xref: /linux/fs/inode.c (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199 
200 #ifdef CONFIG_FSNOTIFY
201 	inode->i_fsnotify_mask = 0;
202 #endif
203 	inode->i_flctx = NULL;
204 	this_cpu_inc(nr_inodes);
205 
206 	return 0;
207 out:
208 	return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
212 void free_inode_nonrcu(struct inode *inode)
213 {
214 	kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217 
218 static void i_callback(struct rcu_head *head)
219 {
220 	struct inode *inode = container_of(head, struct inode, i_rcu);
221 	if (inode->free_inode)
222 		inode->free_inode(inode);
223 	else
224 		free_inode_nonrcu(inode);
225 }
226 
227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 	const struct super_operations *ops = sb->s_op;
230 	struct inode *inode;
231 
232 	if (ops->alloc_inode)
233 		inode = ops->alloc_inode(sb);
234 	else
235 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236 
237 	if (!inode)
238 		return NULL;
239 
240 	if (unlikely(inode_init_always(sb, inode))) {
241 		if (ops->destroy_inode) {
242 			ops->destroy_inode(inode);
243 			if (!ops->free_inode)
244 				return NULL;
245 		}
246 		inode->free_inode = ops->free_inode;
247 		i_callback(&inode->i_rcu);
248 		return NULL;
249 	}
250 
251 	return inode;
252 }
253 
254 void __destroy_inode(struct inode *inode)
255 {
256 	BUG_ON(inode_has_buffers(inode));
257 	inode_detach_wb(inode);
258 	security_inode_free(inode);
259 	fsnotify_inode_delete(inode);
260 	locks_free_lock_context(inode);
261 	if (!inode->i_nlink) {
262 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 		atomic_long_dec(&inode->i_sb->s_remove_count);
264 	}
265 
266 #ifdef CONFIG_FS_POSIX_ACL
267 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 		posix_acl_release(inode->i_acl);
269 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 		posix_acl_release(inode->i_default_acl);
271 #endif
272 	this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275 
276 static void destroy_inode(struct inode *inode)
277 {
278 	const struct super_operations *ops = inode->i_sb->s_op;
279 
280 	BUG_ON(!list_empty(&inode->i_lru));
281 	__destroy_inode(inode);
282 	if (ops->destroy_inode) {
283 		ops->destroy_inode(inode);
284 		if (!ops->free_inode)
285 			return;
286 	}
287 	inode->free_inode = ops->free_inode;
288 	call_rcu(&inode->i_rcu, i_callback);
289 }
290 
291 /**
292  * drop_nlink - directly drop an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  In cases
297  * where we are attempting to track writes to the
298  * filesystem, a decrement to zero means an imminent
299  * write when the file is truncated and actually unlinked
300  * on the filesystem.
301  */
302 void drop_nlink(struct inode *inode)
303 {
304 	WARN_ON(inode->i_nlink == 0);
305 	inode->__i_nlink--;
306 	if (!inode->i_nlink)
307 		atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL(drop_nlink);
310 
311 /**
312  * clear_nlink - directly zero an inode's link count
313  * @inode: inode
314  *
315  * This is a low-level filesystem helper to replace any
316  * direct filesystem manipulation of i_nlink.  See
317  * drop_nlink() for why we care about i_nlink hitting zero.
318  */
319 void clear_nlink(struct inode *inode)
320 {
321 	if (inode->i_nlink) {
322 		inode->__i_nlink = 0;
323 		atomic_long_inc(&inode->i_sb->s_remove_count);
324 	}
325 }
326 EXPORT_SYMBOL(clear_nlink);
327 
328 /**
329  * set_nlink - directly set an inode's link count
330  * @inode: inode
331  * @nlink: new nlink (should be non-zero)
332  *
333  * This is a low-level filesystem helper to replace any
334  * direct filesystem manipulation of i_nlink.
335  */
336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 	if (!nlink) {
339 		clear_nlink(inode);
340 	} else {
341 		/* Yes, some filesystems do change nlink from zero to one */
342 		if (inode->i_nlink == 0)
343 			atomic_long_dec(&inode->i_sb->s_remove_count);
344 
345 		inode->__i_nlink = nlink;
346 	}
347 }
348 EXPORT_SYMBOL(set_nlink);
349 
350 /**
351  * inc_nlink - directly increment an inode's link count
352  * @inode: inode
353  *
354  * This is a low-level filesystem helper to replace any
355  * direct filesystem manipulation of i_nlink.  Currently,
356  * it is only here for parity with dec_nlink().
357  */
358 void inc_nlink(struct inode *inode)
359 {
360 	if (unlikely(inode->i_nlink == 0)) {
361 		WARN_ON(!(inode->i_state & I_LINKABLE));
362 		atomic_long_dec(&inode->i_sb->s_remove_count);
363 	}
364 
365 	inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368 
369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 	init_rwsem(&mapping->i_mmap_rwsem);
373 	INIT_LIST_HEAD(&mapping->private_list);
374 	spin_lock_init(&mapping->private_lock);
375 	mapping->i_mmap = RB_ROOT_CACHED;
376 }
377 
378 void address_space_init_once(struct address_space *mapping)
379 {
380 	memset(mapping, 0, sizeof(*mapping));
381 	__address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384 
385 /*
386  * These are initializations that only need to be done
387  * once, because the fields are idempotent across use
388  * of the inode, so let the slab aware of that.
389  */
390 void inode_init_once(struct inode *inode)
391 {
392 	memset(inode, 0, sizeof(*inode));
393 	INIT_HLIST_NODE(&inode->i_hash);
394 	INIT_LIST_HEAD(&inode->i_devices);
395 	INIT_LIST_HEAD(&inode->i_io_list);
396 	INIT_LIST_HEAD(&inode->i_wb_list);
397 	INIT_LIST_HEAD(&inode->i_lru);
398 	__address_space_init_once(&inode->i_data);
399 	i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL(inode_init_once);
402 
403 static void init_once(void *foo)
404 {
405 	struct inode *inode = (struct inode *) foo;
406 
407 	inode_init_once(inode);
408 }
409 
410 /*
411  * inode->i_lock must be held
412  */
413 void __iget(struct inode *inode)
414 {
415 	atomic_inc(&inode->i_count);
416 }
417 
418 /*
419  * get additional reference to inode; caller must already hold one.
420  */
421 void ihold(struct inode *inode)
422 {
423 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL(ihold);
426 
427 static void inode_lru_list_add(struct inode *inode)
428 {
429 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 		this_cpu_inc(nr_unused);
431 	else
432 		inode->i_state |= I_REFERENCED;
433 }
434 
435 /*
436  * Add inode to LRU if needed (inode is unused and clean).
437  *
438  * Needs inode->i_lock held.
439  */
440 void inode_add_lru(struct inode *inode)
441 {
442 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 				I_FREEING | I_WILL_FREE)) &&
444 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 		inode_lru_list_add(inode);
446 }
447 
448 
449 static void inode_lru_list_del(struct inode *inode)
450 {
451 
452 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 		this_cpu_dec(nr_unused);
454 }
455 
456 /**
457  * inode_sb_list_add - add inode to the superblock list of inodes
458  * @inode: inode to add
459  */
460 void inode_sb_list_add(struct inode *inode)
461 {
462 	spin_lock(&inode->i_sb->s_inode_list_lock);
463 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 	spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467 
468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 	if (!list_empty(&inode->i_sb_list)) {
471 		spin_lock(&inode->i_sb->s_inode_list_lock);
472 		list_del_init(&inode->i_sb_list);
473 		spin_unlock(&inode->i_sb->s_inode_list_lock);
474 	}
475 }
476 
477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 	unsigned long tmp;
480 
481 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 			L1_CACHE_BYTES;
483 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 	return tmp & i_hash_mask;
485 }
486 
487 /**
488  *	__insert_inode_hash - hash an inode
489  *	@inode: unhashed inode
490  *	@hashval: unsigned long value used to locate this object in the
491  *		inode_hashtable.
492  *
493  *	Add an inode to the inode hash for this superblock.
494  */
495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498 
499 	spin_lock(&inode_hash_lock);
500 	spin_lock(&inode->i_lock);
501 	hlist_add_head_rcu(&inode->i_hash, b);
502 	spin_unlock(&inode->i_lock);
503 	spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL(__insert_inode_hash);
506 
507 /**
508  *	__remove_inode_hash - remove an inode from the hash
509  *	@inode: inode to unhash
510  *
511  *	Remove an inode from the superblock.
512  */
513 void __remove_inode_hash(struct inode *inode)
514 {
515 	spin_lock(&inode_hash_lock);
516 	spin_lock(&inode->i_lock);
517 	hlist_del_init_rcu(&inode->i_hash);
518 	spin_unlock(&inode->i_lock);
519 	spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL(__remove_inode_hash);
522 
523 void clear_inode(struct inode *inode)
524 {
525 	/*
526 	 * We have to cycle the i_pages lock here because reclaim can be in the
527 	 * process of removing the last page (in __delete_from_page_cache())
528 	 * and we must not free the mapping under it.
529 	 */
530 	xa_lock_irq(&inode->i_data.i_pages);
531 	BUG_ON(inode->i_data.nrpages);
532 	/*
533 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
534 	 * two known and long-standing ways in which nodes may get left behind
535 	 * (when deep radix-tree node allocation failed partway; or when THP
536 	 * collapse_file() failed). Until those two known cases are cleaned up,
537 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
538 	 * nor even WARN_ON(!mapping_empty).
539 	 */
540 	xa_unlock_irq(&inode->i_data.i_pages);
541 	BUG_ON(!list_empty(&inode->i_data.private_list));
542 	BUG_ON(!(inode->i_state & I_FREEING));
543 	BUG_ON(inode->i_state & I_CLEAR);
544 	BUG_ON(!list_empty(&inode->i_wb_list));
545 	/* don't need i_lock here, no concurrent mods to i_state */
546 	inode->i_state = I_FREEING | I_CLEAR;
547 }
548 EXPORT_SYMBOL(clear_inode);
549 
550 /*
551  * Free the inode passed in, removing it from the lists it is still connected
552  * to. We remove any pages still attached to the inode and wait for any IO that
553  * is still in progress before finally destroying the inode.
554  *
555  * An inode must already be marked I_FREEING so that we avoid the inode being
556  * moved back onto lists if we race with other code that manipulates the lists
557  * (e.g. writeback_single_inode). The caller is responsible for setting this.
558  *
559  * An inode must already be removed from the LRU list before being evicted from
560  * the cache. This should occur atomically with setting the I_FREEING state
561  * flag, so no inodes here should ever be on the LRU when being evicted.
562  */
563 static void evict(struct inode *inode)
564 {
565 	const struct super_operations *op = inode->i_sb->s_op;
566 
567 	BUG_ON(!(inode->i_state & I_FREEING));
568 	BUG_ON(!list_empty(&inode->i_lru));
569 
570 	if (!list_empty(&inode->i_io_list))
571 		inode_io_list_del(inode);
572 
573 	inode_sb_list_del(inode);
574 
575 	/*
576 	 * Wait for flusher thread to be done with the inode so that filesystem
577 	 * does not start destroying it while writeback is still running. Since
578 	 * the inode has I_FREEING set, flusher thread won't start new work on
579 	 * the inode.  We just have to wait for running writeback to finish.
580 	 */
581 	inode_wait_for_writeback(inode);
582 
583 	if (op->evict_inode) {
584 		op->evict_inode(inode);
585 	} else {
586 		truncate_inode_pages_final(&inode->i_data);
587 		clear_inode(inode);
588 	}
589 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
590 		cd_forget(inode);
591 
592 	remove_inode_hash(inode);
593 
594 	spin_lock(&inode->i_lock);
595 	wake_up_bit(&inode->i_state, __I_NEW);
596 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
597 	spin_unlock(&inode->i_lock);
598 
599 	destroy_inode(inode);
600 }
601 
602 /*
603  * dispose_list - dispose of the contents of a local list
604  * @head: the head of the list to free
605  *
606  * Dispose-list gets a local list with local inodes in it, so it doesn't
607  * need to worry about list corruption and SMP locks.
608  */
609 static void dispose_list(struct list_head *head)
610 {
611 	while (!list_empty(head)) {
612 		struct inode *inode;
613 
614 		inode = list_first_entry(head, struct inode, i_lru);
615 		list_del_init(&inode->i_lru);
616 
617 		evict(inode);
618 		cond_resched();
619 	}
620 }
621 
622 /**
623  * evict_inodes	- evict all evictable inodes for a superblock
624  * @sb:		superblock to operate on
625  *
626  * Make sure that no inodes with zero refcount are retained.  This is
627  * called by superblock shutdown after having SB_ACTIVE flag removed,
628  * so any inode reaching zero refcount during or after that call will
629  * be immediately evicted.
630  */
631 void evict_inodes(struct super_block *sb)
632 {
633 	struct inode *inode, *next;
634 	LIST_HEAD(dispose);
635 
636 again:
637 	spin_lock(&sb->s_inode_list_lock);
638 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
639 		if (atomic_read(&inode->i_count))
640 			continue;
641 
642 		spin_lock(&inode->i_lock);
643 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 			spin_unlock(&inode->i_lock);
645 			continue;
646 		}
647 
648 		inode->i_state |= I_FREEING;
649 		inode_lru_list_del(inode);
650 		spin_unlock(&inode->i_lock);
651 		list_add(&inode->i_lru, &dispose);
652 
653 		/*
654 		 * We can have a ton of inodes to evict at unmount time given
655 		 * enough memory, check to see if we need to go to sleep for a
656 		 * bit so we don't livelock.
657 		 */
658 		if (need_resched()) {
659 			spin_unlock(&sb->s_inode_list_lock);
660 			cond_resched();
661 			dispose_list(&dispose);
662 			goto again;
663 		}
664 	}
665 	spin_unlock(&sb->s_inode_list_lock);
666 
667 	dispose_list(&dispose);
668 }
669 EXPORT_SYMBOL_GPL(evict_inodes);
670 
671 /**
672  * invalidate_inodes	- attempt to free all inodes on a superblock
673  * @sb:		superblock to operate on
674  * @kill_dirty: flag to guide handling of dirty inodes
675  *
676  * Attempts to free all inodes for a given superblock.  If there were any
677  * busy inodes return a non-zero value, else zero.
678  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
679  * them as busy.
680  */
681 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
682 {
683 	int busy = 0;
684 	struct inode *inode, *next;
685 	LIST_HEAD(dispose);
686 
687 again:
688 	spin_lock(&sb->s_inode_list_lock);
689 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
690 		spin_lock(&inode->i_lock);
691 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
692 			spin_unlock(&inode->i_lock);
693 			continue;
694 		}
695 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
696 			spin_unlock(&inode->i_lock);
697 			busy = 1;
698 			continue;
699 		}
700 		if (atomic_read(&inode->i_count)) {
701 			spin_unlock(&inode->i_lock);
702 			busy = 1;
703 			continue;
704 		}
705 
706 		inode->i_state |= I_FREEING;
707 		inode_lru_list_del(inode);
708 		spin_unlock(&inode->i_lock);
709 		list_add(&inode->i_lru, &dispose);
710 		if (need_resched()) {
711 			spin_unlock(&sb->s_inode_list_lock);
712 			cond_resched();
713 			dispose_list(&dispose);
714 			goto again;
715 		}
716 	}
717 	spin_unlock(&sb->s_inode_list_lock);
718 
719 	dispose_list(&dispose);
720 
721 	return busy;
722 }
723 
724 /*
725  * Isolate the inode from the LRU in preparation for freeing it.
726  *
727  * Any inodes which are pinned purely because of attached pagecache have their
728  * pagecache removed.  If the inode has metadata buffers attached to
729  * mapping->private_list then try to remove them.
730  *
731  * If the inode has the I_REFERENCED flag set, then it means that it has been
732  * used recently - the flag is set in iput_final(). When we encounter such an
733  * inode, clear the flag and move it to the back of the LRU so it gets another
734  * pass through the LRU before it gets reclaimed. This is necessary because of
735  * the fact we are doing lazy LRU updates to minimise lock contention so the
736  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
737  * with this flag set because they are the inodes that are out of order.
738  */
739 static enum lru_status inode_lru_isolate(struct list_head *item,
740 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
741 {
742 	struct list_head *freeable = arg;
743 	struct inode	*inode = container_of(item, struct inode, i_lru);
744 
745 	/*
746 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
747 	 * If we fail to get the lock, just skip it.
748 	 */
749 	if (!spin_trylock(&inode->i_lock))
750 		return LRU_SKIP;
751 
752 	/*
753 	 * Referenced or dirty inodes are still in use. Give them another pass
754 	 * through the LRU as we canot reclaim them now.
755 	 */
756 	if (atomic_read(&inode->i_count) ||
757 	    (inode->i_state & ~I_REFERENCED)) {
758 		list_lru_isolate(lru, &inode->i_lru);
759 		spin_unlock(&inode->i_lock);
760 		this_cpu_dec(nr_unused);
761 		return LRU_REMOVED;
762 	}
763 
764 	/* recently referenced inodes get one more pass */
765 	if (inode->i_state & I_REFERENCED) {
766 		inode->i_state &= ~I_REFERENCED;
767 		spin_unlock(&inode->i_lock);
768 		return LRU_ROTATE;
769 	}
770 
771 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
772 		__iget(inode);
773 		spin_unlock(&inode->i_lock);
774 		spin_unlock(lru_lock);
775 		if (remove_inode_buffers(inode)) {
776 			unsigned long reap;
777 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
778 			if (current_is_kswapd())
779 				__count_vm_events(KSWAPD_INODESTEAL, reap);
780 			else
781 				__count_vm_events(PGINODESTEAL, reap);
782 			if (current->reclaim_state)
783 				current->reclaim_state->reclaimed_slab += reap;
784 		}
785 		iput(inode);
786 		spin_lock(lru_lock);
787 		return LRU_RETRY;
788 	}
789 
790 	WARN_ON(inode->i_state & I_NEW);
791 	inode->i_state |= I_FREEING;
792 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
793 	spin_unlock(&inode->i_lock);
794 
795 	this_cpu_dec(nr_unused);
796 	return LRU_REMOVED;
797 }
798 
799 /*
800  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
801  * This is called from the superblock shrinker function with a number of inodes
802  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
803  * then are freed outside inode_lock by dispose_list().
804  */
805 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
806 {
807 	LIST_HEAD(freeable);
808 	long freed;
809 
810 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
811 				     inode_lru_isolate, &freeable);
812 	dispose_list(&freeable);
813 	return freed;
814 }
815 
816 static void __wait_on_freeing_inode(struct inode *inode);
817 /*
818  * Called with the inode lock held.
819  */
820 static struct inode *find_inode(struct super_block *sb,
821 				struct hlist_head *head,
822 				int (*test)(struct inode *, void *),
823 				void *data)
824 {
825 	struct inode *inode = NULL;
826 
827 repeat:
828 	hlist_for_each_entry(inode, head, i_hash) {
829 		if (inode->i_sb != sb)
830 			continue;
831 		if (!test(inode, data))
832 			continue;
833 		spin_lock(&inode->i_lock);
834 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 			__wait_on_freeing_inode(inode);
836 			goto repeat;
837 		}
838 		if (unlikely(inode->i_state & I_CREATING)) {
839 			spin_unlock(&inode->i_lock);
840 			return ERR_PTR(-ESTALE);
841 		}
842 		__iget(inode);
843 		spin_unlock(&inode->i_lock);
844 		return inode;
845 	}
846 	return NULL;
847 }
848 
849 /*
850  * find_inode_fast is the fast path version of find_inode, see the comment at
851  * iget_locked for details.
852  */
853 static struct inode *find_inode_fast(struct super_block *sb,
854 				struct hlist_head *head, unsigned long ino)
855 {
856 	struct inode *inode = NULL;
857 
858 repeat:
859 	hlist_for_each_entry(inode, head, i_hash) {
860 		if (inode->i_ino != ino)
861 			continue;
862 		if (inode->i_sb != sb)
863 			continue;
864 		spin_lock(&inode->i_lock);
865 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
866 			__wait_on_freeing_inode(inode);
867 			goto repeat;
868 		}
869 		if (unlikely(inode->i_state & I_CREATING)) {
870 			spin_unlock(&inode->i_lock);
871 			return ERR_PTR(-ESTALE);
872 		}
873 		__iget(inode);
874 		spin_unlock(&inode->i_lock);
875 		return inode;
876 	}
877 	return NULL;
878 }
879 
880 /*
881  * Each cpu owns a range of LAST_INO_BATCH numbers.
882  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
883  * to renew the exhausted range.
884  *
885  * This does not significantly increase overflow rate because every CPU can
886  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
887  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
888  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
889  * overflow rate by 2x, which does not seem too significant.
890  *
891  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
892  * error if st_ino won't fit in target struct field. Use 32bit counter
893  * here to attempt to avoid that.
894  */
895 #define LAST_INO_BATCH 1024
896 static DEFINE_PER_CPU(unsigned int, last_ino);
897 
898 unsigned int get_next_ino(void)
899 {
900 	unsigned int *p = &get_cpu_var(last_ino);
901 	unsigned int res = *p;
902 
903 #ifdef CONFIG_SMP
904 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
905 		static atomic_t shared_last_ino;
906 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
907 
908 		res = next - LAST_INO_BATCH;
909 	}
910 #endif
911 
912 	res++;
913 	/* get_next_ino should not provide a 0 inode number */
914 	if (unlikely(!res))
915 		res++;
916 	*p = res;
917 	put_cpu_var(last_ino);
918 	return res;
919 }
920 EXPORT_SYMBOL(get_next_ino);
921 
922 /**
923  *	new_inode_pseudo 	- obtain an inode
924  *	@sb: superblock
925  *
926  *	Allocates a new inode for given superblock.
927  *	Inode wont be chained in superblock s_inodes list
928  *	This means :
929  *	- fs can't be unmount
930  *	- quotas, fsnotify, writeback can't work
931  */
932 struct inode *new_inode_pseudo(struct super_block *sb)
933 {
934 	struct inode *inode = alloc_inode(sb);
935 
936 	if (inode) {
937 		spin_lock(&inode->i_lock);
938 		inode->i_state = 0;
939 		spin_unlock(&inode->i_lock);
940 		INIT_LIST_HEAD(&inode->i_sb_list);
941 	}
942 	return inode;
943 }
944 
945 /**
946  *	new_inode 	- obtain an inode
947  *	@sb: superblock
948  *
949  *	Allocates a new inode for given superblock. The default gfp_mask
950  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
951  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
952  *	for the page cache are not reclaimable or migratable,
953  *	mapping_set_gfp_mask() must be called with suitable flags on the
954  *	newly created inode's mapping
955  *
956  */
957 struct inode *new_inode(struct super_block *sb)
958 {
959 	struct inode *inode;
960 
961 	spin_lock_prefetch(&sb->s_inode_list_lock);
962 
963 	inode = new_inode_pseudo(sb);
964 	if (inode)
965 		inode_sb_list_add(inode);
966 	return inode;
967 }
968 EXPORT_SYMBOL(new_inode);
969 
970 #ifdef CONFIG_DEBUG_LOCK_ALLOC
971 void lockdep_annotate_inode_mutex_key(struct inode *inode)
972 {
973 	if (S_ISDIR(inode->i_mode)) {
974 		struct file_system_type *type = inode->i_sb->s_type;
975 
976 		/* Set new key only if filesystem hasn't already changed it */
977 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
978 			/*
979 			 * ensure nobody is actually holding i_mutex
980 			 */
981 			// mutex_destroy(&inode->i_mutex);
982 			init_rwsem(&inode->i_rwsem);
983 			lockdep_set_class(&inode->i_rwsem,
984 					  &type->i_mutex_dir_key);
985 		}
986 	}
987 }
988 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
989 #endif
990 
991 /**
992  * unlock_new_inode - clear the I_NEW state and wake up any waiters
993  * @inode:	new inode to unlock
994  *
995  * Called when the inode is fully initialised to clear the new state of the
996  * inode and wake up anyone waiting for the inode to finish initialisation.
997  */
998 void unlock_new_inode(struct inode *inode)
999 {
1000 	lockdep_annotate_inode_mutex_key(inode);
1001 	spin_lock(&inode->i_lock);
1002 	WARN_ON(!(inode->i_state & I_NEW));
1003 	inode->i_state &= ~I_NEW & ~I_CREATING;
1004 	smp_mb();
1005 	wake_up_bit(&inode->i_state, __I_NEW);
1006 	spin_unlock(&inode->i_lock);
1007 }
1008 EXPORT_SYMBOL(unlock_new_inode);
1009 
1010 void discard_new_inode(struct inode *inode)
1011 {
1012 	lockdep_annotate_inode_mutex_key(inode);
1013 	spin_lock(&inode->i_lock);
1014 	WARN_ON(!(inode->i_state & I_NEW));
1015 	inode->i_state &= ~I_NEW;
1016 	smp_mb();
1017 	wake_up_bit(&inode->i_state, __I_NEW);
1018 	spin_unlock(&inode->i_lock);
1019 	iput(inode);
1020 }
1021 EXPORT_SYMBOL(discard_new_inode);
1022 
1023 /**
1024  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1025  *
1026  * Lock any non-NULL argument that is not a directory.
1027  * Zero, one or two objects may be locked by this function.
1028  *
1029  * @inode1: first inode to lock
1030  * @inode2: second inode to lock
1031  */
1032 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1033 {
1034 	if (inode1 > inode2)
1035 		swap(inode1, inode2);
1036 
1037 	if (inode1 && !S_ISDIR(inode1->i_mode))
1038 		inode_lock(inode1);
1039 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1040 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1041 }
1042 EXPORT_SYMBOL(lock_two_nondirectories);
1043 
1044 /**
1045  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1046  * @inode1: first inode to unlock
1047  * @inode2: second inode to unlock
1048  */
1049 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1050 {
1051 	if (inode1 && !S_ISDIR(inode1->i_mode))
1052 		inode_unlock(inode1);
1053 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1054 		inode_unlock(inode2);
1055 }
1056 EXPORT_SYMBOL(unlock_two_nondirectories);
1057 
1058 /**
1059  * inode_insert5 - obtain an inode from a mounted file system
1060  * @inode:	pre-allocated inode to use for insert to cache
1061  * @hashval:	hash value (usually inode number) to get
1062  * @test:	callback used for comparisons between inodes
1063  * @set:	callback used to initialize a new struct inode
1064  * @data:	opaque data pointer to pass to @test and @set
1065  *
1066  * Search for the inode specified by @hashval and @data in the inode cache,
1067  * and if present it is return it with an increased reference count. This is
1068  * a variant of iget5_locked() for callers that don't want to fail on memory
1069  * allocation of inode.
1070  *
1071  * If the inode is not in cache, insert the pre-allocated inode to cache and
1072  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1073  * to fill it in before unlocking it via unlock_new_inode().
1074  *
1075  * Note both @test and @set are called with the inode_hash_lock held, so can't
1076  * sleep.
1077  */
1078 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1079 			    int (*test)(struct inode *, void *),
1080 			    int (*set)(struct inode *, void *), void *data)
1081 {
1082 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1083 	struct inode *old;
1084 	bool creating = inode->i_state & I_CREATING;
1085 
1086 again:
1087 	spin_lock(&inode_hash_lock);
1088 	old = find_inode(inode->i_sb, head, test, data);
1089 	if (unlikely(old)) {
1090 		/*
1091 		 * Uhhuh, somebody else created the same inode under us.
1092 		 * Use the old inode instead of the preallocated one.
1093 		 */
1094 		spin_unlock(&inode_hash_lock);
1095 		if (IS_ERR(old))
1096 			return NULL;
1097 		wait_on_inode(old);
1098 		if (unlikely(inode_unhashed(old))) {
1099 			iput(old);
1100 			goto again;
1101 		}
1102 		return old;
1103 	}
1104 
1105 	if (set && unlikely(set(inode, data))) {
1106 		inode = NULL;
1107 		goto unlock;
1108 	}
1109 
1110 	/*
1111 	 * Return the locked inode with I_NEW set, the
1112 	 * caller is responsible for filling in the contents
1113 	 */
1114 	spin_lock(&inode->i_lock);
1115 	inode->i_state |= I_NEW;
1116 	hlist_add_head_rcu(&inode->i_hash, head);
1117 	spin_unlock(&inode->i_lock);
1118 	if (!creating)
1119 		inode_sb_list_add(inode);
1120 unlock:
1121 	spin_unlock(&inode_hash_lock);
1122 
1123 	return inode;
1124 }
1125 EXPORT_SYMBOL(inode_insert5);
1126 
1127 /**
1128  * iget5_locked - obtain an inode from a mounted file system
1129  * @sb:		super block of file system
1130  * @hashval:	hash value (usually inode number) to get
1131  * @test:	callback used for comparisons between inodes
1132  * @set:	callback used to initialize a new struct inode
1133  * @data:	opaque data pointer to pass to @test and @set
1134  *
1135  * Search for the inode specified by @hashval and @data in the inode cache,
1136  * and if present it is return it with an increased reference count. This is
1137  * a generalized version of iget_locked() for file systems where the inode
1138  * number is not sufficient for unique identification of an inode.
1139  *
1140  * If the inode is not in cache, allocate a new inode and return it locked,
1141  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1142  * before unlocking it via unlock_new_inode().
1143  *
1144  * Note both @test and @set are called with the inode_hash_lock held, so can't
1145  * sleep.
1146  */
1147 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1148 		int (*test)(struct inode *, void *),
1149 		int (*set)(struct inode *, void *), void *data)
1150 {
1151 	struct inode *inode = ilookup5(sb, hashval, test, data);
1152 
1153 	if (!inode) {
1154 		struct inode *new = alloc_inode(sb);
1155 
1156 		if (new) {
1157 			new->i_state = 0;
1158 			inode = inode_insert5(new, hashval, test, set, data);
1159 			if (unlikely(inode != new))
1160 				destroy_inode(new);
1161 		}
1162 	}
1163 	return inode;
1164 }
1165 EXPORT_SYMBOL(iget5_locked);
1166 
1167 /**
1168  * iget_locked - obtain an inode from a mounted file system
1169  * @sb:		super block of file system
1170  * @ino:	inode number to get
1171  *
1172  * Search for the inode specified by @ino in the inode cache and if present
1173  * return it with an increased reference count. This is for file systems
1174  * where the inode number is sufficient for unique identification of an inode.
1175  *
1176  * If the inode is not in cache, allocate a new inode and return it locked,
1177  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1178  * before unlocking it via unlock_new_inode().
1179  */
1180 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1181 {
1182 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1183 	struct inode *inode;
1184 again:
1185 	spin_lock(&inode_hash_lock);
1186 	inode = find_inode_fast(sb, head, ino);
1187 	spin_unlock(&inode_hash_lock);
1188 	if (inode) {
1189 		if (IS_ERR(inode))
1190 			return NULL;
1191 		wait_on_inode(inode);
1192 		if (unlikely(inode_unhashed(inode))) {
1193 			iput(inode);
1194 			goto again;
1195 		}
1196 		return inode;
1197 	}
1198 
1199 	inode = alloc_inode(sb);
1200 	if (inode) {
1201 		struct inode *old;
1202 
1203 		spin_lock(&inode_hash_lock);
1204 		/* We released the lock, so.. */
1205 		old = find_inode_fast(sb, head, ino);
1206 		if (!old) {
1207 			inode->i_ino = ino;
1208 			spin_lock(&inode->i_lock);
1209 			inode->i_state = I_NEW;
1210 			hlist_add_head_rcu(&inode->i_hash, head);
1211 			spin_unlock(&inode->i_lock);
1212 			inode_sb_list_add(inode);
1213 			spin_unlock(&inode_hash_lock);
1214 
1215 			/* Return the locked inode with I_NEW set, the
1216 			 * caller is responsible for filling in the contents
1217 			 */
1218 			return inode;
1219 		}
1220 
1221 		/*
1222 		 * Uhhuh, somebody else created the same inode under
1223 		 * us. Use the old inode instead of the one we just
1224 		 * allocated.
1225 		 */
1226 		spin_unlock(&inode_hash_lock);
1227 		destroy_inode(inode);
1228 		if (IS_ERR(old))
1229 			return NULL;
1230 		inode = old;
1231 		wait_on_inode(inode);
1232 		if (unlikely(inode_unhashed(inode))) {
1233 			iput(inode);
1234 			goto again;
1235 		}
1236 	}
1237 	return inode;
1238 }
1239 EXPORT_SYMBOL(iget_locked);
1240 
1241 /*
1242  * search the inode cache for a matching inode number.
1243  * If we find one, then the inode number we are trying to
1244  * allocate is not unique and so we should not use it.
1245  *
1246  * Returns 1 if the inode number is unique, 0 if it is not.
1247  */
1248 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1249 {
1250 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1251 	struct inode *inode;
1252 
1253 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1254 		if (inode->i_ino == ino && inode->i_sb == sb)
1255 			return 0;
1256 	}
1257 	return 1;
1258 }
1259 
1260 /**
1261  *	iunique - get a unique inode number
1262  *	@sb: superblock
1263  *	@max_reserved: highest reserved inode number
1264  *
1265  *	Obtain an inode number that is unique on the system for a given
1266  *	superblock. This is used by file systems that have no natural
1267  *	permanent inode numbering system. An inode number is returned that
1268  *	is higher than the reserved limit but unique.
1269  *
1270  *	BUGS:
1271  *	With a large number of inodes live on the file system this function
1272  *	currently becomes quite slow.
1273  */
1274 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1275 {
1276 	/*
1277 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1278 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1279 	 * here to attempt to avoid that.
1280 	 */
1281 	static DEFINE_SPINLOCK(iunique_lock);
1282 	static unsigned int counter;
1283 	ino_t res;
1284 
1285 	rcu_read_lock();
1286 	spin_lock(&iunique_lock);
1287 	do {
1288 		if (counter <= max_reserved)
1289 			counter = max_reserved + 1;
1290 		res = counter++;
1291 	} while (!test_inode_iunique(sb, res));
1292 	spin_unlock(&iunique_lock);
1293 	rcu_read_unlock();
1294 
1295 	return res;
1296 }
1297 EXPORT_SYMBOL(iunique);
1298 
1299 struct inode *igrab(struct inode *inode)
1300 {
1301 	spin_lock(&inode->i_lock);
1302 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1303 		__iget(inode);
1304 		spin_unlock(&inode->i_lock);
1305 	} else {
1306 		spin_unlock(&inode->i_lock);
1307 		/*
1308 		 * Handle the case where s_op->clear_inode is not been
1309 		 * called yet, and somebody is calling igrab
1310 		 * while the inode is getting freed.
1311 		 */
1312 		inode = NULL;
1313 	}
1314 	return inode;
1315 }
1316 EXPORT_SYMBOL(igrab);
1317 
1318 /**
1319  * ilookup5_nowait - search for an inode in the inode cache
1320  * @sb:		super block of file system to search
1321  * @hashval:	hash value (usually inode number) to search for
1322  * @test:	callback used for comparisons between inodes
1323  * @data:	opaque data pointer to pass to @test
1324  *
1325  * Search for the inode specified by @hashval and @data in the inode cache.
1326  * If the inode is in the cache, the inode is returned with an incremented
1327  * reference count.
1328  *
1329  * Note: I_NEW is not waited upon so you have to be very careful what you do
1330  * with the returned inode.  You probably should be using ilookup5() instead.
1331  *
1332  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1333  */
1334 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1335 		int (*test)(struct inode *, void *), void *data)
1336 {
1337 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1338 	struct inode *inode;
1339 
1340 	spin_lock(&inode_hash_lock);
1341 	inode = find_inode(sb, head, test, data);
1342 	spin_unlock(&inode_hash_lock);
1343 
1344 	return IS_ERR(inode) ? NULL : inode;
1345 }
1346 EXPORT_SYMBOL(ilookup5_nowait);
1347 
1348 /**
1349  * ilookup5 - search for an inode in the inode cache
1350  * @sb:		super block of file system to search
1351  * @hashval:	hash value (usually inode number) to search for
1352  * @test:	callback used for comparisons between inodes
1353  * @data:	opaque data pointer to pass to @test
1354  *
1355  * Search for the inode specified by @hashval and @data in the inode cache,
1356  * and if the inode is in the cache, return the inode with an incremented
1357  * reference count.  Waits on I_NEW before returning the inode.
1358  * returned with an incremented reference count.
1359  *
1360  * This is a generalized version of ilookup() for file systems where the
1361  * inode number is not sufficient for unique identification of an inode.
1362  *
1363  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1364  */
1365 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1366 		int (*test)(struct inode *, void *), void *data)
1367 {
1368 	struct inode *inode;
1369 again:
1370 	inode = ilookup5_nowait(sb, hashval, test, data);
1371 	if (inode) {
1372 		wait_on_inode(inode);
1373 		if (unlikely(inode_unhashed(inode))) {
1374 			iput(inode);
1375 			goto again;
1376 		}
1377 	}
1378 	return inode;
1379 }
1380 EXPORT_SYMBOL(ilookup5);
1381 
1382 /**
1383  * ilookup - search for an inode in the inode cache
1384  * @sb:		super block of file system to search
1385  * @ino:	inode number to search for
1386  *
1387  * Search for the inode @ino in the inode cache, and if the inode is in the
1388  * cache, the inode is returned with an incremented reference count.
1389  */
1390 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1391 {
1392 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1393 	struct inode *inode;
1394 again:
1395 	spin_lock(&inode_hash_lock);
1396 	inode = find_inode_fast(sb, head, ino);
1397 	spin_unlock(&inode_hash_lock);
1398 
1399 	if (inode) {
1400 		if (IS_ERR(inode))
1401 			return NULL;
1402 		wait_on_inode(inode);
1403 		if (unlikely(inode_unhashed(inode))) {
1404 			iput(inode);
1405 			goto again;
1406 		}
1407 	}
1408 	return inode;
1409 }
1410 EXPORT_SYMBOL(ilookup);
1411 
1412 /**
1413  * find_inode_nowait - find an inode in the inode cache
1414  * @sb:		super block of file system to search
1415  * @hashval:	hash value (usually inode number) to search for
1416  * @match:	callback used for comparisons between inodes
1417  * @data:	opaque data pointer to pass to @match
1418  *
1419  * Search for the inode specified by @hashval and @data in the inode
1420  * cache, where the helper function @match will return 0 if the inode
1421  * does not match, 1 if the inode does match, and -1 if the search
1422  * should be stopped.  The @match function must be responsible for
1423  * taking the i_lock spin_lock and checking i_state for an inode being
1424  * freed or being initialized, and incrementing the reference count
1425  * before returning 1.  It also must not sleep, since it is called with
1426  * the inode_hash_lock spinlock held.
1427  *
1428  * This is a even more generalized version of ilookup5() when the
1429  * function must never block --- find_inode() can block in
1430  * __wait_on_freeing_inode() --- or when the caller can not increment
1431  * the reference count because the resulting iput() might cause an
1432  * inode eviction.  The tradeoff is that the @match funtion must be
1433  * very carefully implemented.
1434  */
1435 struct inode *find_inode_nowait(struct super_block *sb,
1436 				unsigned long hashval,
1437 				int (*match)(struct inode *, unsigned long,
1438 					     void *),
1439 				void *data)
1440 {
1441 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1442 	struct inode *inode, *ret_inode = NULL;
1443 	int mval;
1444 
1445 	spin_lock(&inode_hash_lock);
1446 	hlist_for_each_entry(inode, head, i_hash) {
1447 		if (inode->i_sb != sb)
1448 			continue;
1449 		mval = match(inode, hashval, data);
1450 		if (mval == 0)
1451 			continue;
1452 		if (mval == 1)
1453 			ret_inode = inode;
1454 		goto out;
1455 	}
1456 out:
1457 	spin_unlock(&inode_hash_lock);
1458 	return ret_inode;
1459 }
1460 EXPORT_SYMBOL(find_inode_nowait);
1461 
1462 /**
1463  * find_inode_rcu - find an inode in the inode cache
1464  * @sb:		Super block of file system to search
1465  * @hashval:	Key to hash
1466  * @test:	Function to test match on an inode
1467  * @data:	Data for test function
1468  *
1469  * Search for the inode specified by @hashval and @data in the inode cache,
1470  * where the helper function @test will return 0 if the inode does not match
1471  * and 1 if it does.  The @test function must be responsible for taking the
1472  * i_lock spin_lock and checking i_state for an inode being freed or being
1473  * initialized.
1474  *
1475  * If successful, this will return the inode for which the @test function
1476  * returned 1 and NULL otherwise.
1477  *
1478  * The @test function is not permitted to take a ref on any inode presented.
1479  * It is also not permitted to sleep.
1480  *
1481  * The caller must hold the RCU read lock.
1482  */
1483 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1484 			     int (*test)(struct inode *, void *), void *data)
1485 {
1486 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487 	struct inode *inode;
1488 
1489 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1490 			 "suspicious find_inode_rcu() usage");
1491 
1492 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1493 		if (inode->i_sb == sb &&
1494 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1495 		    test(inode, data))
1496 			return inode;
1497 	}
1498 	return NULL;
1499 }
1500 EXPORT_SYMBOL(find_inode_rcu);
1501 
1502 /**
1503  * find_inode_by_ino_rcu - Find an inode in the inode cache
1504  * @sb:		Super block of file system to search
1505  * @ino:	The inode number to match
1506  *
1507  * Search for the inode specified by @hashval and @data in the inode cache,
1508  * where the helper function @test will return 0 if the inode does not match
1509  * and 1 if it does.  The @test function must be responsible for taking the
1510  * i_lock spin_lock and checking i_state for an inode being freed or being
1511  * initialized.
1512  *
1513  * If successful, this will return the inode for which the @test function
1514  * returned 1 and NULL otherwise.
1515  *
1516  * The @test function is not permitted to take a ref on any inode presented.
1517  * It is also not permitted to sleep.
1518  *
1519  * The caller must hold the RCU read lock.
1520  */
1521 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1522 				    unsigned long ino)
1523 {
1524 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1525 	struct inode *inode;
1526 
1527 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1528 			 "suspicious find_inode_by_ino_rcu() usage");
1529 
1530 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1531 		if (inode->i_ino == ino &&
1532 		    inode->i_sb == sb &&
1533 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1534 		    return inode;
1535 	}
1536 	return NULL;
1537 }
1538 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1539 
1540 int insert_inode_locked(struct inode *inode)
1541 {
1542 	struct super_block *sb = inode->i_sb;
1543 	ino_t ino = inode->i_ino;
1544 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1545 
1546 	while (1) {
1547 		struct inode *old = NULL;
1548 		spin_lock(&inode_hash_lock);
1549 		hlist_for_each_entry(old, head, i_hash) {
1550 			if (old->i_ino != ino)
1551 				continue;
1552 			if (old->i_sb != sb)
1553 				continue;
1554 			spin_lock(&old->i_lock);
1555 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1556 				spin_unlock(&old->i_lock);
1557 				continue;
1558 			}
1559 			break;
1560 		}
1561 		if (likely(!old)) {
1562 			spin_lock(&inode->i_lock);
1563 			inode->i_state |= I_NEW | I_CREATING;
1564 			hlist_add_head_rcu(&inode->i_hash, head);
1565 			spin_unlock(&inode->i_lock);
1566 			spin_unlock(&inode_hash_lock);
1567 			return 0;
1568 		}
1569 		if (unlikely(old->i_state & I_CREATING)) {
1570 			spin_unlock(&old->i_lock);
1571 			spin_unlock(&inode_hash_lock);
1572 			return -EBUSY;
1573 		}
1574 		__iget(old);
1575 		spin_unlock(&old->i_lock);
1576 		spin_unlock(&inode_hash_lock);
1577 		wait_on_inode(old);
1578 		if (unlikely(!inode_unhashed(old))) {
1579 			iput(old);
1580 			return -EBUSY;
1581 		}
1582 		iput(old);
1583 	}
1584 }
1585 EXPORT_SYMBOL(insert_inode_locked);
1586 
1587 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1588 		int (*test)(struct inode *, void *), void *data)
1589 {
1590 	struct inode *old;
1591 
1592 	inode->i_state |= I_CREATING;
1593 	old = inode_insert5(inode, hashval, test, NULL, data);
1594 
1595 	if (old != inode) {
1596 		iput(old);
1597 		return -EBUSY;
1598 	}
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(insert_inode_locked4);
1602 
1603 
1604 int generic_delete_inode(struct inode *inode)
1605 {
1606 	return 1;
1607 }
1608 EXPORT_SYMBOL(generic_delete_inode);
1609 
1610 /*
1611  * Called when we're dropping the last reference
1612  * to an inode.
1613  *
1614  * Call the FS "drop_inode()" function, defaulting to
1615  * the legacy UNIX filesystem behaviour.  If it tells
1616  * us to evict inode, do so.  Otherwise, retain inode
1617  * in cache if fs is alive, sync and evict if fs is
1618  * shutting down.
1619  */
1620 static void iput_final(struct inode *inode)
1621 {
1622 	struct super_block *sb = inode->i_sb;
1623 	const struct super_operations *op = inode->i_sb->s_op;
1624 	unsigned long state;
1625 	int drop;
1626 
1627 	WARN_ON(inode->i_state & I_NEW);
1628 
1629 	if (op->drop_inode)
1630 		drop = op->drop_inode(inode);
1631 	else
1632 		drop = generic_drop_inode(inode);
1633 
1634 	if (!drop &&
1635 	    !(inode->i_state & I_DONTCACHE) &&
1636 	    (sb->s_flags & SB_ACTIVE)) {
1637 		inode_add_lru(inode);
1638 		spin_unlock(&inode->i_lock);
1639 		return;
1640 	}
1641 
1642 	state = inode->i_state;
1643 	if (!drop) {
1644 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1645 		spin_unlock(&inode->i_lock);
1646 
1647 		write_inode_now(inode, 1);
1648 
1649 		spin_lock(&inode->i_lock);
1650 		state = inode->i_state;
1651 		WARN_ON(state & I_NEW);
1652 		state &= ~I_WILL_FREE;
1653 	}
1654 
1655 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1656 	if (!list_empty(&inode->i_lru))
1657 		inode_lru_list_del(inode);
1658 	spin_unlock(&inode->i_lock);
1659 
1660 	evict(inode);
1661 }
1662 
1663 /**
1664  *	iput	- put an inode
1665  *	@inode: inode to put
1666  *
1667  *	Puts an inode, dropping its usage count. If the inode use count hits
1668  *	zero, the inode is then freed and may also be destroyed.
1669  *
1670  *	Consequently, iput() can sleep.
1671  */
1672 void iput(struct inode *inode)
1673 {
1674 	if (!inode)
1675 		return;
1676 	BUG_ON(inode->i_state & I_CLEAR);
1677 retry:
1678 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1679 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1680 			atomic_inc(&inode->i_count);
1681 			spin_unlock(&inode->i_lock);
1682 			trace_writeback_lazytime_iput(inode);
1683 			mark_inode_dirty_sync(inode);
1684 			goto retry;
1685 		}
1686 		iput_final(inode);
1687 	}
1688 }
1689 EXPORT_SYMBOL(iput);
1690 
1691 #ifdef CONFIG_BLOCK
1692 /**
1693  *	bmap	- find a block number in a file
1694  *	@inode:  inode owning the block number being requested
1695  *	@block: pointer containing the block to find
1696  *
1697  *	Replaces the value in ``*block`` with the block number on the device holding
1698  *	corresponding to the requested block number in the file.
1699  *	That is, asked for block 4 of inode 1 the function will replace the
1700  *	4 in ``*block``, with disk block relative to the disk start that holds that
1701  *	block of the file.
1702  *
1703  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1704  *	hole, returns 0 and ``*block`` is also set to 0.
1705  */
1706 int bmap(struct inode *inode, sector_t *block)
1707 {
1708 	if (!inode->i_mapping->a_ops->bmap)
1709 		return -EINVAL;
1710 
1711 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL(bmap);
1715 #endif
1716 
1717 /*
1718  * With relative atime, only update atime if the previous atime is
1719  * earlier than either the ctime or mtime or if at least a day has
1720  * passed since the last atime update.
1721  */
1722 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1723 			     struct timespec64 now)
1724 {
1725 
1726 	if (!(mnt->mnt_flags & MNT_RELATIME))
1727 		return 1;
1728 	/*
1729 	 * Is mtime younger than atime? If yes, update atime:
1730 	 */
1731 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1732 		return 1;
1733 	/*
1734 	 * Is ctime younger than atime? If yes, update atime:
1735 	 */
1736 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1737 		return 1;
1738 
1739 	/*
1740 	 * Is the previous atime value older than a day? If yes,
1741 	 * update atime:
1742 	 */
1743 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1744 		return 1;
1745 	/*
1746 	 * Good, we can skip the atime update:
1747 	 */
1748 	return 0;
1749 }
1750 
1751 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1752 {
1753 	int dirty_flags = 0;
1754 
1755 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1756 		if (flags & S_ATIME)
1757 			inode->i_atime = *time;
1758 		if (flags & S_CTIME)
1759 			inode->i_ctime = *time;
1760 		if (flags & S_MTIME)
1761 			inode->i_mtime = *time;
1762 
1763 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1764 			dirty_flags |= I_DIRTY_TIME;
1765 		else
1766 			dirty_flags |= I_DIRTY_SYNC;
1767 	}
1768 
1769 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1770 		dirty_flags |= I_DIRTY_SYNC;
1771 
1772 	__mark_inode_dirty(inode, dirty_flags);
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(generic_update_time);
1776 
1777 /*
1778  * This does the actual work of updating an inodes time or version.  Must have
1779  * had called mnt_want_write() before calling this.
1780  */
1781 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1782 {
1783 	if (inode->i_op->update_time)
1784 		return inode->i_op->update_time(inode, time, flags);
1785 	return generic_update_time(inode, time, flags);
1786 }
1787 
1788 /**
1789  *	atime_needs_update	-	update the access time
1790  *	@path: the &struct path to update
1791  *	@inode: inode to update
1792  *
1793  *	Update the accessed time on an inode and mark it for writeback.
1794  *	This function automatically handles read only file systems and media,
1795  *	as well as the "noatime" flag and inode specific "noatime" markers.
1796  */
1797 bool atime_needs_update(const struct path *path, struct inode *inode)
1798 {
1799 	struct vfsmount *mnt = path->mnt;
1800 	struct timespec64 now;
1801 
1802 	if (inode->i_flags & S_NOATIME)
1803 		return false;
1804 
1805 	/* Atime updates will likely cause i_uid and i_gid to be written
1806 	 * back improprely if their true value is unknown to the vfs.
1807 	 */
1808 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1809 		return false;
1810 
1811 	if (IS_NOATIME(inode))
1812 		return false;
1813 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1814 		return false;
1815 
1816 	if (mnt->mnt_flags & MNT_NOATIME)
1817 		return false;
1818 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1819 		return false;
1820 
1821 	now = current_time(inode);
1822 
1823 	if (!relatime_need_update(mnt, inode, now))
1824 		return false;
1825 
1826 	if (timespec64_equal(&inode->i_atime, &now))
1827 		return false;
1828 
1829 	return true;
1830 }
1831 
1832 void touch_atime(const struct path *path)
1833 {
1834 	struct vfsmount *mnt = path->mnt;
1835 	struct inode *inode = d_inode(path->dentry);
1836 	struct timespec64 now;
1837 
1838 	if (!atime_needs_update(path, inode))
1839 		return;
1840 
1841 	if (!sb_start_write_trylock(inode->i_sb))
1842 		return;
1843 
1844 	if (__mnt_want_write(mnt) != 0)
1845 		goto skip_update;
1846 	/*
1847 	 * File systems can error out when updating inodes if they need to
1848 	 * allocate new space to modify an inode (such is the case for
1849 	 * Btrfs), but since we touch atime while walking down the path we
1850 	 * really don't care if we failed to update the atime of the file,
1851 	 * so just ignore the return value.
1852 	 * We may also fail on filesystems that have the ability to make parts
1853 	 * of the fs read only, e.g. subvolumes in Btrfs.
1854 	 */
1855 	now = current_time(inode);
1856 	update_time(inode, &now, S_ATIME);
1857 	__mnt_drop_write(mnt);
1858 skip_update:
1859 	sb_end_write(inode->i_sb);
1860 }
1861 EXPORT_SYMBOL(touch_atime);
1862 
1863 /*
1864  * The logic we want is
1865  *
1866  *	if suid or (sgid and xgrp)
1867  *		remove privs
1868  */
1869 int should_remove_suid(struct dentry *dentry)
1870 {
1871 	umode_t mode = d_inode(dentry)->i_mode;
1872 	int kill = 0;
1873 
1874 	/* suid always must be killed */
1875 	if (unlikely(mode & S_ISUID))
1876 		kill = ATTR_KILL_SUID;
1877 
1878 	/*
1879 	 * sgid without any exec bits is just a mandatory locking mark; leave
1880 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1881 	 */
1882 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1883 		kill |= ATTR_KILL_SGID;
1884 
1885 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1886 		return kill;
1887 
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL(should_remove_suid);
1891 
1892 /*
1893  * Return mask of changes for notify_change() that need to be done as a
1894  * response to write or truncate. Return 0 if nothing has to be changed.
1895  * Negative value on error (change should be denied).
1896  */
1897 int dentry_needs_remove_privs(struct dentry *dentry)
1898 {
1899 	struct inode *inode = d_inode(dentry);
1900 	int mask = 0;
1901 	int ret;
1902 
1903 	if (IS_NOSEC(inode))
1904 		return 0;
1905 
1906 	mask = should_remove_suid(dentry);
1907 	ret = security_inode_need_killpriv(dentry);
1908 	if (ret < 0)
1909 		return ret;
1910 	if (ret)
1911 		mask |= ATTR_KILL_PRIV;
1912 	return mask;
1913 }
1914 
1915 static int __remove_privs(struct user_namespace *mnt_userns,
1916 			  struct dentry *dentry, int kill)
1917 {
1918 	struct iattr newattrs;
1919 
1920 	newattrs.ia_valid = ATTR_FORCE | kill;
1921 	/*
1922 	 * Note we call this on write, so notify_change will not
1923 	 * encounter any conflicting delegations:
1924 	 */
1925 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1926 }
1927 
1928 /*
1929  * Remove special file priviledges (suid, capabilities) when file is written
1930  * to or truncated.
1931  */
1932 int file_remove_privs(struct file *file)
1933 {
1934 	struct dentry *dentry = file_dentry(file);
1935 	struct inode *inode = file_inode(file);
1936 	int kill;
1937 	int error = 0;
1938 
1939 	/*
1940 	 * Fast path for nothing security related.
1941 	 * As well for non-regular files, e.g. blkdev inodes.
1942 	 * For example, blkdev_write_iter() might get here
1943 	 * trying to remove privs which it is not allowed to.
1944 	 */
1945 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1946 		return 0;
1947 
1948 	kill = dentry_needs_remove_privs(dentry);
1949 	if (kill < 0)
1950 		return kill;
1951 	if (kill)
1952 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1953 	if (!error)
1954 		inode_has_no_xattr(inode);
1955 
1956 	return error;
1957 }
1958 EXPORT_SYMBOL(file_remove_privs);
1959 
1960 /**
1961  *	file_update_time	-	update mtime and ctime time
1962  *	@file: file accessed
1963  *
1964  *	Update the mtime and ctime members of an inode and mark the inode
1965  *	for writeback.  Note that this function is meant exclusively for
1966  *	usage in the file write path of filesystems, and filesystems may
1967  *	choose to explicitly ignore update via this function with the
1968  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1969  *	timestamps are handled by the server.  This can return an error for
1970  *	file systems who need to allocate space in order to update an inode.
1971  */
1972 
1973 int file_update_time(struct file *file)
1974 {
1975 	struct inode *inode = file_inode(file);
1976 	struct timespec64 now;
1977 	int sync_it = 0;
1978 	int ret;
1979 
1980 	/* First try to exhaust all avenues to not sync */
1981 	if (IS_NOCMTIME(inode))
1982 		return 0;
1983 
1984 	now = current_time(inode);
1985 	if (!timespec64_equal(&inode->i_mtime, &now))
1986 		sync_it = S_MTIME;
1987 
1988 	if (!timespec64_equal(&inode->i_ctime, &now))
1989 		sync_it |= S_CTIME;
1990 
1991 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1992 		sync_it |= S_VERSION;
1993 
1994 	if (!sync_it)
1995 		return 0;
1996 
1997 	/* Finally allowed to write? Takes lock. */
1998 	if (__mnt_want_write_file(file))
1999 		return 0;
2000 
2001 	ret = update_time(inode, &now, sync_it);
2002 	__mnt_drop_write_file(file);
2003 
2004 	return ret;
2005 }
2006 EXPORT_SYMBOL(file_update_time);
2007 
2008 /* Caller must hold the file's inode lock */
2009 int file_modified(struct file *file)
2010 {
2011 	int err;
2012 
2013 	/*
2014 	 * Clear the security bits if the process is not being run by root.
2015 	 * This keeps people from modifying setuid and setgid binaries.
2016 	 */
2017 	err = file_remove_privs(file);
2018 	if (err)
2019 		return err;
2020 
2021 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2022 		return 0;
2023 
2024 	return file_update_time(file);
2025 }
2026 EXPORT_SYMBOL(file_modified);
2027 
2028 int inode_needs_sync(struct inode *inode)
2029 {
2030 	if (IS_SYNC(inode))
2031 		return 1;
2032 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2033 		return 1;
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL(inode_needs_sync);
2037 
2038 /*
2039  * If we try to find an inode in the inode hash while it is being
2040  * deleted, we have to wait until the filesystem completes its
2041  * deletion before reporting that it isn't found.  This function waits
2042  * until the deletion _might_ have completed.  Callers are responsible
2043  * to recheck inode state.
2044  *
2045  * It doesn't matter if I_NEW is not set initially, a call to
2046  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2047  * will DTRT.
2048  */
2049 static void __wait_on_freeing_inode(struct inode *inode)
2050 {
2051 	wait_queue_head_t *wq;
2052 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2053 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2054 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2055 	spin_unlock(&inode->i_lock);
2056 	spin_unlock(&inode_hash_lock);
2057 	schedule();
2058 	finish_wait(wq, &wait.wq_entry);
2059 	spin_lock(&inode_hash_lock);
2060 }
2061 
2062 static __initdata unsigned long ihash_entries;
2063 static int __init set_ihash_entries(char *str)
2064 {
2065 	if (!str)
2066 		return 0;
2067 	ihash_entries = simple_strtoul(str, &str, 0);
2068 	return 1;
2069 }
2070 __setup("ihash_entries=", set_ihash_entries);
2071 
2072 /*
2073  * Initialize the waitqueues and inode hash table.
2074  */
2075 void __init inode_init_early(void)
2076 {
2077 	/* If hashes are distributed across NUMA nodes, defer
2078 	 * hash allocation until vmalloc space is available.
2079 	 */
2080 	if (hashdist)
2081 		return;
2082 
2083 	inode_hashtable =
2084 		alloc_large_system_hash("Inode-cache",
2085 					sizeof(struct hlist_head),
2086 					ihash_entries,
2087 					14,
2088 					HASH_EARLY | HASH_ZERO,
2089 					&i_hash_shift,
2090 					&i_hash_mask,
2091 					0,
2092 					0);
2093 }
2094 
2095 void __init inode_init(void)
2096 {
2097 	/* inode slab cache */
2098 	inode_cachep = kmem_cache_create("inode_cache",
2099 					 sizeof(struct inode),
2100 					 0,
2101 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2102 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2103 					 init_once);
2104 
2105 	/* Hash may have been set up in inode_init_early */
2106 	if (!hashdist)
2107 		return;
2108 
2109 	inode_hashtable =
2110 		alloc_large_system_hash("Inode-cache",
2111 					sizeof(struct hlist_head),
2112 					ihash_entries,
2113 					14,
2114 					HASH_ZERO,
2115 					&i_hash_shift,
2116 					&i_hash_mask,
2117 					0,
2118 					0);
2119 }
2120 
2121 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2122 {
2123 	inode->i_mode = mode;
2124 	if (S_ISCHR(mode)) {
2125 		inode->i_fop = &def_chr_fops;
2126 		inode->i_rdev = rdev;
2127 	} else if (S_ISBLK(mode)) {
2128 		inode->i_fop = &def_blk_fops;
2129 		inode->i_rdev = rdev;
2130 	} else if (S_ISFIFO(mode))
2131 		inode->i_fop = &pipefifo_fops;
2132 	else if (S_ISSOCK(mode))
2133 		;	/* leave it no_open_fops */
2134 	else
2135 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2136 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2137 				  inode->i_ino);
2138 }
2139 EXPORT_SYMBOL(init_special_inode);
2140 
2141 /**
2142  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2143  * @mnt_userns:	User namespace of the mount the inode was created from
2144  * @inode: New inode
2145  * @dir: Directory inode
2146  * @mode: mode of the new inode
2147  *
2148  * If the inode has been created through an idmapped mount the user namespace of
2149  * the vfsmount must be passed through @mnt_userns. This function will then take
2150  * care to map the inode according to @mnt_userns before checking permissions
2151  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2152  * checking is to be performed on the raw inode simply passs init_user_ns.
2153  */
2154 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2155 		      const struct inode *dir, umode_t mode)
2156 {
2157 	inode_fsuid_set(inode, mnt_userns);
2158 	if (dir && dir->i_mode & S_ISGID) {
2159 		inode->i_gid = dir->i_gid;
2160 
2161 		/* Directories are special, and always inherit S_ISGID */
2162 		if (S_ISDIR(mode))
2163 			mode |= S_ISGID;
2164 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2165 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2166 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2167 			mode &= ~S_ISGID;
2168 	} else
2169 		inode_fsgid_set(inode, mnt_userns);
2170 	inode->i_mode = mode;
2171 }
2172 EXPORT_SYMBOL(inode_init_owner);
2173 
2174 /**
2175  * inode_owner_or_capable - check current task permissions to inode
2176  * @mnt_userns:	user namespace of the mount the inode was found from
2177  * @inode: inode being checked
2178  *
2179  * Return true if current either has CAP_FOWNER in a namespace with the
2180  * inode owner uid mapped, or owns the file.
2181  *
2182  * If the inode has been found through an idmapped mount the user namespace of
2183  * the vfsmount must be passed through @mnt_userns. This function will then take
2184  * care to map the inode according to @mnt_userns before checking permissions.
2185  * On non-idmapped mounts or if permission checking is to be performed on the
2186  * raw inode simply passs init_user_ns.
2187  */
2188 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2189 			    const struct inode *inode)
2190 {
2191 	kuid_t i_uid;
2192 	struct user_namespace *ns;
2193 
2194 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2195 	if (uid_eq(current_fsuid(), i_uid))
2196 		return true;
2197 
2198 	ns = current_user_ns();
2199 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2200 		return true;
2201 	return false;
2202 }
2203 EXPORT_SYMBOL(inode_owner_or_capable);
2204 
2205 /*
2206  * Direct i/o helper functions
2207  */
2208 static void __inode_dio_wait(struct inode *inode)
2209 {
2210 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2211 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2212 
2213 	do {
2214 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2215 		if (atomic_read(&inode->i_dio_count))
2216 			schedule();
2217 	} while (atomic_read(&inode->i_dio_count));
2218 	finish_wait(wq, &q.wq_entry);
2219 }
2220 
2221 /**
2222  * inode_dio_wait - wait for outstanding DIO requests to finish
2223  * @inode: inode to wait for
2224  *
2225  * Waits for all pending direct I/O requests to finish so that we can
2226  * proceed with a truncate or equivalent operation.
2227  *
2228  * Must be called under a lock that serializes taking new references
2229  * to i_dio_count, usually by inode->i_mutex.
2230  */
2231 void inode_dio_wait(struct inode *inode)
2232 {
2233 	if (atomic_read(&inode->i_dio_count))
2234 		__inode_dio_wait(inode);
2235 }
2236 EXPORT_SYMBOL(inode_dio_wait);
2237 
2238 /*
2239  * inode_set_flags - atomically set some inode flags
2240  *
2241  * Note: the caller should be holding i_mutex, or else be sure that
2242  * they have exclusive access to the inode structure (i.e., while the
2243  * inode is being instantiated).  The reason for the cmpxchg() loop
2244  * --- which wouldn't be necessary if all code paths which modify
2245  * i_flags actually followed this rule, is that there is at least one
2246  * code path which doesn't today so we use cmpxchg() out of an abundance
2247  * of caution.
2248  *
2249  * In the long run, i_mutex is overkill, and we should probably look
2250  * at using the i_lock spinlock to protect i_flags, and then make sure
2251  * it is so documented in include/linux/fs.h and that all code follows
2252  * the locking convention!!
2253  */
2254 void inode_set_flags(struct inode *inode, unsigned int flags,
2255 		     unsigned int mask)
2256 {
2257 	WARN_ON_ONCE(flags & ~mask);
2258 	set_mask_bits(&inode->i_flags, mask, flags);
2259 }
2260 EXPORT_SYMBOL(inode_set_flags);
2261 
2262 void inode_nohighmem(struct inode *inode)
2263 {
2264 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2265 }
2266 EXPORT_SYMBOL(inode_nohighmem);
2267 
2268 /**
2269  * timestamp_truncate - Truncate timespec to a granularity
2270  * @t: Timespec
2271  * @inode: inode being updated
2272  *
2273  * Truncate a timespec to the granularity supported by the fs
2274  * containing the inode. Always rounds down. gran must
2275  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2276  */
2277 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2278 {
2279 	struct super_block *sb = inode->i_sb;
2280 	unsigned int gran = sb->s_time_gran;
2281 
2282 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2283 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2284 		t.tv_nsec = 0;
2285 
2286 	/* Avoid division in the common cases 1 ns and 1 s. */
2287 	if (gran == 1)
2288 		; /* nothing */
2289 	else if (gran == NSEC_PER_SEC)
2290 		t.tv_nsec = 0;
2291 	else if (gran > 1 && gran < NSEC_PER_SEC)
2292 		t.tv_nsec -= t.tv_nsec % gran;
2293 	else
2294 		WARN(1, "invalid file time granularity: %u", gran);
2295 	return t;
2296 }
2297 EXPORT_SYMBOL(timestamp_truncate);
2298 
2299 /**
2300  * current_time - Return FS time
2301  * @inode: inode.
2302  *
2303  * Return the current time truncated to the time granularity supported by
2304  * the fs.
2305  *
2306  * Note that inode and inode->sb cannot be NULL.
2307  * Otherwise, the function warns and returns time without truncation.
2308  */
2309 struct timespec64 current_time(struct inode *inode)
2310 {
2311 	struct timespec64 now;
2312 
2313 	ktime_get_coarse_real_ts64(&now);
2314 
2315 	if (unlikely(!inode->i_sb)) {
2316 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2317 		return now;
2318 	}
2319 
2320 	return timestamp_truncate(now, inode);
2321 }
2322 EXPORT_SYMBOL(current_time);
2323