1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 #include <linux/posix_acl.h> 27 #include <linux/ima.h> 28 29 /* 30 * This is needed for the following functions: 31 * - inode_has_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 static LIST_HEAD(inode_lru); 76 static struct hlist_head *inode_hashtable __read_mostly; 77 78 /* 79 * A simple spinlock to protect the list manipulations. 80 * 81 * NOTE! You also have to own the lock if you change 82 * the i_state of an inode while it is in use.. 83 */ 84 DEFINE_SPINLOCK(inode_lock); 85 86 /* 87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 88 * icache shrinking path, and the umount path. Without this exclusion, 89 * by the time prune_icache calls iput for the inode whose pages it has 90 * been invalidating, or by the time it calls clear_inode & destroy_inode 91 * from its final dispose_list, the struct super_block they refer to 92 * (for inode->i_sb->s_op) may already have been freed and reused. 93 * 94 * We make this an rwsem because the fastpath is icache shrinking. In 95 * some cases a filesystem may be doing a significant amount of work in 96 * its inode reclaim code, so this should improve parallelism. 97 */ 98 static DECLARE_RWSEM(iprune_sem); 99 100 /* 101 * Statistics gathering.. 102 */ 103 struct inodes_stat_t inodes_stat; 104 105 static struct percpu_counter nr_inodes __cacheline_aligned_in_smp; 106 static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp; 107 108 static struct kmem_cache *inode_cachep __read_mostly; 109 110 static inline int get_nr_inodes(void) 111 { 112 return percpu_counter_sum_positive(&nr_inodes); 113 } 114 115 static inline int get_nr_inodes_unused(void) 116 { 117 return percpu_counter_sum_positive(&nr_inodes_unused); 118 } 119 120 int get_nr_dirty_inodes(void) 121 { 122 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 123 return nr_dirty > 0 ? nr_dirty : 0; 124 125 } 126 127 /* 128 * Handle nr_inode sysctl 129 */ 130 #ifdef CONFIG_SYSCTL 131 int proc_nr_inodes(ctl_table *table, int write, 132 void __user *buffer, size_t *lenp, loff_t *ppos) 133 { 134 inodes_stat.nr_inodes = get_nr_inodes(); 135 inodes_stat.nr_unused = get_nr_inodes_unused(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 static void wake_up_inode(struct inode *inode) 141 { 142 /* 143 * Prevent speculative execution through spin_unlock(&inode_lock); 144 */ 145 smp_mb(); 146 wake_up_bit(&inode->i_state, __I_NEW); 147 } 148 149 /** 150 * inode_init_always - perform inode structure intialisation 151 * @sb: superblock inode belongs to 152 * @inode: inode to initialise 153 * 154 * These are initializations that need to be done on every inode 155 * allocation as the fields are not initialised by slab allocation. 156 */ 157 int inode_init_always(struct super_block *sb, struct inode *inode) 158 { 159 static const struct address_space_operations empty_aops; 160 static const struct inode_operations empty_iops; 161 static const struct file_operations empty_fops; 162 struct address_space *const mapping = &inode->i_data; 163 164 inode->i_sb = sb; 165 inode->i_blkbits = sb->s_blocksize_bits; 166 inode->i_flags = 0; 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &empty_fops; 170 inode->i_nlink = 1; 171 inode->i_uid = 0; 172 inode->i_gid = 0; 173 atomic_set(&inode->i_writecount, 0); 174 inode->i_size = 0; 175 inode->i_blocks = 0; 176 inode->i_bytes = 0; 177 inode->i_generation = 0; 178 #ifdef CONFIG_QUOTA 179 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 180 #endif 181 inode->i_pipe = NULL; 182 inode->i_bdev = NULL; 183 inode->i_cdev = NULL; 184 inode->i_rdev = 0; 185 inode->dirtied_when = 0; 186 187 if (security_inode_alloc(inode)) 188 goto out; 189 spin_lock_init(&inode->i_lock); 190 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 191 192 mutex_init(&inode->i_mutex); 193 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 194 195 init_rwsem(&inode->i_alloc_sem); 196 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 197 198 mapping->a_ops = &empty_aops; 199 mapping->host = inode; 200 mapping->flags = 0; 201 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 202 mapping->assoc_mapping = NULL; 203 mapping->backing_dev_info = &default_backing_dev_info; 204 mapping->writeback_index = 0; 205 206 /* 207 * If the block_device provides a backing_dev_info for client 208 * inodes then use that. Otherwise the inode share the bdev's 209 * backing_dev_info. 210 */ 211 if (sb->s_bdev) { 212 struct backing_dev_info *bdi; 213 214 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 215 mapping->backing_dev_info = bdi; 216 } 217 inode->i_private = NULL; 218 inode->i_mapping = mapping; 219 #ifdef CONFIG_FS_POSIX_ACL 220 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 221 #endif 222 223 #ifdef CONFIG_FSNOTIFY 224 inode->i_fsnotify_mask = 0; 225 #endif 226 227 percpu_counter_inc(&nr_inodes); 228 229 return 0; 230 out: 231 return -ENOMEM; 232 } 233 EXPORT_SYMBOL(inode_init_always); 234 235 static struct inode *alloc_inode(struct super_block *sb) 236 { 237 struct inode *inode; 238 239 if (sb->s_op->alloc_inode) 240 inode = sb->s_op->alloc_inode(sb); 241 else 242 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 243 244 if (!inode) 245 return NULL; 246 247 if (unlikely(inode_init_always(sb, inode))) { 248 if (inode->i_sb->s_op->destroy_inode) 249 inode->i_sb->s_op->destroy_inode(inode); 250 else 251 kmem_cache_free(inode_cachep, inode); 252 return NULL; 253 } 254 255 return inode; 256 } 257 258 void __destroy_inode(struct inode *inode) 259 { 260 BUG_ON(inode_has_buffers(inode)); 261 security_inode_free(inode); 262 fsnotify_inode_delete(inode); 263 #ifdef CONFIG_FS_POSIX_ACL 264 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 265 posix_acl_release(inode->i_acl); 266 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 267 posix_acl_release(inode->i_default_acl); 268 #endif 269 percpu_counter_dec(&nr_inodes); 270 } 271 EXPORT_SYMBOL(__destroy_inode); 272 273 static void destroy_inode(struct inode *inode) 274 { 275 BUG_ON(!list_empty(&inode->i_lru)); 276 __destroy_inode(inode); 277 if (inode->i_sb->s_op->destroy_inode) 278 inode->i_sb->s_op->destroy_inode(inode); 279 else 280 kmem_cache_free(inode_cachep, (inode)); 281 } 282 283 /* 284 * These are initializations that only need to be done 285 * once, because the fields are idempotent across use 286 * of the inode, so let the slab aware of that. 287 */ 288 void inode_init_once(struct inode *inode) 289 { 290 memset(inode, 0, sizeof(*inode)); 291 INIT_HLIST_NODE(&inode->i_hash); 292 INIT_LIST_HEAD(&inode->i_dentry); 293 INIT_LIST_HEAD(&inode->i_devices); 294 INIT_LIST_HEAD(&inode->i_wb_list); 295 INIT_LIST_HEAD(&inode->i_lru); 296 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 297 spin_lock_init(&inode->i_data.tree_lock); 298 spin_lock_init(&inode->i_data.i_mmap_lock); 299 INIT_LIST_HEAD(&inode->i_data.private_list); 300 spin_lock_init(&inode->i_data.private_lock); 301 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 302 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 303 i_size_ordered_init(inode); 304 #ifdef CONFIG_FSNOTIFY 305 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 306 #endif 307 } 308 EXPORT_SYMBOL(inode_init_once); 309 310 static void init_once(void *foo) 311 { 312 struct inode *inode = (struct inode *) foo; 313 314 inode_init_once(inode); 315 } 316 317 /* 318 * inode_lock must be held 319 */ 320 void __iget(struct inode *inode) 321 { 322 atomic_inc(&inode->i_count); 323 } 324 325 /* 326 * get additional reference to inode; caller must already hold one. 327 */ 328 void ihold(struct inode *inode) 329 { 330 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 331 } 332 EXPORT_SYMBOL(ihold); 333 334 static void inode_lru_list_add(struct inode *inode) 335 { 336 if (list_empty(&inode->i_lru)) { 337 list_add(&inode->i_lru, &inode_lru); 338 percpu_counter_inc(&nr_inodes_unused); 339 } 340 } 341 342 static void inode_lru_list_del(struct inode *inode) 343 { 344 if (!list_empty(&inode->i_lru)) { 345 list_del_init(&inode->i_lru); 346 percpu_counter_dec(&nr_inodes_unused); 347 } 348 } 349 350 static inline void __inode_sb_list_add(struct inode *inode) 351 { 352 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 353 } 354 355 /** 356 * inode_sb_list_add - add inode to the superblock list of inodes 357 * @inode: inode to add 358 */ 359 void inode_sb_list_add(struct inode *inode) 360 { 361 spin_lock(&inode_lock); 362 __inode_sb_list_add(inode); 363 spin_unlock(&inode_lock); 364 } 365 EXPORT_SYMBOL_GPL(inode_sb_list_add); 366 367 static inline void __inode_sb_list_del(struct inode *inode) 368 { 369 list_del_init(&inode->i_sb_list); 370 } 371 372 static unsigned long hash(struct super_block *sb, unsigned long hashval) 373 { 374 unsigned long tmp; 375 376 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 377 L1_CACHE_BYTES; 378 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 379 return tmp & I_HASHMASK; 380 } 381 382 /** 383 * __insert_inode_hash - hash an inode 384 * @inode: unhashed inode 385 * @hashval: unsigned long value used to locate this object in the 386 * inode_hashtable. 387 * 388 * Add an inode to the inode hash for this superblock. 389 */ 390 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 391 { 392 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 393 394 spin_lock(&inode_lock); 395 hlist_add_head(&inode->i_hash, b); 396 spin_unlock(&inode_lock); 397 } 398 EXPORT_SYMBOL(__insert_inode_hash); 399 400 /** 401 * __remove_inode_hash - remove an inode from the hash 402 * @inode: inode to unhash 403 * 404 * Remove an inode from the superblock. 405 */ 406 static void __remove_inode_hash(struct inode *inode) 407 { 408 hlist_del_init(&inode->i_hash); 409 } 410 411 /** 412 * remove_inode_hash - remove an inode from the hash 413 * @inode: inode to unhash 414 * 415 * Remove an inode from the superblock. 416 */ 417 void remove_inode_hash(struct inode *inode) 418 { 419 spin_lock(&inode_lock); 420 hlist_del_init(&inode->i_hash); 421 spin_unlock(&inode_lock); 422 } 423 EXPORT_SYMBOL(remove_inode_hash); 424 425 void end_writeback(struct inode *inode) 426 { 427 might_sleep(); 428 BUG_ON(inode->i_data.nrpages); 429 BUG_ON(!list_empty(&inode->i_data.private_list)); 430 BUG_ON(!(inode->i_state & I_FREEING)); 431 BUG_ON(inode->i_state & I_CLEAR); 432 inode_sync_wait(inode); 433 inode->i_state = I_FREEING | I_CLEAR; 434 } 435 EXPORT_SYMBOL(end_writeback); 436 437 static void evict(struct inode *inode) 438 { 439 const struct super_operations *op = inode->i_sb->s_op; 440 441 if (op->evict_inode) { 442 op->evict_inode(inode); 443 } else { 444 if (inode->i_data.nrpages) 445 truncate_inode_pages(&inode->i_data, 0); 446 end_writeback(inode); 447 } 448 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 449 bd_forget(inode); 450 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 451 cd_forget(inode); 452 } 453 454 /* 455 * dispose_list - dispose of the contents of a local list 456 * @head: the head of the list to free 457 * 458 * Dispose-list gets a local list with local inodes in it, so it doesn't 459 * need to worry about list corruption and SMP locks. 460 */ 461 static void dispose_list(struct list_head *head) 462 { 463 while (!list_empty(head)) { 464 struct inode *inode; 465 466 inode = list_first_entry(head, struct inode, i_lru); 467 list_del_init(&inode->i_lru); 468 469 evict(inode); 470 471 spin_lock(&inode_lock); 472 __remove_inode_hash(inode); 473 __inode_sb_list_del(inode); 474 spin_unlock(&inode_lock); 475 476 wake_up_inode(inode); 477 destroy_inode(inode); 478 } 479 } 480 481 /** 482 * evict_inodes - evict all evictable inodes for a superblock 483 * @sb: superblock to operate on 484 * 485 * Make sure that no inodes with zero refcount are retained. This is 486 * called by superblock shutdown after having MS_ACTIVE flag removed, 487 * so any inode reaching zero refcount during or after that call will 488 * be immediately evicted. 489 */ 490 void evict_inodes(struct super_block *sb) 491 { 492 struct inode *inode, *next; 493 LIST_HEAD(dispose); 494 495 down_write(&iprune_sem); 496 497 spin_lock(&inode_lock); 498 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 499 if (atomic_read(&inode->i_count)) 500 continue; 501 502 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 503 WARN_ON(1); 504 continue; 505 } 506 507 inode->i_state |= I_FREEING; 508 509 /* 510 * Move the inode off the IO lists and LRU once I_FREEING is 511 * set so that it won't get moved back on there if it is dirty. 512 */ 513 list_move(&inode->i_lru, &dispose); 514 list_del_init(&inode->i_wb_list); 515 if (!(inode->i_state & (I_DIRTY | I_SYNC))) 516 percpu_counter_dec(&nr_inodes_unused); 517 } 518 spin_unlock(&inode_lock); 519 520 dispose_list(&dispose); 521 up_write(&iprune_sem); 522 } 523 524 /** 525 * invalidate_inodes - attempt to free all inodes on a superblock 526 * @sb: superblock to operate on 527 * 528 * Attempts to free all inodes for a given superblock. If there were any 529 * busy inodes return a non-zero value, else zero. 530 */ 531 int invalidate_inodes(struct super_block *sb) 532 { 533 int busy = 0; 534 struct inode *inode, *next; 535 LIST_HEAD(dispose); 536 537 down_write(&iprune_sem); 538 539 spin_lock(&inode_lock); 540 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 541 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) 542 continue; 543 if (atomic_read(&inode->i_count)) { 544 busy = 1; 545 continue; 546 } 547 548 inode->i_state |= I_FREEING; 549 550 /* 551 * Move the inode off the IO lists and LRU once I_FREEING is 552 * set so that it won't get moved back on there if it is dirty. 553 */ 554 list_move(&inode->i_lru, &dispose); 555 list_del_init(&inode->i_wb_list); 556 if (!(inode->i_state & (I_DIRTY | I_SYNC))) 557 percpu_counter_dec(&nr_inodes_unused); 558 } 559 spin_unlock(&inode_lock); 560 561 dispose_list(&dispose); 562 up_write(&iprune_sem); 563 564 return busy; 565 } 566 567 static int can_unuse(struct inode *inode) 568 { 569 if (inode->i_state & ~I_REFERENCED) 570 return 0; 571 if (inode_has_buffers(inode)) 572 return 0; 573 if (atomic_read(&inode->i_count)) 574 return 0; 575 if (inode->i_data.nrpages) 576 return 0; 577 return 1; 578 } 579 580 /* 581 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a 582 * temporary list and then are freed outside inode_lock by dispose_list(). 583 * 584 * Any inodes which are pinned purely because of attached pagecache have their 585 * pagecache removed. If the inode has metadata buffers attached to 586 * mapping->private_list then try to remove them. 587 * 588 * If the inode has the I_REFERENCED flag set, then it means that it has been 589 * used recently - the flag is set in iput_final(). When we encounter such an 590 * inode, clear the flag and move it to the back of the LRU so it gets another 591 * pass through the LRU before it gets reclaimed. This is necessary because of 592 * the fact we are doing lazy LRU updates to minimise lock contention so the 593 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 594 * with this flag set because they are the inodes that are out of order. 595 */ 596 static void prune_icache(int nr_to_scan) 597 { 598 LIST_HEAD(freeable); 599 int nr_scanned; 600 unsigned long reap = 0; 601 602 down_read(&iprune_sem); 603 spin_lock(&inode_lock); 604 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 605 struct inode *inode; 606 607 if (list_empty(&inode_lru)) 608 break; 609 610 inode = list_entry(inode_lru.prev, struct inode, i_lru); 611 612 /* 613 * Referenced or dirty inodes are still in use. Give them 614 * another pass through the LRU as we canot reclaim them now. 615 */ 616 if (atomic_read(&inode->i_count) || 617 (inode->i_state & ~I_REFERENCED)) { 618 list_del_init(&inode->i_lru); 619 percpu_counter_dec(&nr_inodes_unused); 620 continue; 621 } 622 623 /* recently referenced inodes get one more pass */ 624 if (inode->i_state & I_REFERENCED) { 625 list_move(&inode->i_lru, &inode_lru); 626 inode->i_state &= ~I_REFERENCED; 627 continue; 628 } 629 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 630 __iget(inode); 631 spin_unlock(&inode_lock); 632 if (remove_inode_buffers(inode)) 633 reap += invalidate_mapping_pages(&inode->i_data, 634 0, -1); 635 iput(inode); 636 spin_lock(&inode_lock); 637 638 if (inode != list_entry(inode_lru.next, 639 struct inode, i_lru)) 640 continue; /* wrong inode or list_empty */ 641 if (!can_unuse(inode)) 642 continue; 643 } 644 WARN_ON(inode->i_state & I_NEW); 645 inode->i_state |= I_FREEING; 646 647 /* 648 * Move the inode off the IO lists and LRU once I_FREEING is 649 * set so that it won't get moved back on there if it is dirty. 650 */ 651 list_move(&inode->i_lru, &freeable); 652 list_del_init(&inode->i_wb_list); 653 percpu_counter_dec(&nr_inodes_unused); 654 } 655 if (current_is_kswapd()) 656 __count_vm_events(KSWAPD_INODESTEAL, reap); 657 else 658 __count_vm_events(PGINODESTEAL, reap); 659 spin_unlock(&inode_lock); 660 661 dispose_list(&freeable); 662 up_read(&iprune_sem); 663 } 664 665 /* 666 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 667 * "unused" means that no dentries are referring to the inodes: the files are 668 * not open and the dcache references to those inodes have already been 669 * reclaimed. 670 * 671 * This function is passed the number of inodes to scan, and it returns the 672 * total number of remaining possibly-reclaimable inodes. 673 */ 674 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 675 { 676 if (nr) { 677 /* 678 * Nasty deadlock avoidance. We may hold various FS locks, 679 * and we don't want to recurse into the FS that called us 680 * in clear_inode() and friends.. 681 */ 682 if (!(gfp_mask & __GFP_FS)) 683 return -1; 684 prune_icache(nr); 685 } 686 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; 687 } 688 689 static struct shrinker icache_shrinker = { 690 .shrink = shrink_icache_memory, 691 .seeks = DEFAULT_SEEKS, 692 }; 693 694 static void __wait_on_freeing_inode(struct inode *inode); 695 /* 696 * Called with the inode lock held. 697 */ 698 static struct inode *find_inode(struct super_block *sb, 699 struct hlist_head *head, 700 int (*test)(struct inode *, void *), 701 void *data) 702 { 703 struct hlist_node *node; 704 struct inode *inode = NULL; 705 706 repeat: 707 hlist_for_each_entry(inode, node, head, i_hash) { 708 if (inode->i_sb != sb) 709 continue; 710 if (!test(inode, data)) 711 continue; 712 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 713 __wait_on_freeing_inode(inode); 714 goto repeat; 715 } 716 __iget(inode); 717 return inode; 718 } 719 return NULL; 720 } 721 722 /* 723 * find_inode_fast is the fast path version of find_inode, see the comment at 724 * iget_locked for details. 725 */ 726 static struct inode *find_inode_fast(struct super_block *sb, 727 struct hlist_head *head, unsigned long ino) 728 { 729 struct hlist_node *node; 730 struct inode *inode = NULL; 731 732 repeat: 733 hlist_for_each_entry(inode, node, head, i_hash) { 734 if (inode->i_ino != ino) 735 continue; 736 if (inode->i_sb != sb) 737 continue; 738 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 739 __wait_on_freeing_inode(inode); 740 goto repeat; 741 } 742 __iget(inode); 743 return inode; 744 } 745 return NULL; 746 } 747 748 /* 749 * Each cpu owns a range of LAST_INO_BATCH numbers. 750 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 751 * to renew the exhausted range. 752 * 753 * This does not significantly increase overflow rate because every CPU can 754 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 755 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 756 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 757 * overflow rate by 2x, which does not seem too significant. 758 * 759 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 760 * error if st_ino won't fit in target struct field. Use 32bit counter 761 * here to attempt to avoid that. 762 */ 763 #define LAST_INO_BATCH 1024 764 static DEFINE_PER_CPU(unsigned int, last_ino); 765 766 unsigned int get_next_ino(void) 767 { 768 unsigned int *p = &get_cpu_var(last_ino); 769 unsigned int res = *p; 770 771 #ifdef CONFIG_SMP 772 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 773 static atomic_t shared_last_ino; 774 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 775 776 res = next - LAST_INO_BATCH; 777 } 778 #endif 779 780 *p = ++res; 781 put_cpu_var(last_ino); 782 return res; 783 } 784 EXPORT_SYMBOL(get_next_ino); 785 786 /** 787 * new_inode - obtain an inode 788 * @sb: superblock 789 * 790 * Allocates a new inode for given superblock. The default gfp_mask 791 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 792 * If HIGHMEM pages are unsuitable or it is known that pages allocated 793 * for the page cache are not reclaimable or migratable, 794 * mapping_set_gfp_mask() must be called with suitable flags on the 795 * newly created inode's mapping 796 * 797 */ 798 struct inode *new_inode(struct super_block *sb) 799 { 800 struct inode *inode; 801 802 spin_lock_prefetch(&inode_lock); 803 804 inode = alloc_inode(sb); 805 if (inode) { 806 spin_lock(&inode_lock); 807 __inode_sb_list_add(inode); 808 inode->i_state = 0; 809 spin_unlock(&inode_lock); 810 } 811 return inode; 812 } 813 EXPORT_SYMBOL(new_inode); 814 815 void unlock_new_inode(struct inode *inode) 816 { 817 #ifdef CONFIG_DEBUG_LOCK_ALLOC 818 if (S_ISDIR(inode->i_mode)) { 819 struct file_system_type *type = inode->i_sb->s_type; 820 821 /* Set new key only if filesystem hasn't already changed it */ 822 if (!lockdep_match_class(&inode->i_mutex, 823 &type->i_mutex_key)) { 824 /* 825 * ensure nobody is actually holding i_mutex 826 */ 827 mutex_destroy(&inode->i_mutex); 828 mutex_init(&inode->i_mutex); 829 lockdep_set_class(&inode->i_mutex, 830 &type->i_mutex_dir_key); 831 } 832 } 833 #endif 834 /* 835 * This is special! We do not need the spinlock when clearing I_NEW, 836 * because we're guaranteed that nobody else tries to do anything about 837 * the state of the inode when it is locked, as we just created it (so 838 * there can be no old holders that haven't tested I_NEW). 839 * However we must emit the memory barrier so that other CPUs reliably 840 * see the clearing of I_NEW after the other inode initialisation has 841 * completed. 842 */ 843 smp_mb(); 844 WARN_ON(!(inode->i_state & I_NEW)); 845 inode->i_state &= ~I_NEW; 846 wake_up_inode(inode); 847 } 848 EXPORT_SYMBOL(unlock_new_inode); 849 850 /* 851 * This is called without the inode lock held.. Be careful. 852 * 853 * We no longer cache the sb_flags in i_flags - see fs.h 854 * -- rmk@arm.uk.linux.org 855 */ 856 static struct inode *get_new_inode(struct super_block *sb, 857 struct hlist_head *head, 858 int (*test)(struct inode *, void *), 859 int (*set)(struct inode *, void *), 860 void *data) 861 { 862 struct inode *inode; 863 864 inode = alloc_inode(sb); 865 if (inode) { 866 struct inode *old; 867 868 spin_lock(&inode_lock); 869 /* We released the lock, so.. */ 870 old = find_inode(sb, head, test, data); 871 if (!old) { 872 if (set(inode, data)) 873 goto set_failed; 874 875 hlist_add_head(&inode->i_hash, head); 876 __inode_sb_list_add(inode); 877 inode->i_state = I_NEW; 878 spin_unlock(&inode_lock); 879 880 /* Return the locked inode with I_NEW set, the 881 * caller is responsible for filling in the contents 882 */ 883 return inode; 884 } 885 886 /* 887 * Uhhuh, somebody else created the same inode under 888 * us. Use the old inode instead of the one we just 889 * allocated. 890 */ 891 spin_unlock(&inode_lock); 892 destroy_inode(inode); 893 inode = old; 894 wait_on_inode(inode); 895 } 896 return inode; 897 898 set_failed: 899 spin_unlock(&inode_lock); 900 destroy_inode(inode); 901 return NULL; 902 } 903 904 /* 905 * get_new_inode_fast is the fast path version of get_new_inode, see the 906 * comment at iget_locked for details. 907 */ 908 static struct inode *get_new_inode_fast(struct super_block *sb, 909 struct hlist_head *head, unsigned long ino) 910 { 911 struct inode *inode; 912 913 inode = alloc_inode(sb); 914 if (inode) { 915 struct inode *old; 916 917 spin_lock(&inode_lock); 918 /* We released the lock, so.. */ 919 old = find_inode_fast(sb, head, ino); 920 if (!old) { 921 inode->i_ino = ino; 922 hlist_add_head(&inode->i_hash, head); 923 __inode_sb_list_add(inode); 924 inode->i_state = I_NEW; 925 spin_unlock(&inode_lock); 926 927 /* Return the locked inode with I_NEW set, the 928 * caller is responsible for filling in the contents 929 */ 930 return inode; 931 } 932 933 /* 934 * Uhhuh, somebody else created the same inode under 935 * us. Use the old inode instead of the one we just 936 * allocated. 937 */ 938 spin_unlock(&inode_lock); 939 destroy_inode(inode); 940 inode = old; 941 wait_on_inode(inode); 942 } 943 return inode; 944 } 945 946 /* 947 * search the inode cache for a matching inode number. 948 * If we find one, then the inode number we are trying to 949 * allocate is not unique and so we should not use it. 950 * 951 * Returns 1 if the inode number is unique, 0 if it is not. 952 */ 953 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 954 { 955 struct hlist_head *b = inode_hashtable + hash(sb, ino); 956 struct hlist_node *node; 957 struct inode *inode; 958 959 hlist_for_each_entry(inode, node, b, i_hash) { 960 if (inode->i_ino == ino && inode->i_sb == sb) 961 return 0; 962 } 963 964 return 1; 965 } 966 967 /** 968 * iunique - get a unique inode number 969 * @sb: superblock 970 * @max_reserved: highest reserved inode number 971 * 972 * Obtain an inode number that is unique on the system for a given 973 * superblock. This is used by file systems that have no natural 974 * permanent inode numbering system. An inode number is returned that 975 * is higher than the reserved limit but unique. 976 * 977 * BUGS: 978 * With a large number of inodes live on the file system this function 979 * currently becomes quite slow. 980 */ 981 ino_t iunique(struct super_block *sb, ino_t max_reserved) 982 { 983 /* 984 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 985 * error if st_ino won't fit in target struct field. Use 32bit counter 986 * here to attempt to avoid that. 987 */ 988 static DEFINE_SPINLOCK(iunique_lock); 989 static unsigned int counter; 990 ino_t res; 991 992 spin_lock(&inode_lock); 993 spin_lock(&iunique_lock); 994 do { 995 if (counter <= max_reserved) 996 counter = max_reserved + 1; 997 res = counter++; 998 } while (!test_inode_iunique(sb, res)); 999 spin_unlock(&iunique_lock); 1000 spin_unlock(&inode_lock); 1001 1002 return res; 1003 } 1004 EXPORT_SYMBOL(iunique); 1005 1006 struct inode *igrab(struct inode *inode) 1007 { 1008 spin_lock(&inode_lock); 1009 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 1010 __iget(inode); 1011 else 1012 /* 1013 * Handle the case where s_op->clear_inode is not been 1014 * called yet, and somebody is calling igrab 1015 * while the inode is getting freed. 1016 */ 1017 inode = NULL; 1018 spin_unlock(&inode_lock); 1019 return inode; 1020 } 1021 EXPORT_SYMBOL(igrab); 1022 1023 /** 1024 * ifind - internal function, you want ilookup5() or iget5(). 1025 * @sb: super block of file system to search 1026 * @head: the head of the list to search 1027 * @test: callback used for comparisons between inodes 1028 * @data: opaque data pointer to pass to @test 1029 * @wait: if true wait for the inode to be unlocked, if false do not 1030 * 1031 * ifind() searches for the inode specified by @data in the inode 1032 * cache. This is a generalized version of ifind_fast() for file systems where 1033 * the inode number is not sufficient for unique identification of an inode. 1034 * 1035 * If the inode is in the cache, the inode is returned with an incremented 1036 * reference count. 1037 * 1038 * Otherwise NULL is returned. 1039 * 1040 * Note, @test is called with the inode_lock held, so can't sleep. 1041 */ 1042 static struct inode *ifind(struct super_block *sb, 1043 struct hlist_head *head, int (*test)(struct inode *, void *), 1044 void *data, const int wait) 1045 { 1046 struct inode *inode; 1047 1048 spin_lock(&inode_lock); 1049 inode = find_inode(sb, head, test, data); 1050 if (inode) { 1051 spin_unlock(&inode_lock); 1052 if (likely(wait)) 1053 wait_on_inode(inode); 1054 return inode; 1055 } 1056 spin_unlock(&inode_lock); 1057 return NULL; 1058 } 1059 1060 /** 1061 * ifind_fast - internal function, you want ilookup() or iget(). 1062 * @sb: super block of file system to search 1063 * @head: head of the list to search 1064 * @ino: inode number to search for 1065 * 1066 * ifind_fast() searches for the inode @ino in the inode cache. This is for 1067 * file systems where the inode number is sufficient for unique identification 1068 * of an inode. 1069 * 1070 * If the inode is in the cache, the inode is returned with an incremented 1071 * reference count. 1072 * 1073 * Otherwise NULL is returned. 1074 */ 1075 static struct inode *ifind_fast(struct super_block *sb, 1076 struct hlist_head *head, unsigned long ino) 1077 { 1078 struct inode *inode; 1079 1080 spin_lock(&inode_lock); 1081 inode = find_inode_fast(sb, head, ino); 1082 if (inode) { 1083 spin_unlock(&inode_lock); 1084 wait_on_inode(inode); 1085 return inode; 1086 } 1087 spin_unlock(&inode_lock); 1088 return NULL; 1089 } 1090 1091 /** 1092 * ilookup5_nowait - search for an inode in the inode cache 1093 * @sb: super block of file system to search 1094 * @hashval: hash value (usually inode number) to search for 1095 * @test: callback used for comparisons between inodes 1096 * @data: opaque data pointer to pass to @test 1097 * 1098 * ilookup5() uses ifind() to search for the inode specified by @hashval and 1099 * @data in the inode cache. This is a generalized version of ilookup() for 1100 * file systems where the inode number is not sufficient for unique 1101 * identification of an inode. 1102 * 1103 * If the inode is in the cache, the inode is returned with an incremented 1104 * reference count. Note, the inode lock is not waited upon so you have to be 1105 * very careful what you do with the returned inode. You probably should be 1106 * using ilookup5() instead. 1107 * 1108 * Otherwise NULL is returned. 1109 * 1110 * Note, @test is called with the inode_lock held, so can't sleep. 1111 */ 1112 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1113 int (*test)(struct inode *, void *), void *data) 1114 { 1115 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1116 1117 return ifind(sb, head, test, data, 0); 1118 } 1119 EXPORT_SYMBOL(ilookup5_nowait); 1120 1121 /** 1122 * ilookup5 - search for an inode in the inode cache 1123 * @sb: super block of file system to search 1124 * @hashval: hash value (usually inode number) to search for 1125 * @test: callback used for comparisons between inodes 1126 * @data: opaque data pointer to pass to @test 1127 * 1128 * ilookup5() uses ifind() to search for the inode specified by @hashval and 1129 * @data in the inode cache. This is a generalized version of ilookup() for 1130 * file systems where the inode number is not sufficient for unique 1131 * identification of an inode. 1132 * 1133 * If the inode is in the cache, the inode lock is waited upon and the inode is 1134 * returned with an incremented reference count. 1135 * 1136 * Otherwise NULL is returned. 1137 * 1138 * Note, @test is called with the inode_lock held, so can't sleep. 1139 */ 1140 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1141 int (*test)(struct inode *, void *), void *data) 1142 { 1143 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1144 1145 return ifind(sb, head, test, data, 1); 1146 } 1147 EXPORT_SYMBOL(ilookup5); 1148 1149 /** 1150 * ilookup - search for an inode in the inode cache 1151 * @sb: super block of file system to search 1152 * @ino: inode number to search for 1153 * 1154 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 1155 * This is for file systems where the inode number is sufficient for unique 1156 * identification of an inode. 1157 * 1158 * If the inode is in the cache, the inode is returned with an incremented 1159 * reference count. 1160 * 1161 * Otherwise NULL is returned. 1162 */ 1163 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1164 { 1165 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1166 1167 return ifind_fast(sb, head, ino); 1168 } 1169 EXPORT_SYMBOL(ilookup); 1170 1171 /** 1172 * iget5_locked - obtain an inode from a mounted file system 1173 * @sb: super block of file system 1174 * @hashval: hash value (usually inode number) to get 1175 * @test: callback used for comparisons between inodes 1176 * @set: callback used to initialize a new struct inode 1177 * @data: opaque data pointer to pass to @test and @set 1178 * 1179 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1180 * and @data in the inode cache and if present it is returned with an increased 1181 * reference count. This is a generalized version of iget_locked() for file 1182 * systems where the inode number is not sufficient for unique identification 1183 * of an inode. 1184 * 1185 * If the inode is not in cache, get_new_inode() is called to allocate a new 1186 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1187 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1188 * 1189 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1190 */ 1191 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1192 int (*test)(struct inode *, void *), 1193 int (*set)(struct inode *, void *), void *data) 1194 { 1195 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1196 struct inode *inode; 1197 1198 inode = ifind(sb, head, test, data, 1); 1199 if (inode) 1200 return inode; 1201 /* 1202 * get_new_inode() will do the right thing, re-trying the search 1203 * in case it had to block at any point. 1204 */ 1205 return get_new_inode(sb, head, test, set, data); 1206 } 1207 EXPORT_SYMBOL(iget5_locked); 1208 1209 /** 1210 * iget_locked - obtain an inode from a mounted file system 1211 * @sb: super block of file system 1212 * @ino: inode number to get 1213 * 1214 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1215 * the inode cache and if present it is returned with an increased reference 1216 * count. This is for file systems where the inode number is sufficient for 1217 * unique identification of an inode. 1218 * 1219 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1220 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1221 * The file system gets to fill it in before unlocking it via 1222 * unlock_new_inode(). 1223 */ 1224 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1225 { 1226 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1227 struct inode *inode; 1228 1229 inode = ifind_fast(sb, head, ino); 1230 if (inode) 1231 return inode; 1232 /* 1233 * get_new_inode_fast() will do the right thing, re-trying the search 1234 * in case it had to block at any point. 1235 */ 1236 return get_new_inode_fast(sb, head, ino); 1237 } 1238 EXPORT_SYMBOL(iget_locked); 1239 1240 int insert_inode_locked(struct inode *inode) 1241 { 1242 struct super_block *sb = inode->i_sb; 1243 ino_t ino = inode->i_ino; 1244 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1245 1246 inode->i_state |= I_NEW; 1247 while (1) { 1248 struct hlist_node *node; 1249 struct inode *old = NULL; 1250 spin_lock(&inode_lock); 1251 hlist_for_each_entry(old, node, head, i_hash) { 1252 if (old->i_ino != ino) 1253 continue; 1254 if (old->i_sb != sb) 1255 continue; 1256 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1257 continue; 1258 break; 1259 } 1260 if (likely(!node)) { 1261 hlist_add_head(&inode->i_hash, head); 1262 spin_unlock(&inode_lock); 1263 return 0; 1264 } 1265 __iget(old); 1266 spin_unlock(&inode_lock); 1267 wait_on_inode(old); 1268 if (unlikely(!inode_unhashed(old))) { 1269 iput(old); 1270 return -EBUSY; 1271 } 1272 iput(old); 1273 } 1274 } 1275 EXPORT_SYMBOL(insert_inode_locked); 1276 1277 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1278 int (*test)(struct inode *, void *), void *data) 1279 { 1280 struct super_block *sb = inode->i_sb; 1281 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1282 1283 inode->i_state |= I_NEW; 1284 1285 while (1) { 1286 struct hlist_node *node; 1287 struct inode *old = NULL; 1288 1289 spin_lock(&inode_lock); 1290 hlist_for_each_entry(old, node, head, i_hash) { 1291 if (old->i_sb != sb) 1292 continue; 1293 if (!test(old, data)) 1294 continue; 1295 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1296 continue; 1297 break; 1298 } 1299 if (likely(!node)) { 1300 hlist_add_head(&inode->i_hash, head); 1301 spin_unlock(&inode_lock); 1302 return 0; 1303 } 1304 __iget(old); 1305 spin_unlock(&inode_lock); 1306 wait_on_inode(old); 1307 if (unlikely(!inode_unhashed(old))) { 1308 iput(old); 1309 return -EBUSY; 1310 } 1311 iput(old); 1312 } 1313 } 1314 EXPORT_SYMBOL(insert_inode_locked4); 1315 1316 1317 int generic_delete_inode(struct inode *inode) 1318 { 1319 return 1; 1320 } 1321 EXPORT_SYMBOL(generic_delete_inode); 1322 1323 /* 1324 * Normal UNIX filesystem behaviour: delete the 1325 * inode when the usage count drops to zero, and 1326 * i_nlink is zero. 1327 */ 1328 int generic_drop_inode(struct inode *inode) 1329 { 1330 return !inode->i_nlink || inode_unhashed(inode); 1331 } 1332 EXPORT_SYMBOL_GPL(generic_drop_inode); 1333 1334 /* 1335 * Called when we're dropping the last reference 1336 * to an inode. 1337 * 1338 * Call the FS "drop_inode()" function, defaulting to 1339 * the legacy UNIX filesystem behaviour. If it tells 1340 * us to evict inode, do so. Otherwise, retain inode 1341 * in cache if fs is alive, sync and evict if fs is 1342 * shutting down. 1343 */ 1344 static void iput_final(struct inode *inode) 1345 { 1346 struct super_block *sb = inode->i_sb; 1347 const struct super_operations *op = inode->i_sb->s_op; 1348 int drop; 1349 1350 if (op && op->drop_inode) 1351 drop = op->drop_inode(inode); 1352 else 1353 drop = generic_drop_inode(inode); 1354 1355 if (!drop) { 1356 if (sb->s_flags & MS_ACTIVE) { 1357 inode->i_state |= I_REFERENCED; 1358 if (!(inode->i_state & (I_DIRTY|I_SYNC))) { 1359 inode_lru_list_add(inode); 1360 } 1361 spin_unlock(&inode_lock); 1362 return; 1363 } 1364 WARN_ON(inode->i_state & I_NEW); 1365 inode->i_state |= I_WILL_FREE; 1366 spin_unlock(&inode_lock); 1367 write_inode_now(inode, 1); 1368 spin_lock(&inode_lock); 1369 WARN_ON(inode->i_state & I_NEW); 1370 inode->i_state &= ~I_WILL_FREE; 1371 __remove_inode_hash(inode); 1372 } 1373 1374 WARN_ON(inode->i_state & I_NEW); 1375 inode->i_state |= I_FREEING; 1376 1377 /* 1378 * Move the inode off the IO lists and LRU once I_FREEING is 1379 * set so that it won't get moved back on there if it is dirty. 1380 */ 1381 inode_lru_list_del(inode); 1382 list_del_init(&inode->i_wb_list); 1383 1384 __inode_sb_list_del(inode); 1385 spin_unlock(&inode_lock); 1386 evict(inode); 1387 remove_inode_hash(inode); 1388 wake_up_inode(inode); 1389 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 1390 destroy_inode(inode); 1391 } 1392 1393 /** 1394 * iput - put an inode 1395 * @inode: inode to put 1396 * 1397 * Puts an inode, dropping its usage count. If the inode use count hits 1398 * zero, the inode is then freed and may also be destroyed. 1399 * 1400 * Consequently, iput() can sleep. 1401 */ 1402 void iput(struct inode *inode) 1403 { 1404 if (inode) { 1405 BUG_ON(inode->i_state & I_CLEAR); 1406 1407 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1408 iput_final(inode); 1409 } 1410 } 1411 EXPORT_SYMBOL(iput); 1412 1413 /** 1414 * bmap - find a block number in a file 1415 * @inode: inode of file 1416 * @block: block to find 1417 * 1418 * Returns the block number on the device holding the inode that 1419 * is the disk block number for the block of the file requested. 1420 * That is, asked for block 4 of inode 1 the function will return the 1421 * disk block relative to the disk start that holds that block of the 1422 * file. 1423 */ 1424 sector_t bmap(struct inode *inode, sector_t block) 1425 { 1426 sector_t res = 0; 1427 if (inode->i_mapping->a_ops->bmap) 1428 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1429 return res; 1430 } 1431 EXPORT_SYMBOL(bmap); 1432 1433 /* 1434 * With relative atime, only update atime if the previous atime is 1435 * earlier than either the ctime or mtime or if at least a day has 1436 * passed since the last atime update. 1437 */ 1438 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1439 struct timespec now) 1440 { 1441 1442 if (!(mnt->mnt_flags & MNT_RELATIME)) 1443 return 1; 1444 /* 1445 * Is mtime younger than atime? If yes, update atime: 1446 */ 1447 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1448 return 1; 1449 /* 1450 * Is ctime younger than atime? If yes, update atime: 1451 */ 1452 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1453 return 1; 1454 1455 /* 1456 * Is the previous atime value older than a day? If yes, 1457 * update atime: 1458 */ 1459 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1460 return 1; 1461 /* 1462 * Good, we can skip the atime update: 1463 */ 1464 return 0; 1465 } 1466 1467 /** 1468 * touch_atime - update the access time 1469 * @mnt: mount the inode is accessed on 1470 * @dentry: dentry accessed 1471 * 1472 * Update the accessed time on an inode and mark it for writeback. 1473 * This function automatically handles read only file systems and media, 1474 * as well as the "noatime" flag and inode specific "noatime" markers. 1475 */ 1476 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1477 { 1478 struct inode *inode = dentry->d_inode; 1479 struct timespec now; 1480 1481 if (inode->i_flags & S_NOATIME) 1482 return; 1483 if (IS_NOATIME(inode)) 1484 return; 1485 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1486 return; 1487 1488 if (mnt->mnt_flags & MNT_NOATIME) 1489 return; 1490 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1491 return; 1492 1493 now = current_fs_time(inode->i_sb); 1494 1495 if (!relatime_need_update(mnt, inode, now)) 1496 return; 1497 1498 if (timespec_equal(&inode->i_atime, &now)) 1499 return; 1500 1501 if (mnt_want_write(mnt)) 1502 return; 1503 1504 inode->i_atime = now; 1505 mark_inode_dirty_sync(inode); 1506 mnt_drop_write(mnt); 1507 } 1508 EXPORT_SYMBOL(touch_atime); 1509 1510 /** 1511 * file_update_time - update mtime and ctime time 1512 * @file: file accessed 1513 * 1514 * Update the mtime and ctime members of an inode and mark the inode 1515 * for writeback. Note that this function is meant exclusively for 1516 * usage in the file write path of filesystems, and filesystems may 1517 * choose to explicitly ignore update via this function with the 1518 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1519 * timestamps are handled by the server. 1520 */ 1521 1522 void file_update_time(struct file *file) 1523 { 1524 struct inode *inode = file->f_path.dentry->d_inode; 1525 struct timespec now; 1526 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1527 1528 /* First try to exhaust all avenues to not sync */ 1529 if (IS_NOCMTIME(inode)) 1530 return; 1531 1532 now = current_fs_time(inode->i_sb); 1533 if (!timespec_equal(&inode->i_mtime, &now)) 1534 sync_it = S_MTIME; 1535 1536 if (!timespec_equal(&inode->i_ctime, &now)) 1537 sync_it |= S_CTIME; 1538 1539 if (IS_I_VERSION(inode)) 1540 sync_it |= S_VERSION; 1541 1542 if (!sync_it) 1543 return; 1544 1545 /* Finally allowed to write? Takes lock. */ 1546 if (mnt_want_write_file(file)) 1547 return; 1548 1549 /* Only change inode inside the lock region */ 1550 if (sync_it & S_VERSION) 1551 inode_inc_iversion(inode); 1552 if (sync_it & S_CTIME) 1553 inode->i_ctime = now; 1554 if (sync_it & S_MTIME) 1555 inode->i_mtime = now; 1556 mark_inode_dirty_sync(inode); 1557 mnt_drop_write(file->f_path.mnt); 1558 } 1559 EXPORT_SYMBOL(file_update_time); 1560 1561 int inode_needs_sync(struct inode *inode) 1562 { 1563 if (IS_SYNC(inode)) 1564 return 1; 1565 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1566 return 1; 1567 return 0; 1568 } 1569 EXPORT_SYMBOL(inode_needs_sync); 1570 1571 int inode_wait(void *word) 1572 { 1573 schedule(); 1574 return 0; 1575 } 1576 EXPORT_SYMBOL(inode_wait); 1577 1578 /* 1579 * If we try to find an inode in the inode hash while it is being 1580 * deleted, we have to wait until the filesystem completes its 1581 * deletion before reporting that it isn't found. This function waits 1582 * until the deletion _might_ have completed. Callers are responsible 1583 * to recheck inode state. 1584 * 1585 * It doesn't matter if I_NEW is not set initially, a call to 1586 * wake_up_inode() after removing from the hash list will DTRT. 1587 * 1588 * This is called with inode_lock held. 1589 */ 1590 static void __wait_on_freeing_inode(struct inode *inode) 1591 { 1592 wait_queue_head_t *wq; 1593 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1594 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1595 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1596 spin_unlock(&inode_lock); 1597 schedule(); 1598 finish_wait(wq, &wait.wait); 1599 spin_lock(&inode_lock); 1600 } 1601 1602 static __initdata unsigned long ihash_entries; 1603 static int __init set_ihash_entries(char *str) 1604 { 1605 if (!str) 1606 return 0; 1607 ihash_entries = simple_strtoul(str, &str, 0); 1608 return 1; 1609 } 1610 __setup("ihash_entries=", set_ihash_entries); 1611 1612 /* 1613 * Initialize the waitqueues and inode hash table. 1614 */ 1615 void __init inode_init_early(void) 1616 { 1617 int loop; 1618 1619 /* If hashes are distributed across NUMA nodes, defer 1620 * hash allocation until vmalloc space is available. 1621 */ 1622 if (hashdist) 1623 return; 1624 1625 inode_hashtable = 1626 alloc_large_system_hash("Inode-cache", 1627 sizeof(struct hlist_head), 1628 ihash_entries, 1629 14, 1630 HASH_EARLY, 1631 &i_hash_shift, 1632 &i_hash_mask, 1633 0); 1634 1635 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1636 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1637 } 1638 1639 void __init inode_init(void) 1640 { 1641 int loop; 1642 1643 /* inode slab cache */ 1644 inode_cachep = kmem_cache_create("inode_cache", 1645 sizeof(struct inode), 1646 0, 1647 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1648 SLAB_MEM_SPREAD), 1649 init_once); 1650 register_shrinker(&icache_shrinker); 1651 percpu_counter_init(&nr_inodes, 0); 1652 percpu_counter_init(&nr_inodes_unused, 0); 1653 1654 /* Hash may have been set up in inode_init_early */ 1655 if (!hashdist) 1656 return; 1657 1658 inode_hashtable = 1659 alloc_large_system_hash("Inode-cache", 1660 sizeof(struct hlist_head), 1661 ihash_entries, 1662 14, 1663 0, 1664 &i_hash_shift, 1665 &i_hash_mask, 1666 0); 1667 1668 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1669 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1670 } 1671 1672 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1673 { 1674 inode->i_mode = mode; 1675 if (S_ISCHR(mode)) { 1676 inode->i_fop = &def_chr_fops; 1677 inode->i_rdev = rdev; 1678 } else if (S_ISBLK(mode)) { 1679 inode->i_fop = &def_blk_fops; 1680 inode->i_rdev = rdev; 1681 } else if (S_ISFIFO(mode)) 1682 inode->i_fop = &def_fifo_fops; 1683 else if (S_ISSOCK(mode)) 1684 inode->i_fop = &bad_sock_fops; 1685 else 1686 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1687 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1688 inode->i_ino); 1689 } 1690 EXPORT_SYMBOL(init_special_inode); 1691 1692 /** 1693 * Init uid,gid,mode for new inode according to posix standards 1694 * @inode: New inode 1695 * @dir: Directory inode 1696 * @mode: mode of the new inode 1697 */ 1698 void inode_init_owner(struct inode *inode, const struct inode *dir, 1699 mode_t mode) 1700 { 1701 inode->i_uid = current_fsuid(); 1702 if (dir && dir->i_mode & S_ISGID) { 1703 inode->i_gid = dir->i_gid; 1704 if (S_ISDIR(mode)) 1705 mode |= S_ISGID; 1706 } else 1707 inode->i_gid = current_fsgid(); 1708 inode->i_mode = mode; 1709 } 1710 EXPORT_SYMBOL(inode_init_owner); 1711