xref: /linux/fs/inode.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88  * icache shrinking path, and the umount path.  Without this exclusion,
89  * by the time prune_icache calls iput for the inode whose pages it has
90  * been invalidating, or by the time it calls clear_inode & destroy_inode
91  * from its final dispose_list, the struct super_block they refer to
92  * (for inode->i_sb->s_op) may already have been freed and reused.
93  *
94  * We make this an rwsem because the fastpath is icache shrinking. In
95  * some cases a filesystem may be doing a significant amount of work in
96  * its inode reclaim code, so this should improve parallelism.
97  */
98 static DECLARE_RWSEM(iprune_sem);
99 
100 /*
101  * Statistics gathering..
102  */
103 struct inodes_stat_t inodes_stat;
104 
105 static struct percpu_counter nr_inodes __cacheline_aligned_in_smp;
106 static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp;
107 
108 static struct kmem_cache *inode_cachep __read_mostly;
109 
110 static inline int get_nr_inodes(void)
111 {
112 	return percpu_counter_sum_positive(&nr_inodes);
113 }
114 
115 static inline int get_nr_inodes_unused(void)
116 {
117 	return percpu_counter_sum_positive(&nr_inodes_unused);
118 }
119 
120 int get_nr_dirty_inodes(void)
121 {
122 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
123 	return nr_dirty > 0 ? nr_dirty : 0;
124 
125 }
126 
127 /*
128  * Handle nr_inode sysctl
129  */
130 #ifdef CONFIG_SYSCTL
131 int proc_nr_inodes(ctl_table *table, int write,
132 		   void __user *buffer, size_t *lenp, loff_t *ppos)
133 {
134 	inodes_stat.nr_inodes = get_nr_inodes();
135 	inodes_stat.nr_unused = get_nr_inodes_unused();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 static void wake_up_inode(struct inode *inode)
141 {
142 	/*
143 	 * Prevent speculative execution through spin_unlock(&inode_lock);
144 	 */
145 	smp_mb();
146 	wake_up_bit(&inode->i_state, __I_NEW);
147 }
148 
149 /**
150  * inode_init_always - perform inode structure intialisation
151  * @sb: superblock inode belongs to
152  * @inode: inode to initialise
153  *
154  * These are initializations that need to be done on every inode
155  * allocation as the fields are not initialised by slab allocation.
156  */
157 int inode_init_always(struct super_block *sb, struct inode *inode)
158 {
159 	static const struct address_space_operations empty_aops;
160 	static const struct inode_operations empty_iops;
161 	static const struct file_operations empty_fops;
162 	struct address_space *const mapping = &inode->i_data;
163 
164 	inode->i_sb = sb;
165 	inode->i_blkbits = sb->s_blocksize_bits;
166 	inode->i_flags = 0;
167 	atomic_set(&inode->i_count, 1);
168 	inode->i_op = &empty_iops;
169 	inode->i_fop = &empty_fops;
170 	inode->i_nlink = 1;
171 	inode->i_uid = 0;
172 	inode->i_gid = 0;
173 	atomic_set(&inode->i_writecount, 0);
174 	inode->i_size = 0;
175 	inode->i_blocks = 0;
176 	inode->i_bytes = 0;
177 	inode->i_generation = 0;
178 #ifdef CONFIG_QUOTA
179 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
180 #endif
181 	inode->i_pipe = NULL;
182 	inode->i_bdev = NULL;
183 	inode->i_cdev = NULL;
184 	inode->i_rdev = 0;
185 	inode->dirtied_when = 0;
186 
187 	if (security_inode_alloc(inode))
188 		goto out;
189 	spin_lock_init(&inode->i_lock);
190 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
191 
192 	mutex_init(&inode->i_mutex);
193 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
194 
195 	init_rwsem(&inode->i_alloc_sem);
196 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
197 
198 	mapping->a_ops = &empty_aops;
199 	mapping->host = inode;
200 	mapping->flags = 0;
201 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
202 	mapping->assoc_mapping = NULL;
203 	mapping->backing_dev_info = &default_backing_dev_info;
204 	mapping->writeback_index = 0;
205 
206 	/*
207 	 * If the block_device provides a backing_dev_info for client
208 	 * inodes then use that.  Otherwise the inode share the bdev's
209 	 * backing_dev_info.
210 	 */
211 	if (sb->s_bdev) {
212 		struct backing_dev_info *bdi;
213 
214 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
215 		mapping->backing_dev_info = bdi;
216 	}
217 	inode->i_private = NULL;
218 	inode->i_mapping = mapping;
219 #ifdef CONFIG_FS_POSIX_ACL
220 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
221 #endif
222 
223 #ifdef CONFIG_FSNOTIFY
224 	inode->i_fsnotify_mask = 0;
225 #endif
226 
227 	percpu_counter_inc(&nr_inodes);
228 
229 	return 0;
230 out:
231 	return -ENOMEM;
232 }
233 EXPORT_SYMBOL(inode_init_always);
234 
235 static struct inode *alloc_inode(struct super_block *sb)
236 {
237 	struct inode *inode;
238 
239 	if (sb->s_op->alloc_inode)
240 		inode = sb->s_op->alloc_inode(sb);
241 	else
242 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
243 
244 	if (!inode)
245 		return NULL;
246 
247 	if (unlikely(inode_init_always(sb, inode))) {
248 		if (inode->i_sb->s_op->destroy_inode)
249 			inode->i_sb->s_op->destroy_inode(inode);
250 		else
251 			kmem_cache_free(inode_cachep, inode);
252 		return NULL;
253 	}
254 
255 	return inode;
256 }
257 
258 void __destroy_inode(struct inode *inode)
259 {
260 	BUG_ON(inode_has_buffers(inode));
261 	security_inode_free(inode);
262 	fsnotify_inode_delete(inode);
263 #ifdef CONFIG_FS_POSIX_ACL
264 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
265 		posix_acl_release(inode->i_acl);
266 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
267 		posix_acl_release(inode->i_default_acl);
268 #endif
269 	percpu_counter_dec(&nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272 
273 static void destroy_inode(struct inode *inode)
274 {
275 	BUG_ON(!list_empty(&inode->i_lru));
276 	__destroy_inode(inode);
277 	if (inode->i_sb->s_op->destroy_inode)
278 		inode->i_sb->s_op->destroy_inode(inode);
279 	else
280 		kmem_cache_free(inode_cachep, (inode));
281 }
282 
283 /*
284  * These are initializations that only need to be done
285  * once, because the fields are idempotent across use
286  * of the inode, so let the slab aware of that.
287  */
288 void inode_init_once(struct inode *inode)
289 {
290 	memset(inode, 0, sizeof(*inode));
291 	INIT_HLIST_NODE(&inode->i_hash);
292 	INIT_LIST_HEAD(&inode->i_dentry);
293 	INIT_LIST_HEAD(&inode->i_devices);
294 	INIT_LIST_HEAD(&inode->i_wb_list);
295 	INIT_LIST_HEAD(&inode->i_lru);
296 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
297 	spin_lock_init(&inode->i_data.tree_lock);
298 	spin_lock_init(&inode->i_data.i_mmap_lock);
299 	INIT_LIST_HEAD(&inode->i_data.private_list);
300 	spin_lock_init(&inode->i_data.private_lock);
301 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
302 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
303 	i_size_ordered_init(inode);
304 #ifdef CONFIG_FSNOTIFY
305 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
306 #endif
307 }
308 EXPORT_SYMBOL(inode_init_once);
309 
310 static void init_once(void *foo)
311 {
312 	struct inode *inode = (struct inode *) foo;
313 
314 	inode_init_once(inode);
315 }
316 
317 /*
318  * inode_lock must be held
319  */
320 void __iget(struct inode *inode)
321 {
322 	atomic_inc(&inode->i_count);
323 }
324 
325 /*
326  * get additional reference to inode; caller must already hold one.
327  */
328 void ihold(struct inode *inode)
329 {
330 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
331 }
332 EXPORT_SYMBOL(ihold);
333 
334 static void inode_lru_list_add(struct inode *inode)
335 {
336 	if (list_empty(&inode->i_lru)) {
337 		list_add(&inode->i_lru, &inode_lru);
338 		percpu_counter_inc(&nr_inodes_unused);
339 	}
340 }
341 
342 static void inode_lru_list_del(struct inode *inode)
343 {
344 	if (!list_empty(&inode->i_lru)) {
345 		list_del_init(&inode->i_lru);
346 		percpu_counter_dec(&nr_inodes_unused);
347 	}
348 }
349 
350 static inline void __inode_sb_list_add(struct inode *inode)
351 {
352 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
353 }
354 
355 /**
356  * inode_sb_list_add - add inode to the superblock list of inodes
357  * @inode: inode to add
358  */
359 void inode_sb_list_add(struct inode *inode)
360 {
361 	spin_lock(&inode_lock);
362 	__inode_sb_list_add(inode);
363 	spin_unlock(&inode_lock);
364 }
365 EXPORT_SYMBOL_GPL(inode_sb_list_add);
366 
367 static inline void __inode_sb_list_del(struct inode *inode)
368 {
369 	list_del_init(&inode->i_sb_list);
370 }
371 
372 static unsigned long hash(struct super_block *sb, unsigned long hashval)
373 {
374 	unsigned long tmp;
375 
376 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
377 			L1_CACHE_BYTES;
378 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
379 	return tmp & I_HASHMASK;
380 }
381 
382 /**
383  *	__insert_inode_hash - hash an inode
384  *	@inode: unhashed inode
385  *	@hashval: unsigned long value used to locate this object in the
386  *		inode_hashtable.
387  *
388  *	Add an inode to the inode hash for this superblock.
389  */
390 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
391 {
392 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
393 
394 	spin_lock(&inode_lock);
395 	hlist_add_head(&inode->i_hash, b);
396 	spin_unlock(&inode_lock);
397 }
398 EXPORT_SYMBOL(__insert_inode_hash);
399 
400 /**
401  *	__remove_inode_hash - remove an inode from the hash
402  *	@inode: inode to unhash
403  *
404  *	Remove an inode from the superblock.
405  */
406 static void __remove_inode_hash(struct inode *inode)
407 {
408 	hlist_del_init(&inode->i_hash);
409 }
410 
411 /**
412  *	remove_inode_hash - remove an inode from the hash
413  *	@inode: inode to unhash
414  *
415  *	Remove an inode from the superblock.
416  */
417 void remove_inode_hash(struct inode *inode)
418 {
419 	spin_lock(&inode_lock);
420 	hlist_del_init(&inode->i_hash);
421 	spin_unlock(&inode_lock);
422 }
423 EXPORT_SYMBOL(remove_inode_hash);
424 
425 void end_writeback(struct inode *inode)
426 {
427 	might_sleep();
428 	BUG_ON(inode->i_data.nrpages);
429 	BUG_ON(!list_empty(&inode->i_data.private_list));
430 	BUG_ON(!(inode->i_state & I_FREEING));
431 	BUG_ON(inode->i_state & I_CLEAR);
432 	inode_sync_wait(inode);
433 	inode->i_state = I_FREEING | I_CLEAR;
434 }
435 EXPORT_SYMBOL(end_writeback);
436 
437 static void evict(struct inode *inode)
438 {
439 	const struct super_operations *op = inode->i_sb->s_op;
440 
441 	if (op->evict_inode) {
442 		op->evict_inode(inode);
443 	} else {
444 		if (inode->i_data.nrpages)
445 			truncate_inode_pages(&inode->i_data, 0);
446 		end_writeback(inode);
447 	}
448 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
449 		bd_forget(inode);
450 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
451 		cd_forget(inode);
452 }
453 
454 /*
455  * dispose_list - dispose of the contents of a local list
456  * @head: the head of the list to free
457  *
458  * Dispose-list gets a local list with local inodes in it, so it doesn't
459  * need to worry about list corruption and SMP locks.
460  */
461 static void dispose_list(struct list_head *head)
462 {
463 	while (!list_empty(head)) {
464 		struct inode *inode;
465 
466 		inode = list_first_entry(head, struct inode, i_lru);
467 		list_del_init(&inode->i_lru);
468 
469 		evict(inode);
470 
471 		spin_lock(&inode_lock);
472 		__remove_inode_hash(inode);
473 		__inode_sb_list_del(inode);
474 		spin_unlock(&inode_lock);
475 
476 		wake_up_inode(inode);
477 		destroy_inode(inode);
478 	}
479 }
480 
481 /**
482  * evict_inodes	- evict all evictable inodes for a superblock
483  * @sb:		superblock to operate on
484  *
485  * Make sure that no inodes with zero refcount are retained.  This is
486  * called by superblock shutdown after having MS_ACTIVE flag removed,
487  * so any inode reaching zero refcount during or after that call will
488  * be immediately evicted.
489  */
490 void evict_inodes(struct super_block *sb)
491 {
492 	struct inode *inode, *next;
493 	LIST_HEAD(dispose);
494 
495 	down_write(&iprune_sem);
496 
497 	spin_lock(&inode_lock);
498 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
499 		if (atomic_read(&inode->i_count))
500 			continue;
501 
502 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
503 			WARN_ON(1);
504 			continue;
505 		}
506 
507 		inode->i_state |= I_FREEING;
508 
509 		/*
510 		 * Move the inode off the IO lists and LRU once I_FREEING is
511 		 * set so that it won't get moved back on there if it is dirty.
512 		 */
513 		list_move(&inode->i_lru, &dispose);
514 		list_del_init(&inode->i_wb_list);
515 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
516 			percpu_counter_dec(&nr_inodes_unused);
517 	}
518 	spin_unlock(&inode_lock);
519 
520 	dispose_list(&dispose);
521 	up_write(&iprune_sem);
522 }
523 
524 /**
525  * invalidate_inodes	- attempt to free all inodes on a superblock
526  * @sb:		superblock to operate on
527  *
528  * Attempts to free all inodes for a given superblock.  If there were any
529  * busy inodes return a non-zero value, else zero.
530  */
531 int invalidate_inodes(struct super_block *sb)
532 {
533 	int busy = 0;
534 	struct inode *inode, *next;
535 	LIST_HEAD(dispose);
536 
537 	down_write(&iprune_sem);
538 
539 	spin_lock(&inode_lock);
540 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
541 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
542 			continue;
543 		if (atomic_read(&inode->i_count)) {
544 			busy = 1;
545 			continue;
546 		}
547 
548 		inode->i_state |= I_FREEING;
549 
550 		/*
551 		 * Move the inode off the IO lists and LRU once I_FREEING is
552 		 * set so that it won't get moved back on there if it is dirty.
553 		 */
554 		list_move(&inode->i_lru, &dispose);
555 		list_del_init(&inode->i_wb_list);
556 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
557 			percpu_counter_dec(&nr_inodes_unused);
558 	}
559 	spin_unlock(&inode_lock);
560 
561 	dispose_list(&dispose);
562 	up_write(&iprune_sem);
563 
564 	return busy;
565 }
566 
567 static int can_unuse(struct inode *inode)
568 {
569 	if (inode->i_state & ~I_REFERENCED)
570 		return 0;
571 	if (inode_has_buffers(inode))
572 		return 0;
573 	if (atomic_read(&inode->i_count))
574 		return 0;
575 	if (inode->i_data.nrpages)
576 		return 0;
577 	return 1;
578 }
579 
580 /*
581  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
582  * temporary list and then are freed outside inode_lock by dispose_list().
583  *
584  * Any inodes which are pinned purely because of attached pagecache have their
585  * pagecache removed.  If the inode has metadata buffers attached to
586  * mapping->private_list then try to remove them.
587  *
588  * If the inode has the I_REFERENCED flag set, then it means that it has been
589  * used recently - the flag is set in iput_final(). When we encounter such an
590  * inode, clear the flag and move it to the back of the LRU so it gets another
591  * pass through the LRU before it gets reclaimed. This is necessary because of
592  * the fact we are doing lazy LRU updates to minimise lock contention so the
593  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
594  * with this flag set because they are the inodes that are out of order.
595  */
596 static void prune_icache(int nr_to_scan)
597 {
598 	LIST_HEAD(freeable);
599 	int nr_scanned;
600 	unsigned long reap = 0;
601 
602 	down_read(&iprune_sem);
603 	spin_lock(&inode_lock);
604 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
605 		struct inode *inode;
606 
607 		if (list_empty(&inode_lru))
608 			break;
609 
610 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
611 
612 		/*
613 		 * Referenced or dirty inodes are still in use. Give them
614 		 * another pass through the LRU as we canot reclaim them now.
615 		 */
616 		if (atomic_read(&inode->i_count) ||
617 		    (inode->i_state & ~I_REFERENCED)) {
618 			list_del_init(&inode->i_lru);
619 			percpu_counter_dec(&nr_inodes_unused);
620 			continue;
621 		}
622 
623 		/* recently referenced inodes get one more pass */
624 		if (inode->i_state & I_REFERENCED) {
625 			list_move(&inode->i_lru, &inode_lru);
626 			inode->i_state &= ~I_REFERENCED;
627 			continue;
628 		}
629 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
630 			__iget(inode);
631 			spin_unlock(&inode_lock);
632 			if (remove_inode_buffers(inode))
633 				reap += invalidate_mapping_pages(&inode->i_data,
634 								0, -1);
635 			iput(inode);
636 			spin_lock(&inode_lock);
637 
638 			if (inode != list_entry(inode_lru.next,
639 						struct inode, i_lru))
640 				continue;	/* wrong inode or list_empty */
641 			if (!can_unuse(inode))
642 				continue;
643 		}
644 		WARN_ON(inode->i_state & I_NEW);
645 		inode->i_state |= I_FREEING;
646 
647 		/*
648 		 * Move the inode off the IO lists and LRU once I_FREEING is
649 		 * set so that it won't get moved back on there if it is dirty.
650 		 */
651 		list_move(&inode->i_lru, &freeable);
652 		list_del_init(&inode->i_wb_list);
653 		percpu_counter_dec(&nr_inodes_unused);
654 	}
655 	if (current_is_kswapd())
656 		__count_vm_events(KSWAPD_INODESTEAL, reap);
657 	else
658 		__count_vm_events(PGINODESTEAL, reap);
659 	spin_unlock(&inode_lock);
660 
661 	dispose_list(&freeable);
662 	up_read(&iprune_sem);
663 }
664 
665 /*
666  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
667  * "unused" means that no dentries are referring to the inodes: the files are
668  * not open and the dcache references to those inodes have already been
669  * reclaimed.
670  *
671  * This function is passed the number of inodes to scan, and it returns the
672  * total number of remaining possibly-reclaimable inodes.
673  */
674 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
675 {
676 	if (nr) {
677 		/*
678 		 * Nasty deadlock avoidance.  We may hold various FS locks,
679 		 * and we don't want to recurse into the FS that called us
680 		 * in clear_inode() and friends..
681 		 */
682 		if (!(gfp_mask & __GFP_FS))
683 			return -1;
684 		prune_icache(nr);
685 	}
686 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
687 }
688 
689 static struct shrinker icache_shrinker = {
690 	.shrink = shrink_icache_memory,
691 	.seeks = DEFAULT_SEEKS,
692 };
693 
694 static void __wait_on_freeing_inode(struct inode *inode);
695 /*
696  * Called with the inode lock held.
697  */
698 static struct inode *find_inode(struct super_block *sb,
699 				struct hlist_head *head,
700 				int (*test)(struct inode *, void *),
701 				void *data)
702 {
703 	struct hlist_node *node;
704 	struct inode *inode = NULL;
705 
706 repeat:
707 	hlist_for_each_entry(inode, node, head, i_hash) {
708 		if (inode->i_sb != sb)
709 			continue;
710 		if (!test(inode, data))
711 			continue;
712 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
713 			__wait_on_freeing_inode(inode);
714 			goto repeat;
715 		}
716 		__iget(inode);
717 		return inode;
718 	}
719 	return NULL;
720 }
721 
722 /*
723  * find_inode_fast is the fast path version of find_inode, see the comment at
724  * iget_locked for details.
725  */
726 static struct inode *find_inode_fast(struct super_block *sb,
727 				struct hlist_head *head, unsigned long ino)
728 {
729 	struct hlist_node *node;
730 	struct inode *inode = NULL;
731 
732 repeat:
733 	hlist_for_each_entry(inode, node, head, i_hash) {
734 		if (inode->i_ino != ino)
735 			continue;
736 		if (inode->i_sb != sb)
737 			continue;
738 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
739 			__wait_on_freeing_inode(inode);
740 			goto repeat;
741 		}
742 		__iget(inode);
743 		return inode;
744 	}
745 	return NULL;
746 }
747 
748 /*
749  * Each cpu owns a range of LAST_INO_BATCH numbers.
750  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
751  * to renew the exhausted range.
752  *
753  * This does not significantly increase overflow rate because every CPU can
754  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
755  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
756  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
757  * overflow rate by 2x, which does not seem too significant.
758  *
759  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
760  * error if st_ino won't fit in target struct field. Use 32bit counter
761  * here to attempt to avoid that.
762  */
763 #define LAST_INO_BATCH 1024
764 static DEFINE_PER_CPU(unsigned int, last_ino);
765 
766 unsigned int get_next_ino(void)
767 {
768 	unsigned int *p = &get_cpu_var(last_ino);
769 	unsigned int res = *p;
770 
771 #ifdef CONFIG_SMP
772 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
773 		static atomic_t shared_last_ino;
774 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
775 
776 		res = next - LAST_INO_BATCH;
777 	}
778 #endif
779 
780 	*p = ++res;
781 	put_cpu_var(last_ino);
782 	return res;
783 }
784 EXPORT_SYMBOL(get_next_ino);
785 
786 /**
787  *	new_inode 	- obtain an inode
788  *	@sb: superblock
789  *
790  *	Allocates a new inode for given superblock. The default gfp_mask
791  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
792  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
793  *	for the page cache are not reclaimable or migratable,
794  *	mapping_set_gfp_mask() must be called with suitable flags on the
795  *	newly created inode's mapping
796  *
797  */
798 struct inode *new_inode(struct super_block *sb)
799 {
800 	struct inode *inode;
801 
802 	spin_lock_prefetch(&inode_lock);
803 
804 	inode = alloc_inode(sb);
805 	if (inode) {
806 		spin_lock(&inode_lock);
807 		__inode_sb_list_add(inode);
808 		inode->i_state = 0;
809 		spin_unlock(&inode_lock);
810 	}
811 	return inode;
812 }
813 EXPORT_SYMBOL(new_inode);
814 
815 void unlock_new_inode(struct inode *inode)
816 {
817 #ifdef CONFIG_DEBUG_LOCK_ALLOC
818 	if (S_ISDIR(inode->i_mode)) {
819 		struct file_system_type *type = inode->i_sb->s_type;
820 
821 		/* Set new key only if filesystem hasn't already changed it */
822 		if (!lockdep_match_class(&inode->i_mutex,
823 		    &type->i_mutex_key)) {
824 			/*
825 			 * ensure nobody is actually holding i_mutex
826 			 */
827 			mutex_destroy(&inode->i_mutex);
828 			mutex_init(&inode->i_mutex);
829 			lockdep_set_class(&inode->i_mutex,
830 					  &type->i_mutex_dir_key);
831 		}
832 	}
833 #endif
834 	/*
835 	 * This is special!  We do not need the spinlock when clearing I_NEW,
836 	 * because we're guaranteed that nobody else tries to do anything about
837 	 * the state of the inode when it is locked, as we just created it (so
838 	 * there can be no old holders that haven't tested I_NEW).
839 	 * However we must emit the memory barrier so that other CPUs reliably
840 	 * see the clearing of I_NEW after the other inode initialisation has
841 	 * completed.
842 	 */
843 	smp_mb();
844 	WARN_ON(!(inode->i_state & I_NEW));
845 	inode->i_state &= ~I_NEW;
846 	wake_up_inode(inode);
847 }
848 EXPORT_SYMBOL(unlock_new_inode);
849 
850 /*
851  * This is called without the inode lock held.. Be careful.
852  *
853  * We no longer cache the sb_flags in i_flags - see fs.h
854  *	-- rmk@arm.uk.linux.org
855  */
856 static struct inode *get_new_inode(struct super_block *sb,
857 				struct hlist_head *head,
858 				int (*test)(struct inode *, void *),
859 				int (*set)(struct inode *, void *),
860 				void *data)
861 {
862 	struct inode *inode;
863 
864 	inode = alloc_inode(sb);
865 	if (inode) {
866 		struct inode *old;
867 
868 		spin_lock(&inode_lock);
869 		/* We released the lock, so.. */
870 		old = find_inode(sb, head, test, data);
871 		if (!old) {
872 			if (set(inode, data))
873 				goto set_failed;
874 
875 			hlist_add_head(&inode->i_hash, head);
876 			__inode_sb_list_add(inode);
877 			inode->i_state = I_NEW;
878 			spin_unlock(&inode_lock);
879 
880 			/* Return the locked inode with I_NEW set, the
881 			 * caller is responsible for filling in the contents
882 			 */
883 			return inode;
884 		}
885 
886 		/*
887 		 * Uhhuh, somebody else created the same inode under
888 		 * us. Use the old inode instead of the one we just
889 		 * allocated.
890 		 */
891 		spin_unlock(&inode_lock);
892 		destroy_inode(inode);
893 		inode = old;
894 		wait_on_inode(inode);
895 	}
896 	return inode;
897 
898 set_failed:
899 	spin_unlock(&inode_lock);
900 	destroy_inode(inode);
901 	return NULL;
902 }
903 
904 /*
905  * get_new_inode_fast is the fast path version of get_new_inode, see the
906  * comment at iget_locked for details.
907  */
908 static struct inode *get_new_inode_fast(struct super_block *sb,
909 				struct hlist_head *head, unsigned long ino)
910 {
911 	struct inode *inode;
912 
913 	inode = alloc_inode(sb);
914 	if (inode) {
915 		struct inode *old;
916 
917 		spin_lock(&inode_lock);
918 		/* We released the lock, so.. */
919 		old = find_inode_fast(sb, head, ino);
920 		if (!old) {
921 			inode->i_ino = ino;
922 			hlist_add_head(&inode->i_hash, head);
923 			__inode_sb_list_add(inode);
924 			inode->i_state = I_NEW;
925 			spin_unlock(&inode_lock);
926 
927 			/* Return the locked inode with I_NEW set, the
928 			 * caller is responsible for filling in the contents
929 			 */
930 			return inode;
931 		}
932 
933 		/*
934 		 * Uhhuh, somebody else created the same inode under
935 		 * us. Use the old inode instead of the one we just
936 		 * allocated.
937 		 */
938 		spin_unlock(&inode_lock);
939 		destroy_inode(inode);
940 		inode = old;
941 		wait_on_inode(inode);
942 	}
943 	return inode;
944 }
945 
946 /*
947  * search the inode cache for a matching inode number.
948  * If we find one, then the inode number we are trying to
949  * allocate is not unique and so we should not use it.
950  *
951  * Returns 1 if the inode number is unique, 0 if it is not.
952  */
953 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
954 {
955 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
956 	struct hlist_node *node;
957 	struct inode *inode;
958 
959 	hlist_for_each_entry(inode, node, b, i_hash) {
960 		if (inode->i_ino == ino && inode->i_sb == sb)
961 			return 0;
962 	}
963 
964 	return 1;
965 }
966 
967 /**
968  *	iunique - get a unique inode number
969  *	@sb: superblock
970  *	@max_reserved: highest reserved inode number
971  *
972  *	Obtain an inode number that is unique on the system for a given
973  *	superblock. This is used by file systems that have no natural
974  *	permanent inode numbering system. An inode number is returned that
975  *	is higher than the reserved limit but unique.
976  *
977  *	BUGS:
978  *	With a large number of inodes live on the file system this function
979  *	currently becomes quite slow.
980  */
981 ino_t iunique(struct super_block *sb, ino_t max_reserved)
982 {
983 	/*
984 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
985 	 * error if st_ino won't fit in target struct field. Use 32bit counter
986 	 * here to attempt to avoid that.
987 	 */
988 	static DEFINE_SPINLOCK(iunique_lock);
989 	static unsigned int counter;
990 	ino_t res;
991 
992 	spin_lock(&inode_lock);
993 	spin_lock(&iunique_lock);
994 	do {
995 		if (counter <= max_reserved)
996 			counter = max_reserved + 1;
997 		res = counter++;
998 	} while (!test_inode_iunique(sb, res));
999 	spin_unlock(&iunique_lock);
1000 	spin_unlock(&inode_lock);
1001 
1002 	return res;
1003 }
1004 EXPORT_SYMBOL(iunique);
1005 
1006 struct inode *igrab(struct inode *inode)
1007 {
1008 	spin_lock(&inode_lock);
1009 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1010 		__iget(inode);
1011 	else
1012 		/*
1013 		 * Handle the case where s_op->clear_inode is not been
1014 		 * called yet, and somebody is calling igrab
1015 		 * while the inode is getting freed.
1016 		 */
1017 		inode = NULL;
1018 	spin_unlock(&inode_lock);
1019 	return inode;
1020 }
1021 EXPORT_SYMBOL(igrab);
1022 
1023 /**
1024  * ifind - internal function, you want ilookup5() or iget5().
1025  * @sb:		super block of file system to search
1026  * @head:       the head of the list to search
1027  * @test:	callback used for comparisons between inodes
1028  * @data:	opaque data pointer to pass to @test
1029  * @wait:	if true wait for the inode to be unlocked, if false do not
1030  *
1031  * ifind() searches for the inode specified by @data in the inode
1032  * cache. This is a generalized version of ifind_fast() for file systems where
1033  * the inode number is not sufficient for unique identification of an inode.
1034  *
1035  * If the inode is in the cache, the inode is returned with an incremented
1036  * reference count.
1037  *
1038  * Otherwise NULL is returned.
1039  *
1040  * Note, @test is called with the inode_lock held, so can't sleep.
1041  */
1042 static struct inode *ifind(struct super_block *sb,
1043 		struct hlist_head *head, int (*test)(struct inode *, void *),
1044 		void *data, const int wait)
1045 {
1046 	struct inode *inode;
1047 
1048 	spin_lock(&inode_lock);
1049 	inode = find_inode(sb, head, test, data);
1050 	if (inode) {
1051 		spin_unlock(&inode_lock);
1052 		if (likely(wait))
1053 			wait_on_inode(inode);
1054 		return inode;
1055 	}
1056 	spin_unlock(&inode_lock);
1057 	return NULL;
1058 }
1059 
1060 /**
1061  * ifind_fast - internal function, you want ilookup() or iget().
1062  * @sb:		super block of file system to search
1063  * @head:       head of the list to search
1064  * @ino:	inode number to search for
1065  *
1066  * ifind_fast() searches for the inode @ino in the inode cache. This is for
1067  * file systems where the inode number is sufficient for unique identification
1068  * of an inode.
1069  *
1070  * If the inode is in the cache, the inode is returned with an incremented
1071  * reference count.
1072  *
1073  * Otherwise NULL is returned.
1074  */
1075 static struct inode *ifind_fast(struct super_block *sb,
1076 		struct hlist_head *head, unsigned long ino)
1077 {
1078 	struct inode *inode;
1079 
1080 	spin_lock(&inode_lock);
1081 	inode = find_inode_fast(sb, head, ino);
1082 	if (inode) {
1083 		spin_unlock(&inode_lock);
1084 		wait_on_inode(inode);
1085 		return inode;
1086 	}
1087 	spin_unlock(&inode_lock);
1088 	return NULL;
1089 }
1090 
1091 /**
1092  * ilookup5_nowait - search for an inode in the inode cache
1093  * @sb:		super block of file system to search
1094  * @hashval:	hash value (usually inode number) to search for
1095  * @test:	callback used for comparisons between inodes
1096  * @data:	opaque data pointer to pass to @test
1097  *
1098  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1099  * @data in the inode cache. This is a generalized version of ilookup() for
1100  * file systems where the inode number is not sufficient for unique
1101  * identification of an inode.
1102  *
1103  * If the inode is in the cache, the inode is returned with an incremented
1104  * reference count.  Note, the inode lock is not waited upon so you have to be
1105  * very careful what you do with the returned inode.  You probably should be
1106  * using ilookup5() instead.
1107  *
1108  * Otherwise NULL is returned.
1109  *
1110  * Note, @test is called with the inode_lock held, so can't sleep.
1111  */
1112 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1113 		int (*test)(struct inode *, void *), void *data)
1114 {
1115 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1116 
1117 	return ifind(sb, head, test, data, 0);
1118 }
1119 EXPORT_SYMBOL(ilookup5_nowait);
1120 
1121 /**
1122  * ilookup5 - search for an inode in the inode cache
1123  * @sb:		super block of file system to search
1124  * @hashval:	hash value (usually inode number) to search for
1125  * @test:	callback used for comparisons between inodes
1126  * @data:	opaque data pointer to pass to @test
1127  *
1128  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1129  * @data in the inode cache. This is a generalized version of ilookup() for
1130  * file systems where the inode number is not sufficient for unique
1131  * identification of an inode.
1132  *
1133  * If the inode is in the cache, the inode lock is waited upon and the inode is
1134  * returned with an incremented reference count.
1135  *
1136  * Otherwise NULL is returned.
1137  *
1138  * Note, @test is called with the inode_lock held, so can't sleep.
1139  */
1140 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1141 		int (*test)(struct inode *, void *), void *data)
1142 {
1143 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1144 
1145 	return ifind(sb, head, test, data, 1);
1146 }
1147 EXPORT_SYMBOL(ilookup5);
1148 
1149 /**
1150  * ilookup - search for an inode in the inode cache
1151  * @sb:		super block of file system to search
1152  * @ino:	inode number to search for
1153  *
1154  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1155  * This is for file systems where the inode number is sufficient for unique
1156  * identification of an inode.
1157  *
1158  * If the inode is in the cache, the inode is returned with an incremented
1159  * reference count.
1160  *
1161  * Otherwise NULL is returned.
1162  */
1163 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1164 {
1165 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1166 
1167 	return ifind_fast(sb, head, ino);
1168 }
1169 EXPORT_SYMBOL(ilookup);
1170 
1171 /**
1172  * iget5_locked - obtain an inode from a mounted file system
1173  * @sb:		super block of file system
1174  * @hashval:	hash value (usually inode number) to get
1175  * @test:	callback used for comparisons between inodes
1176  * @set:	callback used to initialize a new struct inode
1177  * @data:	opaque data pointer to pass to @test and @set
1178  *
1179  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1180  * and @data in the inode cache and if present it is returned with an increased
1181  * reference count. This is a generalized version of iget_locked() for file
1182  * systems where the inode number is not sufficient for unique identification
1183  * of an inode.
1184  *
1185  * If the inode is not in cache, get_new_inode() is called to allocate a new
1186  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1187  * file system gets to fill it in before unlocking it via unlock_new_inode().
1188  *
1189  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1190  */
1191 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1192 		int (*test)(struct inode *, void *),
1193 		int (*set)(struct inode *, void *), void *data)
1194 {
1195 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1196 	struct inode *inode;
1197 
1198 	inode = ifind(sb, head, test, data, 1);
1199 	if (inode)
1200 		return inode;
1201 	/*
1202 	 * get_new_inode() will do the right thing, re-trying the search
1203 	 * in case it had to block at any point.
1204 	 */
1205 	return get_new_inode(sb, head, test, set, data);
1206 }
1207 EXPORT_SYMBOL(iget5_locked);
1208 
1209 /**
1210  * iget_locked - obtain an inode from a mounted file system
1211  * @sb:		super block of file system
1212  * @ino:	inode number to get
1213  *
1214  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1215  * the inode cache and if present it is returned with an increased reference
1216  * count. This is for file systems where the inode number is sufficient for
1217  * unique identification of an inode.
1218  *
1219  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1220  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1221  * The file system gets to fill it in before unlocking it via
1222  * unlock_new_inode().
1223  */
1224 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1225 {
1226 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1227 	struct inode *inode;
1228 
1229 	inode = ifind_fast(sb, head, ino);
1230 	if (inode)
1231 		return inode;
1232 	/*
1233 	 * get_new_inode_fast() will do the right thing, re-trying the search
1234 	 * in case it had to block at any point.
1235 	 */
1236 	return get_new_inode_fast(sb, head, ino);
1237 }
1238 EXPORT_SYMBOL(iget_locked);
1239 
1240 int insert_inode_locked(struct inode *inode)
1241 {
1242 	struct super_block *sb = inode->i_sb;
1243 	ino_t ino = inode->i_ino;
1244 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1245 
1246 	inode->i_state |= I_NEW;
1247 	while (1) {
1248 		struct hlist_node *node;
1249 		struct inode *old = NULL;
1250 		spin_lock(&inode_lock);
1251 		hlist_for_each_entry(old, node, head, i_hash) {
1252 			if (old->i_ino != ino)
1253 				continue;
1254 			if (old->i_sb != sb)
1255 				continue;
1256 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1257 				continue;
1258 			break;
1259 		}
1260 		if (likely(!node)) {
1261 			hlist_add_head(&inode->i_hash, head);
1262 			spin_unlock(&inode_lock);
1263 			return 0;
1264 		}
1265 		__iget(old);
1266 		spin_unlock(&inode_lock);
1267 		wait_on_inode(old);
1268 		if (unlikely(!inode_unhashed(old))) {
1269 			iput(old);
1270 			return -EBUSY;
1271 		}
1272 		iput(old);
1273 	}
1274 }
1275 EXPORT_SYMBOL(insert_inode_locked);
1276 
1277 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1278 		int (*test)(struct inode *, void *), void *data)
1279 {
1280 	struct super_block *sb = inode->i_sb;
1281 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1282 
1283 	inode->i_state |= I_NEW;
1284 
1285 	while (1) {
1286 		struct hlist_node *node;
1287 		struct inode *old = NULL;
1288 
1289 		spin_lock(&inode_lock);
1290 		hlist_for_each_entry(old, node, head, i_hash) {
1291 			if (old->i_sb != sb)
1292 				continue;
1293 			if (!test(old, data))
1294 				continue;
1295 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1296 				continue;
1297 			break;
1298 		}
1299 		if (likely(!node)) {
1300 			hlist_add_head(&inode->i_hash, head);
1301 			spin_unlock(&inode_lock);
1302 			return 0;
1303 		}
1304 		__iget(old);
1305 		spin_unlock(&inode_lock);
1306 		wait_on_inode(old);
1307 		if (unlikely(!inode_unhashed(old))) {
1308 			iput(old);
1309 			return -EBUSY;
1310 		}
1311 		iput(old);
1312 	}
1313 }
1314 EXPORT_SYMBOL(insert_inode_locked4);
1315 
1316 
1317 int generic_delete_inode(struct inode *inode)
1318 {
1319 	return 1;
1320 }
1321 EXPORT_SYMBOL(generic_delete_inode);
1322 
1323 /*
1324  * Normal UNIX filesystem behaviour: delete the
1325  * inode when the usage count drops to zero, and
1326  * i_nlink is zero.
1327  */
1328 int generic_drop_inode(struct inode *inode)
1329 {
1330 	return !inode->i_nlink || inode_unhashed(inode);
1331 }
1332 EXPORT_SYMBOL_GPL(generic_drop_inode);
1333 
1334 /*
1335  * Called when we're dropping the last reference
1336  * to an inode.
1337  *
1338  * Call the FS "drop_inode()" function, defaulting to
1339  * the legacy UNIX filesystem behaviour.  If it tells
1340  * us to evict inode, do so.  Otherwise, retain inode
1341  * in cache if fs is alive, sync and evict if fs is
1342  * shutting down.
1343  */
1344 static void iput_final(struct inode *inode)
1345 {
1346 	struct super_block *sb = inode->i_sb;
1347 	const struct super_operations *op = inode->i_sb->s_op;
1348 	int drop;
1349 
1350 	if (op && op->drop_inode)
1351 		drop = op->drop_inode(inode);
1352 	else
1353 		drop = generic_drop_inode(inode);
1354 
1355 	if (!drop) {
1356 		if (sb->s_flags & MS_ACTIVE) {
1357 			inode->i_state |= I_REFERENCED;
1358 			if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1359 				inode_lru_list_add(inode);
1360 			}
1361 			spin_unlock(&inode_lock);
1362 			return;
1363 		}
1364 		WARN_ON(inode->i_state & I_NEW);
1365 		inode->i_state |= I_WILL_FREE;
1366 		spin_unlock(&inode_lock);
1367 		write_inode_now(inode, 1);
1368 		spin_lock(&inode_lock);
1369 		WARN_ON(inode->i_state & I_NEW);
1370 		inode->i_state &= ~I_WILL_FREE;
1371 		__remove_inode_hash(inode);
1372 	}
1373 
1374 	WARN_ON(inode->i_state & I_NEW);
1375 	inode->i_state |= I_FREEING;
1376 
1377 	/*
1378 	 * Move the inode off the IO lists and LRU once I_FREEING is
1379 	 * set so that it won't get moved back on there if it is dirty.
1380 	 */
1381 	inode_lru_list_del(inode);
1382 	list_del_init(&inode->i_wb_list);
1383 
1384 	__inode_sb_list_del(inode);
1385 	spin_unlock(&inode_lock);
1386 	evict(inode);
1387 	remove_inode_hash(inode);
1388 	wake_up_inode(inode);
1389 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1390 	destroy_inode(inode);
1391 }
1392 
1393 /**
1394  *	iput	- put an inode
1395  *	@inode: inode to put
1396  *
1397  *	Puts an inode, dropping its usage count. If the inode use count hits
1398  *	zero, the inode is then freed and may also be destroyed.
1399  *
1400  *	Consequently, iput() can sleep.
1401  */
1402 void iput(struct inode *inode)
1403 {
1404 	if (inode) {
1405 		BUG_ON(inode->i_state & I_CLEAR);
1406 
1407 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1408 			iput_final(inode);
1409 	}
1410 }
1411 EXPORT_SYMBOL(iput);
1412 
1413 /**
1414  *	bmap	- find a block number in a file
1415  *	@inode: inode of file
1416  *	@block: block to find
1417  *
1418  *	Returns the block number on the device holding the inode that
1419  *	is the disk block number for the block of the file requested.
1420  *	That is, asked for block 4 of inode 1 the function will return the
1421  *	disk block relative to the disk start that holds that block of the
1422  *	file.
1423  */
1424 sector_t bmap(struct inode *inode, sector_t block)
1425 {
1426 	sector_t res = 0;
1427 	if (inode->i_mapping->a_ops->bmap)
1428 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1429 	return res;
1430 }
1431 EXPORT_SYMBOL(bmap);
1432 
1433 /*
1434  * With relative atime, only update atime if the previous atime is
1435  * earlier than either the ctime or mtime or if at least a day has
1436  * passed since the last atime update.
1437  */
1438 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1439 			     struct timespec now)
1440 {
1441 
1442 	if (!(mnt->mnt_flags & MNT_RELATIME))
1443 		return 1;
1444 	/*
1445 	 * Is mtime younger than atime? If yes, update atime:
1446 	 */
1447 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1448 		return 1;
1449 	/*
1450 	 * Is ctime younger than atime? If yes, update atime:
1451 	 */
1452 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1453 		return 1;
1454 
1455 	/*
1456 	 * Is the previous atime value older than a day? If yes,
1457 	 * update atime:
1458 	 */
1459 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1460 		return 1;
1461 	/*
1462 	 * Good, we can skip the atime update:
1463 	 */
1464 	return 0;
1465 }
1466 
1467 /**
1468  *	touch_atime	-	update the access time
1469  *	@mnt: mount the inode is accessed on
1470  *	@dentry: dentry accessed
1471  *
1472  *	Update the accessed time on an inode and mark it for writeback.
1473  *	This function automatically handles read only file systems and media,
1474  *	as well as the "noatime" flag and inode specific "noatime" markers.
1475  */
1476 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1477 {
1478 	struct inode *inode = dentry->d_inode;
1479 	struct timespec now;
1480 
1481 	if (inode->i_flags & S_NOATIME)
1482 		return;
1483 	if (IS_NOATIME(inode))
1484 		return;
1485 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1486 		return;
1487 
1488 	if (mnt->mnt_flags & MNT_NOATIME)
1489 		return;
1490 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1491 		return;
1492 
1493 	now = current_fs_time(inode->i_sb);
1494 
1495 	if (!relatime_need_update(mnt, inode, now))
1496 		return;
1497 
1498 	if (timespec_equal(&inode->i_atime, &now))
1499 		return;
1500 
1501 	if (mnt_want_write(mnt))
1502 		return;
1503 
1504 	inode->i_atime = now;
1505 	mark_inode_dirty_sync(inode);
1506 	mnt_drop_write(mnt);
1507 }
1508 EXPORT_SYMBOL(touch_atime);
1509 
1510 /**
1511  *	file_update_time	-	update mtime and ctime time
1512  *	@file: file accessed
1513  *
1514  *	Update the mtime and ctime members of an inode and mark the inode
1515  *	for writeback.  Note that this function is meant exclusively for
1516  *	usage in the file write path of filesystems, and filesystems may
1517  *	choose to explicitly ignore update via this function with the
1518  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1519  *	timestamps are handled by the server.
1520  */
1521 
1522 void file_update_time(struct file *file)
1523 {
1524 	struct inode *inode = file->f_path.dentry->d_inode;
1525 	struct timespec now;
1526 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1527 
1528 	/* First try to exhaust all avenues to not sync */
1529 	if (IS_NOCMTIME(inode))
1530 		return;
1531 
1532 	now = current_fs_time(inode->i_sb);
1533 	if (!timespec_equal(&inode->i_mtime, &now))
1534 		sync_it = S_MTIME;
1535 
1536 	if (!timespec_equal(&inode->i_ctime, &now))
1537 		sync_it |= S_CTIME;
1538 
1539 	if (IS_I_VERSION(inode))
1540 		sync_it |= S_VERSION;
1541 
1542 	if (!sync_it)
1543 		return;
1544 
1545 	/* Finally allowed to write? Takes lock. */
1546 	if (mnt_want_write_file(file))
1547 		return;
1548 
1549 	/* Only change inode inside the lock region */
1550 	if (sync_it & S_VERSION)
1551 		inode_inc_iversion(inode);
1552 	if (sync_it & S_CTIME)
1553 		inode->i_ctime = now;
1554 	if (sync_it & S_MTIME)
1555 		inode->i_mtime = now;
1556 	mark_inode_dirty_sync(inode);
1557 	mnt_drop_write(file->f_path.mnt);
1558 }
1559 EXPORT_SYMBOL(file_update_time);
1560 
1561 int inode_needs_sync(struct inode *inode)
1562 {
1563 	if (IS_SYNC(inode))
1564 		return 1;
1565 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1566 		return 1;
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(inode_needs_sync);
1570 
1571 int inode_wait(void *word)
1572 {
1573 	schedule();
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL(inode_wait);
1577 
1578 /*
1579  * If we try to find an inode in the inode hash while it is being
1580  * deleted, we have to wait until the filesystem completes its
1581  * deletion before reporting that it isn't found.  This function waits
1582  * until the deletion _might_ have completed.  Callers are responsible
1583  * to recheck inode state.
1584  *
1585  * It doesn't matter if I_NEW is not set initially, a call to
1586  * wake_up_inode() after removing from the hash list will DTRT.
1587  *
1588  * This is called with inode_lock held.
1589  */
1590 static void __wait_on_freeing_inode(struct inode *inode)
1591 {
1592 	wait_queue_head_t *wq;
1593 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1594 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1595 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1596 	spin_unlock(&inode_lock);
1597 	schedule();
1598 	finish_wait(wq, &wait.wait);
1599 	spin_lock(&inode_lock);
1600 }
1601 
1602 static __initdata unsigned long ihash_entries;
1603 static int __init set_ihash_entries(char *str)
1604 {
1605 	if (!str)
1606 		return 0;
1607 	ihash_entries = simple_strtoul(str, &str, 0);
1608 	return 1;
1609 }
1610 __setup("ihash_entries=", set_ihash_entries);
1611 
1612 /*
1613  * Initialize the waitqueues and inode hash table.
1614  */
1615 void __init inode_init_early(void)
1616 {
1617 	int loop;
1618 
1619 	/* If hashes are distributed across NUMA nodes, defer
1620 	 * hash allocation until vmalloc space is available.
1621 	 */
1622 	if (hashdist)
1623 		return;
1624 
1625 	inode_hashtable =
1626 		alloc_large_system_hash("Inode-cache",
1627 					sizeof(struct hlist_head),
1628 					ihash_entries,
1629 					14,
1630 					HASH_EARLY,
1631 					&i_hash_shift,
1632 					&i_hash_mask,
1633 					0);
1634 
1635 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1636 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1637 }
1638 
1639 void __init inode_init(void)
1640 {
1641 	int loop;
1642 
1643 	/* inode slab cache */
1644 	inode_cachep = kmem_cache_create("inode_cache",
1645 					 sizeof(struct inode),
1646 					 0,
1647 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1648 					 SLAB_MEM_SPREAD),
1649 					 init_once);
1650 	register_shrinker(&icache_shrinker);
1651 	percpu_counter_init(&nr_inodes, 0);
1652 	percpu_counter_init(&nr_inodes_unused, 0);
1653 
1654 	/* Hash may have been set up in inode_init_early */
1655 	if (!hashdist)
1656 		return;
1657 
1658 	inode_hashtable =
1659 		alloc_large_system_hash("Inode-cache",
1660 					sizeof(struct hlist_head),
1661 					ihash_entries,
1662 					14,
1663 					0,
1664 					&i_hash_shift,
1665 					&i_hash_mask,
1666 					0);
1667 
1668 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1669 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1670 }
1671 
1672 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1673 {
1674 	inode->i_mode = mode;
1675 	if (S_ISCHR(mode)) {
1676 		inode->i_fop = &def_chr_fops;
1677 		inode->i_rdev = rdev;
1678 	} else if (S_ISBLK(mode)) {
1679 		inode->i_fop = &def_blk_fops;
1680 		inode->i_rdev = rdev;
1681 	} else if (S_ISFIFO(mode))
1682 		inode->i_fop = &def_fifo_fops;
1683 	else if (S_ISSOCK(mode))
1684 		inode->i_fop = &bad_sock_fops;
1685 	else
1686 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1687 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1688 				  inode->i_ino);
1689 }
1690 EXPORT_SYMBOL(init_special_inode);
1691 
1692 /**
1693  * Init uid,gid,mode for new inode according to posix standards
1694  * @inode: New inode
1695  * @dir: Directory inode
1696  * @mode: mode of the new inode
1697  */
1698 void inode_init_owner(struct inode *inode, const struct inode *dir,
1699 			mode_t mode)
1700 {
1701 	inode->i_uid = current_fsuid();
1702 	if (dir && dir->i_mode & S_ISGID) {
1703 		inode->i_gid = dir->i_gid;
1704 		if (S_ISDIR(mode))
1705 			mode |= S_ISGID;
1706 	} else
1707 		inode->i_gid = current_fsgid();
1708 	inode->i_mode = mode;
1709 }
1710 EXPORT_SYMBOL(inode_init_owner);
1711