xref: /linux/fs/inode.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 
28 /*
29  * This is needed for the following functions:
30  *  - inode_has_buffers
31  *  - invalidate_inode_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78 
79 /*
80  * A simple spinlock to protect the list manipulations.
81  *
82  * NOTE! You also have to own the lock if you change
83  * the i_state of an inode while it is in use..
84  */
85 DEFINE_SPINLOCK(inode_lock);
86 
87 /*
88  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
89  * icache shrinking path, and the umount path.  Without this exclusion,
90  * by the time prune_icache calls iput for the inode whose pages it has
91  * been invalidating, or by the time it calls clear_inode & destroy_inode
92  * from its final dispose_list, the struct super_block they refer to
93  * (for inode->i_sb->s_op) may already have been freed and reused.
94  *
95  * We make this an rwsem because the fastpath is icache shrinking. In
96  * some cases a filesystem may be doing a significant amount of work in
97  * its inode reclaim code, so this should improve parallelism.
98  */
99 static DECLARE_RWSEM(iprune_sem);
100 
101 /*
102  * Statistics gathering..
103  */
104 struct inodes_stat_t inodes_stat;
105 
106 static struct kmem_cache *inode_cachep __read_mostly;
107 
108 static void wake_up_inode(struct inode *inode)
109 {
110 	/*
111 	 * Prevent speculative execution through spin_unlock(&inode_lock);
112 	 */
113 	smp_mb();
114 	wake_up_bit(&inode->i_state, __I_NEW);
115 }
116 
117 /**
118  * inode_init_always - perform inode structure intialisation
119  * @sb: superblock inode belongs to
120  * @inode: inode to initialise
121  *
122  * These are initializations that need to be done on every inode
123  * allocation as the fields are not initialised by slab allocation.
124  */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 	static const struct address_space_operations empty_aops;
128 	static const struct inode_operations empty_iops;
129 	static const struct file_operations empty_fops;
130 	struct address_space *const mapping = &inode->i_data;
131 
132 	inode->i_sb = sb;
133 	inode->i_blkbits = sb->s_blocksize_bits;
134 	inode->i_flags = 0;
135 	atomic_set(&inode->i_count, 1);
136 	inode->i_op = &empty_iops;
137 	inode->i_fop = &empty_fops;
138 	inode->i_nlink = 1;
139 	inode->i_uid = 0;
140 	inode->i_gid = 0;
141 	atomic_set(&inode->i_writecount, 0);
142 	inode->i_size = 0;
143 	inode->i_blocks = 0;
144 	inode->i_bytes = 0;
145 	inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 	inode->i_pipe = NULL;
150 	inode->i_bdev = NULL;
151 	inode->i_cdev = NULL;
152 	inode->i_rdev = 0;
153 	inode->dirtied_when = 0;
154 
155 	if (security_inode_alloc(inode))
156 		goto out;
157 	spin_lock_init(&inode->i_lock);
158 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159 
160 	mutex_init(&inode->i_mutex);
161 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162 
163 	init_rwsem(&inode->i_alloc_sem);
164 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
165 
166 	mapping->a_ops = &empty_aops;
167 	mapping->host = inode;
168 	mapping->flags = 0;
169 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
170 	mapping->assoc_mapping = NULL;
171 	mapping->backing_dev_info = &default_backing_dev_info;
172 	mapping->writeback_index = 0;
173 
174 	/*
175 	 * If the block_device provides a backing_dev_info for client
176 	 * inodes then use that.  Otherwise the inode share the bdev's
177 	 * backing_dev_info.
178 	 */
179 	if (sb->s_bdev) {
180 		struct backing_dev_info *bdi;
181 
182 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
183 		mapping->backing_dev_info = bdi;
184 	}
185 	inode->i_private = NULL;
186 	inode->i_mapping = mapping;
187 #ifdef CONFIG_FS_POSIX_ACL
188 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190 
191 #ifdef CONFIG_FSNOTIFY
192 	inode->i_fsnotify_mask = 0;
193 #endif
194 
195 	return 0;
196 out:
197 	return -ENOMEM;
198 }
199 EXPORT_SYMBOL(inode_init_always);
200 
201 static struct inode *alloc_inode(struct super_block *sb)
202 {
203 	struct inode *inode;
204 
205 	if (sb->s_op->alloc_inode)
206 		inode = sb->s_op->alloc_inode(sb);
207 	else
208 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
209 
210 	if (!inode)
211 		return NULL;
212 
213 	if (unlikely(inode_init_always(sb, inode))) {
214 		if (inode->i_sb->s_op->destroy_inode)
215 			inode->i_sb->s_op->destroy_inode(inode);
216 		else
217 			kmem_cache_free(inode_cachep, inode);
218 		return NULL;
219 	}
220 
221 	return inode;
222 }
223 
224 void __destroy_inode(struct inode *inode)
225 {
226 	BUG_ON(inode_has_buffers(inode));
227 	security_inode_free(inode);
228 	fsnotify_inode_delete(inode);
229 #ifdef CONFIG_FS_POSIX_ACL
230 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
231 		posix_acl_release(inode->i_acl);
232 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
233 		posix_acl_release(inode->i_default_acl);
234 #endif
235 }
236 EXPORT_SYMBOL(__destroy_inode);
237 
238 void destroy_inode(struct inode *inode)
239 {
240 	__destroy_inode(inode);
241 	if (inode->i_sb->s_op->destroy_inode)
242 		inode->i_sb->s_op->destroy_inode(inode);
243 	else
244 		kmem_cache_free(inode_cachep, (inode));
245 }
246 
247 /*
248  * These are initializations that only need to be done
249  * once, because the fields are idempotent across use
250  * of the inode, so let the slab aware of that.
251  */
252 void inode_init_once(struct inode *inode)
253 {
254 	memset(inode, 0, sizeof(*inode));
255 	INIT_HLIST_NODE(&inode->i_hash);
256 	INIT_LIST_HEAD(&inode->i_dentry);
257 	INIT_LIST_HEAD(&inode->i_devices);
258 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
259 	spin_lock_init(&inode->i_data.tree_lock);
260 	spin_lock_init(&inode->i_data.i_mmap_lock);
261 	INIT_LIST_HEAD(&inode->i_data.private_list);
262 	spin_lock_init(&inode->i_data.private_lock);
263 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
264 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
265 	i_size_ordered_init(inode);
266 #ifdef CONFIG_FSNOTIFY
267 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
268 #endif
269 }
270 EXPORT_SYMBOL(inode_init_once);
271 
272 static void init_once(void *foo)
273 {
274 	struct inode *inode = (struct inode *) foo;
275 
276 	inode_init_once(inode);
277 }
278 
279 /*
280  * inode_lock must be held
281  */
282 void __iget(struct inode *inode)
283 {
284 	if (atomic_inc_return(&inode->i_count) != 1)
285 		return;
286 
287 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
288 		list_move(&inode->i_list, &inode_in_use);
289 	inodes_stat.nr_unused--;
290 }
291 
292 void end_writeback(struct inode *inode)
293 {
294 	might_sleep();
295 	BUG_ON(inode->i_data.nrpages);
296 	BUG_ON(!list_empty(&inode->i_data.private_list));
297 	BUG_ON(!(inode->i_state & I_FREEING));
298 	BUG_ON(inode->i_state & I_CLEAR);
299 	inode_sync_wait(inode);
300 	inode->i_state = I_FREEING | I_CLEAR;
301 }
302 EXPORT_SYMBOL(end_writeback);
303 
304 static void evict(struct inode *inode)
305 {
306 	const struct super_operations *op = inode->i_sb->s_op;
307 
308 	if (op->evict_inode) {
309 		op->evict_inode(inode);
310 	} else {
311 		if (inode->i_data.nrpages)
312 			truncate_inode_pages(&inode->i_data, 0);
313 		end_writeback(inode);
314 	}
315 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
316 		bd_forget(inode);
317 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
318 		cd_forget(inode);
319 }
320 
321 /*
322  * dispose_list - dispose of the contents of a local list
323  * @head: the head of the list to free
324  *
325  * Dispose-list gets a local list with local inodes in it, so it doesn't
326  * need to worry about list corruption and SMP locks.
327  */
328 static void dispose_list(struct list_head *head)
329 {
330 	int nr_disposed = 0;
331 
332 	while (!list_empty(head)) {
333 		struct inode *inode;
334 
335 		inode = list_first_entry(head, struct inode, i_list);
336 		list_del(&inode->i_list);
337 
338 		evict(inode);
339 
340 		spin_lock(&inode_lock);
341 		hlist_del_init(&inode->i_hash);
342 		list_del_init(&inode->i_sb_list);
343 		spin_unlock(&inode_lock);
344 
345 		wake_up_inode(inode);
346 		destroy_inode(inode);
347 		nr_disposed++;
348 	}
349 	spin_lock(&inode_lock);
350 	inodes_stat.nr_inodes -= nr_disposed;
351 	spin_unlock(&inode_lock);
352 }
353 
354 /*
355  * Invalidate all inodes for a device.
356  */
357 static int invalidate_list(struct list_head *head, struct list_head *dispose)
358 {
359 	struct list_head *next;
360 	int busy = 0, count = 0;
361 
362 	next = head->next;
363 	for (;;) {
364 		struct list_head *tmp = next;
365 		struct inode *inode;
366 
367 		/*
368 		 * We can reschedule here without worrying about the list's
369 		 * consistency because the per-sb list of inodes must not
370 		 * change during umount anymore, and because iprune_sem keeps
371 		 * shrink_icache_memory() away.
372 		 */
373 		cond_resched_lock(&inode_lock);
374 
375 		next = next->next;
376 		if (tmp == head)
377 			break;
378 		inode = list_entry(tmp, struct inode, i_sb_list);
379 		if (inode->i_state & I_NEW)
380 			continue;
381 		invalidate_inode_buffers(inode);
382 		if (!atomic_read(&inode->i_count)) {
383 			list_move(&inode->i_list, dispose);
384 			WARN_ON(inode->i_state & I_NEW);
385 			inode->i_state |= I_FREEING;
386 			count++;
387 			continue;
388 		}
389 		busy = 1;
390 	}
391 	/* only unused inodes may be cached with i_count zero */
392 	inodes_stat.nr_unused -= count;
393 	return busy;
394 }
395 
396 /**
397  *	invalidate_inodes	- discard the inodes on a device
398  *	@sb: superblock
399  *
400  *	Discard all of the inodes for a given superblock. If the discard
401  *	fails because there are busy inodes then a non zero value is returned.
402  *	If the discard is successful all the inodes have been discarded.
403  */
404 int invalidate_inodes(struct super_block *sb)
405 {
406 	int busy;
407 	LIST_HEAD(throw_away);
408 
409 	down_write(&iprune_sem);
410 	spin_lock(&inode_lock);
411 	fsnotify_unmount_inodes(&sb->s_inodes);
412 	busy = invalidate_list(&sb->s_inodes, &throw_away);
413 	spin_unlock(&inode_lock);
414 
415 	dispose_list(&throw_away);
416 	up_write(&iprune_sem);
417 
418 	return busy;
419 }
420 EXPORT_SYMBOL(invalidate_inodes);
421 
422 static int can_unuse(struct inode *inode)
423 {
424 	if (inode->i_state)
425 		return 0;
426 	if (inode_has_buffers(inode))
427 		return 0;
428 	if (atomic_read(&inode->i_count))
429 		return 0;
430 	if (inode->i_data.nrpages)
431 		return 0;
432 	return 1;
433 }
434 
435 /*
436  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
437  * a temporary list and then are freed outside inode_lock by dispose_list().
438  *
439  * Any inodes which are pinned purely because of attached pagecache have their
440  * pagecache removed.  We expect the final iput() on that inode to add it to
441  * the front of the inode_unused list.  So look for it there and if the
442  * inode is still freeable, proceed.  The right inode is found 99.9% of the
443  * time in testing on a 4-way.
444  *
445  * If the inode has metadata buffers attached to mapping->private_list then
446  * try to remove them.
447  */
448 static void prune_icache(int nr_to_scan)
449 {
450 	LIST_HEAD(freeable);
451 	int nr_pruned = 0;
452 	int nr_scanned;
453 	unsigned long reap = 0;
454 
455 	down_read(&iprune_sem);
456 	spin_lock(&inode_lock);
457 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
458 		struct inode *inode;
459 
460 		if (list_empty(&inode_unused))
461 			break;
462 
463 		inode = list_entry(inode_unused.prev, struct inode, i_list);
464 
465 		if (inode->i_state || atomic_read(&inode->i_count)) {
466 			list_move(&inode->i_list, &inode_unused);
467 			continue;
468 		}
469 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
470 			__iget(inode);
471 			spin_unlock(&inode_lock);
472 			if (remove_inode_buffers(inode))
473 				reap += invalidate_mapping_pages(&inode->i_data,
474 								0, -1);
475 			iput(inode);
476 			spin_lock(&inode_lock);
477 
478 			if (inode != list_entry(inode_unused.next,
479 						struct inode, i_list))
480 				continue;	/* wrong inode or list_empty */
481 			if (!can_unuse(inode))
482 				continue;
483 		}
484 		list_move(&inode->i_list, &freeable);
485 		WARN_ON(inode->i_state & I_NEW);
486 		inode->i_state |= I_FREEING;
487 		nr_pruned++;
488 	}
489 	inodes_stat.nr_unused -= nr_pruned;
490 	if (current_is_kswapd())
491 		__count_vm_events(KSWAPD_INODESTEAL, reap);
492 	else
493 		__count_vm_events(PGINODESTEAL, reap);
494 	spin_unlock(&inode_lock);
495 
496 	dispose_list(&freeable);
497 	up_read(&iprune_sem);
498 }
499 
500 /*
501  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
502  * "unused" means that no dentries are referring to the inodes: the files are
503  * not open and the dcache references to those inodes have already been
504  * reclaimed.
505  *
506  * This function is passed the number of inodes to scan, and it returns the
507  * total number of remaining possibly-reclaimable inodes.
508  */
509 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
510 {
511 	if (nr) {
512 		/*
513 		 * Nasty deadlock avoidance.  We may hold various FS locks,
514 		 * and we don't want to recurse into the FS that called us
515 		 * in clear_inode() and friends..
516 		 */
517 		if (!(gfp_mask & __GFP_FS))
518 			return -1;
519 		prune_icache(nr);
520 	}
521 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
522 }
523 
524 static struct shrinker icache_shrinker = {
525 	.shrink = shrink_icache_memory,
526 	.seeks = DEFAULT_SEEKS,
527 };
528 
529 static void __wait_on_freeing_inode(struct inode *inode);
530 /*
531  * Called with the inode lock held.
532  * NOTE: we are not increasing the inode-refcount, you must call __iget()
533  * by hand after calling find_inode now! This simplifies iunique and won't
534  * add any additional branch in the common code.
535  */
536 static struct inode *find_inode(struct super_block *sb,
537 				struct hlist_head *head,
538 				int (*test)(struct inode *, void *),
539 				void *data)
540 {
541 	struct hlist_node *node;
542 	struct inode *inode = NULL;
543 
544 repeat:
545 	hlist_for_each_entry(inode, node, head, i_hash) {
546 		if (inode->i_sb != sb)
547 			continue;
548 		if (!test(inode, data))
549 			continue;
550 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
551 			__wait_on_freeing_inode(inode);
552 			goto repeat;
553 		}
554 		break;
555 	}
556 	return node ? inode : NULL;
557 }
558 
559 /*
560  * find_inode_fast is the fast path version of find_inode, see the comment at
561  * iget_locked for details.
562  */
563 static struct inode *find_inode_fast(struct super_block *sb,
564 				struct hlist_head *head, unsigned long ino)
565 {
566 	struct hlist_node *node;
567 	struct inode *inode = NULL;
568 
569 repeat:
570 	hlist_for_each_entry(inode, node, head, i_hash) {
571 		if (inode->i_ino != ino)
572 			continue;
573 		if (inode->i_sb != sb)
574 			continue;
575 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
576 			__wait_on_freeing_inode(inode);
577 			goto repeat;
578 		}
579 		break;
580 	}
581 	return node ? inode : NULL;
582 }
583 
584 static unsigned long hash(struct super_block *sb, unsigned long hashval)
585 {
586 	unsigned long tmp;
587 
588 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
589 			L1_CACHE_BYTES;
590 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
591 	return tmp & I_HASHMASK;
592 }
593 
594 static inline void
595 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
596 			struct inode *inode)
597 {
598 	inodes_stat.nr_inodes++;
599 	list_add(&inode->i_list, &inode_in_use);
600 	list_add(&inode->i_sb_list, &sb->s_inodes);
601 	if (head)
602 		hlist_add_head(&inode->i_hash, head);
603 }
604 
605 /**
606  * inode_add_to_lists - add a new inode to relevant lists
607  * @sb: superblock inode belongs to
608  * @inode: inode to mark in use
609  *
610  * When an inode is allocated it needs to be accounted for, added to the in use
611  * list, the owning superblock and the inode hash. This needs to be done under
612  * the inode_lock, so export a function to do this rather than the inode lock
613  * itself. We calculate the hash list to add to here so it is all internal
614  * which requires the caller to have already set up the inode number in the
615  * inode to add.
616  */
617 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
618 {
619 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
620 
621 	spin_lock(&inode_lock);
622 	__inode_add_to_lists(sb, head, inode);
623 	spin_unlock(&inode_lock);
624 }
625 EXPORT_SYMBOL_GPL(inode_add_to_lists);
626 
627 /**
628  *	new_inode 	- obtain an inode
629  *	@sb: superblock
630  *
631  *	Allocates a new inode for given superblock. The default gfp_mask
632  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
633  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
634  *	for the page cache are not reclaimable or migratable,
635  *	mapping_set_gfp_mask() must be called with suitable flags on the
636  *	newly created inode's mapping
637  *
638  */
639 struct inode *new_inode(struct super_block *sb)
640 {
641 	/*
642 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
643 	 * error if st_ino won't fit in target struct field. Use 32bit counter
644 	 * here to attempt to avoid that.
645 	 */
646 	static unsigned int last_ino;
647 	struct inode *inode;
648 
649 	spin_lock_prefetch(&inode_lock);
650 
651 	inode = alloc_inode(sb);
652 	if (inode) {
653 		spin_lock(&inode_lock);
654 		__inode_add_to_lists(sb, NULL, inode);
655 		inode->i_ino = ++last_ino;
656 		inode->i_state = 0;
657 		spin_unlock(&inode_lock);
658 	}
659 	return inode;
660 }
661 EXPORT_SYMBOL(new_inode);
662 
663 void unlock_new_inode(struct inode *inode)
664 {
665 #ifdef CONFIG_DEBUG_LOCK_ALLOC
666 	if (inode->i_mode & S_IFDIR) {
667 		struct file_system_type *type = inode->i_sb->s_type;
668 
669 		/* Set new key only if filesystem hasn't already changed it */
670 		if (!lockdep_match_class(&inode->i_mutex,
671 		    &type->i_mutex_key)) {
672 			/*
673 			 * ensure nobody is actually holding i_mutex
674 			 */
675 			mutex_destroy(&inode->i_mutex);
676 			mutex_init(&inode->i_mutex);
677 			lockdep_set_class(&inode->i_mutex,
678 					  &type->i_mutex_dir_key);
679 		}
680 	}
681 #endif
682 	/*
683 	 * This is special!  We do not need the spinlock when clearing I_NEW,
684 	 * because we're guaranteed that nobody else tries to do anything about
685 	 * the state of the inode when it is locked, as we just created it (so
686 	 * there can be no old holders that haven't tested I_NEW).
687 	 * However we must emit the memory barrier so that other CPUs reliably
688 	 * see the clearing of I_NEW after the other inode initialisation has
689 	 * completed.
690 	 */
691 	smp_mb();
692 	WARN_ON(!(inode->i_state & I_NEW));
693 	inode->i_state &= ~I_NEW;
694 	wake_up_inode(inode);
695 }
696 EXPORT_SYMBOL(unlock_new_inode);
697 
698 /*
699  * This is called without the inode lock held.. Be careful.
700  *
701  * We no longer cache the sb_flags in i_flags - see fs.h
702  *	-- rmk@arm.uk.linux.org
703  */
704 static struct inode *get_new_inode(struct super_block *sb,
705 				struct hlist_head *head,
706 				int (*test)(struct inode *, void *),
707 				int (*set)(struct inode *, void *),
708 				void *data)
709 {
710 	struct inode *inode;
711 
712 	inode = alloc_inode(sb);
713 	if (inode) {
714 		struct inode *old;
715 
716 		spin_lock(&inode_lock);
717 		/* We released the lock, so.. */
718 		old = find_inode(sb, head, test, data);
719 		if (!old) {
720 			if (set(inode, data))
721 				goto set_failed;
722 
723 			__inode_add_to_lists(sb, head, inode);
724 			inode->i_state = I_NEW;
725 			spin_unlock(&inode_lock);
726 
727 			/* Return the locked inode with I_NEW set, the
728 			 * caller is responsible for filling in the contents
729 			 */
730 			return inode;
731 		}
732 
733 		/*
734 		 * Uhhuh, somebody else created the same inode under
735 		 * us. Use the old inode instead of the one we just
736 		 * allocated.
737 		 */
738 		__iget(old);
739 		spin_unlock(&inode_lock);
740 		destroy_inode(inode);
741 		inode = old;
742 		wait_on_inode(inode);
743 	}
744 	return inode;
745 
746 set_failed:
747 	spin_unlock(&inode_lock);
748 	destroy_inode(inode);
749 	return NULL;
750 }
751 
752 /*
753  * get_new_inode_fast is the fast path version of get_new_inode, see the
754  * comment at iget_locked for details.
755  */
756 static struct inode *get_new_inode_fast(struct super_block *sb,
757 				struct hlist_head *head, unsigned long ino)
758 {
759 	struct inode *inode;
760 
761 	inode = alloc_inode(sb);
762 	if (inode) {
763 		struct inode *old;
764 
765 		spin_lock(&inode_lock);
766 		/* We released the lock, so.. */
767 		old = find_inode_fast(sb, head, ino);
768 		if (!old) {
769 			inode->i_ino = ino;
770 			__inode_add_to_lists(sb, head, inode);
771 			inode->i_state = I_NEW;
772 			spin_unlock(&inode_lock);
773 
774 			/* Return the locked inode with I_NEW set, the
775 			 * caller is responsible for filling in the contents
776 			 */
777 			return inode;
778 		}
779 
780 		/*
781 		 * Uhhuh, somebody else created the same inode under
782 		 * us. Use the old inode instead of the one we just
783 		 * allocated.
784 		 */
785 		__iget(old);
786 		spin_unlock(&inode_lock);
787 		destroy_inode(inode);
788 		inode = old;
789 		wait_on_inode(inode);
790 	}
791 	return inode;
792 }
793 
794 /**
795  *	iunique - get a unique inode number
796  *	@sb: superblock
797  *	@max_reserved: highest reserved inode number
798  *
799  *	Obtain an inode number that is unique on the system for a given
800  *	superblock. This is used by file systems that have no natural
801  *	permanent inode numbering system. An inode number is returned that
802  *	is higher than the reserved limit but unique.
803  *
804  *	BUGS:
805  *	With a large number of inodes live on the file system this function
806  *	currently becomes quite slow.
807  */
808 ino_t iunique(struct super_block *sb, ino_t max_reserved)
809 {
810 	/*
811 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
812 	 * error if st_ino won't fit in target struct field. Use 32bit counter
813 	 * here to attempt to avoid that.
814 	 */
815 	static unsigned int counter;
816 	struct inode *inode;
817 	struct hlist_head *head;
818 	ino_t res;
819 
820 	spin_lock(&inode_lock);
821 	do {
822 		if (counter <= max_reserved)
823 			counter = max_reserved + 1;
824 		res = counter++;
825 		head = inode_hashtable + hash(sb, res);
826 		inode = find_inode_fast(sb, head, res);
827 	} while (inode != NULL);
828 	spin_unlock(&inode_lock);
829 
830 	return res;
831 }
832 EXPORT_SYMBOL(iunique);
833 
834 struct inode *igrab(struct inode *inode)
835 {
836 	spin_lock(&inode_lock);
837 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
838 		__iget(inode);
839 	else
840 		/*
841 		 * Handle the case where s_op->clear_inode is not been
842 		 * called yet, and somebody is calling igrab
843 		 * while the inode is getting freed.
844 		 */
845 		inode = NULL;
846 	spin_unlock(&inode_lock);
847 	return inode;
848 }
849 EXPORT_SYMBOL(igrab);
850 
851 /**
852  * ifind - internal function, you want ilookup5() or iget5().
853  * @sb:		super block of file system to search
854  * @head:       the head of the list to search
855  * @test:	callback used for comparisons between inodes
856  * @data:	opaque data pointer to pass to @test
857  * @wait:	if true wait for the inode to be unlocked, if false do not
858  *
859  * ifind() searches for the inode specified by @data in the inode
860  * cache. This is a generalized version of ifind_fast() for file systems where
861  * the inode number is not sufficient for unique identification of an inode.
862  *
863  * If the inode is in the cache, the inode is returned with an incremented
864  * reference count.
865  *
866  * Otherwise NULL is returned.
867  *
868  * Note, @test is called with the inode_lock held, so can't sleep.
869  */
870 static struct inode *ifind(struct super_block *sb,
871 		struct hlist_head *head, int (*test)(struct inode *, void *),
872 		void *data, const int wait)
873 {
874 	struct inode *inode;
875 
876 	spin_lock(&inode_lock);
877 	inode = find_inode(sb, head, test, data);
878 	if (inode) {
879 		__iget(inode);
880 		spin_unlock(&inode_lock);
881 		if (likely(wait))
882 			wait_on_inode(inode);
883 		return inode;
884 	}
885 	spin_unlock(&inode_lock);
886 	return NULL;
887 }
888 
889 /**
890  * ifind_fast - internal function, you want ilookup() or iget().
891  * @sb:		super block of file system to search
892  * @head:       head of the list to search
893  * @ino:	inode number to search for
894  *
895  * ifind_fast() searches for the inode @ino in the inode cache. This is for
896  * file systems where the inode number is sufficient for unique identification
897  * of an inode.
898  *
899  * If the inode is in the cache, the inode is returned with an incremented
900  * reference count.
901  *
902  * Otherwise NULL is returned.
903  */
904 static struct inode *ifind_fast(struct super_block *sb,
905 		struct hlist_head *head, unsigned long ino)
906 {
907 	struct inode *inode;
908 
909 	spin_lock(&inode_lock);
910 	inode = find_inode_fast(sb, head, ino);
911 	if (inode) {
912 		__iget(inode);
913 		spin_unlock(&inode_lock);
914 		wait_on_inode(inode);
915 		return inode;
916 	}
917 	spin_unlock(&inode_lock);
918 	return NULL;
919 }
920 
921 /**
922  * ilookup5_nowait - search for an inode in the inode cache
923  * @sb:		super block of file system to search
924  * @hashval:	hash value (usually inode number) to search for
925  * @test:	callback used for comparisons between inodes
926  * @data:	opaque data pointer to pass to @test
927  *
928  * ilookup5() uses ifind() to search for the inode specified by @hashval and
929  * @data in the inode cache. This is a generalized version of ilookup() for
930  * file systems where the inode number is not sufficient for unique
931  * identification of an inode.
932  *
933  * If the inode is in the cache, the inode is returned with an incremented
934  * reference count.  Note, the inode lock is not waited upon so you have to be
935  * very careful what you do with the returned inode.  You probably should be
936  * using ilookup5() instead.
937  *
938  * Otherwise NULL is returned.
939  *
940  * Note, @test is called with the inode_lock held, so can't sleep.
941  */
942 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
943 		int (*test)(struct inode *, void *), void *data)
944 {
945 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
946 
947 	return ifind(sb, head, test, data, 0);
948 }
949 EXPORT_SYMBOL(ilookup5_nowait);
950 
951 /**
952  * ilookup5 - search for an inode in the inode cache
953  * @sb:		super block of file system to search
954  * @hashval:	hash value (usually inode number) to search for
955  * @test:	callback used for comparisons between inodes
956  * @data:	opaque data pointer to pass to @test
957  *
958  * ilookup5() uses ifind() to search for the inode specified by @hashval and
959  * @data in the inode cache. This is a generalized version of ilookup() for
960  * file systems where the inode number is not sufficient for unique
961  * identification of an inode.
962  *
963  * If the inode is in the cache, the inode lock is waited upon and the inode is
964  * returned with an incremented reference count.
965  *
966  * Otherwise NULL is returned.
967  *
968  * Note, @test is called with the inode_lock held, so can't sleep.
969  */
970 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
971 		int (*test)(struct inode *, void *), void *data)
972 {
973 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
974 
975 	return ifind(sb, head, test, data, 1);
976 }
977 EXPORT_SYMBOL(ilookup5);
978 
979 /**
980  * ilookup - search for an inode in the inode cache
981  * @sb:		super block of file system to search
982  * @ino:	inode number to search for
983  *
984  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
985  * This is for file systems where the inode number is sufficient for unique
986  * identification of an inode.
987  *
988  * If the inode is in the cache, the inode is returned with an incremented
989  * reference count.
990  *
991  * Otherwise NULL is returned.
992  */
993 struct inode *ilookup(struct super_block *sb, unsigned long ino)
994 {
995 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
996 
997 	return ifind_fast(sb, head, ino);
998 }
999 EXPORT_SYMBOL(ilookup);
1000 
1001 /**
1002  * iget5_locked - obtain an inode from a mounted file system
1003  * @sb:		super block of file system
1004  * @hashval:	hash value (usually inode number) to get
1005  * @test:	callback used for comparisons between inodes
1006  * @set:	callback used to initialize a new struct inode
1007  * @data:	opaque data pointer to pass to @test and @set
1008  *
1009  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1010  * and @data in the inode cache and if present it is returned with an increased
1011  * reference count. This is a generalized version of iget_locked() for file
1012  * systems where the inode number is not sufficient for unique identification
1013  * of an inode.
1014  *
1015  * If the inode is not in cache, get_new_inode() is called to allocate a new
1016  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1017  * file system gets to fill it in before unlocking it via unlock_new_inode().
1018  *
1019  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1020  */
1021 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1022 		int (*test)(struct inode *, void *),
1023 		int (*set)(struct inode *, void *), void *data)
1024 {
1025 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1026 	struct inode *inode;
1027 
1028 	inode = ifind(sb, head, test, data, 1);
1029 	if (inode)
1030 		return inode;
1031 	/*
1032 	 * get_new_inode() will do the right thing, re-trying the search
1033 	 * in case it had to block at any point.
1034 	 */
1035 	return get_new_inode(sb, head, test, set, data);
1036 }
1037 EXPORT_SYMBOL(iget5_locked);
1038 
1039 /**
1040  * iget_locked - obtain an inode from a mounted file system
1041  * @sb:		super block of file system
1042  * @ino:	inode number to get
1043  *
1044  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1045  * the inode cache and if present it is returned with an increased reference
1046  * count. This is for file systems where the inode number is sufficient for
1047  * unique identification of an inode.
1048  *
1049  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1050  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1051  * The file system gets to fill it in before unlocking it via
1052  * unlock_new_inode().
1053  */
1054 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1055 {
1056 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1057 	struct inode *inode;
1058 
1059 	inode = ifind_fast(sb, head, ino);
1060 	if (inode)
1061 		return inode;
1062 	/*
1063 	 * get_new_inode_fast() will do the right thing, re-trying the search
1064 	 * in case it had to block at any point.
1065 	 */
1066 	return get_new_inode_fast(sb, head, ino);
1067 }
1068 EXPORT_SYMBOL(iget_locked);
1069 
1070 int insert_inode_locked(struct inode *inode)
1071 {
1072 	struct super_block *sb = inode->i_sb;
1073 	ino_t ino = inode->i_ino;
1074 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1075 
1076 	inode->i_state |= I_NEW;
1077 	while (1) {
1078 		struct hlist_node *node;
1079 		struct inode *old = NULL;
1080 		spin_lock(&inode_lock);
1081 		hlist_for_each_entry(old, node, head, i_hash) {
1082 			if (old->i_ino != ino)
1083 				continue;
1084 			if (old->i_sb != sb)
1085 				continue;
1086 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1087 				continue;
1088 			break;
1089 		}
1090 		if (likely(!node)) {
1091 			hlist_add_head(&inode->i_hash, head);
1092 			spin_unlock(&inode_lock);
1093 			return 0;
1094 		}
1095 		__iget(old);
1096 		spin_unlock(&inode_lock);
1097 		wait_on_inode(old);
1098 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1099 			iput(old);
1100 			return -EBUSY;
1101 		}
1102 		iput(old);
1103 	}
1104 }
1105 EXPORT_SYMBOL(insert_inode_locked);
1106 
1107 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1108 		int (*test)(struct inode *, void *), void *data)
1109 {
1110 	struct super_block *sb = inode->i_sb;
1111 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1112 
1113 	inode->i_state |= I_NEW;
1114 
1115 	while (1) {
1116 		struct hlist_node *node;
1117 		struct inode *old = NULL;
1118 
1119 		spin_lock(&inode_lock);
1120 		hlist_for_each_entry(old, node, head, i_hash) {
1121 			if (old->i_sb != sb)
1122 				continue;
1123 			if (!test(old, data))
1124 				continue;
1125 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1126 				continue;
1127 			break;
1128 		}
1129 		if (likely(!node)) {
1130 			hlist_add_head(&inode->i_hash, head);
1131 			spin_unlock(&inode_lock);
1132 			return 0;
1133 		}
1134 		__iget(old);
1135 		spin_unlock(&inode_lock);
1136 		wait_on_inode(old);
1137 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1138 			iput(old);
1139 			return -EBUSY;
1140 		}
1141 		iput(old);
1142 	}
1143 }
1144 EXPORT_SYMBOL(insert_inode_locked4);
1145 
1146 /**
1147  *	__insert_inode_hash - hash an inode
1148  *	@inode: unhashed inode
1149  *	@hashval: unsigned long value used to locate this object in the
1150  *		inode_hashtable.
1151  *
1152  *	Add an inode to the inode hash for this superblock.
1153  */
1154 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1155 {
1156 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1157 	spin_lock(&inode_lock);
1158 	hlist_add_head(&inode->i_hash, head);
1159 	spin_unlock(&inode_lock);
1160 }
1161 EXPORT_SYMBOL(__insert_inode_hash);
1162 
1163 /**
1164  *	remove_inode_hash - remove an inode from the hash
1165  *	@inode: inode to unhash
1166  *
1167  *	Remove an inode from the superblock.
1168  */
1169 void remove_inode_hash(struct inode *inode)
1170 {
1171 	spin_lock(&inode_lock);
1172 	hlist_del_init(&inode->i_hash);
1173 	spin_unlock(&inode_lock);
1174 }
1175 EXPORT_SYMBOL(remove_inode_hash);
1176 
1177 int generic_delete_inode(struct inode *inode)
1178 {
1179 	return 1;
1180 }
1181 EXPORT_SYMBOL(generic_delete_inode);
1182 
1183 /*
1184  * Normal UNIX filesystem behaviour: delete the
1185  * inode when the usage count drops to zero, and
1186  * i_nlink is zero.
1187  */
1188 int generic_drop_inode(struct inode *inode)
1189 {
1190 	return !inode->i_nlink || hlist_unhashed(&inode->i_hash);
1191 }
1192 EXPORT_SYMBOL_GPL(generic_drop_inode);
1193 
1194 /*
1195  * Called when we're dropping the last reference
1196  * to an inode.
1197  *
1198  * Call the FS "drop_inode()" function, defaulting to
1199  * the legacy UNIX filesystem behaviour.  If it tells
1200  * us to evict inode, do so.  Otherwise, retain inode
1201  * in cache if fs is alive, sync and evict if fs is
1202  * shutting down.
1203  */
1204 static void iput_final(struct inode *inode)
1205 {
1206 	struct super_block *sb = inode->i_sb;
1207 	const struct super_operations *op = inode->i_sb->s_op;
1208 	int drop;
1209 
1210 	if (op && op->drop_inode)
1211 		drop = op->drop_inode(inode);
1212 	else
1213 		drop = generic_drop_inode(inode);
1214 
1215 	if (!drop) {
1216 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1217 			list_move(&inode->i_list, &inode_unused);
1218 		inodes_stat.nr_unused++;
1219 		if (sb->s_flags & MS_ACTIVE) {
1220 			spin_unlock(&inode_lock);
1221 			return;
1222 		}
1223 		WARN_ON(inode->i_state & I_NEW);
1224 		inode->i_state |= I_WILL_FREE;
1225 		spin_unlock(&inode_lock);
1226 		write_inode_now(inode, 1);
1227 		spin_lock(&inode_lock);
1228 		WARN_ON(inode->i_state & I_NEW);
1229 		inode->i_state &= ~I_WILL_FREE;
1230 		inodes_stat.nr_unused--;
1231 		hlist_del_init(&inode->i_hash);
1232 	}
1233 	list_del_init(&inode->i_list);
1234 	list_del_init(&inode->i_sb_list);
1235 	WARN_ON(inode->i_state & I_NEW);
1236 	inode->i_state |= I_FREEING;
1237 	inodes_stat.nr_inodes--;
1238 	spin_unlock(&inode_lock);
1239 	evict(inode);
1240 	spin_lock(&inode_lock);
1241 	hlist_del_init(&inode->i_hash);
1242 	spin_unlock(&inode_lock);
1243 	wake_up_inode(inode);
1244 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1245 	destroy_inode(inode);
1246 }
1247 
1248 /**
1249  *	iput	- put an inode
1250  *	@inode: inode to put
1251  *
1252  *	Puts an inode, dropping its usage count. If the inode use count hits
1253  *	zero, the inode is then freed and may also be destroyed.
1254  *
1255  *	Consequently, iput() can sleep.
1256  */
1257 void iput(struct inode *inode)
1258 {
1259 	if (inode) {
1260 		BUG_ON(inode->i_state & I_CLEAR);
1261 
1262 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1263 			iput_final(inode);
1264 	}
1265 }
1266 EXPORT_SYMBOL(iput);
1267 
1268 /**
1269  *	bmap	- find a block number in a file
1270  *	@inode: inode of file
1271  *	@block: block to find
1272  *
1273  *	Returns the block number on the device holding the inode that
1274  *	is the disk block number for the block of the file requested.
1275  *	That is, asked for block 4 of inode 1 the function will return the
1276  *	disk block relative to the disk start that holds that block of the
1277  *	file.
1278  */
1279 sector_t bmap(struct inode *inode, sector_t block)
1280 {
1281 	sector_t res = 0;
1282 	if (inode->i_mapping->a_ops->bmap)
1283 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1284 	return res;
1285 }
1286 EXPORT_SYMBOL(bmap);
1287 
1288 /*
1289  * With relative atime, only update atime if the previous atime is
1290  * earlier than either the ctime or mtime or if at least a day has
1291  * passed since the last atime update.
1292  */
1293 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1294 			     struct timespec now)
1295 {
1296 
1297 	if (!(mnt->mnt_flags & MNT_RELATIME))
1298 		return 1;
1299 	/*
1300 	 * Is mtime younger than atime? If yes, update atime:
1301 	 */
1302 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1303 		return 1;
1304 	/*
1305 	 * Is ctime younger than atime? If yes, update atime:
1306 	 */
1307 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1308 		return 1;
1309 
1310 	/*
1311 	 * Is the previous atime value older than a day? If yes,
1312 	 * update atime:
1313 	 */
1314 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1315 		return 1;
1316 	/*
1317 	 * Good, we can skip the atime update:
1318 	 */
1319 	return 0;
1320 }
1321 
1322 /**
1323  *	touch_atime	-	update the access time
1324  *	@mnt: mount the inode is accessed on
1325  *	@dentry: dentry accessed
1326  *
1327  *	Update the accessed time on an inode and mark it for writeback.
1328  *	This function automatically handles read only file systems and media,
1329  *	as well as the "noatime" flag and inode specific "noatime" markers.
1330  */
1331 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1332 {
1333 	struct inode *inode = dentry->d_inode;
1334 	struct timespec now;
1335 
1336 	if (inode->i_flags & S_NOATIME)
1337 		return;
1338 	if (IS_NOATIME(inode))
1339 		return;
1340 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1341 		return;
1342 
1343 	if (mnt->mnt_flags & MNT_NOATIME)
1344 		return;
1345 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1346 		return;
1347 
1348 	now = current_fs_time(inode->i_sb);
1349 
1350 	if (!relatime_need_update(mnt, inode, now))
1351 		return;
1352 
1353 	if (timespec_equal(&inode->i_atime, &now))
1354 		return;
1355 
1356 	if (mnt_want_write(mnt))
1357 		return;
1358 
1359 	inode->i_atime = now;
1360 	mark_inode_dirty_sync(inode);
1361 	mnt_drop_write(mnt);
1362 }
1363 EXPORT_SYMBOL(touch_atime);
1364 
1365 /**
1366  *	file_update_time	-	update mtime and ctime time
1367  *	@file: file accessed
1368  *
1369  *	Update the mtime and ctime members of an inode and mark the inode
1370  *	for writeback.  Note that this function is meant exclusively for
1371  *	usage in the file write path of filesystems, and filesystems may
1372  *	choose to explicitly ignore update via this function with the
1373  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1374  *	timestamps are handled by the server.
1375  */
1376 
1377 void file_update_time(struct file *file)
1378 {
1379 	struct inode *inode = file->f_path.dentry->d_inode;
1380 	struct timespec now;
1381 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1382 
1383 	/* First try to exhaust all avenues to not sync */
1384 	if (IS_NOCMTIME(inode))
1385 		return;
1386 
1387 	now = current_fs_time(inode->i_sb);
1388 	if (!timespec_equal(&inode->i_mtime, &now))
1389 		sync_it = S_MTIME;
1390 
1391 	if (!timespec_equal(&inode->i_ctime, &now))
1392 		sync_it |= S_CTIME;
1393 
1394 	if (IS_I_VERSION(inode))
1395 		sync_it |= S_VERSION;
1396 
1397 	if (!sync_it)
1398 		return;
1399 
1400 	/* Finally allowed to write? Takes lock. */
1401 	if (mnt_want_write_file(file))
1402 		return;
1403 
1404 	/* Only change inode inside the lock region */
1405 	if (sync_it & S_VERSION)
1406 		inode_inc_iversion(inode);
1407 	if (sync_it & S_CTIME)
1408 		inode->i_ctime = now;
1409 	if (sync_it & S_MTIME)
1410 		inode->i_mtime = now;
1411 	mark_inode_dirty_sync(inode);
1412 	mnt_drop_write(file->f_path.mnt);
1413 }
1414 EXPORT_SYMBOL(file_update_time);
1415 
1416 int inode_needs_sync(struct inode *inode)
1417 {
1418 	if (IS_SYNC(inode))
1419 		return 1;
1420 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1421 		return 1;
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL(inode_needs_sync);
1425 
1426 int inode_wait(void *word)
1427 {
1428 	schedule();
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL(inode_wait);
1432 
1433 /*
1434  * If we try to find an inode in the inode hash while it is being
1435  * deleted, we have to wait until the filesystem completes its
1436  * deletion before reporting that it isn't found.  This function waits
1437  * until the deletion _might_ have completed.  Callers are responsible
1438  * to recheck inode state.
1439  *
1440  * It doesn't matter if I_NEW is not set initially, a call to
1441  * wake_up_inode() after removing from the hash list will DTRT.
1442  *
1443  * This is called with inode_lock held.
1444  */
1445 static void __wait_on_freeing_inode(struct inode *inode)
1446 {
1447 	wait_queue_head_t *wq;
1448 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1449 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1450 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1451 	spin_unlock(&inode_lock);
1452 	schedule();
1453 	finish_wait(wq, &wait.wait);
1454 	spin_lock(&inode_lock);
1455 }
1456 
1457 static __initdata unsigned long ihash_entries;
1458 static int __init set_ihash_entries(char *str)
1459 {
1460 	if (!str)
1461 		return 0;
1462 	ihash_entries = simple_strtoul(str, &str, 0);
1463 	return 1;
1464 }
1465 __setup("ihash_entries=", set_ihash_entries);
1466 
1467 /*
1468  * Initialize the waitqueues and inode hash table.
1469  */
1470 void __init inode_init_early(void)
1471 {
1472 	int loop;
1473 
1474 	/* If hashes are distributed across NUMA nodes, defer
1475 	 * hash allocation until vmalloc space is available.
1476 	 */
1477 	if (hashdist)
1478 		return;
1479 
1480 	inode_hashtable =
1481 		alloc_large_system_hash("Inode-cache",
1482 					sizeof(struct hlist_head),
1483 					ihash_entries,
1484 					14,
1485 					HASH_EARLY,
1486 					&i_hash_shift,
1487 					&i_hash_mask,
1488 					0);
1489 
1490 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1491 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1492 }
1493 
1494 void __init inode_init(void)
1495 {
1496 	int loop;
1497 
1498 	/* inode slab cache */
1499 	inode_cachep = kmem_cache_create("inode_cache",
1500 					 sizeof(struct inode),
1501 					 0,
1502 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1503 					 SLAB_MEM_SPREAD),
1504 					 init_once);
1505 	register_shrinker(&icache_shrinker);
1506 
1507 	/* Hash may have been set up in inode_init_early */
1508 	if (!hashdist)
1509 		return;
1510 
1511 	inode_hashtable =
1512 		alloc_large_system_hash("Inode-cache",
1513 					sizeof(struct hlist_head),
1514 					ihash_entries,
1515 					14,
1516 					0,
1517 					&i_hash_shift,
1518 					&i_hash_mask,
1519 					0);
1520 
1521 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1522 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1523 }
1524 
1525 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1526 {
1527 	inode->i_mode = mode;
1528 	if (S_ISCHR(mode)) {
1529 		inode->i_fop = &def_chr_fops;
1530 		inode->i_rdev = rdev;
1531 	} else if (S_ISBLK(mode)) {
1532 		inode->i_fop = &def_blk_fops;
1533 		inode->i_rdev = rdev;
1534 	} else if (S_ISFIFO(mode))
1535 		inode->i_fop = &def_fifo_fops;
1536 	else if (S_ISSOCK(mode))
1537 		inode->i_fop = &bad_sock_fops;
1538 	else
1539 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1540 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1541 				  inode->i_ino);
1542 }
1543 EXPORT_SYMBOL(init_special_inode);
1544 
1545 /**
1546  * Init uid,gid,mode for new inode according to posix standards
1547  * @inode: New inode
1548  * @dir: Directory inode
1549  * @mode: mode of the new inode
1550  */
1551 void inode_init_owner(struct inode *inode, const struct inode *dir,
1552 			mode_t mode)
1553 {
1554 	inode->i_uid = current_fsuid();
1555 	if (dir && dir->i_mode & S_ISGID) {
1556 		inode->i_gid = dir->i_gid;
1557 		if (S_ISDIR(mode))
1558 			mode |= S_ISGID;
1559 	} else
1560 		inode->i_gid = current_fsgid();
1561 	inode->i_mode = mode;
1562 }
1563 EXPORT_SYMBOL(inode_init_owner);
1564