xref: /linux/fs/inode.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __ro_after_init;
58 static unsigned int i_hash_shift __ro_after_init;
59 static struct hlist_head *inode_hashtable __ro_after_init;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72 
73 static struct kmem_cache *inode_cachep __ro_after_init;
74 
75 static long get_nr_inodes(void)
76 {
77 	int i;
78 	long sum = 0;
79 	for_each_possible_cpu(i)
80 		sum += per_cpu(nr_inodes, i);
81 	return sum < 0 ? 0 : sum;
82 }
83 
84 static inline long get_nr_inodes_unused(void)
85 {
86 	int i;
87 	long sum = 0;
88 	for_each_possible_cpu(i)
89 		sum += per_cpu(nr_unused, i);
90 	return sum < 0 ? 0 : sum;
91 }
92 
93 long get_nr_dirty_inodes(void)
94 {
95 	/* not actually dirty inodes, but a wild approximation */
96 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 	return nr_dirty > 0 ? nr_dirty : 0;
98 }
99 
100 /*
101  * Handle nr_inode sysctl
102  */
103 #ifdef CONFIG_SYSCTL
104 /*
105  * Statistics gathering..
106  */
107 static struct inodes_stat_t inodes_stat;
108 
109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 			  size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 
117 static struct ctl_table inodes_sysctls[] = {
118 	{
119 		.procname	= "inode-nr",
120 		.data		= &inodes_stat,
121 		.maxlen		= 2*sizeof(long),
122 		.mode		= 0444,
123 		.proc_handler	= proc_nr_inodes,
124 	},
125 	{
126 		.procname	= "inode-state",
127 		.data		= &inodes_stat,
128 		.maxlen		= 7*sizeof(long),
129 		.mode		= 0444,
130 		.proc_handler	= proc_nr_inodes,
131 	},
132 };
133 
134 static int __init init_fs_inode_sysctls(void)
135 {
136 	register_sysctl_init("fs", inodes_sysctls);
137 	return 0;
138 }
139 early_initcall(init_fs_inode_sysctls);
140 #endif
141 
142 static int no_open(struct inode *inode, struct file *file)
143 {
144 	return -ENXIO;
145 }
146 
147 /**
148  * inode_init_always - perform inode structure initialisation
149  * @sb: superblock inode belongs to
150  * @inode: inode to initialise
151  *
152  * These are initializations that need to be done on every inode
153  * allocation as the fields are not initialised by slab allocation.
154  */
155 int inode_init_always(struct super_block *sb, struct inode *inode)
156 {
157 	static const struct inode_operations empty_iops;
158 	static const struct file_operations no_open_fops = {.open = no_open};
159 	struct address_space *const mapping = &inode->i_data;
160 
161 	inode->i_sb = sb;
162 	inode->i_blkbits = sb->s_blocksize_bits;
163 	inode->i_flags = 0;
164 	atomic64_set(&inode->i_sequence, 0);
165 	atomic_set(&inode->i_count, 1);
166 	inode->i_op = &empty_iops;
167 	inode->i_fop = &no_open_fops;
168 	inode->i_ino = 0;
169 	inode->__i_nlink = 1;
170 	inode->i_opflags = 0;
171 	if (sb->s_xattr)
172 		inode->i_opflags |= IOP_XATTR;
173 	i_uid_write(inode, 0);
174 	i_gid_write(inode, 0);
175 	atomic_set(&inode->i_writecount, 0);
176 	inode->i_size = 0;
177 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
178 	inode->i_blocks = 0;
179 	inode->i_bytes = 0;
180 	inode->i_generation = 0;
181 	inode->i_pipe = NULL;
182 	inode->i_cdev = NULL;
183 	inode->i_link = NULL;
184 	inode->i_dir_seq = 0;
185 	inode->i_rdev = 0;
186 	inode->dirtied_when = 0;
187 
188 #ifdef CONFIG_CGROUP_WRITEBACK
189 	inode->i_wb_frn_winner = 0;
190 	inode->i_wb_frn_avg_time = 0;
191 	inode->i_wb_frn_history = 0;
192 #endif
193 
194 	spin_lock_init(&inode->i_lock);
195 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
196 
197 	init_rwsem(&inode->i_rwsem);
198 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
199 
200 	atomic_set(&inode->i_dio_count, 0);
201 
202 	mapping->a_ops = &empty_aops;
203 	mapping->host = inode;
204 	mapping->flags = 0;
205 	mapping->wb_err = 0;
206 	atomic_set(&mapping->i_mmap_writable, 0);
207 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
208 	atomic_set(&mapping->nr_thps, 0);
209 #endif
210 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
211 	mapping->i_private_data = NULL;
212 	mapping->writeback_index = 0;
213 	init_rwsem(&mapping->invalidate_lock);
214 	lockdep_set_class_and_name(&mapping->invalidate_lock,
215 				   &sb->s_type->invalidate_lock_key,
216 				   "mapping.invalidate_lock");
217 	if (sb->s_iflags & SB_I_STABLE_WRITES)
218 		mapping_set_stable_writes(mapping);
219 	inode->i_private = NULL;
220 	inode->i_mapping = mapping;
221 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
222 #ifdef CONFIG_FS_POSIX_ACL
223 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
224 #endif
225 
226 #ifdef CONFIG_FSNOTIFY
227 	inode->i_fsnotify_mask = 0;
228 #endif
229 	inode->i_flctx = NULL;
230 
231 	if (unlikely(security_inode_alloc(inode)))
232 		return -ENOMEM;
233 	this_cpu_inc(nr_inodes);
234 
235 	return 0;
236 }
237 EXPORT_SYMBOL(inode_init_always);
238 
239 void free_inode_nonrcu(struct inode *inode)
240 {
241 	kmem_cache_free(inode_cachep, inode);
242 }
243 EXPORT_SYMBOL(free_inode_nonrcu);
244 
245 static void i_callback(struct rcu_head *head)
246 {
247 	struct inode *inode = container_of(head, struct inode, i_rcu);
248 	if (inode->free_inode)
249 		inode->free_inode(inode);
250 	else
251 		free_inode_nonrcu(inode);
252 }
253 
254 static struct inode *alloc_inode(struct super_block *sb)
255 {
256 	const struct super_operations *ops = sb->s_op;
257 	struct inode *inode;
258 
259 	if (ops->alloc_inode)
260 		inode = ops->alloc_inode(sb);
261 	else
262 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
263 
264 	if (!inode)
265 		return NULL;
266 
267 	if (unlikely(inode_init_always(sb, inode))) {
268 		if (ops->destroy_inode) {
269 			ops->destroy_inode(inode);
270 			if (!ops->free_inode)
271 				return NULL;
272 		}
273 		inode->free_inode = ops->free_inode;
274 		i_callback(&inode->i_rcu);
275 		return NULL;
276 	}
277 
278 	return inode;
279 }
280 
281 void __destroy_inode(struct inode *inode)
282 {
283 	BUG_ON(inode_has_buffers(inode));
284 	inode_detach_wb(inode);
285 	security_inode_free(inode);
286 	fsnotify_inode_delete(inode);
287 	locks_free_lock_context(inode);
288 	if (!inode->i_nlink) {
289 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290 		atomic_long_dec(&inode->i_sb->s_remove_count);
291 	}
292 
293 #ifdef CONFIG_FS_POSIX_ACL
294 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295 		posix_acl_release(inode->i_acl);
296 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297 		posix_acl_release(inode->i_default_acl);
298 #endif
299 	this_cpu_dec(nr_inodes);
300 }
301 EXPORT_SYMBOL(__destroy_inode);
302 
303 static void destroy_inode(struct inode *inode)
304 {
305 	const struct super_operations *ops = inode->i_sb->s_op;
306 
307 	BUG_ON(!list_empty(&inode->i_lru));
308 	__destroy_inode(inode);
309 	if (ops->destroy_inode) {
310 		ops->destroy_inode(inode);
311 		if (!ops->free_inode)
312 			return;
313 	}
314 	inode->free_inode = ops->free_inode;
315 	call_rcu(&inode->i_rcu, i_callback);
316 }
317 
318 /**
319  * drop_nlink - directly drop an inode's link count
320  * @inode: inode
321  *
322  * This is a low-level filesystem helper to replace any
323  * direct filesystem manipulation of i_nlink.  In cases
324  * where we are attempting to track writes to the
325  * filesystem, a decrement to zero means an imminent
326  * write when the file is truncated and actually unlinked
327  * on the filesystem.
328  */
329 void drop_nlink(struct inode *inode)
330 {
331 	WARN_ON(inode->i_nlink == 0);
332 	inode->__i_nlink--;
333 	if (!inode->i_nlink)
334 		atomic_long_inc(&inode->i_sb->s_remove_count);
335 }
336 EXPORT_SYMBOL(drop_nlink);
337 
338 /**
339  * clear_nlink - directly zero an inode's link count
340  * @inode: inode
341  *
342  * This is a low-level filesystem helper to replace any
343  * direct filesystem manipulation of i_nlink.  See
344  * drop_nlink() for why we care about i_nlink hitting zero.
345  */
346 void clear_nlink(struct inode *inode)
347 {
348 	if (inode->i_nlink) {
349 		inode->__i_nlink = 0;
350 		atomic_long_inc(&inode->i_sb->s_remove_count);
351 	}
352 }
353 EXPORT_SYMBOL(clear_nlink);
354 
355 /**
356  * set_nlink - directly set an inode's link count
357  * @inode: inode
358  * @nlink: new nlink (should be non-zero)
359  *
360  * This is a low-level filesystem helper to replace any
361  * direct filesystem manipulation of i_nlink.
362  */
363 void set_nlink(struct inode *inode, unsigned int nlink)
364 {
365 	if (!nlink) {
366 		clear_nlink(inode);
367 	} else {
368 		/* Yes, some filesystems do change nlink from zero to one */
369 		if (inode->i_nlink == 0)
370 			atomic_long_dec(&inode->i_sb->s_remove_count);
371 
372 		inode->__i_nlink = nlink;
373 	}
374 }
375 EXPORT_SYMBOL(set_nlink);
376 
377 /**
378  * inc_nlink - directly increment an inode's link count
379  * @inode: inode
380  *
381  * This is a low-level filesystem helper to replace any
382  * direct filesystem manipulation of i_nlink.  Currently,
383  * it is only here for parity with dec_nlink().
384  */
385 void inc_nlink(struct inode *inode)
386 {
387 	if (unlikely(inode->i_nlink == 0)) {
388 		WARN_ON(!(inode->i_state & I_LINKABLE));
389 		atomic_long_dec(&inode->i_sb->s_remove_count);
390 	}
391 
392 	inode->__i_nlink++;
393 }
394 EXPORT_SYMBOL(inc_nlink);
395 
396 static void __address_space_init_once(struct address_space *mapping)
397 {
398 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399 	init_rwsem(&mapping->i_mmap_rwsem);
400 	INIT_LIST_HEAD(&mapping->i_private_list);
401 	spin_lock_init(&mapping->i_private_lock);
402 	mapping->i_mmap = RB_ROOT_CACHED;
403 }
404 
405 void address_space_init_once(struct address_space *mapping)
406 {
407 	memset(mapping, 0, sizeof(*mapping));
408 	__address_space_init_once(mapping);
409 }
410 EXPORT_SYMBOL(address_space_init_once);
411 
412 /*
413  * These are initializations that only need to be done
414  * once, because the fields are idempotent across use
415  * of the inode, so let the slab aware of that.
416  */
417 void inode_init_once(struct inode *inode)
418 {
419 	memset(inode, 0, sizeof(*inode));
420 	INIT_HLIST_NODE(&inode->i_hash);
421 	INIT_LIST_HEAD(&inode->i_devices);
422 	INIT_LIST_HEAD(&inode->i_io_list);
423 	INIT_LIST_HEAD(&inode->i_wb_list);
424 	INIT_LIST_HEAD(&inode->i_lru);
425 	INIT_LIST_HEAD(&inode->i_sb_list);
426 	__address_space_init_once(&inode->i_data);
427 	i_size_ordered_init(inode);
428 }
429 EXPORT_SYMBOL(inode_init_once);
430 
431 static void init_once(void *foo)
432 {
433 	struct inode *inode = (struct inode *) foo;
434 
435 	inode_init_once(inode);
436 }
437 
438 /*
439  * inode->i_lock must be held
440  */
441 void __iget(struct inode *inode)
442 {
443 	atomic_inc(&inode->i_count);
444 }
445 
446 /*
447  * get additional reference to inode; caller must already hold one.
448  */
449 void ihold(struct inode *inode)
450 {
451 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
452 }
453 EXPORT_SYMBOL(ihold);
454 
455 static void __inode_add_lru(struct inode *inode, bool rotate)
456 {
457 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
458 		return;
459 	if (atomic_read(&inode->i_count))
460 		return;
461 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
462 		return;
463 	if (!mapping_shrinkable(&inode->i_data))
464 		return;
465 
466 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
467 		this_cpu_inc(nr_unused);
468 	else if (rotate)
469 		inode->i_state |= I_REFERENCED;
470 }
471 
472 /*
473  * Add inode to LRU if needed (inode is unused and clean).
474  *
475  * Needs inode->i_lock held.
476  */
477 void inode_add_lru(struct inode *inode)
478 {
479 	__inode_add_lru(inode, false);
480 }
481 
482 static void inode_lru_list_del(struct inode *inode)
483 {
484 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
485 		this_cpu_dec(nr_unused);
486 }
487 
488 /**
489  * inode_sb_list_add - add inode to the superblock list of inodes
490  * @inode: inode to add
491  */
492 void inode_sb_list_add(struct inode *inode)
493 {
494 	spin_lock(&inode->i_sb->s_inode_list_lock);
495 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
496 	spin_unlock(&inode->i_sb->s_inode_list_lock);
497 }
498 EXPORT_SYMBOL_GPL(inode_sb_list_add);
499 
500 static inline void inode_sb_list_del(struct inode *inode)
501 {
502 	if (!list_empty(&inode->i_sb_list)) {
503 		spin_lock(&inode->i_sb->s_inode_list_lock);
504 		list_del_init(&inode->i_sb_list);
505 		spin_unlock(&inode->i_sb->s_inode_list_lock);
506 	}
507 }
508 
509 static unsigned long hash(struct super_block *sb, unsigned long hashval)
510 {
511 	unsigned long tmp;
512 
513 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
514 			L1_CACHE_BYTES;
515 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
516 	return tmp & i_hash_mask;
517 }
518 
519 /**
520  *	__insert_inode_hash - hash an inode
521  *	@inode: unhashed inode
522  *	@hashval: unsigned long value used to locate this object in the
523  *		inode_hashtable.
524  *
525  *	Add an inode to the inode hash for this superblock.
526  */
527 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
528 {
529 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
530 
531 	spin_lock(&inode_hash_lock);
532 	spin_lock(&inode->i_lock);
533 	hlist_add_head_rcu(&inode->i_hash, b);
534 	spin_unlock(&inode->i_lock);
535 	spin_unlock(&inode_hash_lock);
536 }
537 EXPORT_SYMBOL(__insert_inode_hash);
538 
539 /**
540  *	__remove_inode_hash - remove an inode from the hash
541  *	@inode: inode to unhash
542  *
543  *	Remove an inode from the superblock.
544  */
545 void __remove_inode_hash(struct inode *inode)
546 {
547 	spin_lock(&inode_hash_lock);
548 	spin_lock(&inode->i_lock);
549 	hlist_del_init_rcu(&inode->i_hash);
550 	spin_unlock(&inode->i_lock);
551 	spin_unlock(&inode_hash_lock);
552 }
553 EXPORT_SYMBOL(__remove_inode_hash);
554 
555 void dump_mapping(const struct address_space *mapping)
556 {
557 	struct inode *host;
558 	const struct address_space_operations *a_ops;
559 	struct hlist_node *dentry_first;
560 	struct dentry *dentry_ptr;
561 	struct dentry dentry;
562 	unsigned long ino;
563 
564 	/*
565 	 * If mapping is an invalid pointer, we don't want to crash
566 	 * accessing it, so probe everything depending on it carefully.
567 	 */
568 	if (get_kernel_nofault(host, &mapping->host) ||
569 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
570 		pr_warn("invalid mapping:%px\n", mapping);
571 		return;
572 	}
573 
574 	if (!host) {
575 		pr_warn("aops:%ps\n", a_ops);
576 		return;
577 	}
578 
579 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
580 	    get_kernel_nofault(ino, &host->i_ino)) {
581 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
582 		return;
583 	}
584 
585 	if (!dentry_first) {
586 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
587 		return;
588 	}
589 
590 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
591 	if (get_kernel_nofault(dentry, dentry_ptr)) {
592 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
593 				a_ops, ino, dentry_ptr);
594 		return;
595 	}
596 
597 	/*
598 	 * if dentry is corrupted, the %pd handler may still crash,
599 	 * but it's unlikely that we reach here with a corrupt mapping
600 	 */
601 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
602 }
603 
604 void clear_inode(struct inode *inode)
605 {
606 	/*
607 	 * We have to cycle the i_pages lock here because reclaim can be in the
608 	 * process of removing the last page (in __filemap_remove_folio())
609 	 * and we must not free the mapping under it.
610 	 */
611 	xa_lock_irq(&inode->i_data.i_pages);
612 	BUG_ON(inode->i_data.nrpages);
613 	/*
614 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
615 	 * two known and long-standing ways in which nodes may get left behind
616 	 * (when deep radix-tree node allocation failed partway; or when THP
617 	 * collapse_file() failed). Until those two known cases are cleaned up,
618 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
619 	 * nor even WARN_ON(!mapping_empty).
620 	 */
621 	xa_unlock_irq(&inode->i_data.i_pages);
622 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
623 	BUG_ON(!(inode->i_state & I_FREEING));
624 	BUG_ON(inode->i_state & I_CLEAR);
625 	BUG_ON(!list_empty(&inode->i_wb_list));
626 	/* don't need i_lock here, no concurrent mods to i_state */
627 	inode->i_state = I_FREEING | I_CLEAR;
628 }
629 EXPORT_SYMBOL(clear_inode);
630 
631 /*
632  * Free the inode passed in, removing it from the lists it is still connected
633  * to. We remove any pages still attached to the inode and wait for any IO that
634  * is still in progress before finally destroying the inode.
635  *
636  * An inode must already be marked I_FREEING so that we avoid the inode being
637  * moved back onto lists if we race with other code that manipulates the lists
638  * (e.g. writeback_single_inode). The caller is responsible for setting this.
639  *
640  * An inode must already be removed from the LRU list before being evicted from
641  * the cache. This should occur atomically with setting the I_FREEING state
642  * flag, so no inodes here should ever be on the LRU when being evicted.
643  */
644 static void evict(struct inode *inode)
645 {
646 	const struct super_operations *op = inode->i_sb->s_op;
647 
648 	BUG_ON(!(inode->i_state & I_FREEING));
649 	BUG_ON(!list_empty(&inode->i_lru));
650 
651 	if (!list_empty(&inode->i_io_list))
652 		inode_io_list_del(inode);
653 
654 	inode_sb_list_del(inode);
655 
656 	/*
657 	 * Wait for flusher thread to be done with the inode so that filesystem
658 	 * does not start destroying it while writeback is still running. Since
659 	 * the inode has I_FREEING set, flusher thread won't start new work on
660 	 * the inode.  We just have to wait for running writeback to finish.
661 	 */
662 	inode_wait_for_writeback(inode);
663 
664 	if (op->evict_inode) {
665 		op->evict_inode(inode);
666 	} else {
667 		truncate_inode_pages_final(&inode->i_data);
668 		clear_inode(inode);
669 	}
670 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
671 		cd_forget(inode);
672 
673 	remove_inode_hash(inode);
674 
675 	spin_lock(&inode->i_lock);
676 	wake_up_bit(&inode->i_state, __I_NEW);
677 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
678 	spin_unlock(&inode->i_lock);
679 
680 	destroy_inode(inode);
681 }
682 
683 /*
684  * dispose_list - dispose of the contents of a local list
685  * @head: the head of the list to free
686  *
687  * Dispose-list gets a local list with local inodes in it, so it doesn't
688  * need to worry about list corruption and SMP locks.
689  */
690 static void dispose_list(struct list_head *head)
691 {
692 	while (!list_empty(head)) {
693 		struct inode *inode;
694 
695 		inode = list_first_entry(head, struct inode, i_lru);
696 		list_del_init(&inode->i_lru);
697 
698 		evict(inode);
699 		cond_resched();
700 	}
701 }
702 
703 /**
704  * evict_inodes	- evict all evictable inodes for a superblock
705  * @sb:		superblock to operate on
706  *
707  * Make sure that no inodes with zero refcount are retained.  This is
708  * called by superblock shutdown after having SB_ACTIVE flag removed,
709  * so any inode reaching zero refcount during or after that call will
710  * be immediately evicted.
711  */
712 void evict_inodes(struct super_block *sb)
713 {
714 	struct inode *inode, *next;
715 	LIST_HEAD(dispose);
716 
717 again:
718 	spin_lock(&sb->s_inode_list_lock);
719 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
720 		if (atomic_read(&inode->i_count))
721 			continue;
722 
723 		spin_lock(&inode->i_lock);
724 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
725 			spin_unlock(&inode->i_lock);
726 			continue;
727 		}
728 
729 		inode->i_state |= I_FREEING;
730 		inode_lru_list_del(inode);
731 		spin_unlock(&inode->i_lock);
732 		list_add(&inode->i_lru, &dispose);
733 
734 		/*
735 		 * We can have a ton of inodes to evict at unmount time given
736 		 * enough memory, check to see if we need to go to sleep for a
737 		 * bit so we don't livelock.
738 		 */
739 		if (need_resched()) {
740 			spin_unlock(&sb->s_inode_list_lock);
741 			cond_resched();
742 			dispose_list(&dispose);
743 			goto again;
744 		}
745 	}
746 	spin_unlock(&sb->s_inode_list_lock);
747 
748 	dispose_list(&dispose);
749 }
750 EXPORT_SYMBOL_GPL(evict_inodes);
751 
752 /**
753  * invalidate_inodes	- attempt to free all inodes on a superblock
754  * @sb:		superblock to operate on
755  *
756  * Attempts to free all inodes (including dirty inodes) for a given superblock.
757  */
758 void invalidate_inodes(struct super_block *sb)
759 {
760 	struct inode *inode, *next;
761 	LIST_HEAD(dispose);
762 
763 again:
764 	spin_lock(&sb->s_inode_list_lock);
765 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
766 		spin_lock(&inode->i_lock);
767 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
768 			spin_unlock(&inode->i_lock);
769 			continue;
770 		}
771 		if (atomic_read(&inode->i_count)) {
772 			spin_unlock(&inode->i_lock);
773 			continue;
774 		}
775 
776 		inode->i_state |= I_FREEING;
777 		inode_lru_list_del(inode);
778 		spin_unlock(&inode->i_lock);
779 		list_add(&inode->i_lru, &dispose);
780 		if (need_resched()) {
781 			spin_unlock(&sb->s_inode_list_lock);
782 			cond_resched();
783 			dispose_list(&dispose);
784 			goto again;
785 		}
786 	}
787 	spin_unlock(&sb->s_inode_list_lock);
788 
789 	dispose_list(&dispose);
790 }
791 
792 /*
793  * Isolate the inode from the LRU in preparation for freeing it.
794  *
795  * If the inode has the I_REFERENCED flag set, then it means that it has been
796  * used recently - the flag is set in iput_final(). When we encounter such an
797  * inode, clear the flag and move it to the back of the LRU so it gets another
798  * pass through the LRU before it gets reclaimed. This is necessary because of
799  * the fact we are doing lazy LRU updates to minimise lock contention so the
800  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
801  * with this flag set because they are the inodes that are out of order.
802  */
803 static enum lru_status inode_lru_isolate(struct list_head *item,
804 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
805 {
806 	struct list_head *freeable = arg;
807 	struct inode	*inode = container_of(item, struct inode, i_lru);
808 
809 	/*
810 	 * We are inverting the lru lock/inode->i_lock here, so use a
811 	 * trylock. If we fail to get the lock, just skip it.
812 	 */
813 	if (!spin_trylock(&inode->i_lock))
814 		return LRU_SKIP;
815 
816 	/*
817 	 * Inodes can get referenced, redirtied, or repopulated while
818 	 * they're already on the LRU, and this can make them
819 	 * unreclaimable for a while. Remove them lazily here; iput,
820 	 * sync, or the last page cache deletion will requeue them.
821 	 */
822 	if (atomic_read(&inode->i_count) ||
823 	    (inode->i_state & ~I_REFERENCED) ||
824 	    !mapping_shrinkable(&inode->i_data)) {
825 		list_lru_isolate(lru, &inode->i_lru);
826 		spin_unlock(&inode->i_lock);
827 		this_cpu_dec(nr_unused);
828 		return LRU_REMOVED;
829 	}
830 
831 	/* Recently referenced inodes get one more pass */
832 	if (inode->i_state & I_REFERENCED) {
833 		inode->i_state &= ~I_REFERENCED;
834 		spin_unlock(&inode->i_lock);
835 		return LRU_ROTATE;
836 	}
837 
838 	/*
839 	 * On highmem systems, mapping_shrinkable() permits dropping
840 	 * page cache in order to free up struct inodes: lowmem might
841 	 * be under pressure before the cache inside the highmem zone.
842 	 */
843 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
844 		__iget(inode);
845 		spin_unlock(&inode->i_lock);
846 		spin_unlock(lru_lock);
847 		if (remove_inode_buffers(inode)) {
848 			unsigned long reap;
849 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
850 			if (current_is_kswapd())
851 				__count_vm_events(KSWAPD_INODESTEAL, reap);
852 			else
853 				__count_vm_events(PGINODESTEAL, reap);
854 			mm_account_reclaimed_pages(reap);
855 		}
856 		iput(inode);
857 		spin_lock(lru_lock);
858 		return LRU_RETRY;
859 	}
860 
861 	WARN_ON(inode->i_state & I_NEW);
862 	inode->i_state |= I_FREEING;
863 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
864 	spin_unlock(&inode->i_lock);
865 
866 	this_cpu_dec(nr_unused);
867 	return LRU_REMOVED;
868 }
869 
870 /*
871  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
872  * This is called from the superblock shrinker function with a number of inodes
873  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
874  * then are freed outside inode_lock by dispose_list().
875  */
876 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
877 {
878 	LIST_HEAD(freeable);
879 	long freed;
880 
881 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
882 				     inode_lru_isolate, &freeable);
883 	dispose_list(&freeable);
884 	return freed;
885 }
886 
887 static void __wait_on_freeing_inode(struct inode *inode);
888 /*
889  * Called with the inode lock held.
890  */
891 static struct inode *find_inode(struct super_block *sb,
892 				struct hlist_head *head,
893 				int (*test)(struct inode *, void *),
894 				void *data)
895 {
896 	struct inode *inode = NULL;
897 
898 repeat:
899 	hlist_for_each_entry(inode, head, i_hash) {
900 		if (inode->i_sb != sb)
901 			continue;
902 		if (!test(inode, data))
903 			continue;
904 		spin_lock(&inode->i_lock);
905 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
906 			__wait_on_freeing_inode(inode);
907 			goto repeat;
908 		}
909 		if (unlikely(inode->i_state & I_CREATING)) {
910 			spin_unlock(&inode->i_lock);
911 			return ERR_PTR(-ESTALE);
912 		}
913 		__iget(inode);
914 		spin_unlock(&inode->i_lock);
915 		return inode;
916 	}
917 	return NULL;
918 }
919 
920 /*
921  * find_inode_fast is the fast path version of find_inode, see the comment at
922  * iget_locked for details.
923  */
924 static struct inode *find_inode_fast(struct super_block *sb,
925 				struct hlist_head *head, unsigned long ino)
926 {
927 	struct inode *inode = NULL;
928 
929 repeat:
930 	hlist_for_each_entry(inode, head, i_hash) {
931 		if (inode->i_ino != ino)
932 			continue;
933 		if (inode->i_sb != sb)
934 			continue;
935 		spin_lock(&inode->i_lock);
936 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
937 			__wait_on_freeing_inode(inode);
938 			goto repeat;
939 		}
940 		if (unlikely(inode->i_state & I_CREATING)) {
941 			spin_unlock(&inode->i_lock);
942 			return ERR_PTR(-ESTALE);
943 		}
944 		__iget(inode);
945 		spin_unlock(&inode->i_lock);
946 		return inode;
947 	}
948 	return NULL;
949 }
950 
951 /*
952  * Each cpu owns a range of LAST_INO_BATCH numbers.
953  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
954  * to renew the exhausted range.
955  *
956  * This does not significantly increase overflow rate because every CPU can
957  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
958  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
959  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
960  * overflow rate by 2x, which does not seem too significant.
961  *
962  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
963  * error if st_ino won't fit in target struct field. Use 32bit counter
964  * here to attempt to avoid that.
965  */
966 #define LAST_INO_BATCH 1024
967 static DEFINE_PER_CPU(unsigned int, last_ino);
968 
969 unsigned int get_next_ino(void)
970 {
971 	unsigned int *p = &get_cpu_var(last_ino);
972 	unsigned int res = *p;
973 
974 #ifdef CONFIG_SMP
975 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
976 		static atomic_t shared_last_ino;
977 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
978 
979 		res = next - LAST_INO_BATCH;
980 	}
981 #endif
982 
983 	res++;
984 	/* get_next_ino should not provide a 0 inode number */
985 	if (unlikely(!res))
986 		res++;
987 	*p = res;
988 	put_cpu_var(last_ino);
989 	return res;
990 }
991 EXPORT_SYMBOL(get_next_ino);
992 
993 /**
994  *	new_inode_pseudo 	- obtain an inode
995  *	@sb: superblock
996  *
997  *	Allocates a new inode for given superblock.
998  *	Inode wont be chained in superblock s_inodes list
999  *	This means :
1000  *	- fs can't be unmount
1001  *	- quotas, fsnotify, writeback can't work
1002  */
1003 struct inode *new_inode_pseudo(struct super_block *sb)
1004 {
1005 	struct inode *inode = alloc_inode(sb);
1006 
1007 	if (inode) {
1008 		spin_lock(&inode->i_lock);
1009 		inode->i_state = 0;
1010 		spin_unlock(&inode->i_lock);
1011 	}
1012 	return inode;
1013 }
1014 
1015 /**
1016  *	new_inode 	- obtain an inode
1017  *	@sb: superblock
1018  *
1019  *	Allocates a new inode for given superblock. The default gfp_mask
1020  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1021  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1022  *	for the page cache are not reclaimable or migratable,
1023  *	mapping_set_gfp_mask() must be called with suitable flags on the
1024  *	newly created inode's mapping
1025  *
1026  */
1027 struct inode *new_inode(struct super_block *sb)
1028 {
1029 	struct inode *inode;
1030 
1031 	inode = new_inode_pseudo(sb);
1032 	if (inode)
1033 		inode_sb_list_add(inode);
1034 	return inode;
1035 }
1036 EXPORT_SYMBOL(new_inode);
1037 
1038 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1039 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1040 {
1041 	if (S_ISDIR(inode->i_mode)) {
1042 		struct file_system_type *type = inode->i_sb->s_type;
1043 
1044 		/* Set new key only if filesystem hasn't already changed it */
1045 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1046 			/*
1047 			 * ensure nobody is actually holding i_mutex
1048 			 */
1049 			// mutex_destroy(&inode->i_mutex);
1050 			init_rwsem(&inode->i_rwsem);
1051 			lockdep_set_class(&inode->i_rwsem,
1052 					  &type->i_mutex_dir_key);
1053 		}
1054 	}
1055 }
1056 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1057 #endif
1058 
1059 /**
1060  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1061  * @inode:	new inode to unlock
1062  *
1063  * Called when the inode is fully initialised to clear the new state of the
1064  * inode and wake up anyone waiting for the inode to finish initialisation.
1065  */
1066 void unlock_new_inode(struct inode *inode)
1067 {
1068 	lockdep_annotate_inode_mutex_key(inode);
1069 	spin_lock(&inode->i_lock);
1070 	WARN_ON(!(inode->i_state & I_NEW));
1071 	inode->i_state &= ~I_NEW & ~I_CREATING;
1072 	smp_mb();
1073 	wake_up_bit(&inode->i_state, __I_NEW);
1074 	spin_unlock(&inode->i_lock);
1075 }
1076 EXPORT_SYMBOL(unlock_new_inode);
1077 
1078 void discard_new_inode(struct inode *inode)
1079 {
1080 	lockdep_annotate_inode_mutex_key(inode);
1081 	spin_lock(&inode->i_lock);
1082 	WARN_ON(!(inode->i_state & I_NEW));
1083 	inode->i_state &= ~I_NEW;
1084 	smp_mb();
1085 	wake_up_bit(&inode->i_state, __I_NEW);
1086 	spin_unlock(&inode->i_lock);
1087 	iput(inode);
1088 }
1089 EXPORT_SYMBOL(discard_new_inode);
1090 
1091 /**
1092  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1093  *
1094  * Lock any non-NULL argument. Passed objects must not be directories.
1095  * Zero, one or two objects may be locked by this function.
1096  *
1097  * @inode1: first inode to lock
1098  * @inode2: second inode to lock
1099  */
1100 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1101 {
1102 	if (inode1)
1103 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1104 	if (inode2)
1105 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1106 	if (inode1 > inode2)
1107 		swap(inode1, inode2);
1108 	if (inode1)
1109 		inode_lock(inode1);
1110 	if (inode2 && inode2 != inode1)
1111 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1112 }
1113 EXPORT_SYMBOL(lock_two_nondirectories);
1114 
1115 /**
1116  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1117  * @inode1: first inode to unlock
1118  * @inode2: second inode to unlock
1119  */
1120 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1121 {
1122 	if (inode1) {
1123 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1124 		inode_unlock(inode1);
1125 	}
1126 	if (inode2 && inode2 != inode1) {
1127 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1128 		inode_unlock(inode2);
1129 	}
1130 }
1131 EXPORT_SYMBOL(unlock_two_nondirectories);
1132 
1133 /**
1134  * inode_insert5 - obtain an inode from a mounted file system
1135  * @inode:	pre-allocated inode to use for insert to cache
1136  * @hashval:	hash value (usually inode number) to get
1137  * @test:	callback used for comparisons between inodes
1138  * @set:	callback used to initialize a new struct inode
1139  * @data:	opaque data pointer to pass to @test and @set
1140  *
1141  * Search for the inode specified by @hashval and @data in the inode cache,
1142  * and if present it is return it with an increased reference count. This is
1143  * a variant of iget5_locked() for callers that don't want to fail on memory
1144  * allocation of inode.
1145  *
1146  * If the inode is not in cache, insert the pre-allocated inode to cache and
1147  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1148  * to fill it in before unlocking it via unlock_new_inode().
1149  *
1150  * Note both @test and @set are called with the inode_hash_lock held, so can't
1151  * sleep.
1152  */
1153 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1154 			    int (*test)(struct inode *, void *),
1155 			    int (*set)(struct inode *, void *), void *data)
1156 {
1157 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1158 	struct inode *old;
1159 
1160 again:
1161 	spin_lock(&inode_hash_lock);
1162 	old = find_inode(inode->i_sb, head, test, data);
1163 	if (unlikely(old)) {
1164 		/*
1165 		 * Uhhuh, somebody else created the same inode under us.
1166 		 * Use the old inode instead of the preallocated one.
1167 		 */
1168 		spin_unlock(&inode_hash_lock);
1169 		if (IS_ERR(old))
1170 			return NULL;
1171 		wait_on_inode(old);
1172 		if (unlikely(inode_unhashed(old))) {
1173 			iput(old);
1174 			goto again;
1175 		}
1176 		return old;
1177 	}
1178 
1179 	if (set && unlikely(set(inode, data))) {
1180 		inode = NULL;
1181 		goto unlock;
1182 	}
1183 
1184 	/*
1185 	 * Return the locked inode with I_NEW set, the
1186 	 * caller is responsible for filling in the contents
1187 	 */
1188 	spin_lock(&inode->i_lock);
1189 	inode->i_state |= I_NEW;
1190 	hlist_add_head_rcu(&inode->i_hash, head);
1191 	spin_unlock(&inode->i_lock);
1192 
1193 	/*
1194 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1195 	 * point, so it should be safe to test i_sb_list locklessly.
1196 	 */
1197 	if (list_empty(&inode->i_sb_list))
1198 		inode_sb_list_add(inode);
1199 unlock:
1200 	spin_unlock(&inode_hash_lock);
1201 
1202 	return inode;
1203 }
1204 EXPORT_SYMBOL(inode_insert5);
1205 
1206 /**
1207  * iget5_locked - obtain an inode from a mounted file system
1208  * @sb:		super block of file system
1209  * @hashval:	hash value (usually inode number) to get
1210  * @test:	callback used for comparisons between inodes
1211  * @set:	callback used to initialize a new struct inode
1212  * @data:	opaque data pointer to pass to @test and @set
1213  *
1214  * Search for the inode specified by @hashval and @data in the inode cache,
1215  * and if present it is return it with an increased reference count. This is
1216  * a generalized version of iget_locked() for file systems where the inode
1217  * number is not sufficient for unique identification of an inode.
1218  *
1219  * If the inode is not in cache, allocate a new inode and return it locked,
1220  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1221  * before unlocking it via unlock_new_inode().
1222  *
1223  * Note both @test and @set are called with the inode_hash_lock held, so can't
1224  * sleep.
1225  */
1226 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1227 		int (*test)(struct inode *, void *),
1228 		int (*set)(struct inode *, void *), void *data)
1229 {
1230 	struct inode *inode = ilookup5(sb, hashval, test, data);
1231 
1232 	if (!inode) {
1233 		struct inode *new = alloc_inode(sb);
1234 
1235 		if (new) {
1236 			new->i_state = 0;
1237 			inode = inode_insert5(new, hashval, test, set, data);
1238 			if (unlikely(inode != new))
1239 				destroy_inode(new);
1240 		}
1241 	}
1242 	return inode;
1243 }
1244 EXPORT_SYMBOL(iget5_locked);
1245 
1246 /**
1247  * iget_locked - obtain an inode from a mounted file system
1248  * @sb:		super block of file system
1249  * @ino:	inode number to get
1250  *
1251  * Search for the inode specified by @ino in the inode cache and if present
1252  * return it with an increased reference count. This is for file systems
1253  * where the inode number is sufficient for unique identification of an inode.
1254  *
1255  * If the inode is not in cache, allocate a new inode and return it locked,
1256  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1257  * before unlocking it via unlock_new_inode().
1258  */
1259 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1260 {
1261 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 	struct inode *inode;
1263 again:
1264 	spin_lock(&inode_hash_lock);
1265 	inode = find_inode_fast(sb, head, ino);
1266 	spin_unlock(&inode_hash_lock);
1267 	if (inode) {
1268 		if (IS_ERR(inode))
1269 			return NULL;
1270 		wait_on_inode(inode);
1271 		if (unlikely(inode_unhashed(inode))) {
1272 			iput(inode);
1273 			goto again;
1274 		}
1275 		return inode;
1276 	}
1277 
1278 	inode = alloc_inode(sb);
1279 	if (inode) {
1280 		struct inode *old;
1281 
1282 		spin_lock(&inode_hash_lock);
1283 		/* We released the lock, so.. */
1284 		old = find_inode_fast(sb, head, ino);
1285 		if (!old) {
1286 			inode->i_ino = ino;
1287 			spin_lock(&inode->i_lock);
1288 			inode->i_state = I_NEW;
1289 			hlist_add_head_rcu(&inode->i_hash, head);
1290 			spin_unlock(&inode->i_lock);
1291 			inode_sb_list_add(inode);
1292 			spin_unlock(&inode_hash_lock);
1293 
1294 			/* Return the locked inode with I_NEW set, the
1295 			 * caller is responsible for filling in the contents
1296 			 */
1297 			return inode;
1298 		}
1299 
1300 		/*
1301 		 * Uhhuh, somebody else created the same inode under
1302 		 * us. Use the old inode instead of the one we just
1303 		 * allocated.
1304 		 */
1305 		spin_unlock(&inode_hash_lock);
1306 		destroy_inode(inode);
1307 		if (IS_ERR(old))
1308 			return NULL;
1309 		inode = old;
1310 		wait_on_inode(inode);
1311 		if (unlikely(inode_unhashed(inode))) {
1312 			iput(inode);
1313 			goto again;
1314 		}
1315 	}
1316 	return inode;
1317 }
1318 EXPORT_SYMBOL(iget_locked);
1319 
1320 /*
1321  * search the inode cache for a matching inode number.
1322  * If we find one, then the inode number we are trying to
1323  * allocate is not unique and so we should not use it.
1324  *
1325  * Returns 1 if the inode number is unique, 0 if it is not.
1326  */
1327 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1328 {
1329 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1330 	struct inode *inode;
1331 
1332 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1333 		if (inode->i_ino == ino && inode->i_sb == sb)
1334 			return 0;
1335 	}
1336 	return 1;
1337 }
1338 
1339 /**
1340  *	iunique - get a unique inode number
1341  *	@sb: superblock
1342  *	@max_reserved: highest reserved inode number
1343  *
1344  *	Obtain an inode number that is unique on the system for a given
1345  *	superblock. This is used by file systems that have no natural
1346  *	permanent inode numbering system. An inode number is returned that
1347  *	is higher than the reserved limit but unique.
1348  *
1349  *	BUGS:
1350  *	With a large number of inodes live on the file system this function
1351  *	currently becomes quite slow.
1352  */
1353 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1354 {
1355 	/*
1356 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1357 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1358 	 * here to attempt to avoid that.
1359 	 */
1360 	static DEFINE_SPINLOCK(iunique_lock);
1361 	static unsigned int counter;
1362 	ino_t res;
1363 
1364 	rcu_read_lock();
1365 	spin_lock(&iunique_lock);
1366 	do {
1367 		if (counter <= max_reserved)
1368 			counter = max_reserved + 1;
1369 		res = counter++;
1370 	} while (!test_inode_iunique(sb, res));
1371 	spin_unlock(&iunique_lock);
1372 	rcu_read_unlock();
1373 
1374 	return res;
1375 }
1376 EXPORT_SYMBOL(iunique);
1377 
1378 struct inode *igrab(struct inode *inode)
1379 {
1380 	spin_lock(&inode->i_lock);
1381 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1382 		__iget(inode);
1383 		spin_unlock(&inode->i_lock);
1384 	} else {
1385 		spin_unlock(&inode->i_lock);
1386 		/*
1387 		 * Handle the case where s_op->clear_inode is not been
1388 		 * called yet, and somebody is calling igrab
1389 		 * while the inode is getting freed.
1390 		 */
1391 		inode = NULL;
1392 	}
1393 	return inode;
1394 }
1395 EXPORT_SYMBOL(igrab);
1396 
1397 /**
1398  * ilookup5_nowait - search for an inode in the inode cache
1399  * @sb:		super block of file system to search
1400  * @hashval:	hash value (usually inode number) to search for
1401  * @test:	callback used for comparisons between inodes
1402  * @data:	opaque data pointer to pass to @test
1403  *
1404  * Search for the inode specified by @hashval and @data in the inode cache.
1405  * If the inode is in the cache, the inode is returned with an incremented
1406  * reference count.
1407  *
1408  * Note: I_NEW is not waited upon so you have to be very careful what you do
1409  * with the returned inode.  You probably should be using ilookup5() instead.
1410  *
1411  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1412  */
1413 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1414 		int (*test)(struct inode *, void *), void *data)
1415 {
1416 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1417 	struct inode *inode;
1418 
1419 	spin_lock(&inode_hash_lock);
1420 	inode = find_inode(sb, head, test, data);
1421 	spin_unlock(&inode_hash_lock);
1422 
1423 	return IS_ERR(inode) ? NULL : inode;
1424 }
1425 EXPORT_SYMBOL(ilookup5_nowait);
1426 
1427 /**
1428  * ilookup5 - search for an inode in the inode cache
1429  * @sb:		super block of file system to search
1430  * @hashval:	hash value (usually inode number) to search for
1431  * @test:	callback used for comparisons between inodes
1432  * @data:	opaque data pointer to pass to @test
1433  *
1434  * Search for the inode specified by @hashval and @data in the inode cache,
1435  * and if the inode is in the cache, return the inode with an incremented
1436  * reference count.  Waits on I_NEW before returning the inode.
1437  * returned with an incremented reference count.
1438  *
1439  * This is a generalized version of ilookup() for file systems where the
1440  * inode number is not sufficient for unique identification of an inode.
1441  *
1442  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1443  */
1444 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1445 		int (*test)(struct inode *, void *), void *data)
1446 {
1447 	struct inode *inode;
1448 again:
1449 	inode = ilookup5_nowait(sb, hashval, test, data);
1450 	if (inode) {
1451 		wait_on_inode(inode);
1452 		if (unlikely(inode_unhashed(inode))) {
1453 			iput(inode);
1454 			goto again;
1455 		}
1456 	}
1457 	return inode;
1458 }
1459 EXPORT_SYMBOL(ilookup5);
1460 
1461 /**
1462  * ilookup - search for an inode in the inode cache
1463  * @sb:		super block of file system to search
1464  * @ino:	inode number to search for
1465  *
1466  * Search for the inode @ino in the inode cache, and if the inode is in the
1467  * cache, the inode is returned with an incremented reference count.
1468  */
1469 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1470 {
1471 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1472 	struct inode *inode;
1473 again:
1474 	spin_lock(&inode_hash_lock);
1475 	inode = find_inode_fast(sb, head, ino);
1476 	spin_unlock(&inode_hash_lock);
1477 
1478 	if (inode) {
1479 		if (IS_ERR(inode))
1480 			return NULL;
1481 		wait_on_inode(inode);
1482 		if (unlikely(inode_unhashed(inode))) {
1483 			iput(inode);
1484 			goto again;
1485 		}
1486 	}
1487 	return inode;
1488 }
1489 EXPORT_SYMBOL(ilookup);
1490 
1491 /**
1492  * find_inode_nowait - find an inode in the inode cache
1493  * @sb:		super block of file system to search
1494  * @hashval:	hash value (usually inode number) to search for
1495  * @match:	callback used for comparisons between inodes
1496  * @data:	opaque data pointer to pass to @match
1497  *
1498  * Search for the inode specified by @hashval and @data in the inode
1499  * cache, where the helper function @match will return 0 if the inode
1500  * does not match, 1 if the inode does match, and -1 if the search
1501  * should be stopped.  The @match function must be responsible for
1502  * taking the i_lock spin_lock and checking i_state for an inode being
1503  * freed or being initialized, and incrementing the reference count
1504  * before returning 1.  It also must not sleep, since it is called with
1505  * the inode_hash_lock spinlock held.
1506  *
1507  * This is a even more generalized version of ilookup5() when the
1508  * function must never block --- find_inode() can block in
1509  * __wait_on_freeing_inode() --- or when the caller can not increment
1510  * the reference count because the resulting iput() might cause an
1511  * inode eviction.  The tradeoff is that the @match funtion must be
1512  * very carefully implemented.
1513  */
1514 struct inode *find_inode_nowait(struct super_block *sb,
1515 				unsigned long hashval,
1516 				int (*match)(struct inode *, unsigned long,
1517 					     void *),
1518 				void *data)
1519 {
1520 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1521 	struct inode *inode, *ret_inode = NULL;
1522 	int mval;
1523 
1524 	spin_lock(&inode_hash_lock);
1525 	hlist_for_each_entry(inode, head, i_hash) {
1526 		if (inode->i_sb != sb)
1527 			continue;
1528 		mval = match(inode, hashval, data);
1529 		if (mval == 0)
1530 			continue;
1531 		if (mval == 1)
1532 			ret_inode = inode;
1533 		goto out;
1534 	}
1535 out:
1536 	spin_unlock(&inode_hash_lock);
1537 	return ret_inode;
1538 }
1539 EXPORT_SYMBOL(find_inode_nowait);
1540 
1541 /**
1542  * find_inode_rcu - find an inode in the inode cache
1543  * @sb:		Super block of file system to search
1544  * @hashval:	Key to hash
1545  * @test:	Function to test match on an inode
1546  * @data:	Data for test function
1547  *
1548  * Search for the inode specified by @hashval and @data in the inode cache,
1549  * where the helper function @test will return 0 if the inode does not match
1550  * and 1 if it does.  The @test function must be responsible for taking the
1551  * i_lock spin_lock and checking i_state for an inode being freed or being
1552  * initialized.
1553  *
1554  * If successful, this will return the inode for which the @test function
1555  * returned 1 and NULL otherwise.
1556  *
1557  * The @test function is not permitted to take a ref on any inode presented.
1558  * It is also not permitted to sleep.
1559  *
1560  * The caller must hold the RCU read lock.
1561  */
1562 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1563 			     int (*test)(struct inode *, void *), void *data)
1564 {
1565 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1566 	struct inode *inode;
1567 
1568 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1569 			 "suspicious find_inode_rcu() usage");
1570 
1571 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1572 		if (inode->i_sb == sb &&
1573 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1574 		    test(inode, data))
1575 			return inode;
1576 	}
1577 	return NULL;
1578 }
1579 EXPORT_SYMBOL(find_inode_rcu);
1580 
1581 /**
1582  * find_inode_by_ino_rcu - Find an inode in the inode cache
1583  * @sb:		Super block of file system to search
1584  * @ino:	The inode number to match
1585  *
1586  * Search for the inode specified by @hashval and @data in the inode cache,
1587  * where the helper function @test will return 0 if the inode does not match
1588  * and 1 if it does.  The @test function must be responsible for taking the
1589  * i_lock spin_lock and checking i_state for an inode being freed or being
1590  * initialized.
1591  *
1592  * If successful, this will return the inode for which the @test function
1593  * returned 1 and NULL otherwise.
1594  *
1595  * The @test function is not permitted to take a ref on any inode presented.
1596  * It is also not permitted to sleep.
1597  *
1598  * The caller must hold the RCU read lock.
1599  */
1600 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1601 				    unsigned long ino)
1602 {
1603 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1604 	struct inode *inode;
1605 
1606 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1607 			 "suspicious find_inode_by_ino_rcu() usage");
1608 
1609 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1610 		if (inode->i_ino == ino &&
1611 		    inode->i_sb == sb &&
1612 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1613 		    return inode;
1614 	}
1615 	return NULL;
1616 }
1617 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1618 
1619 int insert_inode_locked(struct inode *inode)
1620 {
1621 	struct super_block *sb = inode->i_sb;
1622 	ino_t ino = inode->i_ino;
1623 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1624 
1625 	while (1) {
1626 		struct inode *old = NULL;
1627 		spin_lock(&inode_hash_lock);
1628 		hlist_for_each_entry(old, head, i_hash) {
1629 			if (old->i_ino != ino)
1630 				continue;
1631 			if (old->i_sb != sb)
1632 				continue;
1633 			spin_lock(&old->i_lock);
1634 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1635 				spin_unlock(&old->i_lock);
1636 				continue;
1637 			}
1638 			break;
1639 		}
1640 		if (likely(!old)) {
1641 			spin_lock(&inode->i_lock);
1642 			inode->i_state |= I_NEW | I_CREATING;
1643 			hlist_add_head_rcu(&inode->i_hash, head);
1644 			spin_unlock(&inode->i_lock);
1645 			spin_unlock(&inode_hash_lock);
1646 			return 0;
1647 		}
1648 		if (unlikely(old->i_state & I_CREATING)) {
1649 			spin_unlock(&old->i_lock);
1650 			spin_unlock(&inode_hash_lock);
1651 			return -EBUSY;
1652 		}
1653 		__iget(old);
1654 		spin_unlock(&old->i_lock);
1655 		spin_unlock(&inode_hash_lock);
1656 		wait_on_inode(old);
1657 		if (unlikely(!inode_unhashed(old))) {
1658 			iput(old);
1659 			return -EBUSY;
1660 		}
1661 		iput(old);
1662 	}
1663 }
1664 EXPORT_SYMBOL(insert_inode_locked);
1665 
1666 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1667 		int (*test)(struct inode *, void *), void *data)
1668 {
1669 	struct inode *old;
1670 
1671 	inode->i_state |= I_CREATING;
1672 	old = inode_insert5(inode, hashval, test, NULL, data);
1673 
1674 	if (old != inode) {
1675 		iput(old);
1676 		return -EBUSY;
1677 	}
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL(insert_inode_locked4);
1681 
1682 
1683 int generic_delete_inode(struct inode *inode)
1684 {
1685 	return 1;
1686 }
1687 EXPORT_SYMBOL(generic_delete_inode);
1688 
1689 /*
1690  * Called when we're dropping the last reference
1691  * to an inode.
1692  *
1693  * Call the FS "drop_inode()" function, defaulting to
1694  * the legacy UNIX filesystem behaviour.  If it tells
1695  * us to evict inode, do so.  Otherwise, retain inode
1696  * in cache if fs is alive, sync and evict if fs is
1697  * shutting down.
1698  */
1699 static void iput_final(struct inode *inode)
1700 {
1701 	struct super_block *sb = inode->i_sb;
1702 	const struct super_operations *op = inode->i_sb->s_op;
1703 	unsigned long state;
1704 	int drop;
1705 
1706 	WARN_ON(inode->i_state & I_NEW);
1707 
1708 	if (op->drop_inode)
1709 		drop = op->drop_inode(inode);
1710 	else
1711 		drop = generic_drop_inode(inode);
1712 
1713 	if (!drop &&
1714 	    !(inode->i_state & I_DONTCACHE) &&
1715 	    (sb->s_flags & SB_ACTIVE)) {
1716 		__inode_add_lru(inode, true);
1717 		spin_unlock(&inode->i_lock);
1718 		return;
1719 	}
1720 
1721 	state = inode->i_state;
1722 	if (!drop) {
1723 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1724 		spin_unlock(&inode->i_lock);
1725 
1726 		write_inode_now(inode, 1);
1727 
1728 		spin_lock(&inode->i_lock);
1729 		state = inode->i_state;
1730 		WARN_ON(state & I_NEW);
1731 		state &= ~I_WILL_FREE;
1732 	}
1733 
1734 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1735 	if (!list_empty(&inode->i_lru))
1736 		inode_lru_list_del(inode);
1737 	spin_unlock(&inode->i_lock);
1738 
1739 	evict(inode);
1740 }
1741 
1742 /**
1743  *	iput	- put an inode
1744  *	@inode: inode to put
1745  *
1746  *	Puts an inode, dropping its usage count. If the inode use count hits
1747  *	zero, the inode is then freed and may also be destroyed.
1748  *
1749  *	Consequently, iput() can sleep.
1750  */
1751 void iput(struct inode *inode)
1752 {
1753 	if (!inode)
1754 		return;
1755 	BUG_ON(inode->i_state & I_CLEAR);
1756 retry:
1757 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1758 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1759 			atomic_inc(&inode->i_count);
1760 			spin_unlock(&inode->i_lock);
1761 			trace_writeback_lazytime_iput(inode);
1762 			mark_inode_dirty_sync(inode);
1763 			goto retry;
1764 		}
1765 		iput_final(inode);
1766 	}
1767 }
1768 EXPORT_SYMBOL(iput);
1769 
1770 #ifdef CONFIG_BLOCK
1771 /**
1772  *	bmap	- find a block number in a file
1773  *	@inode:  inode owning the block number being requested
1774  *	@block: pointer containing the block to find
1775  *
1776  *	Replaces the value in ``*block`` with the block number on the device holding
1777  *	corresponding to the requested block number in the file.
1778  *	That is, asked for block 4 of inode 1 the function will replace the
1779  *	4 in ``*block``, with disk block relative to the disk start that holds that
1780  *	block of the file.
1781  *
1782  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1783  *	hole, returns 0 and ``*block`` is also set to 0.
1784  */
1785 int bmap(struct inode *inode, sector_t *block)
1786 {
1787 	if (!inode->i_mapping->a_ops->bmap)
1788 		return -EINVAL;
1789 
1790 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(bmap);
1794 #endif
1795 
1796 /*
1797  * With relative atime, only update atime if the previous atime is
1798  * earlier than or equal to either the ctime or mtime,
1799  * or if at least a day has passed since the last atime update.
1800  */
1801 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1802 			     struct timespec64 now)
1803 {
1804 	struct timespec64 atime, mtime, ctime;
1805 
1806 	if (!(mnt->mnt_flags & MNT_RELATIME))
1807 		return true;
1808 	/*
1809 	 * Is mtime younger than or equal to atime? If yes, update atime:
1810 	 */
1811 	atime = inode_get_atime(inode);
1812 	mtime = inode_get_mtime(inode);
1813 	if (timespec64_compare(&mtime, &atime) >= 0)
1814 		return true;
1815 	/*
1816 	 * Is ctime younger than or equal to atime? If yes, update atime:
1817 	 */
1818 	ctime = inode_get_ctime(inode);
1819 	if (timespec64_compare(&ctime, &atime) >= 0)
1820 		return true;
1821 
1822 	/*
1823 	 * Is the previous atime value older than a day? If yes,
1824 	 * update atime:
1825 	 */
1826 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1827 		return true;
1828 	/*
1829 	 * Good, we can skip the atime update:
1830 	 */
1831 	return false;
1832 }
1833 
1834 /**
1835  * inode_update_timestamps - update the timestamps on the inode
1836  * @inode: inode to be updated
1837  * @flags: S_* flags that needed to be updated
1838  *
1839  * The update_time function is called when an inode's timestamps need to be
1840  * updated for a read or write operation. This function handles updating the
1841  * actual timestamps. It's up to the caller to ensure that the inode is marked
1842  * dirty appropriately.
1843  *
1844  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1845  * attempt to update all three of them. S_ATIME updates can be handled
1846  * independently of the rest.
1847  *
1848  * Returns a set of S_* flags indicating which values changed.
1849  */
1850 int inode_update_timestamps(struct inode *inode, int flags)
1851 {
1852 	int updated = 0;
1853 	struct timespec64 now;
1854 
1855 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1856 		struct timespec64 ctime = inode_get_ctime(inode);
1857 		struct timespec64 mtime = inode_get_mtime(inode);
1858 
1859 		now = inode_set_ctime_current(inode);
1860 		if (!timespec64_equal(&now, &ctime))
1861 			updated |= S_CTIME;
1862 		if (!timespec64_equal(&now, &mtime)) {
1863 			inode_set_mtime_to_ts(inode, now);
1864 			updated |= S_MTIME;
1865 		}
1866 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1867 			updated |= S_VERSION;
1868 	} else {
1869 		now = current_time(inode);
1870 	}
1871 
1872 	if (flags & S_ATIME) {
1873 		struct timespec64 atime = inode_get_atime(inode);
1874 
1875 		if (!timespec64_equal(&now, &atime)) {
1876 			inode_set_atime_to_ts(inode, now);
1877 			updated |= S_ATIME;
1878 		}
1879 	}
1880 	return updated;
1881 }
1882 EXPORT_SYMBOL(inode_update_timestamps);
1883 
1884 /**
1885  * generic_update_time - update the timestamps on the inode
1886  * @inode: inode to be updated
1887  * @flags: S_* flags that needed to be updated
1888  *
1889  * The update_time function is called when an inode's timestamps need to be
1890  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1891  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1892  * updates can be handled done independently of the rest.
1893  *
1894  * Returns a S_* mask indicating which fields were updated.
1895  */
1896 int generic_update_time(struct inode *inode, int flags)
1897 {
1898 	int updated = inode_update_timestamps(inode, flags);
1899 	int dirty_flags = 0;
1900 
1901 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1902 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1903 	if (updated & S_VERSION)
1904 		dirty_flags |= I_DIRTY_SYNC;
1905 	__mark_inode_dirty(inode, dirty_flags);
1906 	return updated;
1907 }
1908 EXPORT_SYMBOL(generic_update_time);
1909 
1910 /*
1911  * This does the actual work of updating an inodes time or version.  Must have
1912  * had called mnt_want_write() before calling this.
1913  */
1914 int inode_update_time(struct inode *inode, int flags)
1915 {
1916 	if (inode->i_op->update_time)
1917 		return inode->i_op->update_time(inode, flags);
1918 	generic_update_time(inode, flags);
1919 	return 0;
1920 }
1921 EXPORT_SYMBOL(inode_update_time);
1922 
1923 /**
1924  *	atime_needs_update	-	update the access time
1925  *	@path: the &struct path to update
1926  *	@inode: inode to update
1927  *
1928  *	Update the accessed time on an inode and mark it for writeback.
1929  *	This function automatically handles read only file systems and media,
1930  *	as well as the "noatime" flag and inode specific "noatime" markers.
1931  */
1932 bool atime_needs_update(const struct path *path, struct inode *inode)
1933 {
1934 	struct vfsmount *mnt = path->mnt;
1935 	struct timespec64 now, atime;
1936 
1937 	if (inode->i_flags & S_NOATIME)
1938 		return false;
1939 
1940 	/* Atime updates will likely cause i_uid and i_gid to be written
1941 	 * back improprely if their true value is unknown to the vfs.
1942 	 */
1943 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1944 		return false;
1945 
1946 	if (IS_NOATIME(inode))
1947 		return false;
1948 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1949 		return false;
1950 
1951 	if (mnt->mnt_flags & MNT_NOATIME)
1952 		return false;
1953 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1954 		return false;
1955 
1956 	now = current_time(inode);
1957 
1958 	if (!relatime_need_update(mnt, inode, now))
1959 		return false;
1960 
1961 	atime = inode_get_atime(inode);
1962 	if (timespec64_equal(&atime, &now))
1963 		return false;
1964 
1965 	return true;
1966 }
1967 
1968 void touch_atime(const struct path *path)
1969 {
1970 	struct vfsmount *mnt = path->mnt;
1971 	struct inode *inode = d_inode(path->dentry);
1972 
1973 	if (!atime_needs_update(path, inode))
1974 		return;
1975 
1976 	if (!sb_start_write_trylock(inode->i_sb))
1977 		return;
1978 
1979 	if (mnt_get_write_access(mnt) != 0)
1980 		goto skip_update;
1981 	/*
1982 	 * File systems can error out when updating inodes if they need to
1983 	 * allocate new space to modify an inode (such is the case for
1984 	 * Btrfs), but since we touch atime while walking down the path we
1985 	 * really don't care if we failed to update the atime of the file,
1986 	 * so just ignore the return value.
1987 	 * We may also fail on filesystems that have the ability to make parts
1988 	 * of the fs read only, e.g. subvolumes in Btrfs.
1989 	 */
1990 	inode_update_time(inode, S_ATIME);
1991 	mnt_put_write_access(mnt);
1992 skip_update:
1993 	sb_end_write(inode->i_sb);
1994 }
1995 EXPORT_SYMBOL(touch_atime);
1996 
1997 /*
1998  * Return mask of changes for notify_change() that need to be done as a
1999  * response to write or truncate. Return 0 if nothing has to be changed.
2000  * Negative value on error (change should be denied).
2001  */
2002 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2003 			      struct dentry *dentry)
2004 {
2005 	struct inode *inode = d_inode(dentry);
2006 	int mask = 0;
2007 	int ret;
2008 
2009 	if (IS_NOSEC(inode))
2010 		return 0;
2011 
2012 	mask = setattr_should_drop_suidgid(idmap, inode);
2013 	ret = security_inode_need_killpriv(dentry);
2014 	if (ret < 0)
2015 		return ret;
2016 	if (ret)
2017 		mask |= ATTR_KILL_PRIV;
2018 	return mask;
2019 }
2020 
2021 static int __remove_privs(struct mnt_idmap *idmap,
2022 			  struct dentry *dentry, int kill)
2023 {
2024 	struct iattr newattrs;
2025 
2026 	newattrs.ia_valid = ATTR_FORCE | kill;
2027 	/*
2028 	 * Note we call this on write, so notify_change will not
2029 	 * encounter any conflicting delegations:
2030 	 */
2031 	return notify_change(idmap, dentry, &newattrs, NULL);
2032 }
2033 
2034 static int __file_remove_privs(struct file *file, unsigned int flags)
2035 {
2036 	struct dentry *dentry = file_dentry(file);
2037 	struct inode *inode = file_inode(file);
2038 	int error = 0;
2039 	int kill;
2040 
2041 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2042 		return 0;
2043 
2044 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2045 	if (kill < 0)
2046 		return kill;
2047 
2048 	if (kill) {
2049 		if (flags & IOCB_NOWAIT)
2050 			return -EAGAIN;
2051 
2052 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2053 	}
2054 
2055 	if (!error)
2056 		inode_has_no_xattr(inode);
2057 	return error;
2058 }
2059 
2060 /**
2061  * file_remove_privs - remove special file privileges (suid, capabilities)
2062  * @file: file to remove privileges from
2063  *
2064  * When file is modified by a write or truncation ensure that special
2065  * file privileges are removed.
2066  *
2067  * Return: 0 on success, negative errno on failure.
2068  */
2069 int file_remove_privs(struct file *file)
2070 {
2071 	return __file_remove_privs(file, 0);
2072 }
2073 EXPORT_SYMBOL(file_remove_privs);
2074 
2075 static int inode_needs_update_time(struct inode *inode)
2076 {
2077 	int sync_it = 0;
2078 	struct timespec64 now = current_time(inode);
2079 	struct timespec64 ts;
2080 
2081 	/* First try to exhaust all avenues to not sync */
2082 	if (IS_NOCMTIME(inode))
2083 		return 0;
2084 
2085 	ts = inode_get_mtime(inode);
2086 	if (!timespec64_equal(&ts, &now))
2087 		sync_it = S_MTIME;
2088 
2089 	ts = inode_get_ctime(inode);
2090 	if (!timespec64_equal(&ts, &now))
2091 		sync_it |= S_CTIME;
2092 
2093 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2094 		sync_it |= S_VERSION;
2095 
2096 	return sync_it;
2097 }
2098 
2099 static int __file_update_time(struct file *file, int sync_mode)
2100 {
2101 	int ret = 0;
2102 	struct inode *inode = file_inode(file);
2103 
2104 	/* try to update time settings */
2105 	if (!mnt_get_write_access_file(file)) {
2106 		ret = inode_update_time(inode, sync_mode);
2107 		mnt_put_write_access_file(file);
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 /**
2114  * file_update_time - update mtime and ctime time
2115  * @file: file accessed
2116  *
2117  * Update the mtime and ctime members of an inode and mark the inode for
2118  * writeback. Note that this function is meant exclusively for usage in
2119  * the file write path of filesystems, and filesystems may choose to
2120  * explicitly ignore updates via this function with the _NOCMTIME inode
2121  * flag, e.g. for network filesystem where these imestamps are handled
2122  * by the server. This can return an error for file systems who need to
2123  * allocate space in order to update an inode.
2124  *
2125  * Return: 0 on success, negative errno on failure.
2126  */
2127 int file_update_time(struct file *file)
2128 {
2129 	int ret;
2130 	struct inode *inode = file_inode(file);
2131 
2132 	ret = inode_needs_update_time(inode);
2133 	if (ret <= 0)
2134 		return ret;
2135 
2136 	return __file_update_time(file, ret);
2137 }
2138 EXPORT_SYMBOL(file_update_time);
2139 
2140 /**
2141  * file_modified_flags - handle mandated vfs changes when modifying a file
2142  * @file: file that was modified
2143  * @flags: kiocb flags
2144  *
2145  * When file has been modified ensure that special
2146  * file privileges are removed and time settings are updated.
2147  *
2148  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2149  * time settings will not be updated. It will return -EAGAIN.
2150  *
2151  * Context: Caller must hold the file's inode lock.
2152  *
2153  * Return: 0 on success, negative errno on failure.
2154  */
2155 static int file_modified_flags(struct file *file, int flags)
2156 {
2157 	int ret;
2158 	struct inode *inode = file_inode(file);
2159 
2160 	/*
2161 	 * Clear the security bits if the process is not being run by root.
2162 	 * This keeps people from modifying setuid and setgid binaries.
2163 	 */
2164 	ret = __file_remove_privs(file, flags);
2165 	if (ret)
2166 		return ret;
2167 
2168 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2169 		return 0;
2170 
2171 	ret = inode_needs_update_time(inode);
2172 	if (ret <= 0)
2173 		return ret;
2174 	if (flags & IOCB_NOWAIT)
2175 		return -EAGAIN;
2176 
2177 	return __file_update_time(file, ret);
2178 }
2179 
2180 /**
2181  * file_modified - handle mandated vfs changes when modifying a file
2182  * @file: file that was modified
2183  *
2184  * When file has been modified ensure that special
2185  * file privileges are removed and time settings are updated.
2186  *
2187  * Context: Caller must hold the file's inode lock.
2188  *
2189  * Return: 0 on success, negative errno on failure.
2190  */
2191 int file_modified(struct file *file)
2192 {
2193 	return file_modified_flags(file, 0);
2194 }
2195 EXPORT_SYMBOL(file_modified);
2196 
2197 /**
2198  * kiocb_modified - handle mandated vfs changes when modifying a file
2199  * @iocb: iocb that was modified
2200  *
2201  * When file has been modified ensure that special
2202  * file privileges are removed and time settings are updated.
2203  *
2204  * Context: Caller must hold the file's inode lock.
2205  *
2206  * Return: 0 on success, negative errno on failure.
2207  */
2208 int kiocb_modified(struct kiocb *iocb)
2209 {
2210 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2211 }
2212 EXPORT_SYMBOL_GPL(kiocb_modified);
2213 
2214 int inode_needs_sync(struct inode *inode)
2215 {
2216 	if (IS_SYNC(inode))
2217 		return 1;
2218 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2219 		return 1;
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL(inode_needs_sync);
2223 
2224 /*
2225  * If we try to find an inode in the inode hash while it is being
2226  * deleted, we have to wait until the filesystem completes its
2227  * deletion before reporting that it isn't found.  This function waits
2228  * until the deletion _might_ have completed.  Callers are responsible
2229  * to recheck inode state.
2230  *
2231  * It doesn't matter if I_NEW is not set initially, a call to
2232  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2233  * will DTRT.
2234  */
2235 static void __wait_on_freeing_inode(struct inode *inode)
2236 {
2237 	wait_queue_head_t *wq;
2238 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2239 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2240 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2241 	spin_unlock(&inode->i_lock);
2242 	spin_unlock(&inode_hash_lock);
2243 	schedule();
2244 	finish_wait(wq, &wait.wq_entry);
2245 	spin_lock(&inode_hash_lock);
2246 }
2247 
2248 static __initdata unsigned long ihash_entries;
2249 static int __init set_ihash_entries(char *str)
2250 {
2251 	if (!str)
2252 		return 0;
2253 	ihash_entries = simple_strtoul(str, &str, 0);
2254 	return 1;
2255 }
2256 __setup("ihash_entries=", set_ihash_entries);
2257 
2258 /*
2259  * Initialize the waitqueues and inode hash table.
2260  */
2261 void __init inode_init_early(void)
2262 {
2263 	/* If hashes are distributed across NUMA nodes, defer
2264 	 * hash allocation until vmalloc space is available.
2265 	 */
2266 	if (hashdist)
2267 		return;
2268 
2269 	inode_hashtable =
2270 		alloc_large_system_hash("Inode-cache",
2271 					sizeof(struct hlist_head),
2272 					ihash_entries,
2273 					14,
2274 					HASH_EARLY | HASH_ZERO,
2275 					&i_hash_shift,
2276 					&i_hash_mask,
2277 					0,
2278 					0);
2279 }
2280 
2281 void __init inode_init(void)
2282 {
2283 	/* inode slab cache */
2284 	inode_cachep = kmem_cache_create("inode_cache",
2285 					 sizeof(struct inode),
2286 					 0,
2287 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2288 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2289 					 init_once);
2290 
2291 	/* Hash may have been set up in inode_init_early */
2292 	if (!hashdist)
2293 		return;
2294 
2295 	inode_hashtable =
2296 		alloc_large_system_hash("Inode-cache",
2297 					sizeof(struct hlist_head),
2298 					ihash_entries,
2299 					14,
2300 					HASH_ZERO,
2301 					&i_hash_shift,
2302 					&i_hash_mask,
2303 					0,
2304 					0);
2305 }
2306 
2307 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2308 {
2309 	inode->i_mode = mode;
2310 	if (S_ISCHR(mode)) {
2311 		inode->i_fop = &def_chr_fops;
2312 		inode->i_rdev = rdev;
2313 	} else if (S_ISBLK(mode)) {
2314 		if (IS_ENABLED(CONFIG_BLOCK))
2315 			inode->i_fop = &def_blk_fops;
2316 		inode->i_rdev = rdev;
2317 	} else if (S_ISFIFO(mode))
2318 		inode->i_fop = &pipefifo_fops;
2319 	else if (S_ISSOCK(mode))
2320 		;	/* leave it no_open_fops */
2321 	else
2322 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2323 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2324 				  inode->i_ino);
2325 }
2326 EXPORT_SYMBOL(init_special_inode);
2327 
2328 /**
2329  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2330  * @idmap: idmap of the mount the inode was created from
2331  * @inode: New inode
2332  * @dir: Directory inode
2333  * @mode: mode of the new inode
2334  *
2335  * If the inode has been created through an idmapped mount the idmap of
2336  * the vfsmount must be passed through @idmap. This function will then take
2337  * care to map the inode according to @idmap before checking permissions
2338  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2339  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2340  */
2341 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2342 		      const struct inode *dir, umode_t mode)
2343 {
2344 	inode_fsuid_set(inode, idmap);
2345 	if (dir && dir->i_mode & S_ISGID) {
2346 		inode->i_gid = dir->i_gid;
2347 
2348 		/* Directories are special, and always inherit S_ISGID */
2349 		if (S_ISDIR(mode))
2350 			mode |= S_ISGID;
2351 	} else
2352 		inode_fsgid_set(inode, idmap);
2353 	inode->i_mode = mode;
2354 }
2355 EXPORT_SYMBOL(inode_init_owner);
2356 
2357 /**
2358  * inode_owner_or_capable - check current task permissions to inode
2359  * @idmap: idmap of the mount the inode was found from
2360  * @inode: inode being checked
2361  *
2362  * Return true if current either has CAP_FOWNER in a namespace with the
2363  * inode owner uid mapped, or owns the file.
2364  *
2365  * If the inode has been found through an idmapped mount the idmap of
2366  * the vfsmount must be passed through @idmap. This function will then take
2367  * care to map the inode according to @idmap before checking permissions.
2368  * On non-idmapped mounts or if permission checking is to be performed on the
2369  * raw inode simply pass @nop_mnt_idmap.
2370  */
2371 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2372 			    const struct inode *inode)
2373 {
2374 	vfsuid_t vfsuid;
2375 	struct user_namespace *ns;
2376 
2377 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2378 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2379 		return true;
2380 
2381 	ns = current_user_ns();
2382 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2383 		return true;
2384 	return false;
2385 }
2386 EXPORT_SYMBOL(inode_owner_or_capable);
2387 
2388 /*
2389  * Direct i/o helper functions
2390  */
2391 static void __inode_dio_wait(struct inode *inode)
2392 {
2393 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2394 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2395 
2396 	do {
2397 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2398 		if (atomic_read(&inode->i_dio_count))
2399 			schedule();
2400 	} while (atomic_read(&inode->i_dio_count));
2401 	finish_wait(wq, &q.wq_entry);
2402 }
2403 
2404 /**
2405  * inode_dio_wait - wait for outstanding DIO requests to finish
2406  * @inode: inode to wait for
2407  *
2408  * Waits for all pending direct I/O requests to finish so that we can
2409  * proceed with a truncate or equivalent operation.
2410  *
2411  * Must be called under a lock that serializes taking new references
2412  * to i_dio_count, usually by inode->i_mutex.
2413  */
2414 void inode_dio_wait(struct inode *inode)
2415 {
2416 	if (atomic_read(&inode->i_dio_count))
2417 		__inode_dio_wait(inode);
2418 }
2419 EXPORT_SYMBOL(inode_dio_wait);
2420 
2421 /*
2422  * inode_set_flags - atomically set some inode flags
2423  *
2424  * Note: the caller should be holding i_mutex, or else be sure that
2425  * they have exclusive access to the inode structure (i.e., while the
2426  * inode is being instantiated).  The reason for the cmpxchg() loop
2427  * --- which wouldn't be necessary if all code paths which modify
2428  * i_flags actually followed this rule, is that there is at least one
2429  * code path which doesn't today so we use cmpxchg() out of an abundance
2430  * of caution.
2431  *
2432  * In the long run, i_mutex is overkill, and we should probably look
2433  * at using the i_lock spinlock to protect i_flags, and then make sure
2434  * it is so documented in include/linux/fs.h and that all code follows
2435  * the locking convention!!
2436  */
2437 void inode_set_flags(struct inode *inode, unsigned int flags,
2438 		     unsigned int mask)
2439 {
2440 	WARN_ON_ONCE(flags & ~mask);
2441 	set_mask_bits(&inode->i_flags, mask, flags);
2442 }
2443 EXPORT_SYMBOL(inode_set_flags);
2444 
2445 void inode_nohighmem(struct inode *inode)
2446 {
2447 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2448 }
2449 EXPORT_SYMBOL(inode_nohighmem);
2450 
2451 /**
2452  * timestamp_truncate - Truncate timespec to a granularity
2453  * @t: Timespec
2454  * @inode: inode being updated
2455  *
2456  * Truncate a timespec to the granularity supported by the fs
2457  * containing the inode. Always rounds down. gran must
2458  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2459  */
2460 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2461 {
2462 	struct super_block *sb = inode->i_sb;
2463 	unsigned int gran = sb->s_time_gran;
2464 
2465 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2466 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2467 		t.tv_nsec = 0;
2468 
2469 	/* Avoid division in the common cases 1 ns and 1 s. */
2470 	if (gran == 1)
2471 		; /* nothing */
2472 	else if (gran == NSEC_PER_SEC)
2473 		t.tv_nsec = 0;
2474 	else if (gran > 1 && gran < NSEC_PER_SEC)
2475 		t.tv_nsec -= t.tv_nsec % gran;
2476 	else
2477 		WARN(1, "invalid file time granularity: %u", gran);
2478 	return t;
2479 }
2480 EXPORT_SYMBOL(timestamp_truncate);
2481 
2482 /**
2483  * current_time - Return FS time
2484  * @inode: inode.
2485  *
2486  * Return the current time truncated to the time granularity supported by
2487  * the fs.
2488  *
2489  * Note that inode and inode->sb cannot be NULL.
2490  * Otherwise, the function warns and returns time without truncation.
2491  */
2492 struct timespec64 current_time(struct inode *inode)
2493 {
2494 	struct timespec64 now;
2495 
2496 	ktime_get_coarse_real_ts64(&now);
2497 	return timestamp_truncate(now, inode);
2498 }
2499 EXPORT_SYMBOL(current_time);
2500 
2501 /**
2502  * inode_set_ctime_current - set the ctime to current_time
2503  * @inode: inode
2504  *
2505  * Set the inode->i_ctime to the current value for the inode. Returns
2506  * the current value that was assigned to i_ctime.
2507  */
2508 struct timespec64 inode_set_ctime_current(struct inode *inode)
2509 {
2510 	struct timespec64 now = current_time(inode);
2511 
2512 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2513 	return now;
2514 }
2515 EXPORT_SYMBOL(inode_set_ctime_current);
2516 
2517 /**
2518  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2519  * @idmap:	idmap of the mount @inode was found from
2520  * @inode:	inode to check
2521  * @vfsgid:	the new/current vfsgid of @inode
2522  *
2523  * Check wether @vfsgid is in the caller's group list or if the caller is
2524  * privileged with CAP_FSETID over @inode. This can be used to determine
2525  * whether the setgid bit can be kept or must be dropped.
2526  *
2527  * Return: true if the caller is sufficiently privileged, false if not.
2528  */
2529 bool in_group_or_capable(struct mnt_idmap *idmap,
2530 			 const struct inode *inode, vfsgid_t vfsgid)
2531 {
2532 	if (vfsgid_in_group_p(vfsgid))
2533 		return true;
2534 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2535 		return true;
2536 	return false;
2537 }
2538 
2539 /**
2540  * mode_strip_sgid - handle the sgid bit for non-directories
2541  * @idmap: idmap of the mount the inode was created from
2542  * @dir: parent directory inode
2543  * @mode: mode of the file to be created in @dir
2544  *
2545  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2546  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2547  * either in the group of the parent directory or they have CAP_FSETID
2548  * in their user namespace and are privileged over the parent directory.
2549  * In all other cases, strip the S_ISGID bit from @mode.
2550  *
2551  * Return: the new mode to use for the file
2552  */
2553 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2554 			const struct inode *dir, umode_t mode)
2555 {
2556 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2557 		return mode;
2558 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2559 		return mode;
2560 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2561 		return mode;
2562 	return mode & ~S_ISGID;
2563 }
2564 EXPORT_SYMBOL(mode_strip_sgid);
2565