1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static struct inode *alloc_inode(struct super_block *sb) 103 { 104 static const struct address_space_operations empty_aops; 105 static struct inode_operations empty_iops; 106 static const struct file_operations empty_fops; 107 struct inode *inode; 108 109 if (sb->s_op->alloc_inode) 110 inode = sb->s_op->alloc_inode(sb); 111 else 112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 113 114 if (inode) { 115 struct address_space * const mapping = &inode->i_data; 116 117 inode->i_sb = sb; 118 inode->i_blkbits = sb->s_blocksize_bits; 119 inode->i_flags = 0; 120 atomic_set(&inode->i_count, 1); 121 inode->i_op = &empty_iops; 122 inode->i_fop = &empty_fops; 123 inode->i_nlink = 1; 124 atomic_set(&inode->i_writecount, 0); 125 inode->i_size = 0; 126 inode->i_blocks = 0; 127 inode->i_bytes = 0; 128 inode->i_generation = 0; 129 #ifdef CONFIG_QUOTA 130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 131 #endif 132 inode->i_pipe = NULL; 133 inode->i_bdev = NULL; 134 inode->i_cdev = NULL; 135 inode->i_rdev = 0; 136 inode->dirtied_when = 0; 137 if (security_inode_alloc(inode)) { 138 if (inode->i_sb->s_op->destroy_inode) 139 inode->i_sb->s_op->destroy_inode(inode); 140 else 141 kmem_cache_free(inode_cachep, (inode)); 142 return NULL; 143 } 144 145 mapping->a_ops = &empty_aops; 146 mapping->host = inode; 147 mapping->flags = 0; 148 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 149 mapping->assoc_mapping = NULL; 150 mapping->backing_dev_info = &default_backing_dev_info; 151 152 /* 153 * If the block_device provides a backing_dev_info for client 154 * inodes then use that. Otherwise the inode share the bdev's 155 * backing_dev_info. 156 */ 157 if (sb->s_bdev) { 158 struct backing_dev_info *bdi; 159 160 bdi = sb->s_bdev->bd_inode_backing_dev_info; 161 if (!bdi) 162 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 163 mapping->backing_dev_info = bdi; 164 } 165 inode->i_private = NULL; 166 inode->i_mapping = mapping; 167 } 168 return inode; 169 } 170 171 void destroy_inode(struct inode *inode) 172 { 173 BUG_ON(inode_has_buffers(inode)); 174 security_inode_free(inode); 175 if (inode->i_sb->s_op->destroy_inode) 176 inode->i_sb->s_op->destroy_inode(inode); 177 else 178 kmem_cache_free(inode_cachep, (inode)); 179 } 180 181 182 /* 183 * These are initializations that only need to be done 184 * once, because the fields are idempotent across use 185 * of the inode, so let the slab aware of that. 186 */ 187 void inode_init_once(struct inode *inode) 188 { 189 memset(inode, 0, sizeof(*inode)); 190 INIT_HLIST_NODE(&inode->i_hash); 191 INIT_LIST_HEAD(&inode->i_dentry); 192 INIT_LIST_HEAD(&inode->i_devices); 193 mutex_init(&inode->i_mutex); 194 init_rwsem(&inode->i_alloc_sem); 195 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 196 rwlock_init(&inode->i_data.tree_lock); 197 spin_lock_init(&inode->i_data.i_mmap_lock); 198 INIT_LIST_HEAD(&inode->i_data.private_list); 199 spin_lock_init(&inode->i_data.private_lock); 200 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 201 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 202 spin_lock_init(&inode->i_lock); 203 i_size_ordered_init(inode); 204 #ifdef CONFIG_INOTIFY 205 INIT_LIST_HEAD(&inode->inotify_watches); 206 mutex_init(&inode->inotify_mutex); 207 #endif 208 } 209 210 EXPORT_SYMBOL(inode_init_once); 211 212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) 213 { 214 struct inode * inode = (struct inode *) foo; 215 216 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 217 SLAB_CTOR_CONSTRUCTOR) 218 inode_init_once(inode); 219 } 220 221 /* 222 * inode_lock must be held 223 */ 224 void __iget(struct inode * inode) 225 { 226 if (atomic_read(&inode->i_count)) { 227 atomic_inc(&inode->i_count); 228 return; 229 } 230 atomic_inc(&inode->i_count); 231 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 232 list_move(&inode->i_list, &inode_in_use); 233 inodes_stat.nr_unused--; 234 } 235 236 /** 237 * clear_inode - clear an inode 238 * @inode: inode to clear 239 * 240 * This is called by the filesystem to tell us 241 * that the inode is no longer useful. We just 242 * terminate it with extreme prejudice. 243 */ 244 void clear_inode(struct inode *inode) 245 { 246 might_sleep(); 247 invalidate_inode_buffers(inode); 248 249 BUG_ON(inode->i_data.nrpages); 250 BUG_ON(!(inode->i_state & I_FREEING)); 251 BUG_ON(inode->i_state & I_CLEAR); 252 wait_on_inode(inode); 253 DQUOT_DROP(inode); 254 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 255 inode->i_sb->s_op->clear_inode(inode); 256 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 257 bd_forget(inode); 258 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 259 cd_forget(inode); 260 inode->i_state = I_CLEAR; 261 } 262 263 EXPORT_SYMBOL(clear_inode); 264 265 /* 266 * dispose_list - dispose of the contents of a local list 267 * @head: the head of the list to free 268 * 269 * Dispose-list gets a local list with local inodes in it, so it doesn't 270 * need to worry about list corruption and SMP locks. 271 */ 272 static void dispose_list(struct list_head *head) 273 { 274 int nr_disposed = 0; 275 276 while (!list_empty(head)) { 277 struct inode *inode; 278 279 inode = list_entry(head->next, struct inode, i_list); 280 list_del(&inode->i_list); 281 282 if (inode->i_data.nrpages) 283 truncate_inode_pages(&inode->i_data, 0); 284 clear_inode(inode); 285 286 spin_lock(&inode_lock); 287 hlist_del_init(&inode->i_hash); 288 list_del_init(&inode->i_sb_list); 289 spin_unlock(&inode_lock); 290 291 wake_up_inode(inode); 292 destroy_inode(inode); 293 nr_disposed++; 294 } 295 spin_lock(&inode_lock); 296 inodes_stat.nr_inodes -= nr_disposed; 297 spin_unlock(&inode_lock); 298 } 299 300 /* 301 * Invalidate all inodes for a device. 302 */ 303 static int invalidate_list(struct list_head *head, struct list_head *dispose) 304 { 305 struct list_head *next; 306 int busy = 0, count = 0; 307 308 next = head->next; 309 for (;;) { 310 struct list_head * tmp = next; 311 struct inode * inode; 312 313 /* 314 * We can reschedule here without worrying about the list's 315 * consistency because the per-sb list of inodes must not 316 * change during umount anymore, and because iprune_mutex keeps 317 * shrink_icache_memory() away. 318 */ 319 cond_resched_lock(&inode_lock); 320 321 next = next->next; 322 if (tmp == head) 323 break; 324 inode = list_entry(tmp, struct inode, i_sb_list); 325 invalidate_inode_buffers(inode); 326 if (!atomic_read(&inode->i_count)) { 327 list_move(&inode->i_list, dispose); 328 inode->i_state |= I_FREEING; 329 count++; 330 continue; 331 } 332 busy = 1; 333 } 334 /* only unused inodes may be cached with i_count zero */ 335 inodes_stat.nr_unused -= count; 336 return busy; 337 } 338 339 /** 340 * invalidate_inodes - discard the inodes on a device 341 * @sb: superblock 342 * 343 * Discard all of the inodes for a given superblock. If the discard 344 * fails because there are busy inodes then a non zero value is returned. 345 * If the discard is successful all the inodes have been discarded. 346 */ 347 int invalidate_inodes(struct super_block * sb) 348 { 349 int busy; 350 LIST_HEAD(throw_away); 351 352 mutex_lock(&iprune_mutex); 353 spin_lock(&inode_lock); 354 inotify_unmount_inodes(&sb->s_inodes); 355 busy = invalidate_list(&sb->s_inodes, &throw_away); 356 spin_unlock(&inode_lock); 357 358 dispose_list(&throw_away); 359 mutex_unlock(&iprune_mutex); 360 361 return busy; 362 } 363 364 EXPORT_SYMBOL(invalidate_inodes); 365 366 static int can_unuse(struct inode *inode) 367 { 368 if (inode->i_state) 369 return 0; 370 if (inode_has_buffers(inode)) 371 return 0; 372 if (atomic_read(&inode->i_count)) 373 return 0; 374 if (inode->i_data.nrpages) 375 return 0; 376 return 1; 377 } 378 379 /* 380 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 381 * a temporary list and then are freed outside inode_lock by dispose_list(). 382 * 383 * Any inodes which are pinned purely because of attached pagecache have their 384 * pagecache removed. We expect the final iput() on that inode to add it to 385 * the front of the inode_unused list. So look for it there and if the 386 * inode is still freeable, proceed. The right inode is found 99.9% of the 387 * time in testing on a 4-way. 388 * 389 * If the inode has metadata buffers attached to mapping->private_list then 390 * try to remove them. 391 */ 392 static void prune_icache(int nr_to_scan) 393 { 394 LIST_HEAD(freeable); 395 int nr_pruned = 0; 396 int nr_scanned; 397 unsigned long reap = 0; 398 399 mutex_lock(&iprune_mutex); 400 spin_lock(&inode_lock); 401 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 402 struct inode *inode; 403 404 if (list_empty(&inode_unused)) 405 break; 406 407 inode = list_entry(inode_unused.prev, struct inode, i_list); 408 409 if (inode->i_state || atomic_read(&inode->i_count)) { 410 list_move(&inode->i_list, &inode_unused); 411 continue; 412 } 413 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 414 __iget(inode); 415 spin_unlock(&inode_lock); 416 if (remove_inode_buffers(inode)) 417 reap += invalidate_mapping_pages(&inode->i_data, 418 0, -1); 419 iput(inode); 420 spin_lock(&inode_lock); 421 422 if (inode != list_entry(inode_unused.next, 423 struct inode, i_list)) 424 continue; /* wrong inode or list_empty */ 425 if (!can_unuse(inode)) 426 continue; 427 } 428 list_move(&inode->i_list, &freeable); 429 inode->i_state |= I_FREEING; 430 nr_pruned++; 431 } 432 inodes_stat.nr_unused -= nr_pruned; 433 if (current_is_kswapd()) 434 __count_vm_events(KSWAPD_INODESTEAL, reap); 435 else 436 __count_vm_events(PGINODESTEAL, reap); 437 spin_unlock(&inode_lock); 438 439 dispose_list(&freeable); 440 mutex_unlock(&iprune_mutex); 441 } 442 443 /* 444 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 445 * "unused" means that no dentries are referring to the inodes: the files are 446 * not open and the dcache references to those inodes have already been 447 * reclaimed. 448 * 449 * This function is passed the number of inodes to scan, and it returns the 450 * total number of remaining possibly-reclaimable inodes. 451 */ 452 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 453 { 454 if (nr) { 455 /* 456 * Nasty deadlock avoidance. We may hold various FS locks, 457 * and we don't want to recurse into the FS that called us 458 * in clear_inode() and friends.. 459 */ 460 if (!(gfp_mask & __GFP_FS)) 461 return -1; 462 prune_icache(nr); 463 } 464 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 465 } 466 467 static void __wait_on_freeing_inode(struct inode *inode); 468 /* 469 * Called with the inode lock held. 470 * NOTE: we are not increasing the inode-refcount, you must call __iget() 471 * by hand after calling find_inode now! This simplifies iunique and won't 472 * add any additional branch in the common code. 473 */ 474 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 475 { 476 struct hlist_node *node; 477 struct inode * inode = NULL; 478 479 repeat: 480 hlist_for_each (node, head) { 481 inode = hlist_entry(node, struct inode, i_hash); 482 if (inode->i_sb != sb) 483 continue; 484 if (!test(inode, data)) 485 continue; 486 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 487 __wait_on_freeing_inode(inode); 488 goto repeat; 489 } 490 break; 491 } 492 return node ? inode : NULL; 493 } 494 495 /* 496 * find_inode_fast is the fast path version of find_inode, see the comment at 497 * iget_locked for details. 498 */ 499 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 500 { 501 struct hlist_node *node; 502 struct inode * inode = NULL; 503 504 repeat: 505 hlist_for_each (node, head) { 506 inode = hlist_entry(node, struct inode, i_hash); 507 if (inode->i_ino != ino) 508 continue; 509 if (inode->i_sb != sb) 510 continue; 511 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 512 __wait_on_freeing_inode(inode); 513 goto repeat; 514 } 515 break; 516 } 517 return node ? inode : NULL; 518 } 519 520 /** 521 * new_inode - obtain an inode 522 * @sb: superblock 523 * 524 * Allocates a new inode for given superblock. 525 */ 526 struct inode *new_inode(struct super_block *sb) 527 { 528 static unsigned long last_ino; 529 struct inode * inode; 530 531 spin_lock_prefetch(&inode_lock); 532 533 inode = alloc_inode(sb); 534 if (inode) { 535 spin_lock(&inode_lock); 536 inodes_stat.nr_inodes++; 537 list_add(&inode->i_list, &inode_in_use); 538 list_add(&inode->i_sb_list, &sb->s_inodes); 539 inode->i_ino = ++last_ino; 540 inode->i_state = 0; 541 spin_unlock(&inode_lock); 542 } 543 return inode; 544 } 545 546 EXPORT_SYMBOL(new_inode); 547 548 void unlock_new_inode(struct inode *inode) 549 { 550 /* 551 * This is special! We do not need the spinlock 552 * when clearing I_LOCK, because we're guaranteed 553 * that nobody else tries to do anything about the 554 * state of the inode when it is locked, as we 555 * just created it (so there can be no old holders 556 * that haven't tested I_LOCK). 557 */ 558 inode->i_state &= ~(I_LOCK|I_NEW); 559 wake_up_inode(inode); 560 } 561 562 EXPORT_SYMBOL(unlock_new_inode); 563 564 /* 565 * This is called without the inode lock held.. Be careful. 566 * 567 * We no longer cache the sb_flags in i_flags - see fs.h 568 * -- rmk@arm.uk.linux.org 569 */ 570 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 571 { 572 struct inode * inode; 573 574 inode = alloc_inode(sb); 575 if (inode) { 576 struct inode * old; 577 578 spin_lock(&inode_lock); 579 /* We released the lock, so.. */ 580 old = find_inode(sb, head, test, data); 581 if (!old) { 582 if (set(inode, data)) 583 goto set_failed; 584 585 inodes_stat.nr_inodes++; 586 list_add(&inode->i_list, &inode_in_use); 587 list_add(&inode->i_sb_list, &sb->s_inodes); 588 hlist_add_head(&inode->i_hash, head); 589 inode->i_state = I_LOCK|I_NEW; 590 spin_unlock(&inode_lock); 591 592 /* Return the locked inode with I_NEW set, the 593 * caller is responsible for filling in the contents 594 */ 595 return inode; 596 } 597 598 /* 599 * Uhhuh, somebody else created the same inode under 600 * us. Use the old inode instead of the one we just 601 * allocated. 602 */ 603 __iget(old); 604 spin_unlock(&inode_lock); 605 destroy_inode(inode); 606 inode = old; 607 wait_on_inode(inode); 608 } 609 return inode; 610 611 set_failed: 612 spin_unlock(&inode_lock); 613 destroy_inode(inode); 614 return NULL; 615 } 616 617 /* 618 * get_new_inode_fast is the fast path version of get_new_inode, see the 619 * comment at iget_locked for details. 620 */ 621 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 622 { 623 struct inode * inode; 624 625 inode = alloc_inode(sb); 626 if (inode) { 627 struct inode * old; 628 629 spin_lock(&inode_lock); 630 /* We released the lock, so.. */ 631 old = find_inode_fast(sb, head, ino); 632 if (!old) { 633 inode->i_ino = ino; 634 inodes_stat.nr_inodes++; 635 list_add(&inode->i_list, &inode_in_use); 636 list_add(&inode->i_sb_list, &sb->s_inodes); 637 hlist_add_head(&inode->i_hash, head); 638 inode->i_state = I_LOCK|I_NEW; 639 spin_unlock(&inode_lock); 640 641 /* Return the locked inode with I_NEW set, the 642 * caller is responsible for filling in the contents 643 */ 644 return inode; 645 } 646 647 /* 648 * Uhhuh, somebody else created the same inode under 649 * us. Use the old inode instead of the one we just 650 * allocated. 651 */ 652 __iget(old); 653 spin_unlock(&inode_lock); 654 destroy_inode(inode); 655 inode = old; 656 wait_on_inode(inode); 657 } 658 return inode; 659 } 660 661 static unsigned long hash(struct super_block *sb, unsigned long hashval) 662 { 663 unsigned long tmp; 664 665 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 666 L1_CACHE_BYTES; 667 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 668 return tmp & I_HASHMASK; 669 } 670 671 /** 672 * iunique - get a unique inode number 673 * @sb: superblock 674 * @max_reserved: highest reserved inode number 675 * 676 * Obtain an inode number that is unique on the system for a given 677 * superblock. This is used by file systems that have no natural 678 * permanent inode numbering system. An inode number is returned that 679 * is higher than the reserved limit but unique. 680 * 681 * BUGS: 682 * With a large number of inodes live on the file system this function 683 * currently becomes quite slow. 684 */ 685 ino_t iunique(struct super_block *sb, ino_t max_reserved) 686 { 687 static ino_t counter; 688 struct inode *inode; 689 struct hlist_head * head; 690 ino_t res; 691 spin_lock(&inode_lock); 692 retry: 693 if (counter > max_reserved) { 694 head = inode_hashtable + hash(sb,counter); 695 res = counter++; 696 inode = find_inode_fast(sb, head, res); 697 if (!inode) { 698 spin_unlock(&inode_lock); 699 return res; 700 } 701 } else { 702 counter = max_reserved + 1; 703 } 704 goto retry; 705 706 } 707 708 EXPORT_SYMBOL(iunique); 709 710 struct inode *igrab(struct inode *inode) 711 { 712 spin_lock(&inode_lock); 713 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 714 __iget(inode); 715 else 716 /* 717 * Handle the case where s_op->clear_inode is not been 718 * called yet, and somebody is calling igrab 719 * while the inode is getting freed. 720 */ 721 inode = NULL; 722 spin_unlock(&inode_lock); 723 return inode; 724 } 725 726 EXPORT_SYMBOL(igrab); 727 728 /** 729 * ifind - internal function, you want ilookup5() or iget5(). 730 * @sb: super block of file system to search 731 * @head: the head of the list to search 732 * @test: callback used for comparisons between inodes 733 * @data: opaque data pointer to pass to @test 734 * @wait: if true wait for the inode to be unlocked, if false do not 735 * 736 * ifind() searches for the inode specified by @data in the inode 737 * cache. This is a generalized version of ifind_fast() for file systems where 738 * the inode number is not sufficient for unique identification of an inode. 739 * 740 * If the inode is in the cache, the inode is returned with an incremented 741 * reference count. 742 * 743 * Otherwise NULL is returned. 744 * 745 * Note, @test is called with the inode_lock held, so can't sleep. 746 */ 747 static struct inode *ifind(struct super_block *sb, 748 struct hlist_head *head, int (*test)(struct inode *, void *), 749 void *data, const int wait) 750 { 751 struct inode *inode; 752 753 spin_lock(&inode_lock); 754 inode = find_inode(sb, head, test, data); 755 if (inode) { 756 __iget(inode); 757 spin_unlock(&inode_lock); 758 if (likely(wait)) 759 wait_on_inode(inode); 760 return inode; 761 } 762 spin_unlock(&inode_lock); 763 return NULL; 764 } 765 766 /** 767 * ifind_fast - internal function, you want ilookup() or iget(). 768 * @sb: super block of file system to search 769 * @head: head of the list to search 770 * @ino: inode number to search for 771 * 772 * ifind_fast() searches for the inode @ino in the inode cache. This is for 773 * file systems where the inode number is sufficient for unique identification 774 * of an inode. 775 * 776 * If the inode is in the cache, the inode is returned with an incremented 777 * reference count. 778 * 779 * Otherwise NULL is returned. 780 */ 781 static struct inode *ifind_fast(struct super_block *sb, 782 struct hlist_head *head, unsigned long ino) 783 { 784 struct inode *inode; 785 786 spin_lock(&inode_lock); 787 inode = find_inode_fast(sb, head, ino); 788 if (inode) { 789 __iget(inode); 790 spin_unlock(&inode_lock); 791 wait_on_inode(inode); 792 return inode; 793 } 794 spin_unlock(&inode_lock); 795 return NULL; 796 } 797 798 /** 799 * ilookup5_nowait - search for an inode in the inode cache 800 * @sb: super block of file system to search 801 * @hashval: hash value (usually inode number) to search for 802 * @test: callback used for comparisons between inodes 803 * @data: opaque data pointer to pass to @test 804 * 805 * ilookup5() uses ifind() to search for the inode specified by @hashval and 806 * @data in the inode cache. This is a generalized version of ilookup() for 807 * file systems where the inode number is not sufficient for unique 808 * identification of an inode. 809 * 810 * If the inode is in the cache, the inode is returned with an incremented 811 * reference count. Note, the inode lock is not waited upon so you have to be 812 * very careful what you do with the returned inode. You probably should be 813 * using ilookup5() instead. 814 * 815 * Otherwise NULL is returned. 816 * 817 * Note, @test is called with the inode_lock held, so can't sleep. 818 */ 819 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 820 int (*test)(struct inode *, void *), void *data) 821 { 822 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 823 824 return ifind(sb, head, test, data, 0); 825 } 826 827 EXPORT_SYMBOL(ilookup5_nowait); 828 829 /** 830 * ilookup5 - search for an inode in the inode cache 831 * @sb: super block of file system to search 832 * @hashval: hash value (usually inode number) to search for 833 * @test: callback used for comparisons between inodes 834 * @data: opaque data pointer to pass to @test 835 * 836 * ilookup5() uses ifind() to search for the inode specified by @hashval and 837 * @data in the inode cache. This is a generalized version of ilookup() for 838 * file systems where the inode number is not sufficient for unique 839 * identification of an inode. 840 * 841 * If the inode is in the cache, the inode lock is waited upon and the inode is 842 * returned with an incremented reference count. 843 * 844 * Otherwise NULL is returned. 845 * 846 * Note, @test is called with the inode_lock held, so can't sleep. 847 */ 848 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 849 int (*test)(struct inode *, void *), void *data) 850 { 851 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 852 853 return ifind(sb, head, test, data, 1); 854 } 855 856 EXPORT_SYMBOL(ilookup5); 857 858 /** 859 * ilookup - search for an inode in the inode cache 860 * @sb: super block of file system to search 861 * @ino: inode number to search for 862 * 863 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 864 * This is for file systems where the inode number is sufficient for unique 865 * identification of an inode. 866 * 867 * If the inode is in the cache, the inode is returned with an incremented 868 * reference count. 869 * 870 * Otherwise NULL is returned. 871 */ 872 struct inode *ilookup(struct super_block *sb, unsigned long ino) 873 { 874 struct hlist_head *head = inode_hashtable + hash(sb, ino); 875 876 return ifind_fast(sb, head, ino); 877 } 878 879 EXPORT_SYMBOL(ilookup); 880 881 /** 882 * iget5_locked - obtain an inode from a mounted file system 883 * @sb: super block of file system 884 * @hashval: hash value (usually inode number) to get 885 * @test: callback used for comparisons between inodes 886 * @set: callback used to initialize a new struct inode 887 * @data: opaque data pointer to pass to @test and @set 888 * 889 * This is iget() without the read_inode() portion of get_new_inode(). 890 * 891 * iget5_locked() uses ifind() to search for the inode specified by @hashval 892 * and @data in the inode cache and if present it is returned with an increased 893 * reference count. This is a generalized version of iget_locked() for file 894 * systems where the inode number is not sufficient for unique identification 895 * of an inode. 896 * 897 * If the inode is not in cache, get_new_inode() is called to allocate a new 898 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 899 * file system gets to fill it in before unlocking it via unlock_new_inode(). 900 * 901 * Note both @test and @set are called with the inode_lock held, so can't sleep. 902 */ 903 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 904 int (*test)(struct inode *, void *), 905 int (*set)(struct inode *, void *), void *data) 906 { 907 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 908 struct inode *inode; 909 910 inode = ifind(sb, head, test, data, 1); 911 if (inode) 912 return inode; 913 /* 914 * get_new_inode() will do the right thing, re-trying the search 915 * in case it had to block at any point. 916 */ 917 return get_new_inode(sb, head, test, set, data); 918 } 919 920 EXPORT_SYMBOL(iget5_locked); 921 922 /** 923 * iget_locked - obtain an inode from a mounted file system 924 * @sb: super block of file system 925 * @ino: inode number to get 926 * 927 * This is iget() without the read_inode() portion of get_new_inode_fast(). 928 * 929 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 930 * the inode cache and if present it is returned with an increased reference 931 * count. This is for file systems where the inode number is sufficient for 932 * unique identification of an inode. 933 * 934 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 935 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 936 * The file system gets to fill it in before unlocking it via 937 * unlock_new_inode(). 938 */ 939 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 940 { 941 struct hlist_head *head = inode_hashtable + hash(sb, ino); 942 struct inode *inode; 943 944 inode = ifind_fast(sb, head, ino); 945 if (inode) 946 return inode; 947 /* 948 * get_new_inode_fast() will do the right thing, re-trying the search 949 * in case it had to block at any point. 950 */ 951 return get_new_inode_fast(sb, head, ino); 952 } 953 954 EXPORT_SYMBOL(iget_locked); 955 956 /** 957 * __insert_inode_hash - hash an inode 958 * @inode: unhashed inode 959 * @hashval: unsigned long value used to locate this object in the 960 * inode_hashtable. 961 * 962 * Add an inode to the inode hash for this superblock. 963 */ 964 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 965 { 966 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 967 spin_lock(&inode_lock); 968 hlist_add_head(&inode->i_hash, head); 969 spin_unlock(&inode_lock); 970 } 971 972 EXPORT_SYMBOL(__insert_inode_hash); 973 974 /** 975 * remove_inode_hash - remove an inode from the hash 976 * @inode: inode to unhash 977 * 978 * Remove an inode from the superblock. 979 */ 980 void remove_inode_hash(struct inode *inode) 981 { 982 spin_lock(&inode_lock); 983 hlist_del_init(&inode->i_hash); 984 spin_unlock(&inode_lock); 985 } 986 987 EXPORT_SYMBOL(remove_inode_hash); 988 989 /* 990 * Tell the filesystem that this inode is no longer of any interest and should 991 * be completely destroyed. 992 * 993 * We leave the inode in the inode hash table until *after* the filesystem's 994 * ->delete_inode completes. This ensures that an iget (such as nfsd might 995 * instigate) will always find up-to-date information either in the hash or on 996 * disk. 997 * 998 * I_FREEING is set so that no-one will take a new reference to the inode while 999 * it is being deleted. 1000 */ 1001 void generic_delete_inode(struct inode *inode) 1002 { 1003 const struct super_operations *op = inode->i_sb->s_op; 1004 1005 list_del_init(&inode->i_list); 1006 list_del_init(&inode->i_sb_list); 1007 inode->i_state |= I_FREEING; 1008 inodes_stat.nr_inodes--; 1009 spin_unlock(&inode_lock); 1010 1011 security_inode_delete(inode); 1012 1013 if (op->delete_inode) { 1014 void (*delete)(struct inode *) = op->delete_inode; 1015 if (!is_bad_inode(inode)) 1016 DQUOT_INIT(inode); 1017 /* Filesystems implementing their own 1018 * s_op->delete_inode are required to call 1019 * truncate_inode_pages and clear_inode() 1020 * internally */ 1021 delete(inode); 1022 } else { 1023 truncate_inode_pages(&inode->i_data, 0); 1024 clear_inode(inode); 1025 } 1026 spin_lock(&inode_lock); 1027 hlist_del_init(&inode->i_hash); 1028 spin_unlock(&inode_lock); 1029 wake_up_inode(inode); 1030 BUG_ON(inode->i_state != I_CLEAR); 1031 destroy_inode(inode); 1032 } 1033 1034 EXPORT_SYMBOL(generic_delete_inode); 1035 1036 static void generic_forget_inode(struct inode *inode) 1037 { 1038 struct super_block *sb = inode->i_sb; 1039 1040 if (!hlist_unhashed(&inode->i_hash)) { 1041 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1042 list_move(&inode->i_list, &inode_unused); 1043 inodes_stat.nr_unused++; 1044 if (!sb || (sb->s_flags & MS_ACTIVE)) { 1045 spin_unlock(&inode_lock); 1046 return; 1047 } 1048 inode->i_state |= I_WILL_FREE; 1049 spin_unlock(&inode_lock); 1050 write_inode_now(inode, 1); 1051 spin_lock(&inode_lock); 1052 inode->i_state &= ~I_WILL_FREE; 1053 inodes_stat.nr_unused--; 1054 hlist_del_init(&inode->i_hash); 1055 } 1056 list_del_init(&inode->i_list); 1057 list_del_init(&inode->i_sb_list); 1058 inode->i_state |= I_FREEING; 1059 inodes_stat.nr_inodes--; 1060 spin_unlock(&inode_lock); 1061 if (inode->i_data.nrpages) 1062 truncate_inode_pages(&inode->i_data, 0); 1063 clear_inode(inode); 1064 wake_up_inode(inode); 1065 destroy_inode(inode); 1066 } 1067 1068 /* 1069 * Normal UNIX filesystem behaviour: delete the 1070 * inode when the usage count drops to zero, and 1071 * i_nlink is zero. 1072 */ 1073 void generic_drop_inode(struct inode *inode) 1074 { 1075 if (!inode->i_nlink) 1076 generic_delete_inode(inode); 1077 else 1078 generic_forget_inode(inode); 1079 } 1080 1081 EXPORT_SYMBOL_GPL(generic_drop_inode); 1082 1083 /* 1084 * Called when we're dropping the last reference 1085 * to an inode. 1086 * 1087 * Call the FS "drop()" function, defaulting to 1088 * the legacy UNIX filesystem behaviour.. 1089 * 1090 * NOTE! NOTE! NOTE! We're called with the inode lock 1091 * held, and the drop function is supposed to release 1092 * the lock! 1093 */ 1094 static inline void iput_final(struct inode *inode) 1095 { 1096 const struct super_operations *op = inode->i_sb->s_op; 1097 void (*drop)(struct inode *) = generic_drop_inode; 1098 1099 if (op && op->drop_inode) 1100 drop = op->drop_inode; 1101 drop(inode); 1102 } 1103 1104 /** 1105 * iput - put an inode 1106 * @inode: inode to put 1107 * 1108 * Puts an inode, dropping its usage count. If the inode use count hits 1109 * zero, the inode is then freed and may also be destroyed. 1110 * 1111 * Consequently, iput() can sleep. 1112 */ 1113 void iput(struct inode *inode) 1114 { 1115 if (inode) { 1116 const struct super_operations *op = inode->i_sb->s_op; 1117 1118 BUG_ON(inode->i_state == I_CLEAR); 1119 1120 if (op && op->put_inode) 1121 op->put_inode(inode); 1122 1123 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1124 iput_final(inode); 1125 } 1126 } 1127 1128 EXPORT_SYMBOL(iput); 1129 1130 /** 1131 * bmap - find a block number in a file 1132 * @inode: inode of file 1133 * @block: block to find 1134 * 1135 * Returns the block number on the device holding the inode that 1136 * is the disk block number for the block of the file requested. 1137 * That is, asked for block 4 of inode 1 the function will return the 1138 * disk block relative to the disk start that holds that block of the 1139 * file. 1140 */ 1141 sector_t bmap(struct inode * inode, sector_t block) 1142 { 1143 sector_t res = 0; 1144 if (inode->i_mapping->a_ops->bmap) 1145 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1146 return res; 1147 } 1148 EXPORT_SYMBOL(bmap); 1149 1150 /** 1151 * touch_atime - update the access time 1152 * @mnt: mount the inode is accessed on 1153 * @dentry: dentry accessed 1154 * 1155 * Update the accessed time on an inode and mark it for writeback. 1156 * This function automatically handles read only file systems and media, 1157 * as well as the "noatime" flag and inode specific "noatime" markers. 1158 */ 1159 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1160 { 1161 struct inode *inode = dentry->d_inode; 1162 struct timespec now; 1163 1164 if (inode->i_flags & S_NOATIME) 1165 return; 1166 if (IS_NOATIME(inode)) 1167 return; 1168 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1169 return; 1170 1171 /* 1172 * We may have a NULL vfsmount when coming from NFSD 1173 */ 1174 if (mnt) { 1175 if (mnt->mnt_flags & MNT_NOATIME) 1176 return; 1177 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1178 return; 1179 1180 if (mnt->mnt_flags & MNT_RELATIME) { 1181 /* 1182 * With relative atime, only update atime if the 1183 * previous atime is earlier than either the ctime or 1184 * mtime. 1185 */ 1186 if (timespec_compare(&inode->i_mtime, 1187 &inode->i_atime) < 0 && 1188 timespec_compare(&inode->i_ctime, 1189 &inode->i_atime) < 0) 1190 return; 1191 } 1192 } 1193 1194 now = current_fs_time(inode->i_sb); 1195 if (timespec_equal(&inode->i_atime, &now)) 1196 return; 1197 1198 inode->i_atime = now; 1199 mark_inode_dirty_sync(inode); 1200 } 1201 EXPORT_SYMBOL(touch_atime); 1202 1203 /** 1204 * file_update_time - update mtime and ctime time 1205 * @file: file accessed 1206 * 1207 * Update the mtime and ctime members of an inode and mark the inode 1208 * for writeback. Note that this function is meant exclusively for 1209 * usage in the file write path of filesystems, and filesystems may 1210 * choose to explicitly ignore update via this function with the 1211 * S_NOCTIME inode flag, e.g. for network filesystem where these 1212 * timestamps are handled by the server. 1213 */ 1214 1215 void file_update_time(struct file *file) 1216 { 1217 struct inode *inode = file->f_path.dentry->d_inode; 1218 struct timespec now; 1219 int sync_it = 0; 1220 1221 if (IS_NOCMTIME(inode)) 1222 return; 1223 if (IS_RDONLY(inode)) 1224 return; 1225 1226 now = current_fs_time(inode->i_sb); 1227 if (!timespec_equal(&inode->i_mtime, &now)) { 1228 inode->i_mtime = now; 1229 sync_it = 1; 1230 } 1231 1232 if (!timespec_equal(&inode->i_ctime, &now)) { 1233 inode->i_ctime = now; 1234 sync_it = 1; 1235 } 1236 1237 if (sync_it) 1238 mark_inode_dirty_sync(inode); 1239 } 1240 1241 EXPORT_SYMBOL(file_update_time); 1242 1243 int inode_needs_sync(struct inode *inode) 1244 { 1245 if (IS_SYNC(inode)) 1246 return 1; 1247 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1248 return 1; 1249 return 0; 1250 } 1251 1252 EXPORT_SYMBOL(inode_needs_sync); 1253 1254 int inode_wait(void *word) 1255 { 1256 schedule(); 1257 return 0; 1258 } 1259 1260 /* 1261 * If we try to find an inode in the inode hash while it is being 1262 * deleted, we have to wait until the filesystem completes its 1263 * deletion before reporting that it isn't found. This function waits 1264 * until the deletion _might_ have completed. Callers are responsible 1265 * to recheck inode state. 1266 * 1267 * It doesn't matter if I_LOCK is not set initially, a call to 1268 * wake_up_inode() after removing from the hash list will DTRT. 1269 * 1270 * This is called with inode_lock held. 1271 */ 1272 static void __wait_on_freeing_inode(struct inode *inode) 1273 { 1274 wait_queue_head_t *wq; 1275 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1276 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1277 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1278 spin_unlock(&inode_lock); 1279 schedule(); 1280 finish_wait(wq, &wait.wait); 1281 spin_lock(&inode_lock); 1282 } 1283 1284 void wake_up_inode(struct inode *inode) 1285 { 1286 /* 1287 * Prevent speculative execution through spin_unlock(&inode_lock); 1288 */ 1289 smp_mb(); 1290 wake_up_bit(&inode->i_state, __I_LOCK); 1291 } 1292 1293 /* 1294 * We rarely want to lock two inodes that do not have a parent/child 1295 * relationship (such as directory, child inode) simultaneously. The 1296 * vast majority of file systems should be able to get along fine 1297 * without this. Do not use these functions except as a last resort. 1298 */ 1299 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1300 { 1301 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1302 if (inode1) 1303 mutex_lock(&inode1->i_mutex); 1304 else if (inode2) 1305 mutex_lock(&inode2->i_mutex); 1306 return; 1307 } 1308 1309 if (inode1 < inode2) { 1310 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1311 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1312 } else { 1313 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1314 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1315 } 1316 } 1317 EXPORT_SYMBOL(inode_double_lock); 1318 1319 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1320 { 1321 if (inode1) 1322 mutex_unlock(&inode1->i_mutex); 1323 1324 if (inode2 && inode2 != inode1) 1325 mutex_unlock(&inode2->i_mutex); 1326 } 1327 EXPORT_SYMBOL(inode_double_unlock); 1328 1329 static __initdata unsigned long ihash_entries; 1330 static int __init set_ihash_entries(char *str) 1331 { 1332 if (!str) 1333 return 0; 1334 ihash_entries = simple_strtoul(str, &str, 0); 1335 return 1; 1336 } 1337 __setup("ihash_entries=", set_ihash_entries); 1338 1339 /* 1340 * Initialize the waitqueues and inode hash table. 1341 */ 1342 void __init inode_init_early(void) 1343 { 1344 int loop; 1345 1346 /* If hashes are distributed across NUMA nodes, defer 1347 * hash allocation until vmalloc space is available. 1348 */ 1349 if (hashdist) 1350 return; 1351 1352 inode_hashtable = 1353 alloc_large_system_hash("Inode-cache", 1354 sizeof(struct hlist_head), 1355 ihash_entries, 1356 14, 1357 HASH_EARLY, 1358 &i_hash_shift, 1359 &i_hash_mask, 1360 0); 1361 1362 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1363 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1364 } 1365 1366 void __init inode_init(unsigned long mempages) 1367 { 1368 int loop; 1369 1370 /* inode slab cache */ 1371 inode_cachep = kmem_cache_create("inode_cache", 1372 sizeof(struct inode), 1373 0, 1374 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1375 SLAB_MEM_SPREAD), 1376 init_once, 1377 NULL); 1378 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1379 1380 /* Hash may have been set up in inode_init_early */ 1381 if (!hashdist) 1382 return; 1383 1384 inode_hashtable = 1385 alloc_large_system_hash("Inode-cache", 1386 sizeof(struct hlist_head), 1387 ihash_entries, 1388 14, 1389 0, 1390 &i_hash_shift, 1391 &i_hash_mask, 1392 0); 1393 1394 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1395 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1396 } 1397 1398 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1399 { 1400 inode->i_mode = mode; 1401 if (S_ISCHR(mode)) { 1402 inode->i_fop = &def_chr_fops; 1403 inode->i_rdev = rdev; 1404 } else if (S_ISBLK(mode)) { 1405 inode->i_fop = &def_blk_fops; 1406 inode->i_rdev = rdev; 1407 } else if (S_ISFIFO(mode)) 1408 inode->i_fop = &def_fifo_fops; 1409 else if (S_ISSOCK(mode)) 1410 inode->i_fop = &bad_sock_fops; 1411 else 1412 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1413 mode); 1414 } 1415 EXPORT_SYMBOL(init_special_inode); 1416