xref: /linux/fs/inode.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22 
23 /*
24  * Inode locking rules:
25  *
26  * inode->i_lock protects:
27  *   inode->i_state, inode->i_hash, __iget()
28  * Inode LRU list locks protect:
29  *   inode->i_sb->s_inode_lru, inode->i_lru
30  * inode_sb_list_lock protects:
31  *   sb->s_inodes, inode->i_sb_list
32  * bdi->wb.list_lock protects:
33  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34  * inode_hash_lock protects:
35  *   inode_hashtable, inode->i_hash
36  *
37  * Lock ordering:
38  *
39  * inode_sb_list_lock
40  *   inode->i_lock
41  *     Inode LRU list locks
42  *
43  * bdi->wb.list_lock
44  *   inode->i_lock
45  *
46  * inode_hash_lock
47  *   inode_sb_list_lock
48  *   inode->i_lock
49  *
50  * iunique_lock
51  *   inode_hash_lock
52  */
53 
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58 
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 /**
118  * inode_init_always - perform inode structure intialisation
119  * @sb: superblock inode belongs to
120  * @inode: inode to initialise
121  *
122  * These are initializations that need to be done on every inode
123  * allocation as the fields are not initialised by slab allocation.
124  */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 	static const struct inode_operations empty_iops;
128 	static const struct file_operations empty_fops;
129 	struct address_space *const mapping = &inode->i_data;
130 
131 	inode->i_sb = sb;
132 	inode->i_blkbits = sb->s_blocksize_bits;
133 	inode->i_flags = 0;
134 	atomic_set(&inode->i_count, 1);
135 	inode->i_op = &empty_iops;
136 	inode->i_fop = &empty_fops;
137 	inode->__i_nlink = 1;
138 	inode->i_opflags = 0;
139 	i_uid_write(inode, 0);
140 	i_gid_write(inode, 0);
141 	atomic_set(&inode->i_writecount, 0);
142 	inode->i_size = 0;
143 	inode->i_blocks = 0;
144 	inode->i_bytes = 0;
145 	inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 	inode->i_pipe = NULL;
150 	inode->i_bdev = NULL;
151 	inode->i_cdev = NULL;
152 	inode->i_rdev = 0;
153 	inode->dirtied_when = 0;
154 
155 	if (security_inode_alloc(inode))
156 		goto out;
157 	spin_lock_init(&inode->i_lock);
158 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159 
160 	mutex_init(&inode->i_mutex);
161 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162 
163 	atomic_set(&inode->i_dio_count, 0);
164 
165 	mapping->a_ops = &empty_aops;
166 	mapping->host = inode;
167 	mapping->flags = 0;
168 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 	mapping->private_data = NULL;
170 	mapping->backing_dev_info = &default_backing_dev_info;
171 	mapping->writeback_index = 0;
172 
173 	/*
174 	 * If the block_device provides a backing_dev_info for client
175 	 * inodes then use that.  Otherwise the inode share the bdev's
176 	 * backing_dev_info.
177 	 */
178 	if (sb->s_bdev) {
179 		struct backing_dev_info *bdi;
180 
181 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 		mapping->backing_dev_info = bdi;
183 	}
184 	inode->i_private = NULL;
185 	inode->i_mapping = mapping;
186 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190 
191 #ifdef CONFIG_FSNOTIFY
192 	inode->i_fsnotify_mask = 0;
193 #endif
194 
195 	this_cpu_inc(nr_inodes);
196 
197 	return 0;
198 out:
199 	return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202 
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 	struct inode *inode;
206 
207 	if (sb->s_op->alloc_inode)
208 		inode = sb->s_op->alloc_inode(sb);
209 	else
210 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 
212 	if (!inode)
213 		return NULL;
214 
215 	if (unlikely(inode_init_always(sb, inode))) {
216 		if (inode->i_sb->s_op->destroy_inode)
217 			inode->i_sb->s_op->destroy_inode(inode);
218 		else
219 			kmem_cache_free(inode_cachep, inode);
220 		return NULL;
221 	}
222 
223 	return inode;
224 }
225 
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 	kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231 
232 void __destroy_inode(struct inode *inode)
233 {
234 	BUG_ON(inode_has_buffers(inode));
235 	security_inode_free(inode);
236 	fsnotify_inode_delete(inode);
237 	if (!inode->i_nlink) {
238 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 		atomic_long_dec(&inode->i_sb->s_remove_count);
240 	}
241 
242 #ifdef CONFIG_FS_POSIX_ACL
243 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 		posix_acl_release(inode->i_acl);
245 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 		posix_acl_release(inode->i_default_acl);
247 #endif
248 	this_cpu_dec(nr_inodes);
249 }
250 EXPORT_SYMBOL(__destroy_inode);
251 
252 static void i_callback(struct rcu_head *head)
253 {
254 	struct inode *inode = container_of(head, struct inode, i_rcu);
255 	kmem_cache_free(inode_cachep, inode);
256 }
257 
258 static void destroy_inode(struct inode *inode)
259 {
260 	BUG_ON(!list_empty(&inode->i_lru));
261 	__destroy_inode(inode);
262 	if (inode->i_sb->s_op->destroy_inode)
263 		inode->i_sb->s_op->destroy_inode(inode);
264 	else
265 		call_rcu(&inode->i_rcu, i_callback);
266 }
267 
268 /**
269  * drop_nlink - directly drop an inode's link count
270  * @inode: inode
271  *
272  * This is a low-level filesystem helper to replace any
273  * direct filesystem manipulation of i_nlink.  In cases
274  * where we are attempting to track writes to the
275  * filesystem, a decrement to zero means an imminent
276  * write when the file is truncated and actually unlinked
277  * on the filesystem.
278  */
279 void drop_nlink(struct inode *inode)
280 {
281 	WARN_ON(inode->i_nlink == 0);
282 	inode->__i_nlink--;
283 	if (!inode->i_nlink)
284 		atomic_long_inc(&inode->i_sb->s_remove_count);
285 }
286 EXPORT_SYMBOL(drop_nlink);
287 
288 /**
289  * clear_nlink - directly zero an inode's link count
290  * @inode: inode
291  *
292  * This is a low-level filesystem helper to replace any
293  * direct filesystem manipulation of i_nlink.  See
294  * drop_nlink() for why we care about i_nlink hitting zero.
295  */
296 void clear_nlink(struct inode *inode)
297 {
298 	if (inode->i_nlink) {
299 		inode->__i_nlink = 0;
300 		atomic_long_inc(&inode->i_sb->s_remove_count);
301 	}
302 }
303 EXPORT_SYMBOL(clear_nlink);
304 
305 /**
306  * set_nlink - directly set an inode's link count
307  * @inode: inode
308  * @nlink: new nlink (should be non-zero)
309  *
310  * This is a low-level filesystem helper to replace any
311  * direct filesystem manipulation of i_nlink.
312  */
313 void set_nlink(struct inode *inode, unsigned int nlink)
314 {
315 	if (!nlink) {
316 		clear_nlink(inode);
317 	} else {
318 		/* Yes, some filesystems do change nlink from zero to one */
319 		if (inode->i_nlink == 0)
320 			atomic_long_dec(&inode->i_sb->s_remove_count);
321 
322 		inode->__i_nlink = nlink;
323 	}
324 }
325 EXPORT_SYMBOL(set_nlink);
326 
327 /**
328  * inc_nlink - directly increment an inode's link count
329  * @inode: inode
330  *
331  * This is a low-level filesystem helper to replace any
332  * direct filesystem manipulation of i_nlink.  Currently,
333  * it is only here for parity with dec_nlink().
334  */
335 void inc_nlink(struct inode *inode)
336 {
337 	if (unlikely(inode->i_nlink == 0)) {
338 		WARN_ON(!(inode->i_state & I_LINKABLE));
339 		atomic_long_dec(&inode->i_sb->s_remove_count);
340 	}
341 
342 	inode->__i_nlink++;
343 }
344 EXPORT_SYMBOL(inc_nlink);
345 
346 void address_space_init_once(struct address_space *mapping)
347 {
348 	memset(mapping, 0, sizeof(*mapping));
349 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 	spin_lock_init(&mapping->tree_lock);
351 	mutex_init(&mapping->i_mmap_mutex);
352 	INIT_LIST_HEAD(&mapping->private_list);
353 	spin_lock_init(&mapping->private_lock);
354 	mapping->i_mmap = RB_ROOT;
355 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358 
359 /*
360  * These are initializations that only need to be done
361  * once, because the fields are idempotent across use
362  * of the inode, so let the slab aware of that.
363  */
364 void inode_init_once(struct inode *inode)
365 {
366 	memset(inode, 0, sizeof(*inode));
367 	INIT_HLIST_NODE(&inode->i_hash);
368 	INIT_LIST_HEAD(&inode->i_devices);
369 	INIT_LIST_HEAD(&inode->i_wb_list);
370 	INIT_LIST_HEAD(&inode->i_lru);
371 	address_space_init_once(&inode->i_data);
372 	i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375 #endif
376 }
377 EXPORT_SYMBOL(inode_init_once);
378 
379 static void init_once(void *foo)
380 {
381 	struct inode *inode = (struct inode *) foo;
382 
383 	inode_init_once(inode);
384 }
385 
386 /*
387  * inode->i_lock must be held
388  */
389 void __iget(struct inode *inode)
390 {
391 	atomic_inc(&inode->i_count);
392 }
393 
394 /*
395  * get additional reference to inode; caller must already hold one.
396  */
397 void ihold(struct inode *inode)
398 {
399 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402 
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 		this_cpu_inc(nr_unused);
407 }
408 
409 /*
410  * Add inode to LRU if needed (inode is unused and clean).
411  *
412  * Needs inode->i_lock held.
413  */
414 void inode_add_lru(struct inode *inode)
415 {
416 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 		inode_lru_list_add(inode);
419 }
420 
421 
422 static void inode_lru_list_del(struct inode *inode)
423 {
424 
425 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 		this_cpu_dec(nr_unused);
427 }
428 
429 /**
430  * inode_sb_list_add - add inode to the superblock list of inodes
431  * @inode: inode to add
432  */
433 void inode_sb_list_add(struct inode *inode)
434 {
435 	spin_lock(&inode_sb_list_lock);
436 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 	spin_unlock(&inode_sb_list_lock);
438 }
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440 
441 static inline void inode_sb_list_del(struct inode *inode)
442 {
443 	if (!list_empty(&inode->i_sb_list)) {
444 		spin_lock(&inode_sb_list_lock);
445 		list_del_init(&inode->i_sb_list);
446 		spin_unlock(&inode_sb_list_lock);
447 	}
448 }
449 
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
451 {
452 	unsigned long tmp;
453 
454 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 			L1_CACHE_BYTES;
456 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 	return tmp & i_hash_mask;
458 }
459 
460 /**
461  *	__insert_inode_hash - hash an inode
462  *	@inode: unhashed inode
463  *	@hashval: unsigned long value used to locate this object in the
464  *		inode_hashtable.
465  *
466  *	Add an inode to the inode hash for this superblock.
467  */
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 {
470 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471 
472 	spin_lock(&inode_hash_lock);
473 	spin_lock(&inode->i_lock);
474 	hlist_add_head(&inode->i_hash, b);
475 	spin_unlock(&inode->i_lock);
476 	spin_unlock(&inode_hash_lock);
477 }
478 EXPORT_SYMBOL(__insert_inode_hash);
479 
480 /**
481  *	__remove_inode_hash - remove an inode from the hash
482  *	@inode: inode to unhash
483  *
484  *	Remove an inode from the superblock.
485  */
486 void __remove_inode_hash(struct inode *inode)
487 {
488 	spin_lock(&inode_hash_lock);
489 	spin_lock(&inode->i_lock);
490 	hlist_del_init(&inode->i_hash);
491 	spin_unlock(&inode->i_lock);
492 	spin_unlock(&inode_hash_lock);
493 }
494 EXPORT_SYMBOL(__remove_inode_hash);
495 
496 void clear_inode(struct inode *inode)
497 {
498 	might_sleep();
499 	/*
500 	 * We have to cycle tree_lock here because reclaim can be still in the
501 	 * process of removing the last page (in __delete_from_page_cache())
502 	 * and we must not free mapping under it.
503 	 */
504 	spin_lock_irq(&inode->i_data.tree_lock);
505 	BUG_ON(inode->i_data.nrpages);
506 	BUG_ON(inode->i_data.nrshadows);
507 	spin_unlock_irq(&inode->i_data.tree_lock);
508 	BUG_ON(!list_empty(&inode->i_data.private_list));
509 	BUG_ON(!(inode->i_state & I_FREEING));
510 	BUG_ON(inode->i_state & I_CLEAR);
511 	/* don't need i_lock here, no concurrent mods to i_state */
512 	inode->i_state = I_FREEING | I_CLEAR;
513 }
514 EXPORT_SYMBOL(clear_inode);
515 
516 /*
517  * Free the inode passed in, removing it from the lists it is still connected
518  * to. We remove any pages still attached to the inode and wait for any IO that
519  * is still in progress before finally destroying the inode.
520  *
521  * An inode must already be marked I_FREEING so that we avoid the inode being
522  * moved back onto lists if we race with other code that manipulates the lists
523  * (e.g. writeback_single_inode). The caller is responsible for setting this.
524  *
525  * An inode must already be removed from the LRU list before being evicted from
526  * the cache. This should occur atomically with setting the I_FREEING state
527  * flag, so no inodes here should ever be on the LRU when being evicted.
528  */
529 static void evict(struct inode *inode)
530 {
531 	const struct super_operations *op = inode->i_sb->s_op;
532 
533 	BUG_ON(!(inode->i_state & I_FREEING));
534 	BUG_ON(!list_empty(&inode->i_lru));
535 
536 	if (!list_empty(&inode->i_wb_list))
537 		inode_wb_list_del(inode);
538 
539 	inode_sb_list_del(inode);
540 
541 	/*
542 	 * Wait for flusher thread to be done with the inode so that filesystem
543 	 * does not start destroying it while writeback is still running. Since
544 	 * the inode has I_FREEING set, flusher thread won't start new work on
545 	 * the inode.  We just have to wait for running writeback to finish.
546 	 */
547 	inode_wait_for_writeback(inode);
548 
549 	if (op->evict_inode) {
550 		op->evict_inode(inode);
551 	} else {
552 		truncate_inode_pages_final(&inode->i_data);
553 		clear_inode(inode);
554 	}
555 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 		bd_forget(inode);
557 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 		cd_forget(inode);
559 
560 	remove_inode_hash(inode);
561 
562 	spin_lock(&inode->i_lock);
563 	wake_up_bit(&inode->i_state, __I_NEW);
564 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 	spin_unlock(&inode->i_lock);
566 
567 	destroy_inode(inode);
568 }
569 
570 /*
571  * dispose_list - dispose of the contents of a local list
572  * @head: the head of the list to free
573  *
574  * Dispose-list gets a local list with local inodes in it, so it doesn't
575  * need to worry about list corruption and SMP locks.
576  */
577 static void dispose_list(struct list_head *head)
578 {
579 	while (!list_empty(head)) {
580 		struct inode *inode;
581 
582 		inode = list_first_entry(head, struct inode, i_lru);
583 		list_del_init(&inode->i_lru);
584 
585 		evict(inode);
586 	}
587 }
588 
589 /**
590  * evict_inodes	- evict all evictable inodes for a superblock
591  * @sb:		superblock to operate on
592  *
593  * Make sure that no inodes with zero refcount are retained.  This is
594  * called by superblock shutdown after having MS_ACTIVE flag removed,
595  * so any inode reaching zero refcount during or after that call will
596  * be immediately evicted.
597  */
598 void evict_inodes(struct super_block *sb)
599 {
600 	struct inode *inode, *next;
601 	LIST_HEAD(dispose);
602 
603 	spin_lock(&inode_sb_list_lock);
604 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 		if (atomic_read(&inode->i_count))
606 			continue;
607 
608 		spin_lock(&inode->i_lock);
609 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 			spin_unlock(&inode->i_lock);
611 			continue;
612 		}
613 
614 		inode->i_state |= I_FREEING;
615 		inode_lru_list_del(inode);
616 		spin_unlock(&inode->i_lock);
617 		list_add(&inode->i_lru, &dispose);
618 	}
619 	spin_unlock(&inode_sb_list_lock);
620 
621 	dispose_list(&dispose);
622 }
623 
624 /**
625  * invalidate_inodes	- attempt to free all inodes on a superblock
626  * @sb:		superblock to operate on
627  * @kill_dirty: flag to guide handling of dirty inodes
628  *
629  * Attempts to free all inodes for a given superblock.  If there were any
630  * busy inodes return a non-zero value, else zero.
631  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632  * them as busy.
633  */
634 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
635 {
636 	int busy = 0;
637 	struct inode *inode, *next;
638 	LIST_HEAD(dispose);
639 
640 	spin_lock(&inode_sb_list_lock);
641 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 		spin_lock(&inode->i_lock);
643 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 			spin_unlock(&inode->i_lock);
645 			continue;
646 		}
647 		if (inode->i_state & I_DIRTY && !kill_dirty) {
648 			spin_unlock(&inode->i_lock);
649 			busy = 1;
650 			continue;
651 		}
652 		if (atomic_read(&inode->i_count)) {
653 			spin_unlock(&inode->i_lock);
654 			busy = 1;
655 			continue;
656 		}
657 
658 		inode->i_state |= I_FREEING;
659 		inode_lru_list_del(inode);
660 		spin_unlock(&inode->i_lock);
661 		list_add(&inode->i_lru, &dispose);
662 	}
663 	spin_unlock(&inode_sb_list_lock);
664 
665 	dispose_list(&dispose);
666 
667 	return busy;
668 }
669 
670 /*
671  * Isolate the inode from the LRU in preparation for freeing it.
672  *
673  * Any inodes which are pinned purely because of attached pagecache have their
674  * pagecache removed.  If the inode has metadata buffers attached to
675  * mapping->private_list then try to remove them.
676  *
677  * If the inode has the I_REFERENCED flag set, then it means that it has been
678  * used recently - the flag is set in iput_final(). When we encounter such an
679  * inode, clear the flag and move it to the back of the LRU so it gets another
680  * pass through the LRU before it gets reclaimed. This is necessary because of
681  * the fact we are doing lazy LRU updates to minimise lock contention so the
682  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683  * with this flag set because they are the inodes that are out of order.
684  */
685 static enum lru_status
686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
687 {
688 	struct list_head *freeable = arg;
689 	struct inode	*inode = container_of(item, struct inode, i_lru);
690 
691 	/*
692 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 	 * If we fail to get the lock, just skip it.
694 	 */
695 	if (!spin_trylock(&inode->i_lock))
696 		return LRU_SKIP;
697 
698 	/*
699 	 * Referenced or dirty inodes are still in use. Give them another pass
700 	 * through the LRU as we canot reclaim them now.
701 	 */
702 	if (atomic_read(&inode->i_count) ||
703 	    (inode->i_state & ~I_REFERENCED)) {
704 		list_del_init(&inode->i_lru);
705 		spin_unlock(&inode->i_lock);
706 		this_cpu_dec(nr_unused);
707 		return LRU_REMOVED;
708 	}
709 
710 	/* recently referenced inodes get one more pass */
711 	if (inode->i_state & I_REFERENCED) {
712 		inode->i_state &= ~I_REFERENCED;
713 		spin_unlock(&inode->i_lock);
714 		return LRU_ROTATE;
715 	}
716 
717 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 		__iget(inode);
719 		spin_unlock(&inode->i_lock);
720 		spin_unlock(lru_lock);
721 		if (remove_inode_buffers(inode)) {
722 			unsigned long reap;
723 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 			if (current_is_kswapd())
725 				__count_vm_events(KSWAPD_INODESTEAL, reap);
726 			else
727 				__count_vm_events(PGINODESTEAL, reap);
728 			if (current->reclaim_state)
729 				current->reclaim_state->reclaimed_slab += reap;
730 		}
731 		iput(inode);
732 		spin_lock(lru_lock);
733 		return LRU_RETRY;
734 	}
735 
736 	WARN_ON(inode->i_state & I_NEW);
737 	inode->i_state |= I_FREEING;
738 	list_move(&inode->i_lru, freeable);
739 	spin_unlock(&inode->i_lock);
740 
741 	this_cpu_dec(nr_unused);
742 	return LRU_REMOVED;
743 }
744 
745 /*
746  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747  * This is called from the superblock shrinker function with a number of inodes
748  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749  * then are freed outside inode_lock by dispose_list().
750  */
751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
752 		     int nid)
753 {
754 	LIST_HEAD(freeable);
755 	long freed;
756 
757 	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
758 				       &freeable, &nr_to_scan);
759 	dispose_list(&freeable);
760 	return freed;
761 }
762 
763 static void __wait_on_freeing_inode(struct inode *inode);
764 /*
765  * Called with the inode lock held.
766  */
767 static struct inode *find_inode(struct super_block *sb,
768 				struct hlist_head *head,
769 				int (*test)(struct inode *, void *),
770 				void *data)
771 {
772 	struct inode *inode = NULL;
773 
774 repeat:
775 	hlist_for_each_entry(inode, head, i_hash) {
776 		if (inode->i_sb != sb)
777 			continue;
778 		if (!test(inode, data))
779 			continue;
780 		spin_lock(&inode->i_lock);
781 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
782 			__wait_on_freeing_inode(inode);
783 			goto repeat;
784 		}
785 		__iget(inode);
786 		spin_unlock(&inode->i_lock);
787 		return inode;
788 	}
789 	return NULL;
790 }
791 
792 /*
793  * find_inode_fast is the fast path version of find_inode, see the comment at
794  * iget_locked for details.
795  */
796 static struct inode *find_inode_fast(struct super_block *sb,
797 				struct hlist_head *head, unsigned long ino)
798 {
799 	struct inode *inode = NULL;
800 
801 repeat:
802 	hlist_for_each_entry(inode, head, i_hash) {
803 		if (inode->i_ino != ino)
804 			continue;
805 		if (inode->i_sb != sb)
806 			continue;
807 		spin_lock(&inode->i_lock);
808 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
809 			__wait_on_freeing_inode(inode);
810 			goto repeat;
811 		}
812 		__iget(inode);
813 		spin_unlock(&inode->i_lock);
814 		return inode;
815 	}
816 	return NULL;
817 }
818 
819 /*
820  * Each cpu owns a range of LAST_INO_BATCH numbers.
821  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
822  * to renew the exhausted range.
823  *
824  * This does not significantly increase overflow rate because every CPU can
825  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
826  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
827  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
828  * overflow rate by 2x, which does not seem too significant.
829  *
830  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
831  * error if st_ino won't fit in target struct field. Use 32bit counter
832  * here to attempt to avoid that.
833  */
834 #define LAST_INO_BATCH 1024
835 static DEFINE_PER_CPU(unsigned int, last_ino);
836 
837 unsigned int get_next_ino(void)
838 {
839 	unsigned int *p = &get_cpu_var(last_ino);
840 	unsigned int res = *p;
841 
842 #ifdef CONFIG_SMP
843 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
844 		static atomic_t shared_last_ino;
845 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
846 
847 		res = next - LAST_INO_BATCH;
848 	}
849 #endif
850 
851 	*p = ++res;
852 	put_cpu_var(last_ino);
853 	return res;
854 }
855 EXPORT_SYMBOL(get_next_ino);
856 
857 /**
858  *	new_inode_pseudo 	- obtain an inode
859  *	@sb: superblock
860  *
861  *	Allocates a new inode for given superblock.
862  *	Inode wont be chained in superblock s_inodes list
863  *	This means :
864  *	- fs can't be unmount
865  *	- quotas, fsnotify, writeback can't work
866  */
867 struct inode *new_inode_pseudo(struct super_block *sb)
868 {
869 	struct inode *inode = alloc_inode(sb);
870 
871 	if (inode) {
872 		spin_lock(&inode->i_lock);
873 		inode->i_state = 0;
874 		spin_unlock(&inode->i_lock);
875 		INIT_LIST_HEAD(&inode->i_sb_list);
876 	}
877 	return inode;
878 }
879 
880 /**
881  *	new_inode 	- obtain an inode
882  *	@sb: superblock
883  *
884  *	Allocates a new inode for given superblock. The default gfp_mask
885  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
886  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
887  *	for the page cache are not reclaimable or migratable,
888  *	mapping_set_gfp_mask() must be called with suitable flags on the
889  *	newly created inode's mapping
890  *
891  */
892 struct inode *new_inode(struct super_block *sb)
893 {
894 	struct inode *inode;
895 
896 	spin_lock_prefetch(&inode_sb_list_lock);
897 
898 	inode = new_inode_pseudo(sb);
899 	if (inode)
900 		inode_sb_list_add(inode);
901 	return inode;
902 }
903 EXPORT_SYMBOL(new_inode);
904 
905 #ifdef CONFIG_DEBUG_LOCK_ALLOC
906 void lockdep_annotate_inode_mutex_key(struct inode *inode)
907 {
908 	if (S_ISDIR(inode->i_mode)) {
909 		struct file_system_type *type = inode->i_sb->s_type;
910 
911 		/* Set new key only if filesystem hasn't already changed it */
912 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
913 			/*
914 			 * ensure nobody is actually holding i_mutex
915 			 */
916 			mutex_destroy(&inode->i_mutex);
917 			mutex_init(&inode->i_mutex);
918 			lockdep_set_class(&inode->i_mutex,
919 					  &type->i_mutex_dir_key);
920 		}
921 	}
922 }
923 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
924 #endif
925 
926 /**
927  * unlock_new_inode - clear the I_NEW state and wake up any waiters
928  * @inode:	new inode to unlock
929  *
930  * Called when the inode is fully initialised to clear the new state of the
931  * inode and wake up anyone waiting for the inode to finish initialisation.
932  */
933 void unlock_new_inode(struct inode *inode)
934 {
935 	lockdep_annotate_inode_mutex_key(inode);
936 	spin_lock(&inode->i_lock);
937 	WARN_ON(!(inode->i_state & I_NEW));
938 	inode->i_state &= ~I_NEW;
939 	smp_mb();
940 	wake_up_bit(&inode->i_state, __I_NEW);
941 	spin_unlock(&inode->i_lock);
942 }
943 EXPORT_SYMBOL(unlock_new_inode);
944 
945 /**
946  * lock_two_nondirectories - take two i_mutexes on non-directory objects
947  *
948  * Lock any non-NULL argument that is not a directory.
949  * Zero, one or two objects may be locked by this function.
950  *
951  * @inode1: first inode to lock
952  * @inode2: second inode to lock
953  */
954 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
955 {
956 	if (inode1 > inode2)
957 		swap(inode1, inode2);
958 
959 	if (inode1 && !S_ISDIR(inode1->i_mode))
960 		mutex_lock(&inode1->i_mutex);
961 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
962 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
963 }
964 EXPORT_SYMBOL(lock_two_nondirectories);
965 
966 /**
967  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
968  * @inode1: first inode to unlock
969  * @inode2: second inode to unlock
970  */
971 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
972 {
973 	if (inode1 && !S_ISDIR(inode1->i_mode))
974 		mutex_unlock(&inode1->i_mutex);
975 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
976 		mutex_unlock(&inode2->i_mutex);
977 }
978 EXPORT_SYMBOL(unlock_two_nondirectories);
979 
980 /**
981  * iget5_locked - obtain an inode from a mounted file system
982  * @sb:		super block of file system
983  * @hashval:	hash value (usually inode number) to get
984  * @test:	callback used for comparisons between inodes
985  * @set:	callback used to initialize a new struct inode
986  * @data:	opaque data pointer to pass to @test and @set
987  *
988  * Search for the inode specified by @hashval and @data in the inode cache,
989  * and if present it is return it with an increased reference count. This is
990  * a generalized version of iget_locked() for file systems where the inode
991  * number is not sufficient for unique identification of an inode.
992  *
993  * If the inode is not in cache, allocate a new inode and return it locked,
994  * hashed, and with the I_NEW flag set. The file system gets to fill it in
995  * before unlocking it via unlock_new_inode().
996  *
997  * Note both @test and @set are called with the inode_hash_lock held, so can't
998  * sleep.
999  */
1000 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 		int (*test)(struct inode *, void *),
1002 		int (*set)(struct inode *, void *), void *data)
1003 {
1004 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 	struct inode *inode;
1006 
1007 	spin_lock(&inode_hash_lock);
1008 	inode = find_inode(sb, head, test, data);
1009 	spin_unlock(&inode_hash_lock);
1010 
1011 	if (inode) {
1012 		wait_on_inode(inode);
1013 		return inode;
1014 	}
1015 
1016 	inode = alloc_inode(sb);
1017 	if (inode) {
1018 		struct inode *old;
1019 
1020 		spin_lock(&inode_hash_lock);
1021 		/* We released the lock, so.. */
1022 		old = find_inode(sb, head, test, data);
1023 		if (!old) {
1024 			if (set(inode, data))
1025 				goto set_failed;
1026 
1027 			spin_lock(&inode->i_lock);
1028 			inode->i_state = I_NEW;
1029 			hlist_add_head(&inode->i_hash, head);
1030 			spin_unlock(&inode->i_lock);
1031 			inode_sb_list_add(inode);
1032 			spin_unlock(&inode_hash_lock);
1033 
1034 			/* Return the locked inode with I_NEW set, the
1035 			 * caller is responsible for filling in the contents
1036 			 */
1037 			return inode;
1038 		}
1039 
1040 		/*
1041 		 * Uhhuh, somebody else created the same inode under
1042 		 * us. Use the old inode instead of the one we just
1043 		 * allocated.
1044 		 */
1045 		spin_unlock(&inode_hash_lock);
1046 		destroy_inode(inode);
1047 		inode = old;
1048 		wait_on_inode(inode);
1049 	}
1050 	return inode;
1051 
1052 set_failed:
1053 	spin_unlock(&inode_hash_lock);
1054 	destroy_inode(inode);
1055 	return NULL;
1056 }
1057 EXPORT_SYMBOL(iget5_locked);
1058 
1059 /**
1060  * iget_locked - obtain an inode from a mounted file system
1061  * @sb:		super block of file system
1062  * @ino:	inode number to get
1063  *
1064  * Search for the inode specified by @ino in the inode cache and if present
1065  * return it with an increased reference count. This is for file systems
1066  * where the inode number is sufficient for unique identification of an inode.
1067  *
1068  * If the inode is not in cache, allocate a new inode and return it locked,
1069  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1070  * before unlocking it via unlock_new_inode().
1071  */
1072 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1073 {
1074 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1075 	struct inode *inode;
1076 
1077 	spin_lock(&inode_hash_lock);
1078 	inode = find_inode_fast(sb, head, ino);
1079 	spin_unlock(&inode_hash_lock);
1080 	if (inode) {
1081 		wait_on_inode(inode);
1082 		return inode;
1083 	}
1084 
1085 	inode = alloc_inode(sb);
1086 	if (inode) {
1087 		struct inode *old;
1088 
1089 		spin_lock(&inode_hash_lock);
1090 		/* We released the lock, so.. */
1091 		old = find_inode_fast(sb, head, ino);
1092 		if (!old) {
1093 			inode->i_ino = ino;
1094 			spin_lock(&inode->i_lock);
1095 			inode->i_state = I_NEW;
1096 			hlist_add_head(&inode->i_hash, head);
1097 			spin_unlock(&inode->i_lock);
1098 			inode_sb_list_add(inode);
1099 			spin_unlock(&inode_hash_lock);
1100 
1101 			/* Return the locked inode with I_NEW set, the
1102 			 * caller is responsible for filling in the contents
1103 			 */
1104 			return inode;
1105 		}
1106 
1107 		/*
1108 		 * Uhhuh, somebody else created the same inode under
1109 		 * us. Use the old inode instead of the one we just
1110 		 * allocated.
1111 		 */
1112 		spin_unlock(&inode_hash_lock);
1113 		destroy_inode(inode);
1114 		inode = old;
1115 		wait_on_inode(inode);
1116 	}
1117 	return inode;
1118 }
1119 EXPORT_SYMBOL(iget_locked);
1120 
1121 /*
1122  * search the inode cache for a matching inode number.
1123  * If we find one, then the inode number we are trying to
1124  * allocate is not unique and so we should not use it.
1125  *
1126  * Returns 1 if the inode number is unique, 0 if it is not.
1127  */
1128 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1129 {
1130 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1131 	struct inode *inode;
1132 
1133 	spin_lock(&inode_hash_lock);
1134 	hlist_for_each_entry(inode, b, i_hash) {
1135 		if (inode->i_ino == ino && inode->i_sb == sb) {
1136 			spin_unlock(&inode_hash_lock);
1137 			return 0;
1138 		}
1139 	}
1140 	spin_unlock(&inode_hash_lock);
1141 
1142 	return 1;
1143 }
1144 
1145 /**
1146  *	iunique - get a unique inode number
1147  *	@sb: superblock
1148  *	@max_reserved: highest reserved inode number
1149  *
1150  *	Obtain an inode number that is unique on the system for a given
1151  *	superblock. This is used by file systems that have no natural
1152  *	permanent inode numbering system. An inode number is returned that
1153  *	is higher than the reserved limit but unique.
1154  *
1155  *	BUGS:
1156  *	With a large number of inodes live on the file system this function
1157  *	currently becomes quite slow.
1158  */
1159 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1160 {
1161 	/*
1162 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1163 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1164 	 * here to attempt to avoid that.
1165 	 */
1166 	static DEFINE_SPINLOCK(iunique_lock);
1167 	static unsigned int counter;
1168 	ino_t res;
1169 
1170 	spin_lock(&iunique_lock);
1171 	do {
1172 		if (counter <= max_reserved)
1173 			counter = max_reserved + 1;
1174 		res = counter++;
1175 	} while (!test_inode_iunique(sb, res));
1176 	spin_unlock(&iunique_lock);
1177 
1178 	return res;
1179 }
1180 EXPORT_SYMBOL(iunique);
1181 
1182 struct inode *igrab(struct inode *inode)
1183 {
1184 	spin_lock(&inode->i_lock);
1185 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1186 		__iget(inode);
1187 		spin_unlock(&inode->i_lock);
1188 	} else {
1189 		spin_unlock(&inode->i_lock);
1190 		/*
1191 		 * Handle the case where s_op->clear_inode is not been
1192 		 * called yet, and somebody is calling igrab
1193 		 * while the inode is getting freed.
1194 		 */
1195 		inode = NULL;
1196 	}
1197 	return inode;
1198 }
1199 EXPORT_SYMBOL(igrab);
1200 
1201 /**
1202  * ilookup5_nowait - search for an inode in the inode cache
1203  * @sb:		super block of file system to search
1204  * @hashval:	hash value (usually inode number) to search for
1205  * @test:	callback used for comparisons between inodes
1206  * @data:	opaque data pointer to pass to @test
1207  *
1208  * Search for the inode specified by @hashval and @data in the inode cache.
1209  * If the inode is in the cache, the inode is returned with an incremented
1210  * reference count.
1211  *
1212  * Note: I_NEW is not waited upon so you have to be very careful what you do
1213  * with the returned inode.  You probably should be using ilookup5() instead.
1214  *
1215  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1216  */
1217 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1218 		int (*test)(struct inode *, void *), void *data)
1219 {
1220 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1221 	struct inode *inode;
1222 
1223 	spin_lock(&inode_hash_lock);
1224 	inode = find_inode(sb, head, test, data);
1225 	spin_unlock(&inode_hash_lock);
1226 
1227 	return inode;
1228 }
1229 EXPORT_SYMBOL(ilookup5_nowait);
1230 
1231 /**
1232  * ilookup5 - search for an inode in the inode cache
1233  * @sb:		super block of file system to search
1234  * @hashval:	hash value (usually inode number) to search for
1235  * @test:	callback used for comparisons between inodes
1236  * @data:	opaque data pointer to pass to @test
1237  *
1238  * Search for the inode specified by @hashval and @data in the inode cache,
1239  * and if the inode is in the cache, return the inode with an incremented
1240  * reference count.  Waits on I_NEW before returning the inode.
1241  * returned with an incremented reference count.
1242  *
1243  * This is a generalized version of ilookup() for file systems where the
1244  * inode number is not sufficient for unique identification of an inode.
1245  *
1246  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1247  */
1248 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1249 		int (*test)(struct inode *, void *), void *data)
1250 {
1251 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1252 
1253 	if (inode)
1254 		wait_on_inode(inode);
1255 	return inode;
1256 }
1257 EXPORT_SYMBOL(ilookup5);
1258 
1259 /**
1260  * ilookup - search for an inode in the inode cache
1261  * @sb:		super block of file system to search
1262  * @ino:	inode number to search for
1263  *
1264  * Search for the inode @ino in the inode cache, and if the inode is in the
1265  * cache, the inode is returned with an incremented reference count.
1266  */
1267 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1268 {
1269 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 	struct inode *inode;
1271 
1272 	spin_lock(&inode_hash_lock);
1273 	inode = find_inode_fast(sb, head, ino);
1274 	spin_unlock(&inode_hash_lock);
1275 
1276 	if (inode)
1277 		wait_on_inode(inode);
1278 	return inode;
1279 }
1280 EXPORT_SYMBOL(ilookup);
1281 
1282 int insert_inode_locked(struct inode *inode)
1283 {
1284 	struct super_block *sb = inode->i_sb;
1285 	ino_t ino = inode->i_ino;
1286 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1287 
1288 	while (1) {
1289 		struct inode *old = NULL;
1290 		spin_lock(&inode_hash_lock);
1291 		hlist_for_each_entry(old, head, i_hash) {
1292 			if (old->i_ino != ino)
1293 				continue;
1294 			if (old->i_sb != sb)
1295 				continue;
1296 			spin_lock(&old->i_lock);
1297 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1298 				spin_unlock(&old->i_lock);
1299 				continue;
1300 			}
1301 			break;
1302 		}
1303 		if (likely(!old)) {
1304 			spin_lock(&inode->i_lock);
1305 			inode->i_state |= I_NEW;
1306 			hlist_add_head(&inode->i_hash, head);
1307 			spin_unlock(&inode->i_lock);
1308 			spin_unlock(&inode_hash_lock);
1309 			return 0;
1310 		}
1311 		__iget(old);
1312 		spin_unlock(&old->i_lock);
1313 		spin_unlock(&inode_hash_lock);
1314 		wait_on_inode(old);
1315 		if (unlikely(!inode_unhashed(old))) {
1316 			iput(old);
1317 			return -EBUSY;
1318 		}
1319 		iput(old);
1320 	}
1321 }
1322 EXPORT_SYMBOL(insert_inode_locked);
1323 
1324 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1325 		int (*test)(struct inode *, void *), void *data)
1326 {
1327 	struct super_block *sb = inode->i_sb;
1328 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1329 
1330 	while (1) {
1331 		struct inode *old = NULL;
1332 
1333 		spin_lock(&inode_hash_lock);
1334 		hlist_for_each_entry(old, head, i_hash) {
1335 			if (old->i_sb != sb)
1336 				continue;
1337 			if (!test(old, data))
1338 				continue;
1339 			spin_lock(&old->i_lock);
1340 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 				spin_unlock(&old->i_lock);
1342 				continue;
1343 			}
1344 			break;
1345 		}
1346 		if (likely(!old)) {
1347 			spin_lock(&inode->i_lock);
1348 			inode->i_state |= I_NEW;
1349 			hlist_add_head(&inode->i_hash, head);
1350 			spin_unlock(&inode->i_lock);
1351 			spin_unlock(&inode_hash_lock);
1352 			return 0;
1353 		}
1354 		__iget(old);
1355 		spin_unlock(&old->i_lock);
1356 		spin_unlock(&inode_hash_lock);
1357 		wait_on_inode(old);
1358 		if (unlikely(!inode_unhashed(old))) {
1359 			iput(old);
1360 			return -EBUSY;
1361 		}
1362 		iput(old);
1363 	}
1364 }
1365 EXPORT_SYMBOL(insert_inode_locked4);
1366 
1367 
1368 int generic_delete_inode(struct inode *inode)
1369 {
1370 	return 1;
1371 }
1372 EXPORT_SYMBOL(generic_delete_inode);
1373 
1374 /*
1375  * Called when we're dropping the last reference
1376  * to an inode.
1377  *
1378  * Call the FS "drop_inode()" function, defaulting to
1379  * the legacy UNIX filesystem behaviour.  If it tells
1380  * us to evict inode, do so.  Otherwise, retain inode
1381  * in cache if fs is alive, sync and evict if fs is
1382  * shutting down.
1383  */
1384 static void iput_final(struct inode *inode)
1385 {
1386 	struct super_block *sb = inode->i_sb;
1387 	const struct super_operations *op = inode->i_sb->s_op;
1388 	int drop;
1389 
1390 	WARN_ON(inode->i_state & I_NEW);
1391 
1392 	if (op->drop_inode)
1393 		drop = op->drop_inode(inode);
1394 	else
1395 		drop = generic_drop_inode(inode);
1396 
1397 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1398 		inode->i_state |= I_REFERENCED;
1399 		inode_add_lru(inode);
1400 		spin_unlock(&inode->i_lock);
1401 		return;
1402 	}
1403 
1404 	if (!drop) {
1405 		inode->i_state |= I_WILL_FREE;
1406 		spin_unlock(&inode->i_lock);
1407 		write_inode_now(inode, 1);
1408 		spin_lock(&inode->i_lock);
1409 		WARN_ON(inode->i_state & I_NEW);
1410 		inode->i_state &= ~I_WILL_FREE;
1411 	}
1412 
1413 	inode->i_state |= I_FREEING;
1414 	if (!list_empty(&inode->i_lru))
1415 		inode_lru_list_del(inode);
1416 	spin_unlock(&inode->i_lock);
1417 
1418 	evict(inode);
1419 }
1420 
1421 /**
1422  *	iput	- put an inode
1423  *	@inode: inode to put
1424  *
1425  *	Puts an inode, dropping its usage count. If the inode use count hits
1426  *	zero, the inode is then freed and may also be destroyed.
1427  *
1428  *	Consequently, iput() can sleep.
1429  */
1430 void iput(struct inode *inode)
1431 {
1432 	if (inode) {
1433 		BUG_ON(inode->i_state & I_CLEAR);
1434 
1435 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1436 			iput_final(inode);
1437 	}
1438 }
1439 EXPORT_SYMBOL(iput);
1440 
1441 /**
1442  *	bmap	- find a block number in a file
1443  *	@inode: inode of file
1444  *	@block: block to find
1445  *
1446  *	Returns the block number on the device holding the inode that
1447  *	is the disk block number for the block of the file requested.
1448  *	That is, asked for block 4 of inode 1 the function will return the
1449  *	disk block relative to the disk start that holds that block of the
1450  *	file.
1451  */
1452 sector_t bmap(struct inode *inode, sector_t block)
1453 {
1454 	sector_t res = 0;
1455 	if (inode->i_mapping->a_ops->bmap)
1456 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1457 	return res;
1458 }
1459 EXPORT_SYMBOL(bmap);
1460 
1461 /*
1462  * With relative atime, only update atime if the previous atime is
1463  * earlier than either the ctime or mtime or if at least a day has
1464  * passed since the last atime update.
1465  */
1466 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1467 			     struct timespec now)
1468 {
1469 
1470 	if (!(mnt->mnt_flags & MNT_RELATIME))
1471 		return 1;
1472 	/*
1473 	 * Is mtime younger than atime? If yes, update atime:
1474 	 */
1475 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1476 		return 1;
1477 	/*
1478 	 * Is ctime younger than atime? If yes, update atime:
1479 	 */
1480 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1481 		return 1;
1482 
1483 	/*
1484 	 * Is the previous atime value older than a day? If yes,
1485 	 * update atime:
1486 	 */
1487 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1488 		return 1;
1489 	/*
1490 	 * Good, we can skip the atime update:
1491 	 */
1492 	return 0;
1493 }
1494 
1495 /*
1496  * This does the actual work of updating an inodes time or version.  Must have
1497  * had called mnt_want_write() before calling this.
1498  */
1499 static int update_time(struct inode *inode, struct timespec *time, int flags)
1500 {
1501 	if (inode->i_op->update_time)
1502 		return inode->i_op->update_time(inode, time, flags);
1503 
1504 	if (flags & S_ATIME)
1505 		inode->i_atime = *time;
1506 	if (flags & S_VERSION)
1507 		inode_inc_iversion(inode);
1508 	if (flags & S_CTIME)
1509 		inode->i_ctime = *time;
1510 	if (flags & S_MTIME)
1511 		inode->i_mtime = *time;
1512 	mark_inode_dirty_sync(inode);
1513 	return 0;
1514 }
1515 
1516 /**
1517  *	touch_atime	-	update the access time
1518  *	@path: the &struct path to update
1519  *
1520  *	Update the accessed time on an inode and mark it for writeback.
1521  *	This function automatically handles read only file systems and media,
1522  *	as well as the "noatime" flag and inode specific "noatime" markers.
1523  */
1524 void touch_atime(const struct path *path)
1525 {
1526 	struct vfsmount *mnt = path->mnt;
1527 	struct inode *inode = path->dentry->d_inode;
1528 	struct timespec now;
1529 
1530 	if (inode->i_flags & S_NOATIME)
1531 		return;
1532 	if (IS_NOATIME(inode))
1533 		return;
1534 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1535 		return;
1536 
1537 	if (mnt->mnt_flags & MNT_NOATIME)
1538 		return;
1539 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1540 		return;
1541 
1542 	now = current_fs_time(inode->i_sb);
1543 
1544 	if (!relatime_need_update(mnt, inode, now))
1545 		return;
1546 
1547 	if (timespec_equal(&inode->i_atime, &now))
1548 		return;
1549 
1550 	if (!sb_start_write_trylock(inode->i_sb))
1551 		return;
1552 
1553 	if (__mnt_want_write(mnt))
1554 		goto skip_update;
1555 	/*
1556 	 * File systems can error out when updating inodes if they need to
1557 	 * allocate new space to modify an inode (such is the case for
1558 	 * Btrfs), but since we touch atime while walking down the path we
1559 	 * really don't care if we failed to update the atime of the file,
1560 	 * so just ignore the return value.
1561 	 * We may also fail on filesystems that have the ability to make parts
1562 	 * of the fs read only, e.g. subvolumes in Btrfs.
1563 	 */
1564 	update_time(inode, &now, S_ATIME);
1565 	__mnt_drop_write(mnt);
1566 skip_update:
1567 	sb_end_write(inode->i_sb);
1568 }
1569 EXPORT_SYMBOL(touch_atime);
1570 
1571 /*
1572  * The logic we want is
1573  *
1574  *	if suid or (sgid and xgrp)
1575  *		remove privs
1576  */
1577 int should_remove_suid(struct dentry *dentry)
1578 {
1579 	umode_t mode = dentry->d_inode->i_mode;
1580 	int kill = 0;
1581 
1582 	/* suid always must be killed */
1583 	if (unlikely(mode & S_ISUID))
1584 		kill = ATTR_KILL_SUID;
1585 
1586 	/*
1587 	 * sgid without any exec bits is just a mandatory locking mark; leave
1588 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1589 	 */
1590 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1591 		kill |= ATTR_KILL_SGID;
1592 
1593 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1594 		return kill;
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(should_remove_suid);
1599 
1600 static int __remove_suid(struct dentry *dentry, int kill)
1601 {
1602 	struct iattr newattrs;
1603 
1604 	newattrs.ia_valid = ATTR_FORCE | kill;
1605 	/*
1606 	 * Note we call this on write, so notify_change will not
1607 	 * encounter any conflicting delegations:
1608 	 */
1609 	return notify_change(dentry, &newattrs, NULL);
1610 }
1611 
1612 int file_remove_suid(struct file *file)
1613 {
1614 	struct dentry *dentry = file->f_path.dentry;
1615 	struct inode *inode = dentry->d_inode;
1616 	int killsuid;
1617 	int killpriv;
1618 	int error = 0;
1619 
1620 	/* Fast path for nothing security related */
1621 	if (IS_NOSEC(inode))
1622 		return 0;
1623 
1624 	killsuid = should_remove_suid(dentry);
1625 	killpriv = security_inode_need_killpriv(dentry);
1626 
1627 	if (killpriv < 0)
1628 		return killpriv;
1629 	if (killpriv)
1630 		error = security_inode_killpriv(dentry);
1631 	if (!error && killsuid)
1632 		error = __remove_suid(dentry, killsuid);
1633 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1634 		inode->i_flags |= S_NOSEC;
1635 
1636 	return error;
1637 }
1638 EXPORT_SYMBOL(file_remove_suid);
1639 
1640 /**
1641  *	file_update_time	-	update mtime and ctime time
1642  *	@file: file accessed
1643  *
1644  *	Update the mtime and ctime members of an inode and mark the inode
1645  *	for writeback.  Note that this function is meant exclusively for
1646  *	usage in the file write path of filesystems, and filesystems may
1647  *	choose to explicitly ignore update via this function with the
1648  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1649  *	timestamps are handled by the server.  This can return an error for
1650  *	file systems who need to allocate space in order to update an inode.
1651  */
1652 
1653 int file_update_time(struct file *file)
1654 {
1655 	struct inode *inode = file_inode(file);
1656 	struct timespec now;
1657 	int sync_it = 0;
1658 	int ret;
1659 
1660 	/* First try to exhaust all avenues to not sync */
1661 	if (IS_NOCMTIME(inode))
1662 		return 0;
1663 
1664 	now = current_fs_time(inode->i_sb);
1665 	if (!timespec_equal(&inode->i_mtime, &now))
1666 		sync_it = S_MTIME;
1667 
1668 	if (!timespec_equal(&inode->i_ctime, &now))
1669 		sync_it |= S_CTIME;
1670 
1671 	if (IS_I_VERSION(inode))
1672 		sync_it |= S_VERSION;
1673 
1674 	if (!sync_it)
1675 		return 0;
1676 
1677 	/* Finally allowed to write? Takes lock. */
1678 	if (__mnt_want_write_file(file))
1679 		return 0;
1680 
1681 	ret = update_time(inode, &now, sync_it);
1682 	__mnt_drop_write_file(file);
1683 
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL(file_update_time);
1687 
1688 int inode_needs_sync(struct inode *inode)
1689 {
1690 	if (IS_SYNC(inode))
1691 		return 1;
1692 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1693 		return 1;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(inode_needs_sync);
1697 
1698 int inode_wait(void *word)
1699 {
1700 	schedule();
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL(inode_wait);
1704 
1705 /*
1706  * If we try to find an inode in the inode hash while it is being
1707  * deleted, we have to wait until the filesystem completes its
1708  * deletion before reporting that it isn't found.  This function waits
1709  * until the deletion _might_ have completed.  Callers are responsible
1710  * to recheck inode state.
1711  *
1712  * It doesn't matter if I_NEW is not set initially, a call to
1713  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1714  * will DTRT.
1715  */
1716 static void __wait_on_freeing_inode(struct inode *inode)
1717 {
1718 	wait_queue_head_t *wq;
1719 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1720 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1721 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1722 	spin_unlock(&inode->i_lock);
1723 	spin_unlock(&inode_hash_lock);
1724 	schedule();
1725 	finish_wait(wq, &wait.wait);
1726 	spin_lock(&inode_hash_lock);
1727 }
1728 
1729 static __initdata unsigned long ihash_entries;
1730 static int __init set_ihash_entries(char *str)
1731 {
1732 	if (!str)
1733 		return 0;
1734 	ihash_entries = simple_strtoul(str, &str, 0);
1735 	return 1;
1736 }
1737 __setup("ihash_entries=", set_ihash_entries);
1738 
1739 /*
1740  * Initialize the waitqueues and inode hash table.
1741  */
1742 void __init inode_init_early(void)
1743 {
1744 	unsigned int loop;
1745 
1746 	/* If hashes are distributed across NUMA nodes, defer
1747 	 * hash allocation until vmalloc space is available.
1748 	 */
1749 	if (hashdist)
1750 		return;
1751 
1752 	inode_hashtable =
1753 		alloc_large_system_hash("Inode-cache",
1754 					sizeof(struct hlist_head),
1755 					ihash_entries,
1756 					14,
1757 					HASH_EARLY,
1758 					&i_hash_shift,
1759 					&i_hash_mask,
1760 					0,
1761 					0);
1762 
1763 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765 }
1766 
1767 void __init inode_init(void)
1768 {
1769 	unsigned int loop;
1770 
1771 	/* inode slab cache */
1772 	inode_cachep = kmem_cache_create("inode_cache",
1773 					 sizeof(struct inode),
1774 					 0,
1775 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1776 					 SLAB_MEM_SPREAD),
1777 					 init_once);
1778 
1779 	/* Hash may have been set up in inode_init_early */
1780 	if (!hashdist)
1781 		return;
1782 
1783 	inode_hashtable =
1784 		alloc_large_system_hash("Inode-cache",
1785 					sizeof(struct hlist_head),
1786 					ihash_entries,
1787 					14,
1788 					0,
1789 					&i_hash_shift,
1790 					&i_hash_mask,
1791 					0,
1792 					0);
1793 
1794 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1795 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1796 }
1797 
1798 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1799 {
1800 	inode->i_mode = mode;
1801 	if (S_ISCHR(mode)) {
1802 		inode->i_fop = &def_chr_fops;
1803 		inode->i_rdev = rdev;
1804 	} else if (S_ISBLK(mode)) {
1805 		inode->i_fop = &def_blk_fops;
1806 		inode->i_rdev = rdev;
1807 	} else if (S_ISFIFO(mode))
1808 		inode->i_fop = &pipefifo_fops;
1809 	else if (S_ISSOCK(mode))
1810 		inode->i_fop = &bad_sock_fops;
1811 	else
1812 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1813 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1814 				  inode->i_ino);
1815 }
1816 EXPORT_SYMBOL(init_special_inode);
1817 
1818 /**
1819  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1820  * @inode: New inode
1821  * @dir: Directory inode
1822  * @mode: mode of the new inode
1823  */
1824 void inode_init_owner(struct inode *inode, const struct inode *dir,
1825 			umode_t mode)
1826 {
1827 	inode->i_uid = current_fsuid();
1828 	if (dir && dir->i_mode & S_ISGID) {
1829 		inode->i_gid = dir->i_gid;
1830 		if (S_ISDIR(mode))
1831 			mode |= S_ISGID;
1832 	} else
1833 		inode->i_gid = current_fsgid();
1834 	inode->i_mode = mode;
1835 }
1836 EXPORT_SYMBOL(inode_init_owner);
1837 
1838 /**
1839  * inode_owner_or_capable - check current task permissions to inode
1840  * @inode: inode being checked
1841  *
1842  * Return true if current either has CAP_FOWNER in a namespace with the
1843  * inode owner uid mapped, or owns the file.
1844  */
1845 bool inode_owner_or_capable(const struct inode *inode)
1846 {
1847 	struct user_namespace *ns;
1848 
1849 	if (uid_eq(current_fsuid(), inode->i_uid))
1850 		return true;
1851 
1852 	ns = current_user_ns();
1853 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1854 		return true;
1855 	return false;
1856 }
1857 EXPORT_SYMBOL(inode_owner_or_capable);
1858 
1859 /*
1860  * Direct i/o helper functions
1861  */
1862 static void __inode_dio_wait(struct inode *inode)
1863 {
1864 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1865 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1866 
1867 	do {
1868 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1869 		if (atomic_read(&inode->i_dio_count))
1870 			schedule();
1871 	} while (atomic_read(&inode->i_dio_count));
1872 	finish_wait(wq, &q.wait);
1873 }
1874 
1875 /**
1876  * inode_dio_wait - wait for outstanding DIO requests to finish
1877  * @inode: inode to wait for
1878  *
1879  * Waits for all pending direct I/O requests to finish so that we can
1880  * proceed with a truncate or equivalent operation.
1881  *
1882  * Must be called under a lock that serializes taking new references
1883  * to i_dio_count, usually by inode->i_mutex.
1884  */
1885 void inode_dio_wait(struct inode *inode)
1886 {
1887 	if (atomic_read(&inode->i_dio_count))
1888 		__inode_dio_wait(inode);
1889 }
1890 EXPORT_SYMBOL(inode_dio_wait);
1891 
1892 /*
1893  * inode_dio_done - signal finish of a direct I/O requests
1894  * @inode: inode the direct I/O happens on
1895  *
1896  * This is called once we've finished processing a direct I/O request,
1897  * and is used to wake up callers waiting for direct I/O to be quiesced.
1898  */
1899 void inode_dio_done(struct inode *inode)
1900 {
1901 	if (atomic_dec_and_test(&inode->i_dio_count))
1902 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1903 }
1904 EXPORT_SYMBOL(inode_dio_done);
1905 
1906 /*
1907  * inode_set_flags - atomically set some inode flags
1908  *
1909  * Note: the caller should be holding i_mutex, or else be sure that
1910  * they have exclusive access to the inode structure (i.e., while the
1911  * inode is being instantiated).  The reason for the cmpxchg() loop
1912  * --- which wouldn't be necessary if all code paths which modify
1913  * i_flags actually followed this rule, is that there is at least one
1914  * code path which doesn't today --- for example,
1915  * __generic_file_aio_write() calls file_remove_suid() without holding
1916  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1917  *
1918  * In the long run, i_mutex is overkill, and we should probably look
1919  * at using the i_lock spinlock to protect i_flags, and then make sure
1920  * it is so documented in include/linux/fs.h and that all code follows
1921  * the locking convention!!
1922  */
1923 void inode_set_flags(struct inode *inode, unsigned int flags,
1924 		     unsigned int mask)
1925 {
1926 	unsigned int old_flags, new_flags;
1927 
1928 	WARN_ON_ONCE(flags & ~mask);
1929 	do {
1930 		old_flags = ACCESS_ONCE(inode->i_flags);
1931 		new_flags = (old_flags & ~mask) | flags;
1932 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1933 				  new_flags) != old_flags));
1934 }
1935 EXPORT_SYMBOL(inode_set_flags);
1936