1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fscrypt.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/prefetch.h> 20 #include <linux/buffer_head.h> /* for inode_has_buffers */ 21 #include <linux/ratelimit.h> 22 #include <linux/list_lru.h> 23 #include <linux/iversion.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget() 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 static struct hlist_head *inode_hashtable __read_mostly; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 /* 72 * Statistics gathering.. 73 */ 74 struct inodes_stat_t inodes_stat; 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __read_mostly; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 /* 107 * Handle nr_inode sysctl 108 */ 109 #ifdef CONFIG_SYSCTL 110 int proc_nr_inodes(struct ctl_table *table, int write, 111 void __user *buffer, size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 #endif 118 119 static int no_open(struct inode *inode, struct file *file) 120 { 121 return -ENXIO; 122 } 123 124 /** 125 * inode_init_always - perform inode structure initialisation 126 * @sb: superblock inode belongs to 127 * @inode: inode to initialise 128 * 129 * These are initializations that need to be done on every inode 130 * allocation as the fields are not initialised by slab allocation. 131 */ 132 int inode_init_always(struct super_block *sb, struct inode *inode) 133 { 134 static const struct inode_operations empty_iops; 135 static const struct file_operations no_open_fops = {.open = no_open}; 136 struct address_space *const mapping = &inode->i_data; 137 138 inode->i_sb = sb; 139 inode->i_blkbits = sb->s_blocksize_bits; 140 inode->i_flags = 0; 141 atomic64_set(&inode->i_sequence, 0); 142 atomic_set(&inode->i_count, 1); 143 inode->i_op = &empty_iops; 144 inode->i_fop = &no_open_fops; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_bdev = NULL; 159 inode->i_cdev = NULL; 160 inode->i_link = NULL; 161 inode->i_dir_seq = 0; 162 inode->i_rdev = 0; 163 inode->dirtied_when = 0; 164 165 #ifdef CONFIG_CGROUP_WRITEBACK 166 inode->i_wb_frn_winner = 0; 167 inode->i_wb_frn_avg_time = 0; 168 inode->i_wb_frn_history = 0; 169 #endif 170 171 if (security_inode_alloc(inode)) 172 goto out; 173 spin_lock_init(&inode->i_lock); 174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 175 176 init_rwsem(&inode->i_rwsem); 177 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 178 179 atomic_set(&inode->i_dio_count, 0); 180 181 mapping->a_ops = &empty_aops; 182 mapping->host = inode; 183 mapping->flags = 0; 184 mapping->wb_err = 0; 185 atomic_set(&mapping->i_mmap_writable, 0); 186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 187 atomic_set(&mapping->nr_thps, 0); 188 #endif 189 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 190 mapping->private_data = NULL; 191 mapping->writeback_index = 0; 192 inode->i_private = NULL; 193 inode->i_mapping = mapping; 194 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 195 #ifdef CONFIG_FS_POSIX_ACL 196 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 197 #endif 198 199 #ifdef CONFIG_FSNOTIFY 200 inode->i_fsnotify_mask = 0; 201 #endif 202 inode->i_flctx = NULL; 203 this_cpu_inc(nr_inodes); 204 205 return 0; 206 out: 207 return -ENOMEM; 208 } 209 EXPORT_SYMBOL(inode_init_always); 210 211 void free_inode_nonrcu(struct inode *inode) 212 { 213 kmem_cache_free(inode_cachep, inode); 214 } 215 EXPORT_SYMBOL(free_inode_nonrcu); 216 217 static void i_callback(struct rcu_head *head) 218 { 219 struct inode *inode = container_of(head, struct inode, i_rcu); 220 if (inode->free_inode) 221 inode->free_inode(inode); 222 else 223 free_inode_nonrcu(inode); 224 } 225 226 static struct inode *alloc_inode(struct super_block *sb) 227 { 228 const struct super_operations *ops = sb->s_op; 229 struct inode *inode; 230 231 if (ops->alloc_inode) 232 inode = ops->alloc_inode(sb); 233 else 234 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 235 236 if (!inode) 237 return NULL; 238 239 if (unlikely(inode_init_always(sb, inode))) { 240 if (ops->destroy_inode) { 241 ops->destroy_inode(inode); 242 if (!ops->free_inode) 243 return NULL; 244 } 245 inode->free_inode = ops->free_inode; 246 i_callback(&inode->i_rcu); 247 return NULL; 248 } 249 250 return inode; 251 } 252 253 void __destroy_inode(struct inode *inode) 254 { 255 BUG_ON(inode_has_buffers(inode)); 256 inode_detach_wb(inode); 257 security_inode_free(inode); 258 fsnotify_inode_delete(inode); 259 locks_free_lock_context(inode); 260 if (!inode->i_nlink) { 261 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 262 atomic_long_dec(&inode->i_sb->s_remove_count); 263 } 264 265 #ifdef CONFIG_FS_POSIX_ACL 266 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 267 posix_acl_release(inode->i_acl); 268 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 269 posix_acl_release(inode->i_default_acl); 270 #endif 271 this_cpu_dec(nr_inodes); 272 } 273 EXPORT_SYMBOL(__destroy_inode); 274 275 static void destroy_inode(struct inode *inode) 276 { 277 const struct super_operations *ops = inode->i_sb->s_op; 278 279 BUG_ON(!list_empty(&inode->i_lru)); 280 __destroy_inode(inode); 281 if (ops->destroy_inode) { 282 ops->destroy_inode(inode); 283 if (!ops->free_inode) 284 return; 285 } 286 inode->free_inode = ops->free_inode; 287 call_rcu(&inode->i_rcu, i_callback); 288 } 289 290 /** 291 * drop_nlink - directly drop an inode's link count 292 * @inode: inode 293 * 294 * This is a low-level filesystem helper to replace any 295 * direct filesystem manipulation of i_nlink. In cases 296 * where we are attempting to track writes to the 297 * filesystem, a decrement to zero means an imminent 298 * write when the file is truncated and actually unlinked 299 * on the filesystem. 300 */ 301 void drop_nlink(struct inode *inode) 302 { 303 WARN_ON(inode->i_nlink == 0); 304 inode->__i_nlink--; 305 if (!inode->i_nlink) 306 atomic_long_inc(&inode->i_sb->s_remove_count); 307 } 308 EXPORT_SYMBOL(drop_nlink); 309 310 /** 311 * clear_nlink - directly zero an inode's link count 312 * @inode: inode 313 * 314 * This is a low-level filesystem helper to replace any 315 * direct filesystem manipulation of i_nlink. See 316 * drop_nlink() for why we care about i_nlink hitting zero. 317 */ 318 void clear_nlink(struct inode *inode) 319 { 320 if (inode->i_nlink) { 321 inode->__i_nlink = 0; 322 atomic_long_inc(&inode->i_sb->s_remove_count); 323 } 324 } 325 EXPORT_SYMBOL(clear_nlink); 326 327 /** 328 * set_nlink - directly set an inode's link count 329 * @inode: inode 330 * @nlink: new nlink (should be non-zero) 331 * 332 * This is a low-level filesystem helper to replace any 333 * direct filesystem manipulation of i_nlink. 334 */ 335 void set_nlink(struct inode *inode, unsigned int nlink) 336 { 337 if (!nlink) { 338 clear_nlink(inode); 339 } else { 340 /* Yes, some filesystems do change nlink from zero to one */ 341 if (inode->i_nlink == 0) 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 344 inode->__i_nlink = nlink; 345 } 346 } 347 EXPORT_SYMBOL(set_nlink); 348 349 /** 350 * inc_nlink - directly increment an inode's link count 351 * @inode: inode 352 * 353 * This is a low-level filesystem helper to replace any 354 * direct filesystem manipulation of i_nlink. Currently, 355 * it is only here for parity with dec_nlink(). 356 */ 357 void inc_nlink(struct inode *inode) 358 { 359 if (unlikely(inode->i_nlink == 0)) { 360 WARN_ON(!(inode->i_state & I_LINKABLE)); 361 atomic_long_dec(&inode->i_sb->s_remove_count); 362 } 363 364 inode->__i_nlink++; 365 } 366 EXPORT_SYMBOL(inc_nlink); 367 368 static void __address_space_init_once(struct address_space *mapping) 369 { 370 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 371 init_rwsem(&mapping->i_mmap_rwsem); 372 INIT_LIST_HEAD(&mapping->private_list); 373 spin_lock_init(&mapping->private_lock); 374 mapping->i_mmap = RB_ROOT_CACHED; 375 } 376 377 void address_space_init_once(struct address_space *mapping) 378 { 379 memset(mapping, 0, sizeof(*mapping)); 380 __address_space_init_once(mapping); 381 } 382 EXPORT_SYMBOL(address_space_init_once); 383 384 /* 385 * These are initializations that only need to be done 386 * once, because the fields are idempotent across use 387 * of the inode, so let the slab aware of that. 388 */ 389 void inode_init_once(struct inode *inode) 390 { 391 memset(inode, 0, sizeof(*inode)); 392 INIT_HLIST_NODE(&inode->i_hash); 393 INIT_LIST_HEAD(&inode->i_devices); 394 INIT_LIST_HEAD(&inode->i_io_list); 395 INIT_LIST_HEAD(&inode->i_wb_list); 396 INIT_LIST_HEAD(&inode->i_lru); 397 __address_space_init_once(&inode->i_data); 398 i_size_ordered_init(inode); 399 } 400 EXPORT_SYMBOL(inode_init_once); 401 402 static void init_once(void *foo) 403 { 404 struct inode *inode = (struct inode *) foo; 405 406 inode_init_once(inode); 407 } 408 409 /* 410 * inode->i_lock must be held 411 */ 412 void __iget(struct inode *inode) 413 { 414 atomic_inc(&inode->i_count); 415 } 416 417 /* 418 * get additional reference to inode; caller must already hold one. 419 */ 420 void ihold(struct inode *inode) 421 { 422 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 423 } 424 EXPORT_SYMBOL(ihold); 425 426 static void inode_lru_list_add(struct inode *inode) 427 { 428 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 429 this_cpu_inc(nr_unused); 430 else 431 inode->i_state |= I_REFERENCED; 432 } 433 434 /* 435 * Add inode to LRU if needed (inode is unused and clean). 436 * 437 * Needs inode->i_lock held. 438 */ 439 void inode_add_lru(struct inode *inode) 440 { 441 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 442 I_FREEING | I_WILL_FREE)) && 443 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 444 inode_lru_list_add(inode); 445 } 446 447 448 static void inode_lru_list_del(struct inode *inode) 449 { 450 451 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 452 this_cpu_dec(nr_unused); 453 } 454 455 /** 456 * inode_sb_list_add - add inode to the superblock list of inodes 457 * @inode: inode to add 458 */ 459 void inode_sb_list_add(struct inode *inode) 460 { 461 spin_lock(&inode->i_sb->s_inode_list_lock); 462 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 463 spin_unlock(&inode->i_sb->s_inode_list_lock); 464 } 465 EXPORT_SYMBOL_GPL(inode_sb_list_add); 466 467 static inline void inode_sb_list_del(struct inode *inode) 468 { 469 if (!list_empty(&inode->i_sb_list)) { 470 spin_lock(&inode->i_sb->s_inode_list_lock); 471 list_del_init(&inode->i_sb_list); 472 spin_unlock(&inode->i_sb->s_inode_list_lock); 473 } 474 } 475 476 static unsigned long hash(struct super_block *sb, unsigned long hashval) 477 { 478 unsigned long tmp; 479 480 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 481 L1_CACHE_BYTES; 482 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 483 return tmp & i_hash_mask; 484 } 485 486 /** 487 * __insert_inode_hash - hash an inode 488 * @inode: unhashed inode 489 * @hashval: unsigned long value used to locate this object in the 490 * inode_hashtable. 491 * 492 * Add an inode to the inode hash for this superblock. 493 */ 494 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 495 { 496 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 497 498 spin_lock(&inode_hash_lock); 499 spin_lock(&inode->i_lock); 500 hlist_add_head(&inode->i_hash, b); 501 spin_unlock(&inode->i_lock); 502 spin_unlock(&inode_hash_lock); 503 } 504 EXPORT_SYMBOL(__insert_inode_hash); 505 506 /** 507 * __remove_inode_hash - remove an inode from the hash 508 * @inode: inode to unhash 509 * 510 * Remove an inode from the superblock. 511 */ 512 void __remove_inode_hash(struct inode *inode) 513 { 514 spin_lock(&inode_hash_lock); 515 spin_lock(&inode->i_lock); 516 hlist_del_init(&inode->i_hash); 517 spin_unlock(&inode->i_lock); 518 spin_unlock(&inode_hash_lock); 519 } 520 EXPORT_SYMBOL(__remove_inode_hash); 521 522 void clear_inode(struct inode *inode) 523 { 524 /* 525 * We have to cycle the i_pages lock here because reclaim can be in the 526 * process of removing the last page (in __delete_from_page_cache()) 527 * and we must not free the mapping under it. 528 */ 529 xa_lock_irq(&inode->i_data.i_pages); 530 BUG_ON(inode->i_data.nrpages); 531 BUG_ON(inode->i_data.nrexceptional); 532 xa_unlock_irq(&inode->i_data.i_pages); 533 BUG_ON(!list_empty(&inode->i_data.private_list)); 534 BUG_ON(!(inode->i_state & I_FREEING)); 535 BUG_ON(inode->i_state & I_CLEAR); 536 BUG_ON(!list_empty(&inode->i_wb_list)); 537 /* don't need i_lock here, no concurrent mods to i_state */ 538 inode->i_state = I_FREEING | I_CLEAR; 539 } 540 EXPORT_SYMBOL(clear_inode); 541 542 /* 543 * Free the inode passed in, removing it from the lists it is still connected 544 * to. We remove any pages still attached to the inode and wait for any IO that 545 * is still in progress before finally destroying the inode. 546 * 547 * An inode must already be marked I_FREEING so that we avoid the inode being 548 * moved back onto lists if we race with other code that manipulates the lists 549 * (e.g. writeback_single_inode). The caller is responsible for setting this. 550 * 551 * An inode must already be removed from the LRU list before being evicted from 552 * the cache. This should occur atomically with setting the I_FREEING state 553 * flag, so no inodes here should ever be on the LRU when being evicted. 554 */ 555 static void evict(struct inode *inode) 556 { 557 const struct super_operations *op = inode->i_sb->s_op; 558 559 BUG_ON(!(inode->i_state & I_FREEING)); 560 BUG_ON(!list_empty(&inode->i_lru)); 561 562 if (!list_empty(&inode->i_io_list)) 563 inode_io_list_del(inode); 564 565 inode_sb_list_del(inode); 566 567 /* 568 * Wait for flusher thread to be done with the inode so that filesystem 569 * does not start destroying it while writeback is still running. Since 570 * the inode has I_FREEING set, flusher thread won't start new work on 571 * the inode. We just have to wait for running writeback to finish. 572 */ 573 inode_wait_for_writeback(inode); 574 575 if (op->evict_inode) { 576 op->evict_inode(inode); 577 } else { 578 truncate_inode_pages_final(&inode->i_data); 579 clear_inode(inode); 580 } 581 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 582 bd_forget(inode); 583 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 584 cd_forget(inode); 585 586 remove_inode_hash(inode); 587 588 spin_lock(&inode->i_lock); 589 wake_up_bit(&inode->i_state, __I_NEW); 590 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 591 spin_unlock(&inode->i_lock); 592 593 destroy_inode(inode); 594 } 595 596 /* 597 * dispose_list - dispose of the contents of a local list 598 * @head: the head of the list to free 599 * 600 * Dispose-list gets a local list with local inodes in it, so it doesn't 601 * need to worry about list corruption and SMP locks. 602 */ 603 static void dispose_list(struct list_head *head) 604 { 605 while (!list_empty(head)) { 606 struct inode *inode; 607 608 inode = list_first_entry(head, struct inode, i_lru); 609 list_del_init(&inode->i_lru); 610 611 evict(inode); 612 cond_resched(); 613 } 614 } 615 616 /** 617 * evict_inodes - evict all evictable inodes for a superblock 618 * @sb: superblock to operate on 619 * 620 * Make sure that no inodes with zero refcount are retained. This is 621 * called by superblock shutdown after having SB_ACTIVE flag removed, 622 * so any inode reaching zero refcount during or after that call will 623 * be immediately evicted. 624 */ 625 void evict_inodes(struct super_block *sb) 626 { 627 struct inode *inode, *next; 628 LIST_HEAD(dispose); 629 630 again: 631 spin_lock(&sb->s_inode_list_lock); 632 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 633 if (atomic_read(&inode->i_count)) 634 continue; 635 636 spin_lock(&inode->i_lock); 637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 638 spin_unlock(&inode->i_lock); 639 continue; 640 } 641 642 inode->i_state |= I_FREEING; 643 inode_lru_list_del(inode); 644 spin_unlock(&inode->i_lock); 645 list_add(&inode->i_lru, &dispose); 646 647 /* 648 * We can have a ton of inodes to evict at unmount time given 649 * enough memory, check to see if we need to go to sleep for a 650 * bit so we don't livelock. 651 */ 652 if (need_resched()) { 653 spin_unlock(&sb->s_inode_list_lock); 654 cond_resched(); 655 dispose_list(&dispose); 656 goto again; 657 } 658 } 659 spin_unlock(&sb->s_inode_list_lock); 660 661 dispose_list(&dispose); 662 } 663 EXPORT_SYMBOL_GPL(evict_inodes); 664 665 /** 666 * invalidate_inodes - attempt to free all inodes on a superblock 667 * @sb: superblock to operate on 668 * @kill_dirty: flag to guide handling of dirty inodes 669 * 670 * Attempts to free all inodes for a given superblock. If there were any 671 * busy inodes return a non-zero value, else zero. 672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 673 * them as busy. 674 */ 675 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 676 { 677 int busy = 0; 678 struct inode *inode, *next; 679 LIST_HEAD(dispose); 680 681 again: 682 spin_lock(&sb->s_inode_list_lock); 683 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 684 spin_lock(&inode->i_lock); 685 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 686 spin_unlock(&inode->i_lock); 687 continue; 688 } 689 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 690 spin_unlock(&inode->i_lock); 691 busy = 1; 692 continue; 693 } 694 if (atomic_read(&inode->i_count)) { 695 spin_unlock(&inode->i_lock); 696 busy = 1; 697 continue; 698 } 699 700 inode->i_state |= I_FREEING; 701 inode_lru_list_del(inode); 702 spin_unlock(&inode->i_lock); 703 list_add(&inode->i_lru, &dispose); 704 if (need_resched()) { 705 spin_unlock(&sb->s_inode_list_lock); 706 cond_resched(); 707 dispose_list(&dispose); 708 goto again; 709 } 710 } 711 spin_unlock(&sb->s_inode_list_lock); 712 713 dispose_list(&dispose); 714 715 return busy; 716 } 717 718 /* 719 * Isolate the inode from the LRU in preparation for freeing it. 720 * 721 * Any inodes which are pinned purely because of attached pagecache have their 722 * pagecache removed. If the inode has metadata buffers attached to 723 * mapping->private_list then try to remove them. 724 * 725 * If the inode has the I_REFERENCED flag set, then it means that it has been 726 * used recently - the flag is set in iput_final(). When we encounter such an 727 * inode, clear the flag and move it to the back of the LRU so it gets another 728 * pass through the LRU before it gets reclaimed. This is necessary because of 729 * the fact we are doing lazy LRU updates to minimise lock contention so the 730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 731 * with this flag set because they are the inodes that are out of order. 732 */ 733 static enum lru_status inode_lru_isolate(struct list_head *item, 734 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 735 { 736 struct list_head *freeable = arg; 737 struct inode *inode = container_of(item, struct inode, i_lru); 738 739 /* 740 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 741 * If we fail to get the lock, just skip it. 742 */ 743 if (!spin_trylock(&inode->i_lock)) 744 return LRU_SKIP; 745 746 /* 747 * Referenced or dirty inodes are still in use. Give them another pass 748 * through the LRU as we canot reclaim them now. 749 */ 750 if (atomic_read(&inode->i_count) || 751 (inode->i_state & ~I_REFERENCED)) { 752 list_lru_isolate(lru, &inode->i_lru); 753 spin_unlock(&inode->i_lock); 754 this_cpu_dec(nr_unused); 755 return LRU_REMOVED; 756 } 757 758 /* recently referenced inodes get one more pass */ 759 if (inode->i_state & I_REFERENCED) { 760 inode->i_state &= ~I_REFERENCED; 761 spin_unlock(&inode->i_lock); 762 return LRU_ROTATE; 763 } 764 765 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 766 __iget(inode); 767 spin_unlock(&inode->i_lock); 768 spin_unlock(lru_lock); 769 if (remove_inode_buffers(inode)) { 770 unsigned long reap; 771 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 772 if (current_is_kswapd()) 773 __count_vm_events(KSWAPD_INODESTEAL, reap); 774 else 775 __count_vm_events(PGINODESTEAL, reap); 776 if (current->reclaim_state) 777 current->reclaim_state->reclaimed_slab += reap; 778 } 779 iput(inode); 780 spin_lock(lru_lock); 781 return LRU_RETRY; 782 } 783 784 WARN_ON(inode->i_state & I_NEW); 785 inode->i_state |= I_FREEING; 786 list_lru_isolate_move(lru, &inode->i_lru, freeable); 787 spin_unlock(&inode->i_lock); 788 789 this_cpu_dec(nr_unused); 790 return LRU_REMOVED; 791 } 792 793 /* 794 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 795 * This is called from the superblock shrinker function with a number of inodes 796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 797 * then are freed outside inode_lock by dispose_list(). 798 */ 799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 800 { 801 LIST_HEAD(freeable); 802 long freed; 803 804 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 805 inode_lru_isolate, &freeable); 806 dispose_list(&freeable); 807 return freed; 808 } 809 810 static void __wait_on_freeing_inode(struct inode *inode); 811 /* 812 * Called with the inode lock held. 813 */ 814 static struct inode *find_inode(struct super_block *sb, 815 struct hlist_head *head, 816 int (*test)(struct inode *, void *), 817 void *data) 818 { 819 struct inode *inode = NULL; 820 821 repeat: 822 hlist_for_each_entry(inode, head, i_hash) { 823 if (inode->i_sb != sb) 824 continue; 825 if (!test(inode, data)) 826 continue; 827 spin_lock(&inode->i_lock); 828 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 829 __wait_on_freeing_inode(inode); 830 goto repeat; 831 } 832 if (unlikely(inode->i_state & I_CREATING)) { 833 spin_unlock(&inode->i_lock); 834 return ERR_PTR(-ESTALE); 835 } 836 __iget(inode); 837 spin_unlock(&inode->i_lock); 838 return inode; 839 } 840 return NULL; 841 } 842 843 /* 844 * find_inode_fast is the fast path version of find_inode, see the comment at 845 * iget_locked for details. 846 */ 847 static struct inode *find_inode_fast(struct super_block *sb, 848 struct hlist_head *head, unsigned long ino) 849 { 850 struct inode *inode = NULL; 851 852 repeat: 853 hlist_for_each_entry(inode, head, i_hash) { 854 if (inode->i_ino != ino) 855 continue; 856 if (inode->i_sb != sb) 857 continue; 858 spin_lock(&inode->i_lock); 859 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 860 __wait_on_freeing_inode(inode); 861 goto repeat; 862 } 863 if (unlikely(inode->i_state & I_CREATING)) { 864 spin_unlock(&inode->i_lock); 865 return ERR_PTR(-ESTALE); 866 } 867 __iget(inode); 868 spin_unlock(&inode->i_lock); 869 return inode; 870 } 871 return NULL; 872 } 873 874 /* 875 * Each cpu owns a range of LAST_INO_BATCH numbers. 876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 877 * to renew the exhausted range. 878 * 879 * This does not significantly increase overflow rate because every CPU can 880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 883 * overflow rate by 2x, which does not seem too significant. 884 * 885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 886 * error if st_ino won't fit in target struct field. Use 32bit counter 887 * here to attempt to avoid that. 888 */ 889 #define LAST_INO_BATCH 1024 890 static DEFINE_PER_CPU(unsigned int, last_ino); 891 892 unsigned int get_next_ino(void) 893 { 894 unsigned int *p = &get_cpu_var(last_ino); 895 unsigned int res = *p; 896 897 #ifdef CONFIG_SMP 898 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 899 static atomic_t shared_last_ino; 900 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 901 902 res = next - LAST_INO_BATCH; 903 } 904 #endif 905 906 res++; 907 /* get_next_ino should not provide a 0 inode number */ 908 if (unlikely(!res)) 909 res++; 910 *p = res; 911 put_cpu_var(last_ino); 912 return res; 913 } 914 EXPORT_SYMBOL(get_next_ino); 915 916 /** 917 * new_inode_pseudo - obtain an inode 918 * @sb: superblock 919 * 920 * Allocates a new inode for given superblock. 921 * Inode wont be chained in superblock s_inodes list 922 * This means : 923 * - fs can't be unmount 924 * - quotas, fsnotify, writeback can't work 925 */ 926 struct inode *new_inode_pseudo(struct super_block *sb) 927 { 928 struct inode *inode = alloc_inode(sb); 929 930 if (inode) { 931 spin_lock(&inode->i_lock); 932 inode->i_state = 0; 933 spin_unlock(&inode->i_lock); 934 INIT_LIST_HEAD(&inode->i_sb_list); 935 } 936 return inode; 937 } 938 939 /** 940 * new_inode - obtain an inode 941 * @sb: superblock 942 * 943 * Allocates a new inode for given superblock. The default gfp_mask 944 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 945 * If HIGHMEM pages are unsuitable or it is known that pages allocated 946 * for the page cache are not reclaimable or migratable, 947 * mapping_set_gfp_mask() must be called with suitable flags on the 948 * newly created inode's mapping 949 * 950 */ 951 struct inode *new_inode(struct super_block *sb) 952 { 953 struct inode *inode; 954 955 spin_lock_prefetch(&sb->s_inode_list_lock); 956 957 inode = new_inode_pseudo(sb); 958 if (inode) 959 inode_sb_list_add(inode); 960 return inode; 961 } 962 EXPORT_SYMBOL(new_inode); 963 964 #ifdef CONFIG_DEBUG_LOCK_ALLOC 965 void lockdep_annotate_inode_mutex_key(struct inode *inode) 966 { 967 if (S_ISDIR(inode->i_mode)) { 968 struct file_system_type *type = inode->i_sb->s_type; 969 970 /* Set new key only if filesystem hasn't already changed it */ 971 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 972 /* 973 * ensure nobody is actually holding i_mutex 974 */ 975 // mutex_destroy(&inode->i_mutex); 976 init_rwsem(&inode->i_rwsem); 977 lockdep_set_class(&inode->i_rwsem, 978 &type->i_mutex_dir_key); 979 } 980 } 981 } 982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 983 #endif 984 985 /** 986 * unlock_new_inode - clear the I_NEW state and wake up any waiters 987 * @inode: new inode to unlock 988 * 989 * Called when the inode is fully initialised to clear the new state of the 990 * inode and wake up anyone waiting for the inode to finish initialisation. 991 */ 992 void unlock_new_inode(struct inode *inode) 993 { 994 lockdep_annotate_inode_mutex_key(inode); 995 spin_lock(&inode->i_lock); 996 WARN_ON(!(inode->i_state & I_NEW)); 997 inode->i_state &= ~I_NEW & ~I_CREATING; 998 smp_mb(); 999 wake_up_bit(&inode->i_state, __I_NEW); 1000 spin_unlock(&inode->i_lock); 1001 } 1002 EXPORT_SYMBOL(unlock_new_inode); 1003 1004 void discard_new_inode(struct inode *inode) 1005 { 1006 lockdep_annotate_inode_mutex_key(inode); 1007 spin_lock(&inode->i_lock); 1008 WARN_ON(!(inode->i_state & I_NEW)); 1009 inode->i_state &= ~I_NEW; 1010 smp_mb(); 1011 wake_up_bit(&inode->i_state, __I_NEW); 1012 spin_unlock(&inode->i_lock); 1013 iput(inode); 1014 } 1015 EXPORT_SYMBOL(discard_new_inode); 1016 1017 /** 1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1019 * 1020 * Lock any non-NULL argument that is not a directory. 1021 * Zero, one or two objects may be locked by this function. 1022 * 1023 * @inode1: first inode to lock 1024 * @inode2: second inode to lock 1025 */ 1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1027 { 1028 if (inode1 > inode2) 1029 swap(inode1, inode2); 1030 1031 if (inode1 && !S_ISDIR(inode1->i_mode)) 1032 inode_lock(inode1); 1033 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1034 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1035 } 1036 EXPORT_SYMBOL(lock_two_nondirectories); 1037 1038 /** 1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1040 * @inode1: first inode to unlock 1041 * @inode2: second inode to unlock 1042 */ 1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1044 { 1045 if (inode1 && !S_ISDIR(inode1->i_mode)) 1046 inode_unlock(inode1); 1047 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1048 inode_unlock(inode2); 1049 } 1050 EXPORT_SYMBOL(unlock_two_nondirectories); 1051 1052 /** 1053 * inode_insert5 - obtain an inode from a mounted file system 1054 * @inode: pre-allocated inode to use for insert to cache 1055 * @hashval: hash value (usually inode number) to get 1056 * @test: callback used for comparisons between inodes 1057 * @set: callback used to initialize a new struct inode 1058 * @data: opaque data pointer to pass to @test and @set 1059 * 1060 * Search for the inode specified by @hashval and @data in the inode cache, 1061 * and if present it is return it with an increased reference count. This is 1062 * a variant of iget5_locked() for callers that don't want to fail on memory 1063 * allocation of inode. 1064 * 1065 * If the inode is not in cache, insert the pre-allocated inode to cache and 1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1067 * to fill it in before unlocking it via unlock_new_inode(). 1068 * 1069 * Note both @test and @set are called with the inode_hash_lock held, so can't 1070 * sleep. 1071 */ 1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1073 int (*test)(struct inode *, void *), 1074 int (*set)(struct inode *, void *), void *data) 1075 { 1076 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1077 struct inode *old; 1078 bool creating = inode->i_state & I_CREATING; 1079 1080 again: 1081 spin_lock(&inode_hash_lock); 1082 old = find_inode(inode->i_sb, head, test, data); 1083 if (unlikely(old)) { 1084 /* 1085 * Uhhuh, somebody else created the same inode under us. 1086 * Use the old inode instead of the preallocated one. 1087 */ 1088 spin_unlock(&inode_hash_lock); 1089 if (IS_ERR(old)) 1090 return NULL; 1091 wait_on_inode(old); 1092 if (unlikely(inode_unhashed(old))) { 1093 iput(old); 1094 goto again; 1095 } 1096 return old; 1097 } 1098 1099 if (set && unlikely(set(inode, data))) { 1100 inode = NULL; 1101 goto unlock; 1102 } 1103 1104 /* 1105 * Return the locked inode with I_NEW set, the 1106 * caller is responsible for filling in the contents 1107 */ 1108 spin_lock(&inode->i_lock); 1109 inode->i_state |= I_NEW; 1110 hlist_add_head(&inode->i_hash, head); 1111 spin_unlock(&inode->i_lock); 1112 if (!creating) 1113 inode_sb_list_add(inode); 1114 unlock: 1115 spin_unlock(&inode_hash_lock); 1116 1117 return inode; 1118 } 1119 EXPORT_SYMBOL(inode_insert5); 1120 1121 /** 1122 * iget5_locked - obtain an inode from a mounted file system 1123 * @sb: super block of file system 1124 * @hashval: hash value (usually inode number) to get 1125 * @test: callback used for comparisons between inodes 1126 * @set: callback used to initialize a new struct inode 1127 * @data: opaque data pointer to pass to @test and @set 1128 * 1129 * Search for the inode specified by @hashval and @data in the inode cache, 1130 * and if present it is return it with an increased reference count. This is 1131 * a generalized version of iget_locked() for file systems where the inode 1132 * number is not sufficient for unique identification of an inode. 1133 * 1134 * If the inode is not in cache, allocate a new inode and return it locked, 1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1136 * before unlocking it via unlock_new_inode(). 1137 * 1138 * Note both @test and @set are called with the inode_hash_lock held, so can't 1139 * sleep. 1140 */ 1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1142 int (*test)(struct inode *, void *), 1143 int (*set)(struct inode *, void *), void *data) 1144 { 1145 struct inode *inode = ilookup5(sb, hashval, test, data); 1146 1147 if (!inode) { 1148 struct inode *new = alloc_inode(sb); 1149 1150 if (new) { 1151 new->i_state = 0; 1152 inode = inode_insert5(new, hashval, test, set, data); 1153 if (unlikely(inode != new)) 1154 destroy_inode(new); 1155 } 1156 } 1157 return inode; 1158 } 1159 EXPORT_SYMBOL(iget5_locked); 1160 1161 /** 1162 * iget_locked - obtain an inode from a mounted file system 1163 * @sb: super block of file system 1164 * @ino: inode number to get 1165 * 1166 * Search for the inode specified by @ino in the inode cache and if present 1167 * return it with an increased reference count. This is for file systems 1168 * where the inode number is sufficient for unique identification of an inode. 1169 * 1170 * If the inode is not in cache, allocate a new inode and return it locked, 1171 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1172 * before unlocking it via unlock_new_inode(). 1173 */ 1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1175 { 1176 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1177 struct inode *inode; 1178 again: 1179 spin_lock(&inode_hash_lock); 1180 inode = find_inode_fast(sb, head, ino); 1181 spin_unlock(&inode_hash_lock); 1182 if (inode) { 1183 if (IS_ERR(inode)) 1184 return NULL; 1185 wait_on_inode(inode); 1186 if (unlikely(inode_unhashed(inode))) { 1187 iput(inode); 1188 goto again; 1189 } 1190 return inode; 1191 } 1192 1193 inode = alloc_inode(sb); 1194 if (inode) { 1195 struct inode *old; 1196 1197 spin_lock(&inode_hash_lock); 1198 /* We released the lock, so.. */ 1199 old = find_inode_fast(sb, head, ino); 1200 if (!old) { 1201 inode->i_ino = ino; 1202 spin_lock(&inode->i_lock); 1203 inode->i_state = I_NEW; 1204 hlist_add_head(&inode->i_hash, head); 1205 spin_unlock(&inode->i_lock); 1206 inode_sb_list_add(inode); 1207 spin_unlock(&inode_hash_lock); 1208 1209 /* Return the locked inode with I_NEW set, the 1210 * caller is responsible for filling in the contents 1211 */ 1212 return inode; 1213 } 1214 1215 /* 1216 * Uhhuh, somebody else created the same inode under 1217 * us. Use the old inode instead of the one we just 1218 * allocated. 1219 */ 1220 spin_unlock(&inode_hash_lock); 1221 destroy_inode(inode); 1222 if (IS_ERR(old)) 1223 return NULL; 1224 inode = old; 1225 wait_on_inode(inode); 1226 if (unlikely(inode_unhashed(inode))) { 1227 iput(inode); 1228 goto again; 1229 } 1230 } 1231 return inode; 1232 } 1233 EXPORT_SYMBOL(iget_locked); 1234 1235 /* 1236 * search the inode cache for a matching inode number. 1237 * If we find one, then the inode number we are trying to 1238 * allocate is not unique and so we should not use it. 1239 * 1240 * Returns 1 if the inode number is unique, 0 if it is not. 1241 */ 1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1243 { 1244 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1245 struct inode *inode; 1246 1247 spin_lock(&inode_hash_lock); 1248 hlist_for_each_entry(inode, b, i_hash) { 1249 if (inode->i_ino == ino && inode->i_sb == sb) { 1250 spin_unlock(&inode_hash_lock); 1251 return 0; 1252 } 1253 } 1254 spin_unlock(&inode_hash_lock); 1255 1256 return 1; 1257 } 1258 1259 /** 1260 * iunique - get a unique inode number 1261 * @sb: superblock 1262 * @max_reserved: highest reserved inode number 1263 * 1264 * Obtain an inode number that is unique on the system for a given 1265 * superblock. This is used by file systems that have no natural 1266 * permanent inode numbering system. An inode number is returned that 1267 * is higher than the reserved limit but unique. 1268 * 1269 * BUGS: 1270 * With a large number of inodes live on the file system this function 1271 * currently becomes quite slow. 1272 */ 1273 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1274 { 1275 /* 1276 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1277 * error if st_ino won't fit in target struct field. Use 32bit counter 1278 * here to attempt to avoid that. 1279 */ 1280 static DEFINE_SPINLOCK(iunique_lock); 1281 static unsigned int counter; 1282 ino_t res; 1283 1284 spin_lock(&iunique_lock); 1285 do { 1286 if (counter <= max_reserved) 1287 counter = max_reserved + 1; 1288 res = counter++; 1289 } while (!test_inode_iunique(sb, res)); 1290 spin_unlock(&iunique_lock); 1291 1292 return res; 1293 } 1294 EXPORT_SYMBOL(iunique); 1295 1296 struct inode *igrab(struct inode *inode) 1297 { 1298 spin_lock(&inode->i_lock); 1299 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1300 __iget(inode); 1301 spin_unlock(&inode->i_lock); 1302 } else { 1303 spin_unlock(&inode->i_lock); 1304 /* 1305 * Handle the case where s_op->clear_inode is not been 1306 * called yet, and somebody is calling igrab 1307 * while the inode is getting freed. 1308 */ 1309 inode = NULL; 1310 } 1311 return inode; 1312 } 1313 EXPORT_SYMBOL(igrab); 1314 1315 /** 1316 * ilookup5_nowait - search for an inode in the inode cache 1317 * @sb: super block of file system to search 1318 * @hashval: hash value (usually inode number) to search for 1319 * @test: callback used for comparisons between inodes 1320 * @data: opaque data pointer to pass to @test 1321 * 1322 * Search for the inode specified by @hashval and @data in the inode cache. 1323 * If the inode is in the cache, the inode is returned with an incremented 1324 * reference count. 1325 * 1326 * Note: I_NEW is not waited upon so you have to be very careful what you do 1327 * with the returned inode. You probably should be using ilookup5() instead. 1328 * 1329 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1330 */ 1331 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1332 int (*test)(struct inode *, void *), void *data) 1333 { 1334 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1335 struct inode *inode; 1336 1337 spin_lock(&inode_hash_lock); 1338 inode = find_inode(sb, head, test, data); 1339 spin_unlock(&inode_hash_lock); 1340 1341 return IS_ERR(inode) ? NULL : inode; 1342 } 1343 EXPORT_SYMBOL(ilookup5_nowait); 1344 1345 /** 1346 * ilookup5 - search for an inode in the inode cache 1347 * @sb: super block of file system to search 1348 * @hashval: hash value (usually inode number) to search for 1349 * @test: callback used for comparisons between inodes 1350 * @data: opaque data pointer to pass to @test 1351 * 1352 * Search for the inode specified by @hashval and @data in the inode cache, 1353 * and if the inode is in the cache, return the inode with an incremented 1354 * reference count. Waits on I_NEW before returning the inode. 1355 * returned with an incremented reference count. 1356 * 1357 * This is a generalized version of ilookup() for file systems where the 1358 * inode number is not sufficient for unique identification of an inode. 1359 * 1360 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1361 */ 1362 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1363 int (*test)(struct inode *, void *), void *data) 1364 { 1365 struct inode *inode; 1366 again: 1367 inode = ilookup5_nowait(sb, hashval, test, data); 1368 if (inode) { 1369 wait_on_inode(inode); 1370 if (unlikely(inode_unhashed(inode))) { 1371 iput(inode); 1372 goto again; 1373 } 1374 } 1375 return inode; 1376 } 1377 EXPORT_SYMBOL(ilookup5); 1378 1379 /** 1380 * ilookup - search for an inode in the inode cache 1381 * @sb: super block of file system to search 1382 * @ino: inode number to search for 1383 * 1384 * Search for the inode @ino in the inode cache, and if the inode is in the 1385 * cache, the inode is returned with an incremented reference count. 1386 */ 1387 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1388 { 1389 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1390 struct inode *inode; 1391 again: 1392 spin_lock(&inode_hash_lock); 1393 inode = find_inode_fast(sb, head, ino); 1394 spin_unlock(&inode_hash_lock); 1395 1396 if (inode) { 1397 if (IS_ERR(inode)) 1398 return NULL; 1399 wait_on_inode(inode); 1400 if (unlikely(inode_unhashed(inode))) { 1401 iput(inode); 1402 goto again; 1403 } 1404 } 1405 return inode; 1406 } 1407 EXPORT_SYMBOL(ilookup); 1408 1409 /** 1410 * find_inode_nowait - find an inode in the inode cache 1411 * @sb: super block of file system to search 1412 * @hashval: hash value (usually inode number) to search for 1413 * @match: callback used for comparisons between inodes 1414 * @data: opaque data pointer to pass to @match 1415 * 1416 * Search for the inode specified by @hashval and @data in the inode 1417 * cache, where the helper function @match will return 0 if the inode 1418 * does not match, 1 if the inode does match, and -1 if the search 1419 * should be stopped. The @match function must be responsible for 1420 * taking the i_lock spin_lock and checking i_state for an inode being 1421 * freed or being initialized, and incrementing the reference count 1422 * before returning 1. It also must not sleep, since it is called with 1423 * the inode_hash_lock spinlock held. 1424 * 1425 * This is a even more generalized version of ilookup5() when the 1426 * function must never block --- find_inode() can block in 1427 * __wait_on_freeing_inode() --- or when the caller can not increment 1428 * the reference count because the resulting iput() might cause an 1429 * inode eviction. The tradeoff is that the @match funtion must be 1430 * very carefully implemented. 1431 */ 1432 struct inode *find_inode_nowait(struct super_block *sb, 1433 unsigned long hashval, 1434 int (*match)(struct inode *, unsigned long, 1435 void *), 1436 void *data) 1437 { 1438 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1439 struct inode *inode, *ret_inode = NULL; 1440 int mval; 1441 1442 spin_lock(&inode_hash_lock); 1443 hlist_for_each_entry(inode, head, i_hash) { 1444 if (inode->i_sb != sb) 1445 continue; 1446 mval = match(inode, hashval, data); 1447 if (mval == 0) 1448 continue; 1449 if (mval == 1) 1450 ret_inode = inode; 1451 goto out; 1452 } 1453 out: 1454 spin_unlock(&inode_hash_lock); 1455 return ret_inode; 1456 } 1457 EXPORT_SYMBOL(find_inode_nowait); 1458 1459 int insert_inode_locked(struct inode *inode) 1460 { 1461 struct super_block *sb = inode->i_sb; 1462 ino_t ino = inode->i_ino; 1463 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1464 1465 while (1) { 1466 struct inode *old = NULL; 1467 spin_lock(&inode_hash_lock); 1468 hlist_for_each_entry(old, head, i_hash) { 1469 if (old->i_ino != ino) 1470 continue; 1471 if (old->i_sb != sb) 1472 continue; 1473 spin_lock(&old->i_lock); 1474 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1475 spin_unlock(&old->i_lock); 1476 continue; 1477 } 1478 break; 1479 } 1480 if (likely(!old)) { 1481 spin_lock(&inode->i_lock); 1482 inode->i_state |= I_NEW | I_CREATING; 1483 hlist_add_head(&inode->i_hash, head); 1484 spin_unlock(&inode->i_lock); 1485 spin_unlock(&inode_hash_lock); 1486 return 0; 1487 } 1488 if (unlikely(old->i_state & I_CREATING)) { 1489 spin_unlock(&old->i_lock); 1490 spin_unlock(&inode_hash_lock); 1491 return -EBUSY; 1492 } 1493 __iget(old); 1494 spin_unlock(&old->i_lock); 1495 spin_unlock(&inode_hash_lock); 1496 wait_on_inode(old); 1497 if (unlikely(!inode_unhashed(old))) { 1498 iput(old); 1499 return -EBUSY; 1500 } 1501 iput(old); 1502 } 1503 } 1504 EXPORT_SYMBOL(insert_inode_locked); 1505 1506 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1507 int (*test)(struct inode *, void *), void *data) 1508 { 1509 struct inode *old; 1510 1511 inode->i_state |= I_CREATING; 1512 old = inode_insert5(inode, hashval, test, NULL, data); 1513 1514 if (old != inode) { 1515 iput(old); 1516 return -EBUSY; 1517 } 1518 return 0; 1519 } 1520 EXPORT_SYMBOL(insert_inode_locked4); 1521 1522 1523 int generic_delete_inode(struct inode *inode) 1524 { 1525 return 1; 1526 } 1527 EXPORT_SYMBOL(generic_delete_inode); 1528 1529 /* 1530 * Called when we're dropping the last reference 1531 * to an inode. 1532 * 1533 * Call the FS "drop_inode()" function, defaulting to 1534 * the legacy UNIX filesystem behaviour. If it tells 1535 * us to evict inode, do so. Otherwise, retain inode 1536 * in cache if fs is alive, sync and evict if fs is 1537 * shutting down. 1538 */ 1539 static void iput_final(struct inode *inode) 1540 { 1541 struct super_block *sb = inode->i_sb; 1542 const struct super_operations *op = inode->i_sb->s_op; 1543 int drop; 1544 1545 WARN_ON(inode->i_state & I_NEW); 1546 1547 if (op->drop_inode) 1548 drop = op->drop_inode(inode); 1549 else 1550 drop = generic_drop_inode(inode); 1551 1552 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1553 inode_add_lru(inode); 1554 spin_unlock(&inode->i_lock); 1555 return; 1556 } 1557 1558 if (!drop) { 1559 inode->i_state |= I_WILL_FREE; 1560 spin_unlock(&inode->i_lock); 1561 write_inode_now(inode, 1); 1562 spin_lock(&inode->i_lock); 1563 WARN_ON(inode->i_state & I_NEW); 1564 inode->i_state &= ~I_WILL_FREE; 1565 } 1566 1567 inode->i_state |= I_FREEING; 1568 if (!list_empty(&inode->i_lru)) 1569 inode_lru_list_del(inode); 1570 spin_unlock(&inode->i_lock); 1571 1572 evict(inode); 1573 } 1574 1575 /** 1576 * iput - put an inode 1577 * @inode: inode to put 1578 * 1579 * Puts an inode, dropping its usage count. If the inode use count hits 1580 * zero, the inode is then freed and may also be destroyed. 1581 * 1582 * Consequently, iput() can sleep. 1583 */ 1584 void iput(struct inode *inode) 1585 { 1586 if (!inode) 1587 return; 1588 BUG_ON(inode->i_state & I_CLEAR); 1589 retry: 1590 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1591 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1592 atomic_inc(&inode->i_count); 1593 spin_unlock(&inode->i_lock); 1594 trace_writeback_lazytime_iput(inode); 1595 mark_inode_dirty_sync(inode); 1596 goto retry; 1597 } 1598 iput_final(inode); 1599 } 1600 } 1601 EXPORT_SYMBOL(iput); 1602 1603 #ifdef CONFIG_BLOCK 1604 /** 1605 * bmap - find a block number in a file 1606 * @inode: inode owning the block number being requested 1607 * @block: pointer containing the block to find 1608 * 1609 * Replaces the value in *block with the block number on the device holding 1610 * corresponding to the requested block number in the file. 1611 * That is, asked for block 4 of inode 1 the function will replace the 1612 * 4 in *block, with disk block relative to the disk start that holds that 1613 * block of the file. 1614 * 1615 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1616 * hole, returns 0 and *block is also set to 0. 1617 */ 1618 int bmap(struct inode *inode, sector_t *block) 1619 { 1620 if (!inode->i_mapping->a_ops->bmap) 1621 return -EINVAL; 1622 1623 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1624 return 0; 1625 } 1626 EXPORT_SYMBOL(bmap); 1627 #endif 1628 1629 /* 1630 * With relative atime, only update atime if the previous atime is 1631 * earlier than either the ctime or mtime or if at least a day has 1632 * passed since the last atime update. 1633 */ 1634 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1635 struct timespec64 now) 1636 { 1637 1638 if (!(mnt->mnt_flags & MNT_RELATIME)) 1639 return 1; 1640 /* 1641 * Is mtime younger than atime? If yes, update atime: 1642 */ 1643 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1644 return 1; 1645 /* 1646 * Is ctime younger than atime? If yes, update atime: 1647 */ 1648 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1649 return 1; 1650 1651 /* 1652 * Is the previous atime value older than a day? If yes, 1653 * update atime: 1654 */ 1655 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1656 return 1; 1657 /* 1658 * Good, we can skip the atime update: 1659 */ 1660 return 0; 1661 } 1662 1663 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1664 { 1665 int iflags = I_DIRTY_TIME; 1666 bool dirty = false; 1667 1668 if (flags & S_ATIME) 1669 inode->i_atime = *time; 1670 if (flags & S_VERSION) 1671 dirty = inode_maybe_inc_iversion(inode, false); 1672 if (flags & S_CTIME) 1673 inode->i_ctime = *time; 1674 if (flags & S_MTIME) 1675 inode->i_mtime = *time; 1676 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1677 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1678 dirty = true; 1679 1680 if (dirty) 1681 iflags |= I_DIRTY_SYNC; 1682 __mark_inode_dirty(inode, iflags); 1683 return 0; 1684 } 1685 EXPORT_SYMBOL(generic_update_time); 1686 1687 /* 1688 * This does the actual work of updating an inodes time or version. Must have 1689 * had called mnt_want_write() before calling this. 1690 */ 1691 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1692 { 1693 if (inode->i_op->update_time) 1694 return inode->i_op->update_time(inode, time, flags); 1695 return generic_update_time(inode, time, flags); 1696 } 1697 1698 /** 1699 * touch_atime - update the access time 1700 * @path: the &struct path to update 1701 * @inode: inode to update 1702 * 1703 * Update the accessed time on an inode and mark it for writeback. 1704 * This function automatically handles read only file systems and media, 1705 * as well as the "noatime" flag and inode specific "noatime" markers. 1706 */ 1707 bool atime_needs_update(const struct path *path, struct inode *inode) 1708 { 1709 struct vfsmount *mnt = path->mnt; 1710 struct timespec64 now; 1711 1712 if (inode->i_flags & S_NOATIME) 1713 return false; 1714 1715 /* Atime updates will likely cause i_uid and i_gid to be written 1716 * back improprely if their true value is unknown to the vfs. 1717 */ 1718 if (HAS_UNMAPPED_ID(inode)) 1719 return false; 1720 1721 if (IS_NOATIME(inode)) 1722 return false; 1723 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1724 return false; 1725 1726 if (mnt->mnt_flags & MNT_NOATIME) 1727 return false; 1728 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1729 return false; 1730 1731 now = current_time(inode); 1732 1733 if (!relatime_need_update(mnt, inode, now)) 1734 return false; 1735 1736 if (timespec64_equal(&inode->i_atime, &now)) 1737 return false; 1738 1739 return true; 1740 } 1741 1742 void touch_atime(const struct path *path) 1743 { 1744 struct vfsmount *mnt = path->mnt; 1745 struct inode *inode = d_inode(path->dentry); 1746 struct timespec64 now; 1747 1748 if (!atime_needs_update(path, inode)) 1749 return; 1750 1751 if (!sb_start_write_trylock(inode->i_sb)) 1752 return; 1753 1754 if (__mnt_want_write(mnt) != 0) 1755 goto skip_update; 1756 /* 1757 * File systems can error out when updating inodes if they need to 1758 * allocate new space to modify an inode (such is the case for 1759 * Btrfs), but since we touch atime while walking down the path we 1760 * really don't care if we failed to update the atime of the file, 1761 * so just ignore the return value. 1762 * We may also fail on filesystems that have the ability to make parts 1763 * of the fs read only, e.g. subvolumes in Btrfs. 1764 */ 1765 now = current_time(inode); 1766 update_time(inode, &now, S_ATIME); 1767 __mnt_drop_write(mnt); 1768 skip_update: 1769 sb_end_write(inode->i_sb); 1770 } 1771 EXPORT_SYMBOL(touch_atime); 1772 1773 /* 1774 * The logic we want is 1775 * 1776 * if suid or (sgid and xgrp) 1777 * remove privs 1778 */ 1779 int should_remove_suid(struct dentry *dentry) 1780 { 1781 umode_t mode = d_inode(dentry)->i_mode; 1782 int kill = 0; 1783 1784 /* suid always must be killed */ 1785 if (unlikely(mode & S_ISUID)) 1786 kill = ATTR_KILL_SUID; 1787 1788 /* 1789 * sgid without any exec bits is just a mandatory locking mark; leave 1790 * it alone. If some exec bits are set, it's a real sgid; kill it. 1791 */ 1792 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1793 kill |= ATTR_KILL_SGID; 1794 1795 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1796 return kill; 1797 1798 return 0; 1799 } 1800 EXPORT_SYMBOL(should_remove_suid); 1801 1802 /* 1803 * Return mask of changes for notify_change() that need to be done as a 1804 * response to write or truncate. Return 0 if nothing has to be changed. 1805 * Negative value on error (change should be denied). 1806 */ 1807 int dentry_needs_remove_privs(struct dentry *dentry) 1808 { 1809 struct inode *inode = d_inode(dentry); 1810 int mask = 0; 1811 int ret; 1812 1813 if (IS_NOSEC(inode)) 1814 return 0; 1815 1816 mask = should_remove_suid(dentry); 1817 ret = security_inode_need_killpriv(dentry); 1818 if (ret < 0) 1819 return ret; 1820 if (ret) 1821 mask |= ATTR_KILL_PRIV; 1822 return mask; 1823 } 1824 1825 static int __remove_privs(struct dentry *dentry, int kill) 1826 { 1827 struct iattr newattrs; 1828 1829 newattrs.ia_valid = ATTR_FORCE | kill; 1830 /* 1831 * Note we call this on write, so notify_change will not 1832 * encounter any conflicting delegations: 1833 */ 1834 return notify_change(dentry, &newattrs, NULL); 1835 } 1836 1837 /* 1838 * Remove special file priviledges (suid, capabilities) when file is written 1839 * to or truncated. 1840 */ 1841 int file_remove_privs(struct file *file) 1842 { 1843 struct dentry *dentry = file_dentry(file); 1844 struct inode *inode = file_inode(file); 1845 int kill; 1846 int error = 0; 1847 1848 /* 1849 * Fast path for nothing security related. 1850 * As well for non-regular files, e.g. blkdev inodes. 1851 * For example, blkdev_write_iter() might get here 1852 * trying to remove privs which it is not allowed to. 1853 */ 1854 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1855 return 0; 1856 1857 kill = dentry_needs_remove_privs(dentry); 1858 if (kill < 0) 1859 return kill; 1860 if (kill) 1861 error = __remove_privs(dentry, kill); 1862 if (!error) 1863 inode_has_no_xattr(inode); 1864 1865 return error; 1866 } 1867 EXPORT_SYMBOL(file_remove_privs); 1868 1869 /** 1870 * file_update_time - update mtime and ctime time 1871 * @file: file accessed 1872 * 1873 * Update the mtime and ctime members of an inode and mark the inode 1874 * for writeback. Note that this function is meant exclusively for 1875 * usage in the file write path of filesystems, and filesystems may 1876 * choose to explicitly ignore update via this function with the 1877 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1878 * timestamps are handled by the server. This can return an error for 1879 * file systems who need to allocate space in order to update an inode. 1880 */ 1881 1882 int file_update_time(struct file *file) 1883 { 1884 struct inode *inode = file_inode(file); 1885 struct timespec64 now; 1886 int sync_it = 0; 1887 int ret; 1888 1889 /* First try to exhaust all avenues to not sync */ 1890 if (IS_NOCMTIME(inode)) 1891 return 0; 1892 1893 now = current_time(inode); 1894 if (!timespec64_equal(&inode->i_mtime, &now)) 1895 sync_it = S_MTIME; 1896 1897 if (!timespec64_equal(&inode->i_ctime, &now)) 1898 sync_it |= S_CTIME; 1899 1900 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1901 sync_it |= S_VERSION; 1902 1903 if (!sync_it) 1904 return 0; 1905 1906 /* Finally allowed to write? Takes lock. */ 1907 if (__mnt_want_write_file(file)) 1908 return 0; 1909 1910 ret = update_time(inode, &now, sync_it); 1911 __mnt_drop_write_file(file); 1912 1913 return ret; 1914 } 1915 EXPORT_SYMBOL(file_update_time); 1916 1917 /* Caller must hold the file's inode lock */ 1918 int file_modified(struct file *file) 1919 { 1920 int err; 1921 1922 /* 1923 * Clear the security bits if the process is not being run by root. 1924 * This keeps people from modifying setuid and setgid binaries. 1925 */ 1926 err = file_remove_privs(file); 1927 if (err) 1928 return err; 1929 1930 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 1931 return 0; 1932 1933 return file_update_time(file); 1934 } 1935 EXPORT_SYMBOL(file_modified); 1936 1937 int inode_needs_sync(struct inode *inode) 1938 { 1939 if (IS_SYNC(inode)) 1940 return 1; 1941 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1942 return 1; 1943 return 0; 1944 } 1945 EXPORT_SYMBOL(inode_needs_sync); 1946 1947 /* 1948 * If we try to find an inode in the inode hash while it is being 1949 * deleted, we have to wait until the filesystem completes its 1950 * deletion before reporting that it isn't found. This function waits 1951 * until the deletion _might_ have completed. Callers are responsible 1952 * to recheck inode state. 1953 * 1954 * It doesn't matter if I_NEW is not set initially, a call to 1955 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1956 * will DTRT. 1957 */ 1958 static void __wait_on_freeing_inode(struct inode *inode) 1959 { 1960 wait_queue_head_t *wq; 1961 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1962 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1963 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1964 spin_unlock(&inode->i_lock); 1965 spin_unlock(&inode_hash_lock); 1966 schedule(); 1967 finish_wait(wq, &wait.wq_entry); 1968 spin_lock(&inode_hash_lock); 1969 } 1970 1971 static __initdata unsigned long ihash_entries; 1972 static int __init set_ihash_entries(char *str) 1973 { 1974 if (!str) 1975 return 0; 1976 ihash_entries = simple_strtoul(str, &str, 0); 1977 return 1; 1978 } 1979 __setup("ihash_entries=", set_ihash_entries); 1980 1981 /* 1982 * Initialize the waitqueues and inode hash table. 1983 */ 1984 void __init inode_init_early(void) 1985 { 1986 /* If hashes are distributed across NUMA nodes, defer 1987 * hash allocation until vmalloc space is available. 1988 */ 1989 if (hashdist) 1990 return; 1991 1992 inode_hashtable = 1993 alloc_large_system_hash("Inode-cache", 1994 sizeof(struct hlist_head), 1995 ihash_entries, 1996 14, 1997 HASH_EARLY | HASH_ZERO, 1998 &i_hash_shift, 1999 &i_hash_mask, 2000 0, 2001 0); 2002 } 2003 2004 void __init inode_init(void) 2005 { 2006 /* inode slab cache */ 2007 inode_cachep = kmem_cache_create("inode_cache", 2008 sizeof(struct inode), 2009 0, 2010 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2011 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2012 init_once); 2013 2014 /* Hash may have been set up in inode_init_early */ 2015 if (!hashdist) 2016 return; 2017 2018 inode_hashtable = 2019 alloc_large_system_hash("Inode-cache", 2020 sizeof(struct hlist_head), 2021 ihash_entries, 2022 14, 2023 HASH_ZERO, 2024 &i_hash_shift, 2025 &i_hash_mask, 2026 0, 2027 0); 2028 } 2029 2030 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2031 { 2032 inode->i_mode = mode; 2033 if (S_ISCHR(mode)) { 2034 inode->i_fop = &def_chr_fops; 2035 inode->i_rdev = rdev; 2036 } else if (S_ISBLK(mode)) { 2037 inode->i_fop = &def_blk_fops; 2038 inode->i_rdev = rdev; 2039 } else if (S_ISFIFO(mode)) 2040 inode->i_fop = &pipefifo_fops; 2041 else if (S_ISSOCK(mode)) 2042 ; /* leave it no_open_fops */ 2043 else 2044 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2045 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2046 inode->i_ino); 2047 } 2048 EXPORT_SYMBOL(init_special_inode); 2049 2050 /** 2051 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2052 * @inode: New inode 2053 * @dir: Directory inode 2054 * @mode: mode of the new inode 2055 */ 2056 void inode_init_owner(struct inode *inode, const struct inode *dir, 2057 umode_t mode) 2058 { 2059 inode->i_uid = current_fsuid(); 2060 if (dir && dir->i_mode & S_ISGID) { 2061 inode->i_gid = dir->i_gid; 2062 2063 /* Directories are special, and always inherit S_ISGID */ 2064 if (S_ISDIR(mode)) 2065 mode |= S_ISGID; 2066 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2067 !in_group_p(inode->i_gid) && 2068 !capable_wrt_inode_uidgid(dir, CAP_FSETID)) 2069 mode &= ~S_ISGID; 2070 } else 2071 inode->i_gid = current_fsgid(); 2072 inode->i_mode = mode; 2073 } 2074 EXPORT_SYMBOL(inode_init_owner); 2075 2076 /** 2077 * inode_owner_or_capable - check current task permissions to inode 2078 * @inode: inode being checked 2079 * 2080 * Return true if current either has CAP_FOWNER in a namespace with the 2081 * inode owner uid mapped, or owns the file. 2082 */ 2083 bool inode_owner_or_capable(const struct inode *inode) 2084 { 2085 struct user_namespace *ns; 2086 2087 if (uid_eq(current_fsuid(), inode->i_uid)) 2088 return true; 2089 2090 ns = current_user_ns(); 2091 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2092 return true; 2093 return false; 2094 } 2095 EXPORT_SYMBOL(inode_owner_or_capable); 2096 2097 /* 2098 * Direct i/o helper functions 2099 */ 2100 static void __inode_dio_wait(struct inode *inode) 2101 { 2102 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2103 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2104 2105 do { 2106 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2107 if (atomic_read(&inode->i_dio_count)) 2108 schedule(); 2109 } while (atomic_read(&inode->i_dio_count)); 2110 finish_wait(wq, &q.wq_entry); 2111 } 2112 2113 /** 2114 * inode_dio_wait - wait for outstanding DIO requests to finish 2115 * @inode: inode to wait for 2116 * 2117 * Waits for all pending direct I/O requests to finish so that we can 2118 * proceed with a truncate or equivalent operation. 2119 * 2120 * Must be called under a lock that serializes taking new references 2121 * to i_dio_count, usually by inode->i_mutex. 2122 */ 2123 void inode_dio_wait(struct inode *inode) 2124 { 2125 if (atomic_read(&inode->i_dio_count)) 2126 __inode_dio_wait(inode); 2127 } 2128 EXPORT_SYMBOL(inode_dio_wait); 2129 2130 /* 2131 * inode_set_flags - atomically set some inode flags 2132 * 2133 * Note: the caller should be holding i_mutex, or else be sure that 2134 * they have exclusive access to the inode structure (i.e., while the 2135 * inode is being instantiated). The reason for the cmpxchg() loop 2136 * --- which wouldn't be necessary if all code paths which modify 2137 * i_flags actually followed this rule, is that there is at least one 2138 * code path which doesn't today so we use cmpxchg() out of an abundance 2139 * of caution. 2140 * 2141 * In the long run, i_mutex is overkill, and we should probably look 2142 * at using the i_lock spinlock to protect i_flags, and then make sure 2143 * it is so documented in include/linux/fs.h and that all code follows 2144 * the locking convention!! 2145 */ 2146 void inode_set_flags(struct inode *inode, unsigned int flags, 2147 unsigned int mask) 2148 { 2149 WARN_ON_ONCE(flags & ~mask); 2150 set_mask_bits(&inode->i_flags, mask, flags); 2151 } 2152 EXPORT_SYMBOL(inode_set_flags); 2153 2154 void inode_nohighmem(struct inode *inode) 2155 { 2156 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2157 } 2158 EXPORT_SYMBOL(inode_nohighmem); 2159 2160 /** 2161 * timestamp_truncate - Truncate timespec to a granularity 2162 * @t: Timespec 2163 * @inode: inode being updated 2164 * 2165 * Truncate a timespec to the granularity supported by the fs 2166 * containing the inode. Always rounds down. gran must 2167 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2168 */ 2169 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2170 { 2171 struct super_block *sb = inode->i_sb; 2172 unsigned int gran = sb->s_time_gran; 2173 2174 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2175 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2176 t.tv_nsec = 0; 2177 2178 /* Avoid division in the common cases 1 ns and 1 s. */ 2179 if (gran == 1) 2180 ; /* nothing */ 2181 else if (gran == NSEC_PER_SEC) 2182 t.tv_nsec = 0; 2183 else if (gran > 1 && gran < NSEC_PER_SEC) 2184 t.tv_nsec -= t.tv_nsec % gran; 2185 else 2186 WARN(1, "invalid file time granularity: %u", gran); 2187 return t; 2188 } 2189 EXPORT_SYMBOL(timestamp_truncate); 2190 2191 /** 2192 * current_time - Return FS time 2193 * @inode: inode. 2194 * 2195 * Return the current time truncated to the time granularity supported by 2196 * the fs. 2197 * 2198 * Note that inode and inode->sb cannot be NULL. 2199 * Otherwise, the function warns and returns time without truncation. 2200 */ 2201 struct timespec64 current_time(struct inode *inode) 2202 { 2203 struct timespec64 now; 2204 2205 ktime_get_coarse_real_ts64(&now); 2206 2207 if (unlikely(!inode->i_sb)) { 2208 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2209 return now; 2210 } 2211 2212 return timestamp_truncate(now, inode); 2213 } 2214 EXPORT_SYMBOL(current_time); 2215 2216 /* 2217 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid 2218 * configurations. 2219 * 2220 * Note: the caller should be holding i_mutex, or else be sure that they have 2221 * exclusive access to the inode structure. 2222 */ 2223 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, 2224 unsigned int flags) 2225 { 2226 /* 2227 * The IMMUTABLE and APPEND_ONLY flags can only be changed by 2228 * the relevant capability. 2229 * 2230 * This test looks nicer. Thanks to Pauline Middelink 2231 */ 2232 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) && 2233 !capable(CAP_LINUX_IMMUTABLE)) 2234 return -EPERM; 2235 2236 return fscrypt_prepare_setflags(inode, oldflags, flags); 2237 } 2238 EXPORT_SYMBOL(vfs_ioc_setflags_prepare); 2239 2240 /* 2241 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid 2242 * configurations. 2243 * 2244 * Note: the caller should be holding i_mutex, or else be sure that they have 2245 * exclusive access to the inode structure. 2246 */ 2247 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, 2248 struct fsxattr *fa) 2249 { 2250 /* 2251 * Can't modify an immutable/append-only file unless we have 2252 * appropriate permission. 2253 */ 2254 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & 2255 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) && 2256 !capable(CAP_LINUX_IMMUTABLE)) 2257 return -EPERM; 2258 2259 /* 2260 * Project Quota ID state is only allowed to change from within the init 2261 * namespace. Enforce that restriction only if we are trying to change 2262 * the quota ID state. Everything else is allowed in user namespaces. 2263 */ 2264 if (current_user_ns() != &init_user_ns) { 2265 if (old_fa->fsx_projid != fa->fsx_projid) 2266 return -EINVAL; 2267 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & 2268 FS_XFLAG_PROJINHERIT) 2269 return -EINVAL; 2270 } 2271 2272 /* Check extent size hints. */ 2273 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode)) 2274 return -EINVAL; 2275 2276 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) && 2277 !S_ISDIR(inode->i_mode)) 2278 return -EINVAL; 2279 2280 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) && 2281 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) 2282 return -EINVAL; 2283 2284 /* 2285 * It is only valid to set the DAX flag on regular files and 2286 * directories on filesystems. 2287 */ 2288 if ((fa->fsx_xflags & FS_XFLAG_DAX) && 2289 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 2290 return -EINVAL; 2291 2292 /* Extent size hints of zero turn off the flags. */ 2293 if (fa->fsx_extsize == 0) 2294 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT); 2295 if (fa->fsx_cowextsize == 0) 2296 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE; 2297 2298 return 0; 2299 } 2300 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check); 2301