1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 inode->i_state = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->i_private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 if (sb->s_iflags & SB_I_STABLE_WRITES) 220 mapping_set_stable_writes(mapping); 221 inode->i_private = NULL; 222 inode->i_mapping = mapping; 223 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 224 #ifdef CONFIG_FS_POSIX_ACL 225 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 226 #endif 227 228 #ifdef CONFIG_FSNOTIFY 229 inode->i_fsnotify_mask = 0; 230 #endif 231 inode->i_flctx = NULL; 232 233 if (unlikely(security_inode_alloc(inode))) 234 return -ENOMEM; 235 236 this_cpu_inc(nr_inodes); 237 238 return 0; 239 } 240 EXPORT_SYMBOL(inode_init_always); 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 static void i_callback(struct rcu_head *head) 249 { 250 struct inode *inode = container_of(head, struct inode, i_rcu); 251 if (inode->free_inode) 252 inode->free_inode(inode); 253 else 254 free_inode_nonrcu(inode); 255 } 256 257 static struct inode *alloc_inode(struct super_block *sb) 258 { 259 const struct super_operations *ops = sb->s_op; 260 struct inode *inode; 261 262 if (ops->alloc_inode) 263 inode = ops->alloc_inode(sb); 264 else 265 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 266 267 if (!inode) 268 return NULL; 269 270 if (unlikely(inode_init_always(sb, inode))) { 271 if (ops->destroy_inode) { 272 ops->destroy_inode(inode); 273 if (!ops->free_inode) 274 return NULL; 275 } 276 inode->free_inode = ops->free_inode; 277 i_callback(&inode->i_rcu); 278 return NULL; 279 } 280 281 return inode; 282 } 283 284 void __destroy_inode(struct inode *inode) 285 { 286 BUG_ON(inode_has_buffers(inode)); 287 inode_detach_wb(inode); 288 security_inode_free(inode); 289 fsnotify_inode_delete(inode); 290 locks_free_lock_context(inode); 291 if (!inode->i_nlink) { 292 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 293 atomic_long_dec(&inode->i_sb->s_remove_count); 294 } 295 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void destroy_inode(struct inode *inode) 307 { 308 const struct super_operations *ops = inode->i_sb->s_op; 309 310 BUG_ON(!list_empty(&inode->i_lru)); 311 __destroy_inode(inode); 312 if (ops->destroy_inode) { 313 ops->destroy_inode(inode); 314 if (!ops->free_inode) 315 return; 316 } 317 inode->free_inode = ops->free_inode; 318 call_rcu(&inode->i_rcu, i_callback); 319 } 320 321 /** 322 * drop_nlink - directly drop an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. In cases 327 * where we are attempting to track writes to the 328 * filesystem, a decrement to zero means an imminent 329 * write when the file is truncated and actually unlinked 330 * on the filesystem. 331 */ 332 void drop_nlink(struct inode *inode) 333 { 334 WARN_ON(inode->i_nlink == 0); 335 inode->__i_nlink--; 336 if (!inode->i_nlink) 337 atomic_long_inc(&inode->i_sb->s_remove_count); 338 } 339 EXPORT_SYMBOL(drop_nlink); 340 341 /** 342 * clear_nlink - directly zero an inode's link count 343 * @inode: inode 344 * 345 * This is a low-level filesystem helper to replace any 346 * direct filesystem manipulation of i_nlink. See 347 * drop_nlink() for why we care about i_nlink hitting zero. 348 */ 349 void clear_nlink(struct inode *inode) 350 { 351 if (inode->i_nlink) { 352 inode->__i_nlink = 0; 353 atomic_long_inc(&inode->i_sb->s_remove_count); 354 } 355 } 356 EXPORT_SYMBOL(clear_nlink); 357 358 /** 359 * set_nlink - directly set an inode's link count 360 * @inode: inode 361 * @nlink: new nlink (should be non-zero) 362 * 363 * This is a low-level filesystem helper to replace any 364 * direct filesystem manipulation of i_nlink. 365 */ 366 void set_nlink(struct inode *inode, unsigned int nlink) 367 { 368 if (!nlink) { 369 clear_nlink(inode); 370 } else { 371 /* Yes, some filesystems do change nlink from zero to one */ 372 if (inode->i_nlink == 0) 373 atomic_long_dec(&inode->i_sb->s_remove_count); 374 375 inode->__i_nlink = nlink; 376 } 377 } 378 EXPORT_SYMBOL(set_nlink); 379 380 /** 381 * inc_nlink - directly increment an inode's link count 382 * @inode: inode 383 * 384 * This is a low-level filesystem helper to replace any 385 * direct filesystem manipulation of i_nlink. Currently, 386 * it is only here for parity with dec_nlink(). 387 */ 388 void inc_nlink(struct inode *inode) 389 { 390 if (unlikely(inode->i_nlink == 0)) { 391 WARN_ON(!(inode->i_state & I_LINKABLE)); 392 atomic_long_dec(&inode->i_sb->s_remove_count); 393 } 394 395 inode->__i_nlink++; 396 } 397 EXPORT_SYMBOL(inc_nlink); 398 399 static void __address_space_init_once(struct address_space *mapping) 400 { 401 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 402 init_rwsem(&mapping->i_mmap_rwsem); 403 INIT_LIST_HEAD(&mapping->i_private_list); 404 spin_lock_init(&mapping->i_private_lock); 405 mapping->i_mmap = RB_ROOT_CACHED; 406 } 407 408 void address_space_init_once(struct address_space *mapping) 409 { 410 memset(mapping, 0, sizeof(*mapping)); 411 __address_space_init_once(mapping); 412 } 413 EXPORT_SYMBOL(address_space_init_once); 414 415 /* 416 * These are initializations that only need to be done 417 * once, because the fields are idempotent across use 418 * of the inode, so let the slab aware of that. 419 */ 420 void inode_init_once(struct inode *inode) 421 { 422 memset(inode, 0, sizeof(*inode)); 423 INIT_HLIST_NODE(&inode->i_hash); 424 INIT_LIST_HEAD(&inode->i_devices); 425 INIT_LIST_HEAD(&inode->i_io_list); 426 INIT_LIST_HEAD(&inode->i_wb_list); 427 INIT_LIST_HEAD(&inode->i_lru); 428 INIT_LIST_HEAD(&inode->i_sb_list); 429 __address_space_init_once(&inode->i_data); 430 i_size_ordered_init(inode); 431 } 432 EXPORT_SYMBOL(inode_init_once); 433 434 static void init_once(void *foo) 435 { 436 struct inode *inode = (struct inode *) foo; 437 438 inode_init_once(inode); 439 } 440 441 /* 442 * get additional reference to inode; caller must already hold one. 443 */ 444 void ihold(struct inode *inode) 445 { 446 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 447 } 448 EXPORT_SYMBOL(ihold); 449 450 static void __inode_add_lru(struct inode *inode, bool rotate) 451 { 452 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 453 return; 454 if (atomic_read(&inode->i_count)) 455 return; 456 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 457 return; 458 if (!mapping_shrinkable(&inode->i_data)) 459 return; 460 461 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 462 this_cpu_inc(nr_unused); 463 else if (rotate) 464 inode->i_state |= I_REFERENCED; 465 } 466 467 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 468 struct inode *inode, u32 bit) 469 { 470 void *bit_address; 471 472 bit_address = inode_state_wait_address(inode, bit); 473 init_wait_var_entry(wqe, bit_address, 0); 474 return __var_waitqueue(bit_address); 475 } 476 EXPORT_SYMBOL(inode_bit_waitqueue); 477 478 /* 479 * Add inode to LRU if needed (inode is unused and clean). 480 * 481 * Needs inode->i_lock held. 482 */ 483 void inode_add_lru(struct inode *inode) 484 { 485 __inode_add_lru(inode, false); 486 } 487 488 static void inode_lru_list_del(struct inode *inode) 489 { 490 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 491 this_cpu_dec(nr_unused); 492 } 493 494 static void inode_pin_lru_isolating(struct inode *inode) 495 { 496 lockdep_assert_held(&inode->i_lock); 497 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 498 inode->i_state |= I_LRU_ISOLATING; 499 } 500 501 static void inode_unpin_lru_isolating(struct inode *inode) 502 { 503 spin_lock(&inode->i_lock); 504 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 505 inode->i_state &= ~I_LRU_ISOLATING; 506 /* Called with inode->i_lock which ensures memory ordering. */ 507 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 508 spin_unlock(&inode->i_lock); 509 } 510 511 static void inode_wait_for_lru_isolating(struct inode *inode) 512 { 513 struct wait_bit_queue_entry wqe; 514 struct wait_queue_head *wq_head; 515 516 lockdep_assert_held(&inode->i_lock); 517 if (!(inode->i_state & I_LRU_ISOLATING)) 518 return; 519 520 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 521 for (;;) { 522 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 523 /* 524 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 525 * memory ordering. 526 */ 527 if (!(inode->i_state & I_LRU_ISOLATING)) 528 break; 529 spin_unlock(&inode->i_lock); 530 schedule(); 531 spin_lock(&inode->i_lock); 532 } 533 finish_wait(wq_head, &wqe.wq_entry); 534 WARN_ON(inode->i_state & I_LRU_ISOLATING); 535 } 536 537 /** 538 * inode_sb_list_add - add inode to the superblock list of inodes 539 * @inode: inode to add 540 */ 541 void inode_sb_list_add(struct inode *inode) 542 { 543 spin_lock(&inode->i_sb->s_inode_list_lock); 544 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 545 spin_unlock(&inode->i_sb->s_inode_list_lock); 546 } 547 EXPORT_SYMBOL_GPL(inode_sb_list_add); 548 549 static inline void inode_sb_list_del(struct inode *inode) 550 { 551 if (!list_empty(&inode->i_sb_list)) { 552 spin_lock(&inode->i_sb->s_inode_list_lock); 553 list_del_init(&inode->i_sb_list); 554 spin_unlock(&inode->i_sb->s_inode_list_lock); 555 } 556 } 557 558 static unsigned long hash(struct super_block *sb, unsigned long hashval) 559 { 560 unsigned long tmp; 561 562 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 563 L1_CACHE_BYTES; 564 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 565 return tmp & i_hash_mask; 566 } 567 568 /** 569 * __insert_inode_hash - hash an inode 570 * @inode: unhashed inode 571 * @hashval: unsigned long value used to locate this object in the 572 * inode_hashtable. 573 * 574 * Add an inode to the inode hash for this superblock. 575 */ 576 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 577 { 578 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 579 580 spin_lock(&inode_hash_lock); 581 spin_lock(&inode->i_lock); 582 hlist_add_head_rcu(&inode->i_hash, b); 583 spin_unlock(&inode->i_lock); 584 spin_unlock(&inode_hash_lock); 585 } 586 EXPORT_SYMBOL(__insert_inode_hash); 587 588 /** 589 * __remove_inode_hash - remove an inode from the hash 590 * @inode: inode to unhash 591 * 592 * Remove an inode from the superblock. 593 */ 594 void __remove_inode_hash(struct inode *inode) 595 { 596 spin_lock(&inode_hash_lock); 597 spin_lock(&inode->i_lock); 598 hlist_del_init_rcu(&inode->i_hash); 599 spin_unlock(&inode->i_lock); 600 spin_unlock(&inode_hash_lock); 601 } 602 EXPORT_SYMBOL(__remove_inode_hash); 603 604 void dump_mapping(const struct address_space *mapping) 605 { 606 struct inode *host; 607 const struct address_space_operations *a_ops; 608 struct hlist_node *dentry_first; 609 struct dentry *dentry_ptr; 610 struct dentry dentry; 611 char fname[64] = {}; 612 unsigned long ino; 613 614 /* 615 * If mapping is an invalid pointer, we don't want to crash 616 * accessing it, so probe everything depending on it carefully. 617 */ 618 if (get_kernel_nofault(host, &mapping->host) || 619 get_kernel_nofault(a_ops, &mapping->a_ops)) { 620 pr_warn("invalid mapping:%px\n", mapping); 621 return; 622 } 623 624 if (!host) { 625 pr_warn("aops:%ps\n", a_ops); 626 return; 627 } 628 629 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 630 get_kernel_nofault(ino, &host->i_ino)) { 631 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 632 return; 633 } 634 635 if (!dentry_first) { 636 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 637 return; 638 } 639 640 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 641 if (get_kernel_nofault(dentry, dentry_ptr) || 642 !dentry.d_parent || !dentry.d_name.name) { 643 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 644 a_ops, ino, dentry_ptr); 645 return; 646 } 647 648 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 649 strscpy(fname, "<invalid>"); 650 /* 651 * Even if strncpy_from_kernel_nofault() succeeded, 652 * the fname could be unreliable 653 */ 654 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 655 a_ops, ino, fname); 656 } 657 658 void clear_inode(struct inode *inode) 659 { 660 /* 661 * We have to cycle the i_pages lock here because reclaim can be in the 662 * process of removing the last page (in __filemap_remove_folio()) 663 * and we must not free the mapping under it. 664 */ 665 xa_lock_irq(&inode->i_data.i_pages); 666 BUG_ON(inode->i_data.nrpages); 667 /* 668 * Almost always, mapping_empty(&inode->i_data) here; but there are 669 * two known and long-standing ways in which nodes may get left behind 670 * (when deep radix-tree node allocation failed partway; or when THP 671 * collapse_file() failed). Until those two known cases are cleaned up, 672 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 673 * nor even WARN_ON(!mapping_empty). 674 */ 675 xa_unlock_irq(&inode->i_data.i_pages); 676 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 677 BUG_ON(!(inode->i_state & I_FREEING)); 678 BUG_ON(inode->i_state & I_CLEAR); 679 BUG_ON(!list_empty(&inode->i_wb_list)); 680 /* don't need i_lock here, no concurrent mods to i_state */ 681 inode->i_state = I_FREEING | I_CLEAR; 682 } 683 EXPORT_SYMBOL(clear_inode); 684 685 /* 686 * Free the inode passed in, removing it from the lists it is still connected 687 * to. We remove any pages still attached to the inode and wait for any IO that 688 * is still in progress before finally destroying the inode. 689 * 690 * An inode must already be marked I_FREEING so that we avoid the inode being 691 * moved back onto lists if we race with other code that manipulates the lists 692 * (e.g. writeback_single_inode). The caller is responsible for setting this. 693 * 694 * An inode must already be removed from the LRU list before being evicted from 695 * the cache. This should occur atomically with setting the I_FREEING state 696 * flag, so no inodes here should ever be on the LRU when being evicted. 697 */ 698 static void evict(struct inode *inode) 699 { 700 const struct super_operations *op = inode->i_sb->s_op; 701 702 BUG_ON(!(inode->i_state & I_FREEING)); 703 BUG_ON(!list_empty(&inode->i_lru)); 704 705 if (!list_empty(&inode->i_io_list)) 706 inode_io_list_del(inode); 707 708 inode_sb_list_del(inode); 709 710 spin_lock(&inode->i_lock); 711 inode_wait_for_lru_isolating(inode); 712 713 /* 714 * Wait for flusher thread to be done with the inode so that filesystem 715 * does not start destroying it while writeback is still running. Since 716 * the inode has I_FREEING set, flusher thread won't start new work on 717 * the inode. We just have to wait for running writeback to finish. 718 */ 719 inode_wait_for_writeback(inode); 720 spin_unlock(&inode->i_lock); 721 722 if (op->evict_inode) { 723 op->evict_inode(inode); 724 } else { 725 truncate_inode_pages_final(&inode->i_data); 726 clear_inode(inode); 727 } 728 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 729 cd_forget(inode); 730 731 remove_inode_hash(inode); 732 733 /* 734 * Wake up waiters in __wait_on_freeing_inode(). 735 * 736 * Lockless hash lookup may end up finding the inode before we removed 737 * it above, but only lock it *after* we are done with the wakeup below. 738 * In this case the potential waiter cannot safely block. 739 * 740 * The inode being unhashed after the call to remove_inode_hash() is 741 * used as an indicator whether blocking on it is safe. 742 */ 743 spin_lock(&inode->i_lock); 744 /* 745 * Pairs with the barrier in prepare_to_wait_event() to make sure 746 * ___wait_var_event() either sees the bit cleared or 747 * waitqueue_active() check in wake_up_var() sees the waiter. 748 */ 749 smp_mb(); 750 inode_wake_up_bit(inode, __I_NEW); 751 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 752 spin_unlock(&inode->i_lock); 753 754 destroy_inode(inode); 755 } 756 757 /* 758 * dispose_list - dispose of the contents of a local list 759 * @head: the head of the list to free 760 * 761 * Dispose-list gets a local list with local inodes in it, so it doesn't 762 * need to worry about list corruption and SMP locks. 763 */ 764 static void dispose_list(struct list_head *head) 765 { 766 while (!list_empty(head)) { 767 struct inode *inode; 768 769 inode = list_first_entry(head, struct inode, i_lru); 770 list_del_init(&inode->i_lru); 771 772 evict(inode); 773 cond_resched(); 774 } 775 } 776 777 /** 778 * evict_inodes - evict all evictable inodes for a superblock 779 * @sb: superblock to operate on 780 * 781 * Make sure that no inodes with zero refcount are retained. This is 782 * called by superblock shutdown after having SB_ACTIVE flag removed, 783 * so any inode reaching zero refcount during or after that call will 784 * be immediately evicted. 785 */ 786 void evict_inodes(struct super_block *sb) 787 { 788 struct inode *inode, *next; 789 LIST_HEAD(dispose); 790 791 again: 792 spin_lock(&sb->s_inode_list_lock); 793 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 794 if (atomic_read(&inode->i_count)) 795 continue; 796 797 spin_lock(&inode->i_lock); 798 if (atomic_read(&inode->i_count)) { 799 spin_unlock(&inode->i_lock); 800 continue; 801 } 802 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 803 spin_unlock(&inode->i_lock); 804 continue; 805 } 806 807 inode->i_state |= I_FREEING; 808 inode_lru_list_del(inode); 809 spin_unlock(&inode->i_lock); 810 list_add(&inode->i_lru, &dispose); 811 812 /* 813 * We can have a ton of inodes to evict at unmount time given 814 * enough memory, check to see if we need to go to sleep for a 815 * bit so we don't livelock. 816 */ 817 if (need_resched()) { 818 spin_unlock(&sb->s_inode_list_lock); 819 cond_resched(); 820 dispose_list(&dispose); 821 goto again; 822 } 823 } 824 spin_unlock(&sb->s_inode_list_lock); 825 826 dispose_list(&dispose); 827 } 828 EXPORT_SYMBOL_GPL(evict_inodes); 829 830 /** 831 * invalidate_inodes - attempt to free all inodes on a superblock 832 * @sb: superblock to operate on 833 * 834 * Attempts to free all inodes (including dirty inodes) for a given superblock. 835 */ 836 void invalidate_inodes(struct super_block *sb) 837 { 838 struct inode *inode, *next; 839 LIST_HEAD(dispose); 840 841 again: 842 spin_lock(&sb->s_inode_list_lock); 843 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 844 spin_lock(&inode->i_lock); 845 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 846 spin_unlock(&inode->i_lock); 847 continue; 848 } 849 if (atomic_read(&inode->i_count)) { 850 spin_unlock(&inode->i_lock); 851 continue; 852 } 853 854 inode->i_state |= I_FREEING; 855 inode_lru_list_del(inode); 856 spin_unlock(&inode->i_lock); 857 list_add(&inode->i_lru, &dispose); 858 if (need_resched()) { 859 spin_unlock(&sb->s_inode_list_lock); 860 cond_resched(); 861 dispose_list(&dispose); 862 goto again; 863 } 864 } 865 spin_unlock(&sb->s_inode_list_lock); 866 867 dispose_list(&dispose); 868 } 869 870 /* 871 * Isolate the inode from the LRU in preparation for freeing it. 872 * 873 * If the inode has the I_REFERENCED flag set, then it means that it has been 874 * used recently - the flag is set in iput_final(). When we encounter such an 875 * inode, clear the flag and move it to the back of the LRU so it gets another 876 * pass through the LRU before it gets reclaimed. This is necessary because of 877 * the fact we are doing lazy LRU updates to minimise lock contention so the 878 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 879 * with this flag set because they are the inodes that are out of order. 880 */ 881 static enum lru_status inode_lru_isolate(struct list_head *item, 882 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 883 { 884 struct list_head *freeable = arg; 885 struct inode *inode = container_of(item, struct inode, i_lru); 886 887 /* 888 * We are inverting the lru lock/inode->i_lock here, so use a 889 * trylock. If we fail to get the lock, just skip it. 890 */ 891 if (!spin_trylock(&inode->i_lock)) 892 return LRU_SKIP; 893 894 /* 895 * Inodes can get referenced, redirtied, or repopulated while 896 * they're already on the LRU, and this can make them 897 * unreclaimable for a while. Remove them lazily here; iput, 898 * sync, or the last page cache deletion will requeue them. 899 */ 900 if (atomic_read(&inode->i_count) || 901 (inode->i_state & ~I_REFERENCED) || 902 !mapping_shrinkable(&inode->i_data)) { 903 list_lru_isolate(lru, &inode->i_lru); 904 spin_unlock(&inode->i_lock); 905 this_cpu_dec(nr_unused); 906 return LRU_REMOVED; 907 } 908 909 /* Recently referenced inodes get one more pass */ 910 if (inode->i_state & I_REFERENCED) { 911 inode->i_state &= ~I_REFERENCED; 912 spin_unlock(&inode->i_lock); 913 return LRU_ROTATE; 914 } 915 916 /* 917 * On highmem systems, mapping_shrinkable() permits dropping 918 * page cache in order to free up struct inodes: lowmem might 919 * be under pressure before the cache inside the highmem zone. 920 */ 921 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 922 inode_pin_lru_isolating(inode); 923 spin_unlock(&inode->i_lock); 924 spin_unlock(lru_lock); 925 if (remove_inode_buffers(inode)) { 926 unsigned long reap; 927 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 928 if (current_is_kswapd()) 929 __count_vm_events(KSWAPD_INODESTEAL, reap); 930 else 931 __count_vm_events(PGINODESTEAL, reap); 932 mm_account_reclaimed_pages(reap); 933 } 934 inode_unpin_lru_isolating(inode); 935 spin_lock(lru_lock); 936 return LRU_RETRY; 937 } 938 939 WARN_ON(inode->i_state & I_NEW); 940 inode->i_state |= I_FREEING; 941 list_lru_isolate_move(lru, &inode->i_lru, freeable); 942 spin_unlock(&inode->i_lock); 943 944 this_cpu_dec(nr_unused); 945 return LRU_REMOVED; 946 } 947 948 /* 949 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 950 * This is called from the superblock shrinker function with a number of inodes 951 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 952 * then are freed outside inode_lock by dispose_list(). 953 */ 954 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 955 { 956 LIST_HEAD(freeable); 957 long freed; 958 959 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 960 inode_lru_isolate, &freeable); 961 dispose_list(&freeable); 962 return freed; 963 } 964 965 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 966 /* 967 * Called with the inode lock held. 968 */ 969 static struct inode *find_inode(struct super_block *sb, 970 struct hlist_head *head, 971 int (*test)(struct inode *, void *), 972 void *data, bool is_inode_hash_locked) 973 { 974 struct inode *inode = NULL; 975 976 if (is_inode_hash_locked) 977 lockdep_assert_held(&inode_hash_lock); 978 else 979 lockdep_assert_not_held(&inode_hash_lock); 980 981 rcu_read_lock(); 982 repeat: 983 hlist_for_each_entry_rcu(inode, head, i_hash) { 984 if (inode->i_sb != sb) 985 continue; 986 if (!test(inode, data)) 987 continue; 988 spin_lock(&inode->i_lock); 989 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 990 __wait_on_freeing_inode(inode, is_inode_hash_locked); 991 goto repeat; 992 } 993 if (unlikely(inode->i_state & I_CREATING)) { 994 spin_unlock(&inode->i_lock); 995 rcu_read_unlock(); 996 return ERR_PTR(-ESTALE); 997 } 998 __iget(inode); 999 spin_unlock(&inode->i_lock); 1000 rcu_read_unlock(); 1001 return inode; 1002 } 1003 rcu_read_unlock(); 1004 return NULL; 1005 } 1006 1007 /* 1008 * find_inode_fast is the fast path version of find_inode, see the comment at 1009 * iget_locked for details. 1010 */ 1011 static struct inode *find_inode_fast(struct super_block *sb, 1012 struct hlist_head *head, unsigned long ino, 1013 bool is_inode_hash_locked) 1014 { 1015 struct inode *inode = NULL; 1016 1017 if (is_inode_hash_locked) 1018 lockdep_assert_held(&inode_hash_lock); 1019 else 1020 lockdep_assert_not_held(&inode_hash_lock); 1021 1022 rcu_read_lock(); 1023 repeat: 1024 hlist_for_each_entry_rcu(inode, head, i_hash) { 1025 if (inode->i_ino != ino) 1026 continue; 1027 if (inode->i_sb != sb) 1028 continue; 1029 spin_lock(&inode->i_lock); 1030 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1031 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1032 goto repeat; 1033 } 1034 if (unlikely(inode->i_state & I_CREATING)) { 1035 spin_unlock(&inode->i_lock); 1036 rcu_read_unlock(); 1037 return ERR_PTR(-ESTALE); 1038 } 1039 __iget(inode); 1040 spin_unlock(&inode->i_lock); 1041 rcu_read_unlock(); 1042 return inode; 1043 } 1044 rcu_read_unlock(); 1045 return NULL; 1046 } 1047 1048 /* 1049 * Each cpu owns a range of LAST_INO_BATCH numbers. 1050 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1051 * to renew the exhausted range. 1052 * 1053 * This does not significantly increase overflow rate because every CPU can 1054 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1055 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1056 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1057 * overflow rate by 2x, which does not seem too significant. 1058 * 1059 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1060 * error if st_ino won't fit in target struct field. Use 32bit counter 1061 * here to attempt to avoid that. 1062 */ 1063 #define LAST_INO_BATCH 1024 1064 static DEFINE_PER_CPU(unsigned int, last_ino); 1065 1066 unsigned int get_next_ino(void) 1067 { 1068 unsigned int *p = &get_cpu_var(last_ino); 1069 unsigned int res = *p; 1070 1071 #ifdef CONFIG_SMP 1072 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1073 static atomic_t shared_last_ino; 1074 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1075 1076 res = next - LAST_INO_BATCH; 1077 } 1078 #endif 1079 1080 res++; 1081 /* get_next_ino should not provide a 0 inode number */ 1082 if (unlikely(!res)) 1083 res++; 1084 *p = res; 1085 put_cpu_var(last_ino); 1086 return res; 1087 } 1088 EXPORT_SYMBOL(get_next_ino); 1089 1090 /** 1091 * new_inode_pseudo - obtain an inode 1092 * @sb: superblock 1093 * 1094 * Allocates a new inode for given superblock. 1095 * Inode wont be chained in superblock s_inodes list 1096 * This means : 1097 * - fs can't be unmount 1098 * - quotas, fsnotify, writeback can't work 1099 */ 1100 struct inode *new_inode_pseudo(struct super_block *sb) 1101 { 1102 return alloc_inode(sb); 1103 } 1104 1105 /** 1106 * new_inode - obtain an inode 1107 * @sb: superblock 1108 * 1109 * Allocates a new inode for given superblock. The default gfp_mask 1110 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1111 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1112 * for the page cache are not reclaimable or migratable, 1113 * mapping_set_gfp_mask() must be called with suitable flags on the 1114 * newly created inode's mapping 1115 * 1116 */ 1117 struct inode *new_inode(struct super_block *sb) 1118 { 1119 struct inode *inode; 1120 1121 inode = new_inode_pseudo(sb); 1122 if (inode) 1123 inode_sb_list_add(inode); 1124 return inode; 1125 } 1126 EXPORT_SYMBOL(new_inode); 1127 1128 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1129 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1130 { 1131 if (S_ISDIR(inode->i_mode)) { 1132 struct file_system_type *type = inode->i_sb->s_type; 1133 1134 /* Set new key only if filesystem hasn't already changed it */ 1135 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1136 /* 1137 * ensure nobody is actually holding i_mutex 1138 */ 1139 // mutex_destroy(&inode->i_mutex); 1140 init_rwsem(&inode->i_rwsem); 1141 lockdep_set_class(&inode->i_rwsem, 1142 &type->i_mutex_dir_key); 1143 } 1144 } 1145 } 1146 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1147 #endif 1148 1149 /** 1150 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1151 * @inode: new inode to unlock 1152 * 1153 * Called when the inode is fully initialised to clear the new state of the 1154 * inode and wake up anyone waiting for the inode to finish initialisation. 1155 */ 1156 void unlock_new_inode(struct inode *inode) 1157 { 1158 lockdep_annotate_inode_mutex_key(inode); 1159 spin_lock(&inode->i_lock); 1160 WARN_ON(!(inode->i_state & I_NEW)); 1161 inode->i_state &= ~I_NEW & ~I_CREATING; 1162 /* 1163 * Pairs with the barrier in prepare_to_wait_event() to make sure 1164 * ___wait_var_event() either sees the bit cleared or 1165 * waitqueue_active() check in wake_up_var() sees the waiter. 1166 */ 1167 smp_mb(); 1168 inode_wake_up_bit(inode, __I_NEW); 1169 spin_unlock(&inode->i_lock); 1170 } 1171 EXPORT_SYMBOL(unlock_new_inode); 1172 1173 void discard_new_inode(struct inode *inode) 1174 { 1175 lockdep_annotate_inode_mutex_key(inode); 1176 spin_lock(&inode->i_lock); 1177 WARN_ON(!(inode->i_state & I_NEW)); 1178 inode->i_state &= ~I_NEW; 1179 /* 1180 * Pairs with the barrier in prepare_to_wait_event() to make sure 1181 * ___wait_var_event() either sees the bit cleared or 1182 * waitqueue_active() check in wake_up_var() sees the waiter. 1183 */ 1184 smp_mb(); 1185 inode_wake_up_bit(inode, __I_NEW); 1186 spin_unlock(&inode->i_lock); 1187 iput(inode); 1188 } 1189 EXPORT_SYMBOL(discard_new_inode); 1190 1191 /** 1192 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1193 * 1194 * Lock any non-NULL argument. Passed objects must not be directories. 1195 * Zero, one or two objects may be locked by this function. 1196 * 1197 * @inode1: first inode to lock 1198 * @inode2: second inode to lock 1199 */ 1200 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1201 { 1202 if (inode1) 1203 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1204 if (inode2) 1205 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1206 if (inode1 > inode2) 1207 swap(inode1, inode2); 1208 if (inode1) 1209 inode_lock(inode1); 1210 if (inode2 && inode2 != inode1) 1211 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1212 } 1213 EXPORT_SYMBOL(lock_two_nondirectories); 1214 1215 /** 1216 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1217 * @inode1: first inode to unlock 1218 * @inode2: second inode to unlock 1219 */ 1220 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1221 { 1222 if (inode1) { 1223 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1224 inode_unlock(inode1); 1225 } 1226 if (inode2 && inode2 != inode1) { 1227 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1228 inode_unlock(inode2); 1229 } 1230 } 1231 EXPORT_SYMBOL(unlock_two_nondirectories); 1232 1233 /** 1234 * inode_insert5 - obtain an inode from a mounted file system 1235 * @inode: pre-allocated inode to use for insert to cache 1236 * @hashval: hash value (usually inode number) to get 1237 * @test: callback used for comparisons between inodes 1238 * @set: callback used to initialize a new struct inode 1239 * @data: opaque data pointer to pass to @test and @set 1240 * 1241 * Search for the inode specified by @hashval and @data in the inode cache, 1242 * and if present it is return it with an increased reference count. This is 1243 * a variant of iget5_locked() for callers that don't want to fail on memory 1244 * allocation of inode. 1245 * 1246 * If the inode is not in cache, insert the pre-allocated inode to cache and 1247 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1248 * to fill it in before unlocking it via unlock_new_inode(). 1249 * 1250 * Note both @test and @set are called with the inode_hash_lock held, so can't 1251 * sleep. 1252 */ 1253 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1254 int (*test)(struct inode *, void *), 1255 int (*set)(struct inode *, void *), void *data) 1256 { 1257 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1258 struct inode *old; 1259 1260 again: 1261 spin_lock(&inode_hash_lock); 1262 old = find_inode(inode->i_sb, head, test, data, true); 1263 if (unlikely(old)) { 1264 /* 1265 * Uhhuh, somebody else created the same inode under us. 1266 * Use the old inode instead of the preallocated one. 1267 */ 1268 spin_unlock(&inode_hash_lock); 1269 if (IS_ERR(old)) 1270 return NULL; 1271 wait_on_inode(old); 1272 if (unlikely(inode_unhashed(old))) { 1273 iput(old); 1274 goto again; 1275 } 1276 return old; 1277 } 1278 1279 if (set && unlikely(set(inode, data))) { 1280 inode = NULL; 1281 goto unlock; 1282 } 1283 1284 /* 1285 * Return the locked inode with I_NEW set, the 1286 * caller is responsible for filling in the contents 1287 */ 1288 spin_lock(&inode->i_lock); 1289 inode->i_state |= I_NEW; 1290 hlist_add_head_rcu(&inode->i_hash, head); 1291 spin_unlock(&inode->i_lock); 1292 1293 /* 1294 * Add inode to the sb list if it's not already. It has I_NEW at this 1295 * point, so it should be safe to test i_sb_list locklessly. 1296 */ 1297 if (list_empty(&inode->i_sb_list)) 1298 inode_sb_list_add(inode); 1299 unlock: 1300 spin_unlock(&inode_hash_lock); 1301 1302 return inode; 1303 } 1304 EXPORT_SYMBOL(inode_insert5); 1305 1306 /** 1307 * iget5_locked - obtain an inode from a mounted file system 1308 * @sb: super block of file system 1309 * @hashval: hash value (usually inode number) to get 1310 * @test: callback used for comparisons between inodes 1311 * @set: callback used to initialize a new struct inode 1312 * @data: opaque data pointer to pass to @test and @set 1313 * 1314 * Search for the inode specified by @hashval and @data in the inode cache, 1315 * and if present it is return it with an increased reference count. This is 1316 * a generalized version of iget_locked() for file systems where the inode 1317 * number is not sufficient for unique identification of an inode. 1318 * 1319 * If the inode is not in cache, allocate a new inode and return it locked, 1320 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1321 * before unlocking it via unlock_new_inode(). 1322 * 1323 * Note both @test and @set are called with the inode_hash_lock held, so can't 1324 * sleep. 1325 */ 1326 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1327 int (*test)(struct inode *, void *), 1328 int (*set)(struct inode *, void *), void *data) 1329 { 1330 struct inode *inode = ilookup5(sb, hashval, test, data); 1331 1332 if (!inode) { 1333 struct inode *new = alloc_inode(sb); 1334 1335 if (new) { 1336 inode = inode_insert5(new, hashval, test, set, data); 1337 if (unlikely(inode != new)) 1338 destroy_inode(new); 1339 } 1340 } 1341 return inode; 1342 } 1343 EXPORT_SYMBOL(iget5_locked); 1344 1345 /** 1346 * iget5_locked_rcu - obtain an inode from a mounted file system 1347 * @sb: super block of file system 1348 * @hashval: hash value (usually inode number) to get 1349 * @test: callback used for comparisons between inodes 1350 * @set: callback used to initialize a new struct inode 1351 * @data: opaque data pointer to pass to @test and @set 1352 * 1353 * This is equivalent to iget5_locked, except the @test callback must 1354 * tolerate the inode not being stable, including being mid-teardown. 1355 */ 1356 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1357 int (*test)(struct inode *, void *), 1358 int (*set)(struct inode *, void *), void *data) 1359 { 1360 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1361 struct inode *inode, *new; 1362 1363 again: 1364 inode = find_inode(sb, head, test, data, false); 1365 if (inode) { 1366 if (IS_ERR(inode)) 1367 return NULL; 1368 wait_on_inode(inode); 1369 if (unlikely(inode_unhashed(inode))) { 1370 iput(inode); 1371 goto again; 1372 } 1373 return inode; 1374 } 1375 1376 new = alloc_inode(sb); 1377 if (new) { 1378 inode = inode_insert5(new, hashval, test, set, data); 1379 if (unlikely(inode != new)) 1380 destroy_inode(new); 1381 } 1382 return inode; 1383 } 1384 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1385 1386 /** 1387 * iget_locked - obtain an inode from a mounted file system 1388 * @sb: super block of file system 1389 * @ino: inode number to get 1390 * 1391 * Search for the inode specified by @ino in the inode cache and if present 1392 * return it with an increased reference count. This is for file systems 1393 * where the inode number is sufficient for unique identification of an inode. 1394 * 1395 * If the inode is not in cache, allocate a new inode and return it locked, 1396 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1397 * before unlocking it via unlock_new_inode(). 1398 */ 1399 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1400 { 1401 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1402 struct inode *inode; 1403 again: 1404 inode = find_inode_fast(sb, head, ino, false); 1405 if (inode) { 1406 if (IS_ERR(inode)) 1407 return NULL; 1408 wait_on_inode(inode); 1409 if (unlikely(inode_unhashed(inode))) { 1410 iput(inode); 1411 goto again; 1412 } 1413 return inode; 1414 } 1415 1416 inode = alloc_inode(sb); 1417 if (inode) { 1418 struct inode *old; 1419 1420 spin_lock(&inode_hash_lock); 1421 /* We released the lock, so.. */ 1422 old = find_inode_fast(sb, head, ino, true); 1423 if (!old) { 1424 inode->i_ino = ino; 1425 spin_lock(&inode->i_lock); 1426 inode->i_state = I_NEW; 1427 hlist_add_head_rcu(&inode->i_hash, head); 1428 spin_unlock(&inode->i_lock); 1429 inode_sb_list_add(inode); 1430 spin_unlock(&inode_hash_lock); 1431 1432 /* Return the locked inode with I_NEW set, the 1433 * caller is responsible for filling in the contents 1434 */ 1435 return inode; 1436 } 1437 1438 /* 1439 * Uhhuh, somebody else created the same inode under 1440 * us. Use the old inode instead of the one we just 1441 * allocated. 1442 */ 1443 spin_unlock(&inode_hash_lock); 1444 destroy_inode(inode); 1445 if (IS_ERR(old)) 1446 return NULL; 1447 inode = old; 1448 wait_on_inode(inode); 1449 if (unlikely(inode_unhashed(inode))) { 1450 iput(inode); 1451 goto again; 1452 } 1453 } 1454 return inode; 1455 } 1456 EXPORT_SYMBOL(iget_locked); 1457 1458 /* 1459 * search the inode cache for a matching inode number. 1460 * If we find one, then the inode number we are trying to 1461 * allocate is not unique and so we should not use it. 1462 * 1463 * Returns 1 if the inode number is unique, 0 if it is not. 1464 */ 1465 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1466 { 1467 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1468 struct inode *inode; 1469 1470 hlist_for_each_entry_rcu(inode, b, i_hash) { 1471 if (inode->i_ino == ino && inode->i_sb == sb) 1472 return 0; 1473 } 1474 return 1; 1475 } 1476 1477 /** 1478 * iunique - get a unique inode number 1479 * @sb: superblock 1480 * @max_reserved: highest reserved inode number 1481 * 1482 * Obtain an inode number that is unique on the system for a given 1483 * superblock. This is used by file systems that have no natural 1484 * permanent inode numbering system. An inode number is returned that 1485 * is higher than the reserved limit but unique. 1486 * 1487 * BUGS: 1488 * With a large number of inodes live on the file system this function 1489 * currently becomes quite slow. 1490 */ 1491 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1492 { 1493 /* 1494 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1495 * error if st_ino won't fit in target struct field. Use 32bit counter 1496 * here to attempt to avoid that. 1497 */ 1498 static DEFINE_SPINLOCK(iunique_lock); 1499 static unsigned int counter; 1500 ino_t res; 1501 1502 rcu_read_lock(); 1503 spin_lock(&iunique_lock); 1504 do { 1505 if (counter <= max_reserved) 1506 counter = max_reserved + 1; 1507 res = counter++; 1508 } while (!test_inode_iunique(sb, res)); 1509 spin_unlock(&iunique_lock); 1510 rcu_read_unlock(); 1511 1512 return res; 1513 } 1514 EXPORT_SYMBOL(iunique); 1515 1516 struct inode *igrab(struct inode *inode) 1517 { 1518 spin_lock(&inode->i_lock); 1519 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1520 __iget(inode); 1521 spin_unlock(&inode->i_lock); 1522 } else { 1523 spin_unlock(&inode->i_lock); 1524 /* 1525 * Handle the case where s_op->clear_inode is not been 1526 * called yet, and somebody is calling igrab 1527 * while the inode is getting freed. 1528 */ 1529 inode = NULL; 1530 } 1531 return inode; 1532 } 1533 EXPORT_SYMBOL(igrab); 1534 1535 /** 1536 * ilookup5_nowait - search for an inode in the inode cache 1537 * @sb: super block of file system to search 1538 * @hashval: hash value (usually inode number) to search for 1539 * @test: callback used for comparisons between inodes 1540 * @data: opaque data pointer to pass to @test 1541 * 1542 * Search for the inode specified by @hashval and @data in the inode cache. 1543 * If the inode is in the cache, the inode is returned with an incremented 1544 * reference count. 1545 * 1546 * Note: I_NEW is not waited upon so you have to be very careful what you do 1547 * with the returned inode. You probably should be using ilookup5() instead. 1548 * 1549 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1550 */ 1551 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1552 int (*test)(struct inode *, void *), void *data) 1553 { 1554 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1555 struct inode *inode; 1556 1557 spin_lock(&inode_hash_lock); 1558 inode = find_inode(sb, head, test, data, true); 1559 spin_unlock(&inode_hash_lock); 1560 1561 return IS_ERR(inode) ? NULL : inode; 1562 } 1563 EXPORT_SYMBOL(ilookup5_nowait); 1564 1565 /** 1566 * ilookup5 - search for an inode in the inode cache 1567 * @sb: super block of file system to search 1568 * @hashval: hash value (usually inode number) to search for 1569 * @test: callback used for comparisons between inodes 1570 * @data: opaque data pointer to pass to @test 1571 * 1572 * Search for the inode specified by @hashval and @data in the inode cache, 1573 * and if the inode is in the cache, return the inode with an incremented 1574 * reference count. Waits on I_NEW before returning the inode. 1575 * returned with an incremented reference count. 1576 * 1577 * This is a generalized version of ilookup() for file systems where the 1578 * inode number is not sufficient for unique identification of an inode. 1579 * 1580 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1581 */ 1582 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1583 int (*test)(struct inode *, void *), void *data) 1584 { 1585 struct inode *inode; 1586 again: 1587 inode = ilookup5_nowait(sb, hashval, test, data); 1588 if (inode) { 1589 wait_on_inode(inode); 1590 if (unlikely(inode_unhashed(inode))) { 1591 iput(inode); 1592 goto again; 1593 } 1594 } 1595 return inode; 1596 } 1597 EXPORT_SYMBOL(ilookup5); 1598 1599 /** 1600 * ilookup - search for an inode in the inode cache 1601 * @sb: super block of file system to search 1602 * @ino: inode number to search for 1603 * 1604 * Search for the inode @ino in the inode cache, and if the inode is in the 1605 * cache, the inode is returned with an incremented reference count. 1606 */ 1607 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1608 { 1609 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1610 struct inode *inode; 1611 again: 1612 inode = find_inode_fast(sb, head, ino, false); 1613 1614 if (inode) { 1615 if (IS_ERR(inode)) 1616 return NULL; 1617 wait_on_inode(inode); 1618 if (unlikely(inode_unhashed(inode))) { 1619 iput(inode); 1620 goto again; 1621 } 1622 } 1623 return inode; 1624 } 1625 EXPORT_SYMBOL(ilookup); 1626 1627 /** 1628 * find_inode_nowait - find an inode in the inode cache 1629 * @sb: super block of file system to search 1630 * @hashval: hash value (usually inode number) to search for 1631 * @match: callback used for comparisons between inodes 1632 * @data: opaque data pointer to pass to @match 1633 * 1634 * Search for the inode specified by @hashval and @data in the inode 1635 * cache, where the helper function @match will return 0 if the inode 1636 * does not match, 1 if the inode does match, and -1 if the search 1637 * should be stopped. The @match function must be responsible for 1638 * taking the i_lock spin_lock and checking i_state for an inode being 1639 * freed or being initialized, and incrementing the reference count 1640 * before returning 1. It also must not sleep, since it is called with 1641 * the inode_hash_lock spinlock held. 1642 * 1643 * This is a even more generalized version of ilookup5() when the 1644 * function must never block --- find_inode() can block in 1645 * __wait_on_freeing_inode() --- or when the caller can not increment 1646 * the reference count because the resulting iput() might cause an 1647 * inode eviction. The tradeoff is that the @match funtion must be 1648 * very carefully implemented. 1649 */ 1650 struct inode *find_inode_nowait(struct super_block *sb, 1651 unsigned long hashval, 1652 int (*match)(struct inode *, unsigned long, 1653 void *), 1654 void *data) 1655 { 1656 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1657 struct inode *inode, *ret_inode = NULL; 1658 int mval; 1659 1660 spin_lock(&inode_hash_lock); 1661 hlist_for_each_entry(inode, head, i_hash) { 1662 if (inode->i_sb != sb) 1663 continue; 1664 mval = match(inode, hashval, data); 1665 if (mval == 0) 1666 continue; 1667 if (mval == 1) 1668 ret_inode = inode; 1669 goto out; 1670 } 1671 out: 1672 spin_unlock(&inode_hash_lock); 1673 return ret_inode; 1674 } 1675 EXPORT_SYMBOL(find_inode_nowait); 1676 1677 /** 1678 * find_inode_rcu - find an inode in the inode cache 1679 * @sb: Super block of file system to search 1680 * @hashval: Key to hash 1681 * @test: Function to test match on an inode 1682 * @data: Data for test function 1683 * 1684 * Search for the inode specified by @hashval and @data in the inode cache, 1685 * where the helper function @test will return 0 if the inode does not match 1686 * and 1 if it does. The @test function must be responsible for taking the 1687 * i_lock spin_lock and checking i_state for an inode being freed or being 1688 * initialized. 1689 * 1690 * If successful, this will return the inode for which the @test function 1691 * returned 1 and NULL otherwise. 1692 * 1693 * The @test function is not permitted to take a ref on any inode presented. 1694 * It is also not permitted to sleep. 1695 * 1696 * The caller must hold the RCU read lock. 1697 */ 1698 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1699 int (*test)(struct inode *, void *), void *data) 1700 { 1701 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1702 struct inode *inode; 1703 1704 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1705 "suspicious find_inode_rcu() usage"); 1706 1707 hlist_for_each_entry_rcu(inode, head, i_hash) { 1708 if (inode->i_sb == sb && 1709 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1710 test(inode, data)) 1711 return inode; 1712 } 1713 return NULL; 1714 } 1715 EXPORT_SYMBOL(find_inode_rcu); 1716 1717 /** 1718 * find_inode_by_ino_rcu - Find an inode in the inode cache 1719 * @sb: Super block of file system to search 1720 * @ino: The inode number to match 1721 * 1722 * Search for the inode specified by @hashval and @data in the inode cache, 1723 * where the helper function @test will return 0 if the inode does not match 1724 * and 1 if it does. The @test function must be responsible for taking the 1725 * i_lock spin_lock and checking i_state for an inode being freed or being 1726 * initialized. 1727 * 1728 * If successful, this will return the inode for which the @test function 1729 * returned 1 and NULL otherwise. 1730 * 1731 * The @test function is not permitted to take a ref on any inode presented. 1732 * It is also not permitted to sleep. 1733 * 1734 * The caller must hold the RCU read lock. 1735 */ 1736 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1737 unsigned long ino) 1738 { 1739 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1740 struct inode *inode; 1741 1742 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1743 "suspicious find_inode_by_ino_rcu() usage"); 1744 1745 hlist_for_each_entry_rcu(inode, head, i_hash) { 1746 if (inode->i_ino == ino && 1747 inode->i_sb == sb && 1748 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1749 return inode; 1750 } 1751 return NULL; 1752 } 1753 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1754 1755 int insert_inode_locked(struct inode *inode) 1756 { 1757 struct super_block *sb = inode->i_sb; 1758 ino_t ino = inode->i_ino; 1759 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1760 1761 while (1) { 1762 struct inode *old = NULL; 1763 spin_lock(&inode_hash_lock); 1764 hlist_for_each_entry(old, head, i_hash) { 1765 if (old->i_ino != ino) 1766 continue; 1767 if (old->i_sb != sb) 1768 continue; 1769 spin_lock(&old->i_lock); 1770 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1771 spin_unlock(&old->i_lock); 1772 continue; 1773 } 1774 break; 1775 } 1776 if (likely(!old)) { 1777 spin_lock(&inode->i_lock); 1778 inode->i_state |= I_NEW | I_CREATING; 1779 hlist_add_head_rcu(&inode->i_hash, head); 1780 spin_unlock(&inode->i_lock); 1781 spin_unlock(&inode_hash_lock); 1782 return 0; 1783 } 1784 if (unlikely(old->i_state & I_CREATING)) { 1785 spin_unlock(&old->i_lock); 1786 spin_unlock(&inode_hash_lock); 1787 return -EBUSY; 1788 } 1789 __iget(old); 1790 spin_unlock(&old->i_lock); 1791 spin_unlock(&inode_hash_lock); 1792 wait_on_inode(old); 1793 if (unlikely(!inode_unhashed(old))) { 1794 iput(old); 1795 return -EBUSY; 1796 } 1797 iput(old); 1798 } 1799 } 1800 EXPORT_SYMBOL(insert_inode_locked); 1801 1802 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1803 int (*test)(struct inode *, void *), void *data) 1804 { 1805 struct inode *old; 1806 1807 inode->i_state |= I_CREATING; 1808 old = inode_insert5(inode, hashval, test, NULL, data); 1809 1810 if (old != inode) { 1811 iput(old); 1812 return -EBUSY; 1813 } 1814 return 0; 1815 } 1816 EXPORT_SYMBOL(insert_inode_locked4); 1817 1818 1819 int generic_delete_inode(struct inode *inode) 1820 { 1821 return 1; 1822 } 1823 EXPORT_SYMBOL(generic_delete_inode); 1824 1825 /* 1826 * Called when we're dropping the last reference 1827 * to an inode. 1828 * 1829 * Call the FS "drop_inode()" function, defaulting to 1830 * the legacy UNIX filesystem behaviour. If it tells 1831 * us to evict inode, do so. Otherwise, retain inode 1832 * in cache if fs is alive, sync and evict if fs is 1833 * shutting down. 1834 */ 1835 static void iput_final(struct inode *inode) 1836 { 1837 struct super_block *sb = inode->i_sb; 1838 const struct super_operations *op = inode->i_sb->s_op; 1839 unsigned long state; 1840 int drop; 1841 1842 WARN_ON(inode->i_state & I_NEW); 1843 1844 if (op->drop_inode) 1845 drop = op->drop_inode(inode); 1846 else 1847 drop = generic_drop_inode(inode); 1848 1849 if (!drop && 1850 !(inode->i_state & I_DONTCACHE) && 1851 (sb->s_flags & SB_ACTIVE)) { 1852 __inode_add_lru(inode, true); 1853 spin_unlock(&inode->i_lock); 1854 return; 1855 } 1856 1857 state = inode->i_state; 1858 if (!drop) { 1859 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1860 spin_unlock(&inode->i_lock); 1861 1862 write_inode_now(inode, 1); 1863 1864 spin_lock(&inode->i_lock); 1865 state = inode->i_state; 1866 WARN_ON(state & I_NEW); 1867 state &= ~I_WILL_FREE; 1868 } 1869 1870 WRITE_ONCE(inode->i_state, state | I_FREEING); 1871 if (!list_empty(&inode->i_lru)) 1872 inode_lru_list_del(inode); 1873 spin_unlock(&inode->i_lock); 1874 1875 evict(inode); 1876 } 1877 1878 /** 1879 * iput - put an inode 1880 * @inode: inode to put 1881 * 1882 * Puts an inode, dropping its usage count. If the inode use count hits 1883 * zero, the inode is then freed and may also be destroyed. 1884 * 1885 * Consequently, iput() can sleep. 1886 */ 1887 void iput(struct inode *inode) 1888 { 1889 if (!inode) 1890 return; 1891 BUG_ON(inode->i_state & I_CLEAR); 1892 retry: 1893 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1894 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1895 atomic_inc(&inode->i_count); 1896 spin_unlock(&inode->i_lock); 1897 trace_writeback_lazytime_iput(inode); 1898 mark_inode_dirty_sync(inode); 1899 goto retry; 1900 } 1901 iput_final(inode); 1902 } 1903 } 1904 EXPORT_SYMBOL(iput); 1905 1906 #ifdef CONFIG_BLOCK 1907 /** 1908 * bmap - find a block number in a file 1909 * @inode: inode owning the block number being requested 1910 * @block: pointer containing the block to find 1911 * 1912 * Replaces the value in ``*block`` with the block number on the device holding 1913 * corresponding to the requested block number in the file. 1914 * That is, asked for block 4 of inode 1 the function will replace the 1915 * 4 in ``*block``, with disk block relative to the disk start that holds that 1916 * block of the file. 1917 * 1918 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1919 * hole, returns 0 and ``*block`` is also set to 0. 1920 */ 1921 int bmap(struct inode *inode, sector_t *block) 1922 { 1923 if (!inode->i_mapping->a_ops->bmap) 1924 return -EINVAL; 1925 1926 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1927 return 0; 1928 } 1929 EXPORT_SYMBOL(bmap); 1930 #endif 1931 1932 /* 1933 * With relative atime, only update atime if the previous atime is 1934 * earlier than or equal to either the ctime or mtime, 1935 * or if at least a day has passed since the last atime update. 1936 */ 1937 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1938 struct timespec64 now) 1939 { 1940 struct timespec64 atime, mtime, ctime; 1941 1942 if (!(mnt->mnt_flags & MNT_RELATIME)) 1943 return true; 1944 /* 1945 * Is mtime younger than or equal to atime? If yes, update atime: 1946 */ 1947 atime = inode_get_atime(inode); 1948 mtime = inode_get_mtime(inode); 1949 if (timespec64_compare(&mtime, &atime) >= 0) 1950 return true; 1951 /* 1952 * Is ctime younger than or equal to atime? If yes, update atime: 1953 */ 1954 ctime = inode_get_ctime(inode); 1955 if (timespec64_compare(&ctime, &atime) >= 0) 1956 return true; 1957 1958 /* 1959 * Is the previous atime value older than a day? If yes, 1960 * update atime: 1961 */ 1962 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1963 return true; 1964 /* 1965 * Good, we can skip the atime update: 1966 */ 1967 return false; 1968 } 1969 1970 /** 1971 * inode_update_timestamps - update the timestamps on the inode 1972 * @inode: inode to be updated 1973 * @flags: S_* flags that needed to be updated 1974 * 1975 * The update_time function is called when an inode's timestamps need to be 1976 * updated for a read or write operation. This function handles updating the 1977 * actual timestamps. It's up to the caller to ensure that the inode is marked 1978 * dirty appropriately. 1979 * 1980 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1981 * attempt to update all three of them. S_ATIME updates can be handled 1982 * independently of the rest. 1983 * 1984 * Returns a set of S_* flags indicating which values changed. 1985 */ 1986 int inode_update_timestamps(struct inode *inode, int flags) 1987 { 1988 int updated = 0; 1989 struct timespec64 now; 1990 1991 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1992 struct timespec64 ctime = inode_get_ctime(inode); 1993 struct timespec64 mtime = inode_get_mtime(inode); 1994 1995 now = inode_set_ctime_current(inode); 1996 if (!timespec64_equal(&now, &ctime)) 1997 updated |= S_CTIME; 1998 if (!timespec64_equal(&now, &mtime)) { 1999 inode_set_mtime_to_ts(inode, now); 2000 updated |= S_MTIME; 2001 } 2002 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2003 updated |= S_VERSION; 2004 } else { 2005 now = current_time(inode); 2006 } 2007 2008 if (flags & S_ATIME) { 2009 struct timespec64 atime = inode_get_atime(inode); 2010 2011 if (!timespec64_equal(&now, &atime)) { 2012 inode_set_atime_to_ts(inode, now); 2013 updated |= S_ATIME; 2014 } 2015 } 2016 return updated; 2017 } 2018 EXPORT_SYMBOL(inode_update_timestamps); 2019 2020 /** 2021 * generic_update_time - update the timestamps on the inode 2022 * @inode: inode to be updated 2023 * @flags: S_* flags that needed to be updated 2024 * 2025 * The update_time function is called when an inode's timestamps need to be 2026 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2027 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2028 * updates can be handled done independently of the rest. 2029 * 2030 * Returns a S_* mask indicating which fields were updated. 2031 */ 2032 int generic_update_time(struct inode *inode, int flags) 2033 { 2034 int updated = inode_update_timestamps(inode, flags); 2035 int dirty_flags = 0; 2036 2037 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2038 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2039 if (updated & S_VERSION) 2040 dirty_flags |= I_DIRTY_SYNC; 2041 __mark_inode_dirty(inode, dirty_flags); 2042 return updated; 2043 } 2044 EXPORT_SYMBOL(generic_update_time); 2045 2046 /* 2047 * This does the actual work of updating an inodes time or version. Must have 2048 * had called mnt_want_write() before calling this. 2049 */ 2050 int inode_update_time(struct inode *inode, int flags) 2051 { 2052 if (inode->i_op->update_time) 2053 return inode->i_op->update_time(inode, flags); 2054 generic_update_time(inode, flags); 2055 return 0; 2056 } 2057 EXPORT_SYMBOL(inode_update_time); 2058 2059 /** 2060 * atime_needs_update - update the access time 2061 * @path: the &struct path to update 2062 * @inode: inode to update 2063 * 2064 * Update the accessed time on an inode and mark it for writeback. 2065 * This function automatically handles read only file systems and media, 2066 * as well as the "noatime" flag and inode specific "noatime" markers. 2067 */ 2068 bool atime_needs_update(const struct path *path, struct inode *inode) 2069 { 2070 struct vfsmount *mnt = path->mnt; 2071 struct timespec64 now, atime; 2072 2073 if (inode->i_flags & S_NOATIME) 2074 return false; 2075 2076 /* Atime updates will likely cause i_uid and i_gid to be written 2077 * back improprely if their true value is unknown to the vfs. 2078 */ 2079 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2080 return false; 2081 2082 if (IS_NOATIME(inode)) 2083 return false; 2084 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2085 return false; 2086 2087 if (mnt->mnt_flags & MNT_NOATIME) 2088 return false; 2089 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2090 return false; 2091 2092 now = current_time(inode); 2093 2094 if (!relatime_need_update(mnt, inode, now)) 2095 return false; 2096 2097 atime = inode_get_atime(inode); 2098 if (timespec64_equal(&atime, &now)) 2099 return false; 2100 2101 return true; 2102 } 2103 2104 void touch_atime(const struct path *path) 2105 { 2106 struct vfsmount *mnt = path->mnt; 2107 struct inode *inode = d_inode(path->dentry); 2108 2109 if (!atime_needs_update(path, inode)) 2110 return; 2111 2112 if (!sb_start_write_trylock(inode->i_sb)) 2113 return; 2114 2115 if (mnt_get_write_access(mnt) != 0) 2116 goto skip_update; 2117 /* 2118 * File systems can error out when updating inodes if they need to 2119 * allocate new space to modify an inode (such is the case for 2120 * Btrfs), but since we touch atime while walking down the path we 2121 * really don't care if we failed to update the atime of the file, 2122 * so just ignore the return value. 2123 * We may also fail on filesystems that have the ability to make parts 2124 * of the fs read only, e.g. subvolumes in Btrfs. 2125 */ 2126 inode_update_time(inode, S_ATIME); 2127 mnt_put_write_access(mnt); 2128 skip_update: 2129 sb_end_write(inode->i_sb); 2130 } 2131 EXPORT_SYMBOL(touch_atime); 2132 2133 /* 2134 * Return mask of changes for notify_change() that need to be done as a 2135 * response to write or truncate. Return 0 if nothing has to be changed. 2136 * Negative value on error (change should be denied). 2137 */ 2138 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2139 struct dentry *dentry) 2140 { 2141 struct inode *inode = d_inode(dentry); 2142 int mask = 0; 2143 int ret; 2144 2145 if (IS_NOSEC(inode)) 2146 return 0; 2147 2148 mask = setattr_should_drop_suidgid(idmap, inode); 2149 ret = security_inode_need_killpriv(dentry); 2150 if (ret < 0) 2151 return ret; 2152 if (ret) 2153 mask |= ATTR_KILL_PRIV; 2154 return mask; 2155 } 2156 2157 static int __remove_privs(struct mnt_idmap *idmap, 2158 struct dentry *dentry, int kill) 2159 { 2160 struct iattr newattrs; 2161 2162 newattrs.ia_valid = ATTR_FORCE | kill; 2163 /* 2164 * Note we call this on write, so notify_change will not 2165 * encounter any conflicting delegations: 2166 */ 2167 return notify_change(idmap, dentry, &newattrs, NULL); 2168 } 2169 2170 int file_remove_privs_flags(struct file *file, unsigned int flags) 2171 { 2172 struct dentry *dentry = file_dentry(file); 2173 struct inode *inode = file_inode(file); 2174 int error = 0; 2175 int kill; 2176 2177 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2178 return 0; 2179 2180 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2181 if (kill < 0) 2182 return kill; 2183 2184 if (kill) { 2185 if (flags & IOCB_NOWAIT) 2186 return -EAGAIN; 2187 2188 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2189 } 2190 2191 if (!error) 2192 inode_has_no_xattr(inode); 2193 return error; 2194 } 2195 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2196 2197 /** 2198 * file_remove_privs - remove special file privileges (suid, capabilities) 2199 * @file: file to remove privileges from 2200 * 2201 * When file is modified by a write or truncation ensure that special 2202 * file privileges are removed. 2203 * 2204 * Return: 0 on success, negative errno on failure. 2205 */ 2206 int file_remove_privs(struct file *file) 2207 { 2208 return file_remove_privs_flags(file, 0); 2209 } 2210 EXPORT_SYMBOL(file_remove_privs); 2211 2212 static int inode_needs_update_time(struct inode *inode) 2213 { 2214 int sync_it = 0; 2215 struct timespec64 now = current_time(inode); 2216 struct timespec64 ts; 2217 2218 /* First try to exhaust all avenues to not sync */ 2219 if (IS_NOCMTIME(inode)) 2220 return 0; 2221 2222 ts = inode_get_mtime(inode); 2223 if (!timespec64_equal(&ts, &now)) 2224 sync_it = S_MTIME; 2225 2226 ts = inode_get_ctime(inode); 2227 if (!timespec64_equal(&ts, &now)) 2228 sync_it |= S_CTIME; 2229 2230 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2231 sync_it |= S_VERSION; 2232 2233 return sync_it; 2234 } 2235 2236 static int __file_update_time(struct file *file, int sync_mode) 2237 { 2238 int ret = 0; 2239 struct inode *inode = file_inode(file); 2240 2241 /* try to update time settings */ 2242 if (!mnt_get_write_access_file(file)) { 2243 ret = inode_update_time(inode, sync_mode); 2244 mnt_put_write_access_file(file); 2245 } 2246 2247 return ret; 2248 } 2249 2250 /** 2251 * file_update_time - update mtime and ctime time 2252 * @file: file accessed 2253 * 2254 * Update the mtime and ctime members of an inode and mark the inode for 2255 * writeback. Note that this function is meant exclusively for usage in 2256 * the file write path of filesystems, and filesystems may choose to 2257 * explicitly ignore updates via this function with the _NOCMTIME inode 2258 * flag, e.g. for network filesystem where these imestamps are handled 2259 * by the server. This can return an error for file systems who need to 2260 * allocate space in order to update an inode. 2261 * 2262 * Return: 0 on success, negative errno on failure. 2263 */ 2264 int file_update_time(struct file *file) 2265 { 2266 int ret; 2267 struct inode *inode = file_inode(file); 2268 2269 ret = inode_needs_update_time(inode); 2270 if (ret <= 0) 2271 return ret; 2272 2273 return __file_update_time(file, ret); 2274 } 2275 EXPORT_SYMBOL(file_update_time); 2276 2277 /** 2278 * file_modified_flags - handle mandated vfs changes when modifying a file 2279 * @file: file that was modified 2280 * @flags: kiocb flags 2281 * 2282 * When file has been modified ensure that special 2283 * file privileges are removed and time settings are updated. 2284 * 2285 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2286 * time settings will not be updated. It will return -EAGAIN. 2287 * 2288 * Context: Caller must hold the file's inode lock. 2289 * 2290 * Return: 0 on success, negative errno on failure. 2291 */ 2292 static int file_modified_flags(struct file *file, int flags) 2293 { 2294 int ret; 2295 struct inode *inode = file_inode(file); 2296 2297 /* 2298 * Clear the security bits if the process is not being run by root. 2299 * This keeps people from modifying setuid and setgid binaries. 2300 */ 2301 ret = file_remove_privs_flags(file, flags); 2302 if (ret) 2303 return ret; 2304 2305 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2306 return 0; 2307 2308 ret = inode_needs_update_time(inode); 2309 if (ret <= 0) 2310 return ret; 2311 if (flags & IOCB_NOWAIT) 2312 return -EAGAIN; 2313 2314 return __file_update_time(file, ret); 2315 } 2316 2317 /** 2318 * file_modified - handle mandated vfs changes when modifying a file 2319 * @file: file that was modified 2320 * 2321 * When file has been modified ensure that special 2322 * file privileges are removed and time settings are updated. 2323 * 2324 * Context: Caller must hold the file's inode lock. 2325 * 2326 * Return: 0 on success, negative errno on failure. 2327 */ 2328 int file_modified(struct file *file) 2329 { 2330 return file_modified_flags(file, 0); 2331 } 2332 EXPORT_SYMBOL(file_modified); 2333 2334 /** 2335 * kiocb_modified - handle mandated vfs changes when modifying a file 2336 * @iocb: iocb that was modified 2337 * 2338 * When file has been modified ensure that special 2339 * file privileges are removed and time settings are updated. 2340 * 2341 * Context: Caller must hold the file's inode lock. 2342 * 2343 * Return: 0 on success, negative errno on failure. 2344 */ 2345 int kiocb_modified(struct kiocb *iocb) 2346 { 2347 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2348 } 2349 EXPORT_SYMBOL_GPL(kiocb_modified); 2350 2351 int inode_needs_sync(struct inode *inode) 2352 { 2353 if (IS_SYNC(inode)) 2354 return 1; 2355 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2356 return 1; 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(inode_needs_sync); 2360 2361 /* 2362 * If we try to find an inode in the inode hash while it is being 2363 * deleted, we have to wait until the filesystem completes its 2364 * deletion before reporting that it isn't found. This function waits 2365 * until the deletion _might_ have completed. Callers are responsible 2366 * to recheck inode state. 2367 * 2368 * It doesn't matter if I_NEW is not set initially, a call to 2369 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2370 * will DTRT. 2371 */ 2372 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2373 { 2374 struct wait_bit_queue_entry wqe; 2375 struct wait_queue_head *wq_head; 2376 2377 /* 2378 * Handle racing against evict(), see that routine for more details. 2379 */ 2380 if (unlikely(inode_unhashed(inode))) { 2381 WARN_ON(is_inode_hash_locked); 2382 spin_unlock(&inode->i_lock); 2383 return; 2384 } 2385 2386 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2387 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2388 spin_unlock(&inode->i_lock); 2389 rcu_read_unlock(); 2390 if (is_inode_hash_locked) 2391 spin_unlock(&inode_hash_lock); 2392 schedule(); 2393 finish_wait(wq_head, &wqe.wq_entry); 2394 if (is_inode_hash_locked) 2395 spin_lock(&inode_hash_lock); 2396 rcu_read_lock(); 2397 } 2398 2399 static __initdata unsigned long ihash_entries; 2400 static int __init set_ihash_entries(char *str) 2401 { 2402 if (!str) 2403 return 0; 2404 ihash_entries = simple_strtoul(str, &str, 0); 2405 return 1; 2406 } 2407 __setup("ihash_entries=", set_ihash_entries); 2408 2409 /* 2410 * Initialize the waitqueues and inode hash table. 2411 */ 2412 void __init inode_init_early(void) 2413 { 2414 /* If hashes are distributed across NUMA nodes, defer 2415 * hash allocation until vmalloc space is available. 2416 */ 2417 if (hashdist) 2418 return; 2419 2420 inode_hashtable = 2421 alloc_large_system_hash("Inode-cache", 2422 sizeof(struct hlist_head), 2423 ihash_entries, 2424 14, 2425 HASH_EARLY | HASH_ZERO, 2426 &i_hash_shift, 2427 &i_hash_mask, 2428 0, 2429 0); 2430 } 2431 2432 void __init inode_init(void) 2433 { 2434 /* inode slab cache */ 2435 inode_cachep = kmem_cache_create("inode_cache", 2436 sizeof(struct inode), 2437 0, 2438 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2439 SLAB_ACCOUNT), 2440 init_once); 2441 2442 /* Hash may have been set up in inode_init_early */ 2443 if (!hashdist) 2444 return; 2445 2446 inode_hashtable = 2447 alloc_large_system_hash("Inode-cache", 2448 sizeof(struct hlist_head), 2449 ihash_entries, 2450 14, 2451 HASH_ZERO, 2452 &i_hash_shift, 2453 &i_hash_mask, 2454 0, 2455 0); 2456 } 2457 2458 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2459 { 2460 inode->i_mode = mode; 2461 if (S_ISCHR(mode)) { 2462 inode->i_fop = &def_chr_fops; 2463 inode->i_rdev = rdev; 2464 } else if (S_ISBLK(mode)) { 2465 if (IS_ENABLED(CONFIG_BLOCK)) 2466 inode->i_fop = &def_blk_fops; 2467 inode->i_rdev = rdev; 2468 } else if (S_ISFIFO(mode)) 2469 inode->i_fop = &pipefifo_fops; 2470 else if (S_ISSOCK(mode)) 2471 ; /* leave it no_open_fops */ 2472 else 2473 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2474 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2475 inode->i_ino); 2476 } 2477 EXPORT_SYMBOL(init_special_inode); 2478 2479 /** 2480 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2481 * @idmap: idmap of the mount the inode was created from 2482 * @inode: New inode 2483 * @dir: Directory inode 2484 * @mode: mode of the new inode 2485 * 2486 * If the inode has been created through an idmapped mount the idmap of 2487 * the vfsmount must be passed through @idmap. This function will then take 2488 * care to map the inode according to @idmap before checking permissions 2489 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2490 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2491 */ 2492 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2493 const struct inode *dir, umode_t mode) 2494 { 2495 inode_fsuid_set(inode, idmap); 2496 if (dir && dir->i_mode & S_ISGID) { 2497 inode->i_gid = dir->i_gid; 2498 2499 /* Directories are special, and always inherit S_ISGID */ 2500 if (S_ISDIR(mode)) 2501 mode |= S_ISGID; 2502 } else 2503 inode_fsgid_set(inode, idmap); 2504 inode->i_mode = mode; 2505 } 2506 EXPORT_SYMBOL(inode_init_owner); 2507 2508 /** 2509 * inode_owner_or_capable - check current task permissions to inode 2510 * @idmap: idmap of the mount the inode was found from 2511 * @inode: inode being checked 2512 * 2513 * Return true if current either has CAP_FOWNER in a namespace with the 2514 * inode owner uid mapped, or owns the file. 2515 * 2516 * If the inode has been found through an idmapped mount the idmap of 2517 * the vfsmount must be passed through @idmap. This function will then take 2518 * care to map the inode according to @idmap before checking permissions. 2519 * On non-idmapped mounts or if permission checking is to be performed on the 2520 * raw inode simply pass @nop_mnt_idmap. 2521 */ 2522 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2523 const struct inode *inode) 2524 { 2525 vfsuid_t vfsuid; 2526 struct user_namespace *ns; 2527 2528 vfsuid = i_uid_into_vfsuid(idmap, inode); 2529 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2530 return true; 2531 2532 ns = current_user_ns(); 2533 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2534 return true; 2535 return false; 2536 } 2537 EXPORT_SYMBOL(inode_owner_or_capable); 2538 2539 /* 2540 * Direct i/o helper functions 2541 */ 2542 bool inode_dio_finished(const struct inode *inode) 2543 { 2544 return atomic_read(&inode->i_dio_count) == 0; 2545 } 2546 EXPORT_SYMBOL(inode_dio_finished); 2547 2548 /** 2549 * inode_dio_wait - wait for outstanding DIO requests to finish 2550 * @inode: inode to wait for 2551 * 2552 * Waits for all pending direct I/O requests to finish so that we can 2553 * proceed with a truncate or equivalent operation. 2554 * 2555 * Must be called under a lock that serializes taking new references 2556 * to i_dio_count, usually by inode->i_mutex. 2557 */ 2558 void inode_dio_wait(struct inode *inode) 2559 { 2560 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2561 } 2562 EXPORT_SYMBOL(inode_dio_wait); 2563 2564 void inode_dio_wait_interruptible(struct inode *inode) 2565 { 2566 wait_var_event_interruptible(&inode->i_dio_count, 2567 inode_dio_finished(inode)); 2568 } 2569 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2570 2571 /* 2572 * inode_set_flags - atomically set some inode flags 2573 * 2574 * Note: the caller should be holding i_mutex, or else be sure that 2575 * they have exclusive access to the inode structure (i.e., while the 2576 * inode is being instantiated). The reason for the cmpxchg() loop 2577 * --- which wouldn't be necessary if all code paths which modify 2578 * i_flags actually followed this rule, is that there is at least one 2579 * code path which doesn't today so we use cmpxchg() out of an abundance 2580 * of caution. 2581 * 2582 * In the long run, i_mutex is overkill, and we should probably look 2583 * at using the i_lock spinlock to protect i_flags, and then make sure 2584 * it is so documented in include/linux/fs.h and that all code follows 2585 * the locking convention!! 2586 */ 2587 void inode_set_flags(struct inode *inode, unsigned int flags, 2588 unsigned int mask) 2589 { 2590 WARN_ON_ONCE(flags & ~mask); 2591 set_mask_bits(&inode->i_flags, mask, flags); 2592 } 2593 EXPORT_SYMBOL(inode_set_flags); 2594 2595 void inode_nohighmem(struct inode *inode) 2596 { 2597 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2598 } 2599 EXPORT_SYMBOL(inode_nohighmem); 2600 2601 /** 2602 * timestamp_truncate - Truncate timespec to a granularity 2603 * @t: Timespec 2604 * @inode: inode being updated 2605 * 2606 * Truncate a timespec to the granularity supported by the fs 2607 * containing the inode. Always rounds down. gran must 2608 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2609 */ 2610 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2611 { 2612 struct super_block *sb = inode->i_sb; 2613 unsigned int gran = sb->s_time_gran; 2614 2615 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2616 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2617 t.tv_nsec = 0; 2618 2619 /* Avoid division in the common cases 1 ns and 1 s. */ 2620 if (gran == 1) 2621 ; /* nothing */ 2622 else if (gran == NSEC_PER_SEC) 2623 t.tv_nsec = 0; 2624 else if (gran > 1 && gran < NSEC_PER_SEC) 2625 t.tv_nsec -= t.tv_nsec % gran; 2626 else 2627 WARN(1, "invalid file time granularity: %u", gran); 2628 return t; 2629 } 2630 EXPORT_SYMBOL(timestamp_truncate); 2631 2632 /** 2633 * current_time - Return FS time 2634 * @inode: inode. 2635 * 2636 * Return the current time truncated to the time granularity supported by 2637 * the fs. 2638 * 2639 * Note that inode and inode->sb cannot be NULL. 2640 * Otherwise, the function warns and returns time without truncation. 2641 */ 2642 struct timespec64 current_time(struct inode *inode) 2643 { 2644 struct timespec64 now; 2645 2646 ktime_get_coarse_real_ts64(&now); 2647 return timestamp_truncate(now, inode); 2648 } 2649 EXPORT_SYMBOL(current_time); 2650 2651 /** 2652 * inode_set_ctime_current - set the ctime to current_time 2653 * @inode: inode 2654 * 2655 * Set the inode->i_ctime to the current value for the inode. Returns 2656 * the current value that was assigned to i_ctime. 2657 */ 2658 struct timespec64 inode_set_ctime_current(struct inode *inode) 2659 { 2660 struct timespec64 now = current_time(inode); 2661 2662 inode_set_ctime_to_ts(inode, now); 2663 return now; 2664 } 2665 EXPORT_SYMBOL(inode_set_ctime_current); 2666 2667 /** 2668 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2669 * @idmap: idmap of the mount @inode was found from 2670 * @inode: inode to check 2671 * @vfsgid: the new/current vfsgid of @inode 2672 * 2673 * Check wether @vfsgid is in the caller's group list or if the caller is 2674 * privileged with CAP_FSETID over @inode. This can be used to determine 2675 * whether the setgid bit can be kept or must be dropped. 2676 * 2677 * Return: true if the caller is sufficiently privileged, false if not. 2678 */ 2679 bool in_group_or_capable(struct mnt_idmap *idmap, 2680 const struct inode *inode, vfsgid_t vfsgid) 2681 { 2682 if (vfsgid_in_group_p(vfsgid)) 2683 return true; 2684 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2685 return true; 2686 return false; 2687 } 2688 EXPORT_SYMBOL(in_group_or_capable); 2689 2690 /** 2691 * mode_strip_sgid - handle the sgid bit for non-directories 2692 * @idmap: idmap of the mount the inode was created from 2693 * @dir: parent directory inode 2694 * @mode: mode of the file to be created in @dir 2695 * 2696 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2697 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2698 * either in the group of the parent directory or they have CAP_FSETID 2699 * in their user namespace and are privileged over the parent directory. 2700 * In all other cases, strip the S_ISGID bit from @mode. 2701 * 2702 * Return: the new mode to use for the file 2703 */ 2704 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2705 const struct inode *dir, umode_t mode) 2706 { 2707 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2708 return mode; 2709 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2710 return mode; 2711 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2712 return mode; 2713 return mode & ~S_ISGID; 2714 } 2715 EXPORT_SYMBOL(mode_strip_sgid); 2716