xref: /linux/fs/inode.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static const struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static const struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->dirtied_when = 0;
137 		if (security_inode_alloc(inode)) {
138 			if (inode->i_sb->s_op->destroy_inode)
139 				inode->i_sb->s_op->destroy_inode(inode);
140 			else
141 				kmem_cache_free(inode_cachep, (inode));
142 			return NULL;
143 		}
144 
145 		mapping->a_ops = &empty_aops;
146  		mapping->host = inode;
147 		mapping->flags = 0;
148 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 		mapping->assoc_mapping = NULL;
150 		mapping->backing_dev_info = &default_backing_dev_info;
151 
152 		/*
153 		 * If the block_device provides a backing_dev_info for client
154 		 * inodes then use that.  Otherwise the inode share the bdev's
155 		 * backing_dev_info.
156 		 */
157 		if (sb->s_bdev) {
158 			struct backing_dev_info *bdi;
159 
160 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
161 			if (!bdi)
162 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 			mapping->backing_dev_info = bdi;
164 		}
165 		inode->i_private = NULL;
166 		inode->i_mapping = mapping;
167 	}
168 	return inode;
169 }
170 
171 void destroy_inode(struct inode *inode)
172 {
173 	BUG_ON(inode_has_buffers(inode));
174 	security_inode_free(inode);
175 	if (inode->i_sb->s_op->destroy_inode)
176 		inode->i_sb->s_op->destroy_inode(inode);
177 	else
178 		kmem_cache_free(inode_cachep, (inode));
179 }
180 
181 
182 /*
183  * These are initializations that only need to be done
184  * once, because the fields are idempotent across use
185  * of the inode, so let the slab aware of that.
186  */
187 void inode_init_once(struct inode *inode)
188 {
189 	memset(inode, 0, sizeof(*inode));
190 	INIT_HLIST_NODE(&inode->i_hash);
191 	INIT_LIST_HEAD(&inode->i_dentry);
192 	INIT_LIST_HEAD(&inode->i_devices);
193 	mutex_init(&inode->i_mutex);
194 	init_rwsem(&inode->i_alloc_sem);
195 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
196 	rwlock_init(&inode->i_data.tree_lock);
197 	spin_lock_init(&inode->i_data.i_mmap_lock);
198 	INIT_LIST_HEAD(&inode->i_data.private_list);
199 	spin_lock_init(&inode->i_data.private_lock);
200 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
201 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
202 	spin_lock_init(&inode->i_lock);
203 	i_size_ordered_init(inode);
204 #ifdef CONFIG_INOTIFY
205 	INIT_LIST_HEAD(&inode->inotify_watches);
206 	mutex_init(&inode->inotify_mutex);
207 #endif
208 }
209 
210 EXPORT_SYMBOL(inode_init_once);
211 
212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
213 {
214 	struct inode * inode = (struct inode *) foo;
215 
216 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
217 	    SLAB_CTOR_CONSTRUCTOR)
218 		inode_init_once(inode);
219 }
220 
221 /*
222  * inode_lock must be held
223  */
224 void __iget(struct inode * inode)
225 {
226 	if (atomic_read(&inode->i_count)) {
227 		atomic_inc(&inode->i_count);
228 		return;
229 	}
230 	atomic_inc(&inode->i_count);
231 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
232 		list_move(&inode->i_list, &inode_in_use);
233 	inodes_stat.nr_unused--;
234 }
235 
236 /**
237  * clear_inode - clear an inode
238  * @inode: inode to clear
239  *
240  * This is called by the filesystem to tell us
241  * that the inode is no longer useful. We just
242  * terminate it with extreme prejudice.
243  */
244 void clear_inode(struct inode *inode)
245 {
246 	might_sleep();
247 	invalidate_inode_buffers(inode);
248 
249 	BUG_ON(inode->i_data.nrpages);
250 	BUG_ON(!(inode->i_state & I_FREEING));
251 	BUG_ON(inode->i_state & I_CLEAR);
252 	wait_on_inode(inode);
253 	DQUOT_DROP(inode);
254 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
255 		inode->i_sb->s_op->clear_inode(inode);
256 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
257 		bd_forget(inode);
258 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
259 		cd_forget(inode);
260 	inode->i_state = I_CLEAR;
261 }
262 
263 EXPORT_SYMBOL(clear_inode);
264 
265 /*
266  * dispose_list - dispose of the contents of a local list
267  * @head: the head of the list to free
268  *
269  * Dispose-list gets a local list with local inodes in it, so it doesn't
270  * need to worry about list corruption and SMP locks.
271  */
272 static void dispose_list(struct list_head *head)
273 {
274 	int nr_disposed = 0;
275 
276 	while (!list_empty(head)) {
277 		struct inode *inode;
278 
279 		inode = list_entry(head->next, struct inode, i_list);
280 		list_del(&inode->i_list);
281 
282 		if (inode->i_data.nrpages)
283 			truncate_inode_pages(&inode->i_data, 0);
284 		clear_inode(inode);
285 
286 		spin_lock(&inode_lock);
287 		hlist_del_init(&inode->i_hash);
288 		list_del_init(&inode->i_sb_list);
289 		spin_unlock(&inode_lock);
290 
291 		wake_up_inode(inode);
292 		destroy_inode(inode);
293 		nr_disposed++;
294 	}
295 	spin_lock(&inode_lock);
296 	inodes_stat.nr_inodes -= nr_disposed;
297 	spin_unlock(&inode_lock);
298 }
299 
300 /*
301  * Invalidate all inodes for a device.
302  */
303 static int invalidate_list(struct list_head *head, struct list_head *dispose)
304 {
305 	struct list_head *next;
306 	int busy = 0, count = 0;
307 
308 	next = head->next;
309 	for (;;) {
310 		struct list_head * tmp = next;
311 		struct inode * inode;
312 
313 		/*
314 		 * We can reschedule here without worrying about the list's
315 		 * consistency because the per-sb list of inodes must not
316 		 * change during umount anymore, and because iprune_mutex keeps
317 		 * shrink_icache_memory() away.
318 		 */
319 		cond_resched_lock(&inode_lock);
320 
321 		next = next->next;
322 		if (tmp == head)
323 			break;
324 		inode = list_entry(tmp, struct inode, i_sb_list);
325 		invalidate_inode_buffers(inode);
326 		if (!atomic_read(&inode->i_count)) {
327 			list_move(&inode->i_list, dispose);
328 			inode->i_state |= I_FREEING;
329 			count++;
330 			continue;
331 		}
332 		busy = 1;
333 	}
334 	/* only unused inodes may be cached with i_count zero */
335 	inodes_stat.nr_unused -= count;
336 	return busy;
337 }
338 
339 /**
340  *	invalidate_inodes	- discard the inodes on a device
341  *	@sb: superblock
342  *
343  *	Discard all of the inodes for a given superblock. If the discard
344  *	fails because there are busy inodes then a non zero value is returned.
345  *	If the discard is successful all the inodes have been discarded.
346  */
347 int invalidate_inodes(struct super_block * sb)
348 {
349 	int busy;
350 	LIST_HEAD(throw_away);
351 
352 	mutex_lock(&iprune_mutex);
353 	spin_lock(&inode_lock);
354 	inotify_unmount_inodes(&sb->s_inodes);
355 	busy = invalidate_list(&sb->s_inodes, &throw_away);
356 	spin_unlock(&inode_lock);
357 
358 	dispose_list(&throw_away);
359 	mutex_unlock(&iprune_mutex);
360 
361 	return busy;
362 }
363 
364 EXPORT_SYMBOL(invalidate_inodes);
365 
366 static int can_unuse(struct inode *inode)
367 {
368 	if (inode->i_state)
369 		return 0;
370 	if (inode_has_buffers(inode))
371 		return 0;
372 	if (atomic_read(&inode->i_count))
373 		return 0;
374 	if (inode->i_data.nrpages)
375 		return 0;
376 	return 1;
377 }
378 
379 /*
380  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
381  * a temporary list and then are freed outside inode_lock by dispose_list().
382  *
383  * Any inodes which are pinned purely because of attached pagecache have their
384  * pagecache removed.  We expect the final iput() on that inode to add it to
385  * the front of the inode_unused list.  So look for it there and if the
386  * inode is still freeable, proceed.  The right inode is found 99.9% of the
387  * time in testing on a 4-way.
388  *
389  * If the inode has metadata buffers attached to mapping->private_list then
390  * try to remove them.
391  */
392 static void prune_icache(int nr_to_scan)
393 {
394 	LIST_HEAD(freeable);
395 	int nr_pruned = 0;
396 	int nr_scanned;
397 	unsigned long reap = 0;
398 
399 	mutex_lock(&iprune_mutex);
400 	spin_lock(&inode_lock);
401 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
402 		struct inode *inode;
403 
404 		if (list_empty(&inode_unused))
405 			break;
406 
407 		inode = list_entry(inode_unused.prev, struct inode, i_list);
408 
409 		if (inode->i_state || atomic_read(&inode->i_count)) {
410 			list_move(&inode->i_list, &inode_unused);
411 			continue;
412 		}
413 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
414 			__iget(inode);
415 			spin_unlock(&inode_lock);
416 			if (remove_inode_buffers(inode))
417 				reap += invalidate_mapping_pages(&inode->i_data,
418 								0, -1);
419 			iput(inode);
420 			spin_lock(&inode_lock);
421 
422 			if (inode != list_entry(inode_unused.next,
423 						struct inode, i_list))
424 				continue;	/* wrong inode or list_empty */
425 			if (!can_unuse(inode))
426 				continue;
427 		}
428 		list_move(&inode->i_list, &freeable);
429 		inode->i_state |= I_FREEING;
430 		nr_pruned++;
431 	}
432 	inodes_stat.nr_unused -= nr_pruned;
433 	if (current_is_kswapd())
434 		__count_vm_events(KSWAPD_INODESTEAL, reap);
435 	else
436 		__count_vm_events(PGINODESTEAL, reap);
437 	spin_unlock(&inode_lock);
438 
439 	dispose_list(&freeable);
440 	mutex_unlock(&iprune_mutex);
441 }
442 
443 /*
444  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
445  * "unused" means that no dentries are referring to the inodes: the files are
446  * not open and the dcache references to those inodes have already been
447  * reclaimed.
448  *
449  * This function is passed the number of inodes to scan, and it returns the
450  * total number of remaining possibly-reclaimable inodes.
451  */
452 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
453 {
454 	if (nr) {
455 		/*
456 		 * Nasty deadlock avoidance.  We may hold various FS locks,
457 		 * and we don't want to recurse into the FS that called us
458 		 * in clear_inode() and friends..
459 	 	 */
460 		if (!(gfp_mask & __GFP_FS))
461 			return -1;
462 		prune_icache(nr);
463 	}
464 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
465 }
466 
467 static void __wait_on_freeing_inode(struct inode *inode);
468 /*
469  * Called with the inode lock held.
470  * NOTE: we are not increasing the inode-refcount, you must call __iget()
471  * by hand after calling find_inode now! This simplifies iunique and won't
472  * add any additional branch in the common code.
473  */
474 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
475 {
476 	struct hlist_node *node;
477 	struct inode * inode = NULL;
478 
479 repeat:
480 	hlist_for_each (node, head) {
481 		inode = hlist_entry(node, struct inode, i_hash);
482 		if (inode->i_sb != sb)
483 			continue;
484 		if (!test(inode, data))
485 			continue;
486 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
487 			__wait_on_freeing_inode(inode);
488 			goto repeat;
489 		}
490 		break;
491 	}
492 	return node ? inode : NULL;
493 }
494 
495 /*
496  * find_inode_fast is the fast path version of find_inode, see the comment at
497  * iget_locked for details.
498  */
499 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
500 {
501 	struct hlist_node *node;
502 	struct inode * inode = NULL;
503 
504 repeat:
505 	hlist_for_each (node, head) {
506 		inode = hlist_entry(node, struct inode, i_hash);
507 		if (inode->i_ino != ino)
508 			continue;
509 		if (inode->i_sb != sb)
510 			continue;
511 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
512 			__wait_on_freeing_inode(inode);
513 			goto repeat;
514 		}
515 		break;
516 	}
517 	return node ? inode : NULL;
518 }
519 
520 /**
521  *	new_inode 	- obtain an inode
522  *	@sb: superblock
523  *
524  *	Allocates a new inode for given superblock.
525  */
526 struct inode *new_inode(struct super_block *sb)
527 {
528 	static unsigned long last_ino;
529 	struct inode * inode;
530 
531 	spin_lock_prefetch(&inode_lock);
532 
533 	inode = alloc_inode(sb);
534 	if (inode) {
535 		spin_lock(&inode_lock);
536 		inodes_stat.nr_inodes++;
537 		list_add(&inode->i_list, &inode_in_use);
538 		list_add(&inode->i_sb_list, &sb->s_inodes);
539 		inode->i_ino = ++last_ino;
540 		inode->i_state = 0;
541 		spin_unlock(&inode_lock);
542 	}
543 	return inode;
544 }
545 
546 EXPORT_SYMBOL(new_inode);
547 
548 void unlock_new_inode(struct inode *inode)
549 {
550 	/*
551 	 * This is special!  We do not need the spinlock
552 	 * when clearing I_LOCK, because we're guaranteed
553 	 * that nobody else tries to do anything about the
554 	 * state of the inode when it is locked, as we
555 	 * just created it (so there can be no old holders
556 	 * that haven't tested I_LOCK).
557 	 */
558 	inode->i_state &= ~(I_LOCK|I_NEW);
559 	wake_up_inode(inode);
560 }
561 
562 EXPORT_SYMBOL(unlock_new_inode);
563 
564 /*
565  * This is called without the inode lock held.. Be careful.
566  *
567  * We no longer cache the sb_flags in i_flags - see fs.h
568  *	-- rmk@arm.uk.linux.org
569  */
570 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
571 {
572 	struct inode * inode;
573 
574 	inode = alloc_inode(sb);
575 	if (inode) {
576 		struct inode * old;
577 
578 		spin_lock(&inode_lock);
579 		/* We released the lock, so.. */
580 		old = find_inode(sb, head, test, data);
581 		if (!old) {
582 			if (set(inode, data))
583 				goto set_failed;
584 
585 			inodes_stat.nr_inodes++;
586 			list_add(&inode->i_list, &inode_in_use);
587 			list_add(&inode->i_sb_list, &sb->s_inodes);
588 			hlist_add_head(&inode->i_hash, head);
589 			inode->i_state = I_LOCK|I_NEW;
590 			spin_unlock(&inode_lock);
591 
592 			/* Return the locked inode with I_NEW set, the
593 			 * caller is responsible for filling in the contents
594 			 */
595 			return inode;
596 		}
597 
598 		/*
599 		 * Uhhuh, somebody else created the same inode under
600 		 * us. Use the old inode instead of the one we just
601 		 * allocated.
602 		 */
603 		__iget(old);
604 		spin_unlock(&inode_lock);
605 		destroy_inode(inode);
606 		inode = old;
607 		wait_on_inode(inode);
608 	}
609 	return inode;
610 
611 set_failed:
612 	spin_unlock(&inode_lock);
613 	destroy_inode(inode);
614 	return NULL;
615 }
616 
617 /*
618  * get_new_inode_fast is the fast path version of get_new_inode, see the
619  * comment at iget_locked for details.
620  */
621 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
622 {
623 	struct inode * inode;
624 
625 	inode = alloc_inode(sb);
626 	if (inode) {
627 		struct inode * old;
628 
629 		spin_lock(&inode_lock);
630 		/* We released the lock, so.. */
631 		old = find_inode_fast(sb, head, ino);
632 		if (!old) {
633 			inode->i_ino = ino;
634 			inodes_stat.nr_inodes++;
635 			list_add(&inode->i_list, &inode_in_use);
636 			list_add(&inode->i_sb_list, &sb->s_inodes);
637 			hlist_add_head(&inode->i_hash, head);
638 			inode->i_state = I_LOCK|I_NEW;
639 			spin_unlock(&inode_lock);
640 
641 			/* Return the locked inode with I_NEW set, the
642 			 * caller is responsible for filling in the contents
643 			 */
644 			return inode;
645 		}
646 
647 		/*
648 		 * Uhhuh, somebody else created the same inode under
649 		 * us. Use the old inode instead of the one we just
650 		 * allocated.
651 		 */
652 		__iget(old);
653 		spin_unlock(&inode_lock);
654 		destroy_inode(inode);
655 		inode = old;
656 		wait_on_inode(inode);
657 	}
658 	return inode;
659 }
660 
661 static unsigned long hash(struct super_block *sb, unsigned long hashval)
662 {
663 	unsigned long tmp;
664 
665 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
666 			L1_CACHE_BYTES;
667 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
668 	return tmp & I_HASHMASK;
669 }
670 
671 /**
672  *	iunique - get a unique inode number
673  *	@sb: superblock
674  *	@max_reserved: highest reserved inode number
675  *
676  *	Obtain an inode number that is unique on the system for a given
677  *	superblock. This is used by file systems that have no natural
678  *	permanent inode numbering system. An inode number is returned that
679  *	is higher than the reserved limit but unique.
680  *
681  *	BUGS:
682  *	With a large number of inodes live on the file system this function
683  *	currently becomes quite slow.
684  */
685 ino_t iunique(struct super_block *sb, ino_t max_reserved)
686 {
687 	static ino_t counter;
688 	struct inode *inode;
689 	struct hlist_head * head;
690 	ino_t res;
691 	spin_lock(&inode_lock);
692 retry:
693 	if (counter > max_reserved) {
694 		head = inode_hashtable + hash(sb,counter);
695 		res = counter++;
696 		inode = find_inode_fast(sb, head, res);
697 		if (!inode) {
698 			spin_unlock(&inode_lock);
699 			return res;
700 		}
701 	} else {
702 		counter = max_reserved + 1;
703 	}
704 	goto retry;
705 
706 }
707 
708 EXPORT_SYMBOL(iunique);
709 
710 struct inode *igrab(struct inode *inode)
711 {
712 	spin_lock(&inode_lock);
713 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
714 		__iget(inode);
715 	else
716 		/*
717 		 * Handle the case where s_op->clear_inode is not been
718 		 * called yet, and somebody is calling igrab
719 		 * while the inode is getting freed.
720 		 */
721 		inode = NULL;
722 	spin_unlock(&inode_lock);
723 	return inode;
724 }
725 
726 EXPORT_SYMBOL(igrab);
727 
728 /**
729  * ifind - internal function, you want ilookup5() or iget5().
730  * @sb:		super block of file system to search
731  * @head:       the head of the list to search
732  * @test:	callback used for comparisons between inodes
733  * @data:	opaque data pointer to pass to @test
734  * @wait:	if true wait for the inode to be unlocked, if false do not
735  *
736  * ifind() searches for the inode specified by @data in the inode
737  * cache. This is a generalized version of ifind_fast() for file systems where
738  * the inode number is not sufficient for unique identification of an inode.
739  *
740  * If the inode is in the cache, the inode is returned with an incremented
741  * reference count.
742  *
743  * Otherwise NULL is returned.
744  *
745  * Note, @test is called with the inode_lock held, so can't sleep.
746  */
747 static struct inode *ifind(struct super_block *sb,
748 		struct hlist_head *head, int (*test)(struct inode *, void *),
749 		void *data, const int wait)
750 {
751 	struct inode *inode;
752 
753 	spin_lock(&inode_lock);
754 	inode = find_inode(sb, head, test, data);
755 	if (inode) {
756 		__iget(inode);
757 		spin_unlock(&inode_lock);
758 		if (likely(wait))
759 			wait_on_inode(inode);
760 		return inode;
761 	}
762 	spin_unlock(&inode_lock);
763 	return NULL;
764 }
765 
766 /**
767  * ifind_fast - internal function, you want ilookup() or iget().
768  * @sb:		super block of file system to search
769  * @head:       head of the list to search
770  * @ino:	inode number to search for
771  *
772  * ifind_fast() searches for the inode @ino in the inode cache. This is for
773  * file systems where the inode number is sufficient for unique identification
774  * of an inode.
775  *
776  * If the inode is in the cache, the inode is returned with an incremented
777  * reference count.
778  *
779  * Otherwise NULL is returned.
780  */
781 static struct inode *ifind_fast(struct super_block *sb,
782 		struct hlist_head *head, unsigned long ino)
783 {
784 	struct inode *inode;
785 
786 	spin_lock(&inode_lock);
787 	inode = find_inode_fast(sb, head, ino);
788 	if (inode) {
789 		__iget(inode);
790 		spin_unlock(&inode_lock);
791 		wait_on_inode(inode);
792 		return inode;
793 	}
794 	spin_unlock(&inode_lock);
795 	return NULL;
796 }
797 
798 /**
799  * ilookup5_nowait - search for an inode in the inode cache
800  * @sb:		super block of file system to search
801  * @hashval:	hash value (usually inode number) to search for
802  * @test:	callback used for comparisons between inodes
803  * @data:	opaque data pointer to pass to @test
804  *
805  * ilookup5() uses ifind() to search for the inode specified by @hashval and
806  * @data in the inode cache. This is a generalized version of ilookup() for
807  * file systems where the inode number is not sufficient for unique
808  * identification of an inode.
809  *
810  * If the inode is in the cache, the inode is returned with an incremented
811  * reference count.  Note, the inode lock is not waited upon so you have to be
812  * very careful what you do with the returned inode.  You probably should be
813  * using ilookup5() instead.
814  *
815  * Otherwise NULL is returned.
816  *
817  * Note, @test is called with the inode_lock held, so can't sleep.
818  */
819 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
820 		int (*test)(struct inode *, void *), void *data)
821 {
822 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
823 
824 	return ifind(sb, head, test, data, 0);
825 }
826 
827 EXPORT_SYMBOL(ilookup5_nowait);
828 
829 /**
830  * ilookup5 - search for an inode in the inode cache
831  * @sb:		super block of file system to search
832  * @hashval:	hash value (usually inode number) to search for
833  * @test:	callback used for comparisons between inodes
834  * @data:	opaque data pointer to pass to @test
835  *
836  * ilookup5() uses ifind() to search for the inode specified by @hashval and
837  * @data in the inode cache. This is a generalized version of ilookup() for
838  * file systems where the inode number is not sufficient for unique
839  * identification of an inode.
840  *
841  * If the inode is in the cache, the inode lock is waited upon and the inode is
842  * returned with an incremented reference count.
843  *
844  * Otherwise NULL is returned.
845  *
846  * Note, @test is called with the inode_lock held, so can't sleep.
847  */
848 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
849 		int (*test)(struct inode *, void *), void *data)
850 {
851 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
852 
853 	return ifind(sb, head, test, data, 1);
854 }
855 
856 EXPORT_SYMBOL(ilookup5);
857 
858 /**
859  * ilookup - search for an inode in the inode cache
860  * @sb:		super block of file system to search
861  * @ino:	inode number to search for
862  *
863  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
864  * This is for file systems where the inode number is sufficient for unique
865  * identification of an inode.
866  *
867  * If the inode is in the cache, the inode is returned with an incremented
868  * reference count.
869  *
870  * Otherwise NULL is returned.
871  */
872 struct inode *ilookup(struct super_block *sb, unsigned long ino)
873 {
874 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
875 
876 	return ifind_fast(sb, head, ino);
877 }
878 
879 EXPORT_SYMBOL(ilookup);
880 
881 /**
882  * iget5_locked - obtain an inode from a mounted file system
883  * @sb:		super block of file system
884  * @hashval:	hash value (usually inode number) to get
885  * @test:	callback used for comparisons between inodes
886  * @set:	callback used to initialize a new struct inode
887  * @data:	opaque data pointer to pass to @test and @set
888  *
889  * This is iget() without the read_inode() portion of get_new_inode().
890  *
891  * iget5_locked() uses ifind() to search for the inode specified by @hashval
892  * and @data in the inode cache and if present it is returned with an increased
893  * reference count. This is a generalized version of iget_locked() for file
894  * systems where the inode number is not sufficient for unique identification
895  * of an inode.
896  *
897  * If the inode is not in cache, get_new_inode() is called to allocate a new
898  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
899  * file system gets to fill it in before unlocking it via unlock_new_inode().
900  *
901  * Note both @test and @set are called with the inode_lock held, so can't sleep.
902  */
903 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
904 		int (*test)(struct inode *, void *),
905 		int (*set)(struct inode *, void *), void *data)
906 {
907 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
908 	struct inode *inode;
909 
910 	inode = ifind(sb, head, test, data, 1);
911 	if (inode)
912 		return inode;
913 	/*
914 	 * get_new_inode() will do the right thing, re-trying the search
915 	 * in case it had to block at any point.
916 	 */
917 	return get_new_inode(sb, head, test, set, data);
918 }
919 
920 EXPORT_SYMBOL(iget5_locked);
921 
922 /**
923  * iget_locked - obtain an inode from a mounted file system
924  * @sb:		super block of file system
925  * @ino:	inode number to get
926  *
927  * This is iget() without the read_inode() portion of get_new_inode_fast().
928  *
929  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
930  * the inode cache and if present it is returned with an increased reference
931  * count. This is for file systems where the inode number is sufficient for
932  * unique identification of an inode.
933  *
934  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
935  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
936  * The file system gets to fill it in before unlocking it via
937  * unlock_new_inode().
938  */
939 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
940 {
941 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
942 	struct inode *inode;
943 
944 	inode = ifind_fast(sb, head, ino);
945 	if (inode)
946 		return inode;
947 	/*
948 	 * get_new_inode_fast() will do the right thing, re-trying the search
949 	 * in case it had to block at any point.
950 	 */
951 	return get_new_inode_fast(sb, head, ino);
952 }
953 
954 EXPORT_SYMBOL(iget_locked);
955 
956 /**
957  *	__insert_inode_hash - hash an inode
958  *	@inode: unhashed inode
959  *	@hashval: unsigned long value used to locate this object in the
960  *		inode_hashtable.
961  *
962  *	Add an inode to the inode hash for this superblock.
963  */
964 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
965 {
966 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
967 	spin_lock(&inode_lock);
968 	hlist_add_head(&inode->i_hash, head);
969 	spin_unlock(&inode_lock);
970 }
971 
972 EXPORT_SYMBOL(__insert_inode_hash);
973 
974 /**
975  *	remove_inode_hash - remove an inode from the hash
976  *	@inode: inode to unhash
977  *
978  *	Remove an inode from the superblock.
979  */
980 void remove_inode_hash(struct inode *inode)
981 {
982 	spin_lock(&inode_lock);
983 	hlist_del_init(&inode->i_hash);
984 	spin_unlock(&inode_lock);
985 }
986 
987 EXPORT_SYMBOL(remove_inode_hash);
988 
989 /*
990  * Tell the filesystem that this inode is no longer of any interest and should
991  * be completely destroyed.
992  *
993  * We leave the inode in the inode hash table until *after* the filesystem's
994  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
995  * instigate) will always find up-to-date information either in the hash or on
996  * disk.
997  *
998  * I_FREEING is set so that no-one will take a new reference to the inode while
999  * it is being deleted.
1000  */
1001 void generic_delete_inode(struct inode *inode)
1002 {
1003 	const struct super_operations *op = inode->i_sb->s_op;
1004 
1005 	list_del_init(&inode->i_list);
1006 	list_del_init(&inode->i_sb_list);
1007 	inode->i_state |= I_FREEING;
1008 	inodes_stat.nr_inodes--;
1009 	spin_unlock(&inode_lock);
1010 
1011 	security_inode_delete(inode);
1012 
1013 	if (op->delete_inode) {
1014 		void (*delete)(struct inode *) = op->delete_inode;
1015 		if (!is_bad_inode(inode))
1016 			DQUOT_INIT(inode);
1017 		/* Filesystems implementing their own
1018 		 * s_op->delete_inode are required to call
1019 		 * truncate_inode_pages and clear_inode()
1020 		 * internally */
1021 		delete(inode);
1022 	} else {
1023 		truncate_inode_pages(&inode->i_data, 0);
1024 		clear_inode(inode);
1025 	}
1026 	spin_lock(&inode_lock);
1027 	hlist_del_init(&inode->i_hash);
1028 	spin_unlock(&inode_lock);
1029 	wake_up_inode(inode);
1030 	BUG_ON(inode->i_state != I_CLEAR);
1031 	destroy_inode(inode);
1032 }
1033 
1034 EXPORT_SYMBOL(generic_delete_inode);
1035 
1036 static void generic_forget_inode(struct inode *inode)
1037 {
1038 	struct super_block *sb = inode->i_sb;
1039 
1040 	if (!hlist_unhashed(&inode->i_hash)) {
1041 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1042 			list_move(&inode->i_list, &inode_unused);
1043 		inodes_stat.nr_unused++;
1044 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1045 			spin_unlock(&inode_lock);
1046 			return;
1047 		}
1048 		inode->i_state |= I_WILL_FREE;
1049 		spin_unlock(&inode_lock);
1050 		write_inode_now(inode, 1);
1051 		spin_lock(&inode_lock);
1052 		inode->i_state &= ~I_WILL_FREE;
1053 		inodes_stat.nr_unused--;
1054 		hlist_del_init(&inode->i_hash);
1055 	}
1056 	list_del_init(&inode->i_list);
1057 	list_del_init(&inode->i_sb_list);
1058 	inode->i_state |= I_FREEING;
1059 	inodes_stat.nr_inodes--;
1060 	spin_unlock(&inode_lock);
1061 	if (inode->i_data.nrpages)
1062 		truncate_inode_pages(&inode->i_data, 0);
1063 	clear_inode(inode);
1064 	wake_up_inode(inode);
1065 	destroy_inode(inode);
1066 }
1067 
1068 /*
1069  * Normal UNIX filesystem behaviour: delete the
1070  * inode when the usage count drops to zero, and
1071  * i_nlink is zero.
1072  */
1073 void generic_drop_inode(struct inode *inode)
1074 {
1075 	if (!inode->i_nlink)
1076 		generic_delete_inode(inode);
1077 	else
1078 		generic_forget_inode(inode);
1079 }
1080 
1081 EXPORT_SYMBOL_GPL(generic_drop_inode);
1082 
1083 /*
1084  * Called when we're dropping the last reference
1085  * to an inode.
1086  *
1087  * Call the FS "drop()" function, defaulting to
1088  * the legacy UNIX filesystem behaviour..
1089  *
1090  * NOTE! NOTE! NOTE! We're called with the inode lock
1091  * held, and the drop function is supposed to release
1092  * the lock!
1093  */
1094 static inline void iput_final(struct inode *inode)
1095 {
1096 	const struct super_operations *op = inode->i_sb->s_op;
1097 	void (*drop)(struct inode *) = generic_drop_inode;
1098 
1099 	if (op && op->drop_inode)
1100 		drop = op->drop_inode;
1101 	drop(inode);
1102 }
1103 
1104 /**
1105  *	iput	- put an inode
1106  *	@inode: inode to put
1107  *
1108  *	Puts an inode, dropping its usage count. If the inode use count hits
1109  *	zero, the inode is then freed and may also be destroyed.
1110  *
1111  *	Consequently, iput() can sleep.
1112  */
1113 void iput(struct inode *inode)
1114 {
1115 	if (inode) {
1116 		const struct super_operations *op = inode->i_sb->s_op;
1117 
1118 		BUG_ON(inode->i_state == I_CLEAR);
1119 
1120 		if (op && op->put_inode)
1121 			op->put_inode(inode);
1122 
1123 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1124 			iput_final(inode);
1125 	}
1126 }
1127 
1128 EXPORT_SYMBOL(iput);
1129 
1130 /**
1131  *	bmap	- find a block number in a file
1132  *	@inode: inode of file
1133  *	@block: block to find
1134  *
1135  *	Returns the block number on the device holding the inode that
1136  *	is the disk block number for the block of the file requested.
1137  *	That is, asked for block 4 of inode 1 the function will return the
1138  *	disk block relative to the disk start that holds that block of the
1139  *	file.
1140  */
1141 sector_t bmap(struct inode * inode, sector_t block)
1142 {
1143 	sector_t res = 0;
1144 	if (inode->i_mapping->a_ops->bmap)
1145 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1146 	return res;
1147 }
1148 EXPORT_SYMBOL(bmap);
1149 
1150 /**
1151  *	touch_atime	-	update the access time
1152  *	@mnt: mount the inode is accessed on
1153  *	@dentry: dentry accessed
1154  *
1155  *	Update the accessed time on an inode and mark it for writeback.
1156  *	This function automatically handles read only file systems and media,
1157  *	as well as the "noatime" flag and inode specific "noatime" markers.
1158  */
1159 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1160 {
1161 	struct inode *inode = dentry->d_inode;
1162 	struct timespec now;
1163 
1164 	if (inode->i_flags & S_NOATIME)
1165 		return;
1166 	if (IS_NOATIME(inode))
1167 		return;
1168 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1169 		return;
1170 
1171 	/*
1172 	 * We may have a NULL vfsmount when coming from NFSD
1173 	 */
1174 	if (mnt) {
1175 		if (mnt->mnt_flags & MNT_NOATIME)
1176 			return;
1177 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1178 			return;
1179 
1180 		if (mnt->mnt_flags & MNT_RELATIME) {
1181 			/*
1182 			 * With relative atime, only update atime if the
1183 			 * previous atime is earlier than either the ctime or
1184 			 * mtime.
1185 			 */
1186 			if (timespec_compare(&inode->i_mtime,
1187 						&inode->i_atime) < 0 &&
1188 			    timespec_compare(&inode->i_ctime,
1189 						&inode->i_atime) < 0)
1190 				return;
1191 		}
1192 	}
1193 
1194 	now = current_fs_time(inode->i_sb);
1195 	if (timespec_equal(&inode->i_atime, &now))
1196 		return;
1197 
1198 	inode->i_atime = now;
1199 	mark_inode_dirty_sync(inode);
1200 }
1201 EXPORT_SYMBOL(touch_atime);
1202 
1203 /**
1204  *	file_update_time	-	update mtime and ctime time
1205  *	@file: file accessed
1206  *
1207  *	Update the mtime and ctime members of an inode and mark the inode
1208  *	for writeback.  Note that this function is meant exclusively for
1209  *	usage in the file write path of filesystems, and filesystems may
1210  *	choose to explicitly ignore update via this function with the
1211  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1212  *	timestamps are handled by the server.
1213  */
1214 
1215 void file_update_time(struct file *file)
1216 {
1217 	struct inode *inode = file->f_path.dentry->d_inode;
1218 	struct timespec now;
1219 	int sync_it = 0;
1220 
1221 	if (IS_NOCMTIME(inode))
1222 		return;
1223 	if (IS_RDONLY(inode))
1224 		return;
1225 
1226 	now = current_fs_time(inode->i_sb);
1227 	if (!timespec_equal(&inode->i_mtime, &now)) {
1228 		inode->i_mtime = now;
1229 		sync_it = 1;
1230 	}
1231 
1232 	if (!timespec_equal(&inode->i_ctime, &now)) {
1233 		inode->i_ctime = now;
1234 		sync_it = 1;
1235 	}
1236 
1237 	if (sync_it)
1238 		mark_inode_dirty_sync(inode);
1239 }
1240 
1241 EXPORT_SYMBOL(file_update_time);
1242 
1243 int inode_needs_sync(struct inode *inode)
1244 {
1245 	if (IS_SYNC(inode))
1246 		return 1;
1247 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1248 		return 1;
1249 	return 0;
1250 }
1251 
1252 EXPORT_SYMBOL(inode_needs_sync);
1253 
1254 int inode_wait(void *word)
1255 {
1256 	schedule();
1257 	return 0;
1258 }
1259 
1260 /*
1261  * If we try to find an inode in the inode hash while it is being
1262  * deleted, we have to wait until the filesystem completes its
1263  * deletion before reporting that it isn't found.  This function waits
1264  * until the deletion _might_ have completed.  Callers are responsible
1265  * to recheck inode state.
1266  *
1267  * It doesn't matter if I_LOCK is not set initially, a call to
1268  * wake_up_inode() after removing from the hash list will DTRT.
1269  *
1270  * This is called with inode_lock held.
1271  */
1272 static void __wait_on_freeing_inode(struct inode *inode)
1273 {
1274 	wait_queue_head_t *wq;
1275 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1276 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1277 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1278 	spin_unlock(&inode_lock);
1279 	schedule();
1280 	finish_wait(wq, &wait.wait);
1281 	spin_lock(&inode_lock);
1282 }
1283 
1284 void wake_up_inode(struct inode *inode)
1285 {
1286 	/*
1287 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1288 	 */
1289 	smp_mb();
1290 	wake_up_bit(&inode->i_state, __I_LOCK);
1291 }
1292 
1293 /*
1294  * We rarely want to lock two inodes that do not have a parent/child
1295  * relationship (such as directory, child inode) simultaneously. The
1296  * vast majority of file systems should be able to get along fine
1297  * without this. Do not use these functions except as a last resort.
1298  */
1299 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1300 {
1301 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1302 		if (inode1)
1303 			mutex_lock(&inode1->i_mutex);
1304 		else if (inode2)
1305 			mutex_lock(&inode2->i_mutex);
1306 		return;
1307 	}
1308 
1309 	if (inode1 < inode2) {
1310 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1311 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1312 	} else {
1313 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1314 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1315 	}
1316 }
1317 EXPORT_SYMBOL(inode_double_lock);
1318 
1319 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1320 {
1321 	if (inode1)
1322 		mutex_unlock(&inode1->i_mutex);
1323 
1324 	if (inode2 && inode2 != inode1)
1325 		mutex_unlock(&inode2->i_mutex);
1326 }
1327 EXPORT_SYMBOL(inode_double_unlock);
1328 
1329 static __initdata unsigned long ihash_entries;
1330 static int __init set_ihash_entries(char *str)
1331 {
1332 	if (!str)
1333 		return 0;
1334 	ihash_entries = simple_strtoul(str, &str, 0);
1335 	return 1;
1336 }
1337 __setup("ihash_entries=", set_ihash_entries);
1338 
1339 /*
1340  * Initialize the waitqueues and inode hash table.
1341  */
1342 void __init inode_init_early(void)
1343 {
1344 	int loop;
1345 
1346 	/* If hashes are distributed across NUMA nodes, defer
1347 	 * hash allocation until vmalloc space is available.
1348 	 */
1349 	if (hashdist)
1350 		return;
1351 
1352 	inode_hashtable =
1353 		alloc_large_system_hash("Inode-cache",
1354 					sizeof(struct hlist_head),
1355 					ihash_entries,
1356 					14,
1357 					HASH_EARLY,
1358 					&i_hash_shift,
1359 					&i_hash_mask,
1360 					0);
1361 
1362 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1363 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1364 }
1365 
1366 void __init inode_init(unsigned long mempages)
1367 {
1368 	int loop;
1369 
1370 	/* inode slab cache */
1371 	inode_cachep = kmem_cache_create("inode_cache",
1372 					 sizeof(struct inode),
1373 					 0,
1374 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1375 					 SLAB_MEM_SPREAD),
1376 					 init_once,
1377 					 NULL);
1378 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1379 
1380 	/* Hash may have been set up in inode_init_early */
1381 	if (!hashdist)
1382 		return;
1383 
1384 	inode_hashtable =
1385 		alloc_large_system_hash("Inode-cache",
1386 					sizeof(struct hlist_head),
1387 					ihash_entries,
1388 					14,
1389 					0,
1390 					&i_hash_shift,
1391 					&i_hash_mask,
1392 					0);
1393 
1394 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1395 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1396 }
1397 
1398 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1399 {
1400 	inode->i_mode = mode;
1401 	if (S_ISCHR(mode)) {
1402 		inode->i_fop = &def_chr_fops;
1403 		inode->i_rdev = rdev;
1404 	} else if (S_ISBLK(mode)) {
1405 		inode->i_fop = &def_blk_fops;
1406 		inode->i_rdev = rdev;
1407 	} else if (S_ISFIFO(mode))
1408 		inode->i_fop = &def_fifo_fops;
1409 	else if (S_ISSOCK(mode))
1410 		inode->i_fop = &bad_sock_fops;
1411 	else
1412 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1413 		       mode);
1414 }
1415 EXPORT_SYMBOL(init_special_inode);
1416