes_stat_t inodes_stat; 105 106 static struct kmem_cache *inode_cachep __read_mostly; 107 108 static void wake_up_inode(struct inode *inode) 109 { 110 /* 111 * Prevent speculative execution through spin_unlock(&inode_lock); 112 */ 113 smp_mb(); 114 wake_up_bit(&inode->i_state, __I_NEW); 115 } 116 117 /** 118 * inode_init_always - perform inode structure intialisation 119 * @sb: superblock inode belongs to 120 * @inode: inode to initialise 121 * 122 * These are initializations that need to be done on every inode 123 * allocation as the fields are not initialised by slab allocation. 124 */ 125 int inode_init_always(struct super_block *sb, struct inode *inode) 126 { 127 static const struct address_space_operations empty_aops; 128 static const struct inode_operations empty_iops; 129 static const struct file_operations empty_fops; 130 struct address_space *const mapping = &inode->i_data; 131 132 inode->i_sb = sb; 133 inode->i_blkbits = sb->s_blocksize_bits; 134 inode->i_flags = 0; 135 atomic_set(&inode->i_count, 1); 136 inode->i_op = &empty_iops; 137 inode->i_fop = &empty_fops; 138 inode->i_nlink = 1; 139 inode->i_uid = 0; 140 inode->i_gid = 0; 141 atomic_set(&inode->i_writecount, 0); 142 inode->i_size = 0; 143 inode->i_blocks = 0; 144 inode->i_bytes = 0; 145 inode->i_generation = 0; 146 #ifdef CONFIG_QUOTA 147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 148 #endif 149 inode->i_pipe = NULL; 150 inode->i_bdev = NULL; 151 inode->i_cdev = NULL; 152 inode->i_rdev = 0; 153 inode->dirtied_when = 0; 154 155 if (security_inode_alloc(inode)) 156 goto out; 157 spin_lock_init(&inode->i_lock); 158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 159 160 mutex_init(&inode->i_mutex); 161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 162 163 init_rwsem(&inode->i_alloc_sem); 164 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 165 166 mapping->a_ops = &empty_aops; 167 mapping->host = inode; 168 mapping->flags = 0; 169 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 170 mapping->assoc_mapping = NULL; 171 mapping->backing_dev_info = &default_backing_dev_info; 172 mapping->writeback_index = 0; 173 174 /* 175 * If the block_device provides a backing_dev_info for client 176 * inodes then use that. Otherwise the inode share the bdev's 177 * backing_dev_info. 178 */ 179 if (sb->s_bdev) { 180 struct backing_dev_info *bdi; 181 182 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 183 mapping->backing_dev_info = bdi; 184 } 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 #ifdef CONFIG_FS_POSIX_ACL 188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 189 #endif 190 191 #ifdef CONFIG_FSNOTIFY 192 inode->i_fsnotify_mask = 0; 193 #endif 194 195 return 0; 196 out: 197 return -ENOMEM; 198 } 199 EXPORT_SYMBOL(inode_init_always); 200 201 static struct inode *alloc_inode(struct super_block *sb) 202 { 203 struct inode *inode; 204 205 if (sb->s_op->alloc_inode) 206 inode = sb->s_op->alloc_inode(sb); 207 else 208 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 209 210 if (!inode) 211 return NULL; 212 213 if (unlikely(inode_init_always(sb, inode))) { 214 if (inode->i_sb->s_op->destroy_inode) 215 inode->i_sb->s_op->destroy_inode(inode); 216 else 217 kmem_cache_free(inode_cachep, inode); 218 return NULL; 219 } 220 221 return inode; 222 } 223 224 void __destroy_inode(struct inode *inode) 225 { 226 BUG_ON(inode_has_buffers(inode)); 227 security_inode_free(inode); 228 fsnotify_inode_delete(inode); 229 #ifdef CONFIG_FS_POSIX_ACL 230 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 231 posix_acl_release(inode->i_acl); 232 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 233 posix_acl_release(inode->i_default_acl); 234 #endif 235 } 236 EXPORT_SYMBOL(__destroy_inode); 237 238 void destroy_inode(struct inode *inode) 239 { 240 __destroy_inode(inode); 241 if (inode->i_sb->s_op->destroy_inode) 242 inode->i_sb->s_op->destroy_inode(inode); 243 else 244 kmem_cache_free(inode_cachep, (inode)); 245 } 246 247 /* 248 * These are initializations that only need to be done 249 * once, because the fields are idempotent across use 250 * of the inode, so let the slab aware of that. 251 */ 252 void inode_init_once(struct inode *inode) 253 { 254 memset(inode, 0, sizeof(*inode)); 255 INIT_HLIST_NODE(&inode->i_hash); 256 INIT_LIST_HEAD(&inode->i_dentry); 257 INIT_LIST_HEAD(&inode->i_devices); 258 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 259 spin_lock_init(&inode->i_data.tree_lock); 260 spin_lock_init(&inode->i_data.i_mmap_lock); 261 INIT_LIST_HEAD(&inode->i_data.private_list); 262 spin_lock_init(&inode->i_data.private_lock); 263 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 264 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 265 i_size_ordered_init(inode); 266 #ifdef CONFIG_FSNOTIFY 267 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 268 #endif 269 } 270 EXPORT_SYMBOL(inode_init_once); 271 272 static void init_once(void *foo) 273 { 274 struct inode *inode = (struct inode *) foo; 275 276 inode_init_once(inode); 277 } 278 279 /* 280 * inode_lock must be held 281 */ 282 void __iget(struct inode *inode) 283 { 284 if (atomic_inc_return(&inode->i_count) != 1) 285 return; 286 287 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 288 list_move(&inode->i_list, &inode_in_use); 289 inodes_stat.nr_unused--; 290 } 291 292 void end_writeback(struct inode *inode) 293 { 294 might_sleep(); 295 BUG_ON(inode->i_data.nrpages); 296 BUG_ON(!list_empty(&inode->i_data.private_list)); 297 BUG_ON(!(inode->i_state & I_FREEING)); 298 BUG_ON(inode->i_state & I_CLEAR); 299 inode_sync_wait(inode); 300 inode->i_state = I_FREEING | I_CLEAR; 301 } 302 EXPORT_SYMBOL(end_writeback); 303 304 static void evict(struct inode *inode) 305 { 306 const struct super_operations *op = inode->i_sb->s_op; 307 308 if (op->evict_inode) { 309 op->evict_inode(inode); 310 } else { 311 if (inode->i_data.nrpages) 312 truncate_inode_pages(&inode->i_data, 0); 313 end_writeback(inode); 314 } 315 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 316 bd_forget(inode); 317 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 318 cd_forget(inode); 319 } 320 321 /* 322 * dispose_list - dispose of the contents of a local list 323 * @head: the head of the list to free 324 * 325 * Dispose-list gets a local list with local inodes in it, so it doesn't 326 * need to worry about list corruption and SMP locks. 327 */ 328 static void dispose_list(struct list_head *head) 329 { 330 int nr_disposed = 0; 331 332 while (!list_empty(head)) { 333 struct inode *inode; 334 335 inode = list_first_entry(head, struct inode, i_list); 336 list_del(&inode->i_list); 337 338 evict(inode); 339 340 spin_lock(&inode_lock); 341 hlist_del_init(&inode->i_hash); 342 list_del_init(&inode->i_sb_list); 343 spin_unlock(&inode_lock); 344 345 wake_up_inode(inode); 346 destroy_inode(inode); 347 nr_disposed++; 348 } 349 spin_lock(&inode_lock); 350 inodes_stat.nr_inodes -= nr_disposed; 351 spin_unlock(&inode_lock); 352 } 353 354 /* 355 * Invalidate all inodes for a device. 356 */ 357 static int invalidate_list(struct list_head *head, struct list_head *dispose) 358 { 359 struct list_head *next; 360 int busy = 0, count = 0; 361 362 next = head->next; 363 for (;;) { 364 struct list_head *tmp = next; 365 struct inode *inode; 366 367 /* 368 * We can reschedule here without worrying about the list's 369 * consistency because the per-sb list of inodes must not 370 * change during umount anymore, and because iprune_sem keeps 371 * shrink_icache_memory() away. 372 */ 373 cond_resched_lock(&inode_lock); 374 375 next = next->next; 376 if (tmp == head) 377 break; 378 inode = list_entry(tmp, struct inode, i_sb_list); 379 if (inode->i_state & I_NEW) 380 continue; 381 invalidate_inode_buffers(inode); 382 if (!atomic_read(&inode->i_count)) { 383 list_move(&inode->i_list, dispose); 384 WARN_ON(inode->i_state & I_NEW); 385 inode->i_state |= I_FREEING; 386 count++; 387 continue; 388 } 389 busy = 1; 390 } 391 /* only unused inodes may be cached with i_count zero */ 392 inodes_stat.nr_unused -= count; 393 return busy; 394 } 395 396 /** 397 * invalidate_inodes - discard the inodes on a device 398 * @sb: superblock 399 * 400 * Discard all of the inodes for a given superblock. If the discard 401 * fails because there are busy inodes then a non zero value is returned. 402 * If the discard is successful all the inodes have been discarded. 403 */ 404 int invalidate_inodes(struct super_block *sb) 405 { 406 int busy; 407 LIST_HEAD(throw_away); 408 409 down_write(&iprune_sem); 410 spin_lock(&inode_lock); 411 fsnotify_unmount_inodes(&sb->s_inodes); 412 busy = invalidate_list(&sb->s_inodes, &throw_away); 413 spin_unlock(&inode_lock); 414 415 dispose_list(&throw_away); 416 up_write(&iprune_sem); 417 418 return busy; 419 } 420 EXPORT_SYMBOL(invalidate_inodes); 421 422 static int can_unuse(struct inode *inode) 423 { 424 if (inode->i_state) 425 return 0; 426 if (inode_has_buffers(inode)) 427 return 0; 428 if (atomic_read(&inode->i_count)) 429 return 0; 430 if (inode->i_data.nrpages) 431 return 0; 432 return 1; 433 } 434 435 /* 436 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 437 * a temporary list and then are freed outside inode_lock by dispose_list(). 438 * 439 * Any inodes which are pinned purely because of attached pagecache have their 440 * pagecache removed. We expect the final iput() on that inode to add it to 441 * the front of the inode_unused list. So look for it there and if the 442 * inode is still freeable, proceed. The right inode is found 99.9% of the 443 * time in testing on a 4-way. 444 * 445 * If the inode has metadata buffers attached to mapping->private_list then 446 * try to remove them. 447 */ 448 static void prune_icache(int nr_to_scan) 449 { 450 LIST_HEAD(freeable); 451 int nr_pruned = 0; 452 int nr_scanned; 453 unsigned long reap = 0; 454 455 down_read(&iprune_sem); 456 spin_lock(&inode_lock); 457 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 458 struct inode *inode; 459 460 if (list_empty(&inode_unused)) 461 break; 462 463 inode = list_entry(inode_unused.prev, struct inode, i_list); 464 465 if (inode->i_state || atomic_read(&inode->i_count)) { 466 list_move(&inode->i_list, &inode_unused); 467 continue; 468 } 469 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 470 __iget(inode); 471 spin_unlock(&inode_lock); 472 if (remove_inode_buffers(inode)) 473 reap += invalidate_mapping_pages(&inode->i_data, 474 0, -1); 475 iput(inode); 476 spin_lock(&inode_lock); 477 478 if (inode != list_entry(inode_unused.next, 479 struct inode, i_list)) 480 continue; /* wrong inode or list_empty */ 481 if (!can_unuse(inode)) 482 continue; 483 } 484 list_move(&inode->i_list, &freeable); 485 WARN_ON(inode->i_state & I_NEW); 486 inode->i_state |= I_FREEING; 487 nr_pruned++; 488 } 489 inodes_stat.nr_unused -= nr_pruned; 490 if (current_is_kswapd()) 491 __count_vm_events(KSWAPD_INODESTEAL, reap); 492 else 493 __count_vm_events(PGINODESTEAL, reap); 494 spin_unlock(&inode_lock); 495 496 dispose_list(&freeable); 497 up_read(&iprune_sem); 498 } 499 500 /* 501 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 502 * "unused" means that no dentries are referring to the inodes: the files are 503 * not open and the dcache references to those inodes have already been 504 * reclaimed. 505 * 506 * This function is passed the number of inodes to scan, and it returns the 507 * total number of remaining possibly-reclaimable inodes. 508 */ 509 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 510 { 511 if (nr) { 512 /* 513 * Nasty deadlock avoidance. We may hold various FS locks, 514 * and we don't want to recurse into the FS that called us 515 * in clear_inode() and friends.. 516 */ 517 if (!(gfp_mask & __GFP_FS)) 518 return -1; 519 prune_icache(nr); 520 } 521 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 522 } 523 524 static struct shrinker icache_shrinker = { 525 .shrink = shrink_icache_memory, 526 .seeks = DEFAULT_SEEKS, 527 }; 528 529 static void __wait_on_freeing_inode(struct inode *inode); 530 /* 531 * Called with the inode lock held. 532 * NOTE: we are not increasing the inode-refcount, you must call __iget() 533 * by hand after calling find_inode now! This simplifies iunique and won't 534 * add any additional branch in the common code. 535 */ 536 static struct inode *find_inode(struct super_block *sb, 537 struct hlist_head *head, 538 int (*test)(struct inode *, void *), 539 void *data) 540 { 541 struct hlist_node *node; 542 struct inode *inode = NULL; 543 544 repeat: 545 hlist_for_each_entry(inode, node, head, i_hash) { 546 if (inode->i_sb != sb) 547 continue; 548 if (!test(inode, data)) 549 continue; 550 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 551 __wait_on_freeing_inode(inode); 552 goto repeat; 553 } 554 break; 555 } 556 return node ? inode : NULL; 557 } 558 559 /* 560 * find_inode_fast is the fast path version of find_inode, see the comment at 561 * iget_locked for details. 562 */ 563 static struct inode *find_inode_fast(struct super_block *sb, 564 struct hlist_head *head, unsigned long ino) 565 { 566 struct hlist_node *node; 567 struct inode *inode = NULL; 568 569 repeat: 570 hlist_for_each_entry(inode, node, head, i_hash) { 571 if (inode->i_ino != ino) 572 continue; 573 if (inode->i_sb != sb) 574 continue; 575 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 576 __wait_on_freeing_inode(inode); 577 goto repeat; 578 } 579 break; 580 } 581 return node ? inode : NULL; 582 } 583 584 static unsigned long hash(struct super_block *sb, unsigned long hashval) 585 { 586 unsigned long tmp; 587 588 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 589 L1_CACHE_BYTES; 590 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 591 return tmp & I_HASHMASK; 592 } 593 594 static inline void 595 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 596 struct inode *inode) 597 { 598 inodes_stat.nr_inodes++; 599 list_add(&inode->i_list, &inode_in_use); 600 list_add(&inode->i_sb_list, &sb->s_inodes); 601 if (head) 602 hlist_add_head(&inode->i_hash, head); 603 } 604 605 /** 606 * inode_add_to_lists - add a new inode to relevant lists 607 * @sb: superblock inode belongs to 608 * @inode: inode to mark in use 609 * 610 * When an inode is allocated it needs to be accounted for, added to the in use 611 * list, the owning superblock and the inode hash. This needs to be done under 612 * the inode_lock, so export a function to do this rather than the inode lock 613 * itself. We calculate the hash list to add to here so it is all internal 614 * which requires the caller to have already set up the inode number in the 615 * inode to add. 616 */ 617 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 618 { 619 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 620 621 spin_lock(&inode_lock); 622 __inode_add_to_lists(sb, head, inode); 623 spin_unlock(&inode_lock); 624 } 625 EXPORT_SYMBOL_GPL(inode_add_to_lists); 626 627 /** 628 * new_inode - obtain an inode 629 * @sb: superblock 630 * 631 * Allocates a new inode for given superblock. The default gfp_mask 632 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 633 * If HIGHMEM pages are unsuitable or it is known that pages allocated 634 * for the page cache are not reclaimable or migratable, 635 * mapping_set_gfp_mask() must be called with suitable flags on the 636 * newly created inode's mapping 637 * 638 */ 639 struct inode *new_inode(struct super_block *sb) 640 { 641 /* 642 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 643 * error if st_ino won't fit in target struct field. Use 32bit counter 644 * here to attempt to avoid that. 645 */ 646 static unsigned int last_ino; 647 struct inode *inode; 648 649 spin_lock_prefetch(&inode_lock); 650 651 inode = alloc_inode(sb); 652 if (inode) { 653 spin_lock(&inode_lock); 654 __inode_add_to_lists(sb, NULL, inode); 655 inode->i_ino = ++last_ino; 656 inode->i_state = 0; 657 spin_unlock(&inode_lock); 658 } 659 return inode; 660 } 661 EXPORT_SYMBOL(new_inode); 662 663 void unlock_new_inode(struct inode *inode) 664 { 665 #ifdef CONFIG_DEBUG_LOCK_ALLOC 666 if (inode->i_mode & S_IFDIR) { 667 struct file_system_type *type = inode->i_sb->s_type; 668 669 /* Set new key only if filesystem hasn't already changed it */ 670 if (!lockdep_match_class(&inode->i_mutex, 671 &type->i_mutex_key)) { 672 /* 673 * ensure nobody is actually holding i_mutex 674 */ 675 mutex_destroy(&inode->i_mutex); 676 mutex_init(&inode->i_mutex); 677 lockdep_set_class(&inode->i_mutex, 678 &type->i_mutex_dir_key); 679 } 680 } 681 #endif 682 /* 683 * This is special! We do not need the spinlock when clearing I_NEW, 684 * because we're guaranteed that nobody else tries to do anything about 685 * the state of the inode when it is locked, as we just created it (so 686 * there can be no old holders that haven't tested I_NEW). 687 * However we must emit the memory barrier so that other CPUs reliably 688 * see the clearing of I_NEW after the other inode initialisation has 689 * completed. 690 */ 691 smp_mb(); 692 WARN_ON(!(inode->i_state & I_NEW)); 693 inode->i_state &= ~I_NEW; 694 wake_up_inode(inode); 695 } 696 EXPORT_SYMBOL(unlock_new_inode); 697 698 /* 699 * This is called without the inode lock held.. Be careful. 700 * 701 * We no longer cache the sb_flags in i_flags - see fs.h 702 * -- rmk@arm.uk.linux.org 703 */ 704 static struct inode *get_new_inode(struct super_block *sb, 705 struct hlist_head *head, 706 int (*test)(struct inode *, void *), 707 int (*set)(struct inode *, void *), 708 void *data) 709 { 710 struct inode *inode; 711 712 inode = alloc_inode(sb); 713 if (inode) { 714 struct inode *old; 715 716 spin_lock(&inode_lock); 717 /* We released the lock, so.. */ 718 old = find_inode(sb, head, test, data); 719 if (!old) { 720 if (set(inode, data)) 721 goto set_failed; 722 723 __inode_add_to_lists(sb, head, inode); 724 inode->i_state = I_NEW; 725 spin_unlock(&inode_lock); 726 727 /* Return the locked inode with I_NEW set, the 728 * caller is responsible for filling in the contents 729 */ 730 return inode; 731 } 732 733 /* 734 * Uhhuh, somebody else created the same inode under 735 * us. Use the old inode instead of the one we just 736 * allocated. 737 */ 738 __iget(old); 739 spin_unlock(&inode_lock); 740 destroy_inode(inode); 741 inode = old; 742 wait_on_inode(inode); 743 } 744 return inode; 745 746 set_failed: 747 spin_unlock(&inode_lock); 748 destroy_inode(inode); 749 return NULL; 750 } 751 752 /* 753 * get_new_inode_fast is the fast path version of get_new_inode, see the 754 * comment at iget_locked for details. 755 */ 756 static struct inode *get_new_inode_fast(struct super_block *sb, 757 struct hlist_head *head, unsigned long ino) 758 { 759 struct inode *inode; 760 761 inode = alloc_inode(sb); 762 if (inode) { 763 struct inode *old; 764 765 spin_lock(&inode_lock); 766 /* We released the lock, so.. */ 767 old = find_inode_fast(sb, head, ino); 768 if (!old) { 769 inode->i_ino = ino; 770 __inode_add_to_lists(sb, head, inode); 771 inode->i_state = I_NEW; 772 spin_unlock(&inode_lock); 773 774 /* Return the locked inode with I_NEW set, the 775 * caller is responsible for filling in the contents 776 */ 777 return inode; 778 } 779 780 /* 781 * Uhhuh, somebody else created the same inode under 782 * us. Use the old inode instead of the one we just 783 * allocated. 784 */ 785 __iget(old); 786 spin_unlock(&inode_lock); 787 destroy_inode(inode); 788 inode = old; 789 wait_on_inode(inode); 790 } 791 return inode; 792 } 793 794 /** 795 * iunique - get a unique inode number 796 * @sb: superblock 797 * @max_reserved: highest reserved inode number 798 * 799 * Obtain an inode number that is unique on the system for a given 800 * superblock. This is used by file systems that have no natural 801 * permanent inode numbering system. An inode number is returned that 802 * is higher than the reserved limit but unique. 803 * 804 * BUGS: 805 * With a large number of inodes live on the file system this function 806 * currently becomes quite slow. 807 */ 808 ino_t iunique(struct super_block *sb, ino_t max_reserved) 809 { 810 /* 811 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 812 * error if st_ino won't fit in target struct field. Use 32bit counter 813 * here to attempt to avoid that. 814 */ 815 static unsigned int counter; 816 struct inode *inode; 817 struct hlist_head *head; 818 ino_t res; 819 820 spin_lock(&inode_lock); 821 do { 822 if (counter <= max_reserved) 823 counter = max_reserved + 1; 824 res = counter++; 825 head = inode_hashtable + hash(sb, res); 826 inode = find_inode_fast(sb, head, res); 827 } while (inode != NULL); 828 spin_unlock(&inode_lock); 829 830 return res; 831 } 832 EXPORT_SYMBOL(iunique); 833 834 struct inode *igrab(struct inode *inode) 835 { 836 spin_lock(&inode_lock); 837 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 838 __iget(inode); 839 else 840 /* 841 * Handle the case where s_op->clear_inode is not been 842 * called yet, and somebody is calling igrab 843 * while the inode is getting freed. 844 */ 845 inode = NULL; 846 spin_unlock(&inode_lock); 847 return inode; 848 } 849 EXPORT_SYMBOL(igrab); 850 851 /** 852 * ifind - internal function, you want ilookup5() or iget5(). 853 * @sb: super block of file system to search 854 * @head: the head of the list to search 855 * @test: callback used for comparisons between inodes 856 * @data: opaque data pointer to pass to @test 857 * @wait: if true wait for the inode to be unlocked, if false do not 858 * 859 * ifind() searches for the inode specified by @data in the inode 860 * cache. This is a generalized version of ifind_fast() for file systems where 861 * the inode number is not sufficient for unique identification of an inode. 862 * 863 * If the inode is in the cache, the inode is returned with an incremented 864 * reference count. 865 * 866 * Otherwise NULL is returned. 867 * 868 * Note, @test is called with the inode_lock held, so can't sleep. 869 */ 870 static struct inode *ifind(struct super_block *sb, 871 struct hlist_head *head, int (*test)(struct inode *, void *), 872 void *data, const int wait) 873 { 874 struct inode *inode; 875 876 spin_lock(&inode_lock); 877 inode = find_inode(sb, head, test, data); 878 if (inode) { 879 __iget(inode); 880 spin_unlock(&inode_lock); 881 if (likely(wait)) 882 wait_on_inode(inode); 883 return inode; 884 } 885 spin_unlock(&inode_lock); 886 return NULL; 887 } 888 889 /** 890 * ifind_fast - internal function, you want ilookup() or iget(). 891 * @sb: super block of file system to search 892 * @head: head of the list to search 893 * @ino: inode number to search for 894 * 895 * ifind_fast() searches for the inode @ino in the inode cache. This is for 896 * file systems where the inode number is sufficient for unique identification 897 * of an inode. 898 * 899 * If the inode is in the cache, the inode is returned with an incremented 900 * reference count. 901 * 902 * Otherwise NULL is returned. 903 */ 904 static struct inode *ifind_fast(struct super_block *sb, 905 struct hlist_head *head, unsigned long ino) 906 { 907 struct inode *inode; 908 909 spin_lock(&inode_lock); 910 inode = find_inode_fast(sb, head, ino); 911 if (inode) { 912 __iget(inode); 913 spin_unlock(&inode_lock); 914 wait_on_inode(inode); 915 return inode; 916 } 917 spin_unlock(&inode_lock); 918 return NULL; 919 } 920 921 /** 922 * ilookup5_nowait - search for an inode in the inode cache 923 * @sb: super block of file system to search 924 * @hashval: hash value (usually inode number) to search for 925 * @test: callback used for comparisons between inodes 926 * @data: opaque data pointer to pass to @test 927 * 928 * ilookup5() uses ifind() to search for the inode specified by @hashval and 929 * @data in the inode cache. This is a generalized version of ilookup() for 930 * file systems where the inode number is not sufficient for unique 931 * identification of an inode. 932 * 933 * If the inode is in the cache, the inode is returned with an incremented 934 * reference count. Note, the inode lock is not waited upon so you have to be 935 * very careful what you do with the returned inode. You probably should be 936 * using ilookup5() instead. 937 * 938 * Otherwise NULL is returned. 939 * 940 * Note, @test is called with the inode_lock held, so can't sleep. 941 */ 942 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 943 int (*test)(struct inode *, void *), void *data) 944 { 945 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 946 947 return ifind(sb, head, test, data, 0); 948 } 949 EXPORT_SYMBOL(ilookup5_nowait); 950 951 /** 952 * ilookup5 - search for an inode in the inode cache 953 * @sb: super block of file system to search 954 * @hashval: hash value (usually inode number) to search for 955 * @test: callback used for comparisons between inodes 956 * @data: opaque data pointer to pass to @test 957 * 958 * ilookup5() uses ifind() to search for the inode specified by @hashval and 959 * @data in the inode cache. This is a generalized version of ilookup() for 960 * file systems where the inode number is not sufficient for unique 961 * identification of an inode. 962 * 963 * If the inode is in the cache, the inode lock is waited upon and the inode is 964 * returned with an incremented reference count. 965 * 966 * Otherwise NULL is returned. 967 * 968 * Note, @test is called with the inode_lock held, so can't sleep. 969 */ 970 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 971 int (*test)(struct inode *, void *), void *data) 972 { 973 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 974 975 return ifind(sb, head, test, data, 1); 976 } 977 EXPORT_SYMBOL(ilookup5); 978 979 /** 980 * ilookup - search for an inode in the inode cache 981 * @sb: super block of file system to search 982 * @ino: inode number to search for 983 * 984 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 985 * This is for file systems where the inode number is sufficient for unique 986 * identification of an inode. 987 * 988 * If the inode is in the cache, the inode is returned with an incremented 989 * reference count. 990 * 991 * Otherwise NULL is returned. 992 */ 993 struct inode *ilookup(struct super_block *sb, unsigned long ino) 994 { 995 struct hlist_head *head = inode_hashtable + hash(sb, ino); 996 997 return ifind_fast(sb, head, ino); 998 } 999 EXPORT_SYMBOL(ilookup); 1000 1001 /** 1002 * iget5_locked - obtain an inode from a mounted file system 1003 * @sb: super block of file system 1004 * @hashval: hash value (usually inode number) to get 1005 * @test: callback used for comparisons between inodes 1006 * @set: callback used to initialize a new struct inode 1007 * @data: opaque data pointer to pass to @test and @set 1008 * 1009 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1010 * and @data in the inode cache and if present it is returned with an increased 1011 * reference count. This is a generalized version of iget_locked() for file 1012 * systems where the inode number is not sufficient for unique identification 1013 * of an inode. 1014 * 1015 * If the inode is not in cache, get_new_inode() is called to allocate a new 1016 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1017 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1018 * 1019 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1020 */ 1021 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1022 int (*test)(struct inode *, void *), 1023 int (*set)(struct inode *, void *), void *data) 1024 { 1025 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1026 struct inode *inode; 1027 1028 inode = ifind(sb, head, test, data, 1); 1029 if (inode) 1030 return inode; 1031 /* 1032 * get_new_inode() will do the right thing, re-trying the search 1033 * in case it had to block at any point. 1034 */ 1035 return get_new_inode(sb, head, test, set, data); 1036 } 1037 EXPORT_SYMBOL(iget5_locked); 1038 1039 /** 1040 * iget_locked - obtain an inode from a mounted file system 1041 * @sb: super block of file system 1042 * @ino: inode number to get 1043 * 1044 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1045 * the inode cache and if present it is returned with an increased reference 1046 * count. This is for file systems where the inode number is sufficient for 1047 * unique identification of an inode. 1048 * 1049 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1050 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1051 * The file system gets to fill it in before unlocking it via 1052 * unlock_new_inode(). 1053 */ 1054 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1055 { 1056 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1057 struct inode *inode; 1058 1059 inode = ifind_fast(sb, head, ino); 1060 if (inode) 1061 return inode; 1062 /* 1063 * get_new_inode_fast() will do the right thing, re-trying the search 1064 * in case it had to block at any point. 1065 */ 1066 return get_new_inode_fast(sb, head, ino); 1067 } 1068 EXPORT_SYMBOL(iget_locked); 1069 1070 int insert_inode_locked(struct inode *inode) 1071 { 1072 struct super_block *sb = inode->i_sb; 1073 ino_t ino = inode->i_ino; 1074 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1075 1076 inode->i_state |= I_NEW; 1077 while (1) { 1078 struct hlist_node *node; 1079 struct inode *old = NULL; 1080 spin_lock(&inode_lock); 1081 hlist_for_each_entry(old, node, head, i_hash) { 1082 if (old->i_ino != ino) 1083 continue; 1084 if (old->i_sb != sb) 1085 continue; 1086 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1087 continue; 1088 break; 1089 } 1090 if (likely(!node)) { 1091 hlist_add_head(&inode->i_hash, head); 1092 spin_unlock(&inode_lock); 1093 return 0; 1094 } 1095 __iget(old); 1096 spin_unlock(&inode_lock); 1097 wait_on_inode(old); 1098 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1099 iput(old); 1100 return -EBUSY; 1101 } 1102 iput(old); 1103 } 1104 } 1105 EXPORT_SYMBOL(insert_inode_locked); 1106 1107 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1108 int (*test)(struct inode *, void *), void *data) 1109 { 1110 struct super_block *sb = inode->i_sb; 1111 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1112 1113 inode->i_state |= I_NEW; 1114 1115 while (1) { 1116 struct hlist_node *node; 1117 struct inode *old = NULL; 1118 1119 spin_lock(&inode_lock); 1120 hlist_for_each_entry(old, node, head, i_hash) { 1121 if (old->i_sb != sb) 1122 continue; 1123 if (!test(old, data)) 1124 continue; 1125 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1126 continue; 1127 break; 1128 } 1129 if (likely(!node)) { 1130 hlist_add_head(&inode->i_hash, head); 1131 spin_unlock(&inode_lock); 1132 return 0; 1133 } 1134 __iget(old); 1135 spin_unlock(&inode_lock); 1136 wait_on_inode(old); 1137 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1138 iput(old); 1139 return -EBUSY; 1140 } 1141 iput(old); 1142 } 1143 } 1144 EXPORT_SYMBOL(insert_inode_locked4); 1145 1146 /** 1147 * __insert_inode_hash - hash an inode 1148 * @inode: unhashed inode 1149 * @hashval: unsigned long value used to locate this object in the 1150 * inode_hashtable. 1151 * 1152 * Add an inode to the inode hash for this superblock. 1153 */ 1154 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1155 { 1156 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1157 spin_lock(&inode_lock); 1158 hlist_add_head(&inode->i_hash, head); 1159 spin_unlock(&inode_lock); 1160 } 1161 EXPORT_SYMBOL(__insert_inode_hash); 1162 1163 /** 1164 * remove_inode_hash - remove an inode from the hash 1165 * @inode: inode to unhash 1166 * 1167 * Remove an inode from the superblock. 1168 */ 1169 void remove_inode_hash(struct inode *inode) 1170 { 1171 spin_lock(&inode_lock); 1172 hlist_del_init(&inode->i_hash); 1173 spin_unlock(&inode_lock); 1174 } 1175 EXPORT_SYMBOL(remove_inode_hash); 1176 1177 int generic_delete_inode(struct inode *inode) 1178 { 1179 return 1; 1180 } 1181 EXPORT_SYMBOL(generic_delete_inode); 1182 1183 /* 1184 * Normal UNIX filesystem behaviour: delete the 1185 * inode when the usage count drops to zero, and 1186 * i_nlink is zero. 1187 */ 1188 int generic_drop_inode(struct inode *inode) 1189 { 1190 return !inode->i_nlink || hlist_unhashed(&inode->i_hash); 1191 } 1192 EXPORT_SYMBOL_GPL(generic_drop_inode); 1193 1194 /* 1195 * Called when we're dropping the last reference 1196 * to an inode. 1197 * 1198 * Call the FS "drop_inode()" function, defaulting to 1199 * the legacy UNIX filesystem behaviour. If it tells 1200 * us to evict inode, do so. Otherwise, retain inode 1201 * in cache if fs is alive, sync and evict if fs is 1202 * shutting down. 1203 */ 1204 static void iput_final(struct inode *inode) 1205 { 1206 struct super_block *sb = inode->i_sb; 1207 const struct super_operations *op = inode->i_sb->s_op; 1208 int drop; 1209 1210 if (op && op->drop_inode) 1211 drop = op->drop_inode(inode); 1212 else 1213 drop = generic_drop_inode(inode); 1214 1215 if (!drop) { 1216 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1217 list_move(&inode->i_list, &inode_unused); 1218 inodes_stat.nr_unused++; 1219 if (sb->s_flags & MS_ACTIVE) { 1220 spin_unlock(&inode_lock); 1221 return; 1222 } 1223 WARN_ON(inode->i_state & I_NEW); 1224 inode->i_state |= I_WILL_FREE; 1225 spin_unlock(&inode_lock); 1226 write_inode_now(inode, 1); 1227 spin_lock(&inode_lock); 1228 WARN_ON(inode->i_state & I_NEW); 1229 inode->i_state &= ~I_WILL_FREE; 1230 inodes_stat.nr_unused--; 1231 hlist_del_init(&inode->i_hash); 1232 } 1233 list_del_init(&inode->i_list); 1234 list_del_init(&inode->i_sb_list); 1235 WARN_ON(inode->i_state & I_NEW); 1236 inode->i_state |= I_FREEING; 1237 inodes_stat.nr_inodes--; 1238 spin_unlock(&inode_lock); 1239 evict(inode); 1240 spin_lock(&inode_lock); 1241 hlist_del_init(&inode->i_hash); 1242 spin_unlock(&inode_lock); 1243 wake_up_inode(inode); 1244 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 1245 destroy_inode(inode); 1246 } 1247 1248 /** 1249 * iput - put an inode 1250 * @inode: inode to put 1251 * 1252 * Puts an inode, dropping its usage count. If the inode use count hits 1253 * zero, the inode is then freed and may also be destroyed. 1254 * 1255 * Consequently, iput() can sleep. 1256 */ 1257 void iput(struct inode *inode) 1258 { 1259 if (inode) { 1260 BUG_ON(inode->i_state & I_CLEAR); 1261 1262 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1263 iput_final(inode); 1264 } 1265 } 1266 EXPORT_SYMBOL(iput); 1267 1268 /** 1269 * bmap - find a block number in a file 1270 * @inode: inode of file 1271 * @block: block to find 1272 * 1273 * Returns the block number on the device holding the inode that 1274 * is the disk block number for the block of the file requested. 1275 * That is, asked for block 4 of inode 1 the function will return the 1276 * disk block relative to the disk start that holds that block of the 1277 * file. 1278 */ 1279 sector_t bmap(struct inode *inode, sector_t block) 1280 { 1281 sector_t res = 0; 1282 if (inode->i_mapping->a_ops->bmap) 1283 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1284 return res; 1285 } 1286 EXPORT_SYMBOL(bmap); 1287 1288 /* 1289 * With relative atime, only update atime if the previous atime is 1290 * earlier than either the ctime or mtime or if at least a day has 1291 * passed since the last atime update. 1292 */ 1293 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1294 struct timespec now) 1295 { 1296 1297 if (!(mnt->mnt_flags & MNT_RELATIME)) 1298 return 1; 1299 /* 1300 * Is mtime younger than atime? If yes, update atime: 1301 */ 1302 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1303 return 1; 1304 /* 1305 * Is ctime younger than atime? If yes, update atime: 1306 */ 1307 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1308 return 1; 1309 1310 /* 1311 * Is the previous atime value older than a day? If yes, 1312 * update atime: 1313 */ 1314 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1315 return 1; 1316 /* 1317 * Good, we can skip the atime update: 1318 */ 1319 return 0; 1320 } 1321 1322 /** 1323 * touch_atime - update the access time 1324 * @mnt: mount the inode is accessed on 1325 * @dentry: dentry accessed 1326 * 1327 * Update the accessed time on an inode and mark it for writeback. 1328 * This function automatically handles read only file systems and media, 1329 * as well as the "noatime" flag and inode specific "noatime" markers. 1330 */ 1331 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1332 { 1333 struct inode *inode = dentry->d_inode; 1334 struct timespec now; 1335 1336 if (inode->i_flags & S_NOATIME) 1337 return; 1338 if (IS_NOATIME(inode)) 1339 return; 1340 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1341 return; 1342 1343 if (mnt->mnt_flags & MNT_NOATIME) 1344 return; 1345 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1346 return; 1347 1348 now = current_fs_time(inode->i_sb); 1349 1350 if (!relatime_need_update(mnt, inode, now)) 1351 return; 1352 1353 if (timespec_equal(&inode->i_atime, &now)) 1354 return; 1355 1356 if (mnt_want_write(mnt)) 1357 return; 1358 1359 inode->i_atime = now; 1360 mark_inode_dirty_sync(inode); 1361 mnt_drop_write(mnt); 1362 } 1363 EXPORT_SYMBOL(touch_atime); 1364 1365 /** 1366 * file_update_time - update mtime and ctime time 1367 * @file: file accessed 1368 * 1369 * Update the mtime and ctime members of an inode and mark the inode 1370 * for writeback. Note that this function is meant exclusively for 1371 * usage in the file write path of filesystems, and filesystems may 1372 * choose to explicitly ignore update via this function with the 1373 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1374 * timestamps are handled by the server. 1375 */ 1376 1377 void file_update_time(struct file *file) 1378 { 1379 struct inode *inode = file->f_path.dentry->d_inode; 1380 struct timespec now; 1381 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1382 1383 /* First try to exhaust all avenues to not sync */ 1384 if (IS_NOCMTIME(inode)) 1385 return; 1386 1387 now = current_fs_time(inode->i_sb); 1388 if (!timespec_equal(&inode->i_mtime, &now)) 1389 sync_it = S_MTIME; 1390 1391 if (!timespec_equal(&inode->i_ctime, &now)) 1392 sync_it |= S_CTIME; 1393 1394 if (IS_I_VERSION(inode)) 1395 sync_it |= S_VERSION; 1396 1397 if (!sync_it) 1398 return; 1399 1400 /* Finally allowed to write? Takes lock. */ 1401 if (mnt_want_write_file(file)) 1402 return; 1403 1404 /* Only change inode inside the lock region */ 1405 if (sync_it & S_VERSION) 1406 inode_inc_iversion(inode); 1407 if (sync_it & S_CTIME) 1408 inode->i_ctime = now; 1409 if (sync_it & S_MTIME) 1410 inode->i_mtime = now; 1411 mark_inode_dirty_sync(inode); 1412 mnt_drop_write(file->f_path.mnt); 1413 } 1414 EXPORT_SYMBOL(file_update_time); 1415 1416 int inode_needs_sync(struct inode *inode) 1417 { 1418 if (IS_SYNC(inode)) 1419 return 1; 1420 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1421 return 1; 1422 return 0; 1423 } 1424 EXPORT_SYMBOL(inode_needs_sync); 1425 1426 int inode_wait(void *word) 1427 { 1428 schedule(); 1429 return 0; 1430 } 1431 EXPORT_SYMBOL(inode_wait); 1432 1433 /* 1434 * If we try to find an inode in the inode hash while it is being 1435 * deleted, we have to wait until the filesystem completes its 1436 * deletion before reporting that it isn't found. This function waits 1437 * until the deletion _might_ have completed. Callers are responsible 1438 * to recheck inode state. 1439 * 1440 * It doesn't matter if I_NEW is not set initially, a call to 1441 * wake_up_inode() after removing from the hash list will DTRT. 1442 * 1443 * This is called with inode_lock held. 1444 */ 1445 static void __wait_on_freeing_inode(struct inode *inode) 1446 { 1447 wait_queue_head_t *wq; 1448 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1449 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1450 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1451 spin_unlock(&inode_lock); 1452 schedule(); 1453 finish_wait(wq, &wait.wait); 1454 spin_lock(&inode_lock); 1455 } 1456 1457 static __initdata unsigned long ihash_entries; 1458 static int __init set_ihash_entries(char *str) 1459 { 1460 if (!str) 1461 return 0; 1462 ihash_entries = simple_strtoul(str, &str, 0); 1463 return 1; 1464 } 1465 __setup("ihash_entries=", set_ihash_entries); 1466 1467 /* 1468 * Initialize the waitqueues and inode hash table. 1469 */ 1470 void __init inode_init_early(void) 1471 { 1472 int loop; 1473 1474 /* If hashes are distributed across NUMA nodes, defer 1475 * hash allocation until vmalloc space is available. 1476 */ 1477 if (hashdist) 1478 return; 1479 1480 inode_hashtable = 1481 alloc_large_system_hash("Inode-cache", 1482 sizeof(struct hlist_head), 1483 ihash_entries, 1484 14, 1485 HASH_EARLY, 1486 &i_hash_shift, 1487 &i_hash_mask, 1488 0); 1489 1490 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1491 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1492 } 1493 1494 void __init inode_init(void) 1495 { 1496 int loop; 1497 1498 /* inode slab cache */ 1499 inode_cachep = kmem_cache_create("inode_cache", 1500 sizeof(struct inode), 1501 0, 1502 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1503 SLAB_MEM_SPREAD), 1504 init_once); 1505 register_shrinker(&icache_shrinker); 1506 1507 /* Hash may have been set up in inode_init_early */ 1508 if (!hashdist) 1509 return; 1510 1511 inode_hashtable = 1512 alloc_large_system_hash("Inode-cache", 1513 sizeof(struct hlist_head), 1514 ihash_entries, 1515 14, 1516 0, 1517 &i_hash_shift, 1518 &i_hash_mask, 1519 0); 1520 1521 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1522 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1523 } 1524 1525 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1526 { 1527 inode->i_mode = mode; 1528 if (S_ISCHR(mode)) { 1529 inode->i_fop = &def_chr_fops; 1530 inode->i_rdev = rdev; 1531 } else if (S_ISBLK(mode)) { 1532 inode->i_fop = &def_blk_fops; 1533 inode->i_rdev = rdev; 1534 } else if (S_ISFIFO(mode)) 1535 inode->i_fop = &def_fifo_fops; 1536 else if (S_ISSOCK(mode)) 1537 inode->i_fop = &bad_sock_fops; 1538 else 1539 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1540 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1541 inode->i_ino); 1542 } 1543 EXPORT_SYMBOL(init_special_inode); 1544 1545 /** 1546 * Init uid,gid,mode for new inode according to posix standards 1547 * @inode: New inode 1548 * @dir: Directory inode 1549 * @mode: mode of the new inode 1550 */ 1551 void inode_init_owner(struct inode *inode, const struct inode *dir, 1552 mode_t mode) 1553 { 1554 inode->i_uid = current_fsuid(); 1555 if (dir && dir->i_mode & S_ISGID) { 1556 inode->i_gid = dir->i_gid; 1557 if (S_ISDIR(mode)) 1558 mode |= S_ISGID; 1559 } else 1560 inode->i_gid = current_fsgid(); 1561 inode->i_mode = mode; 1562 } 1563 EXPORT_SYMBOL(inode_init_owner); 1564