1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __ro_after_init; 58 static unsigned int i_hash_shift __ro_after_init; 59 static struct hlist_head *inode_hashtable __ro_after_init; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __ro_after_init; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 }; 133 134 static int __init init_fs_inode_sysctls(void) 135 { 136 register_sysctl_init("fs", inodes_sysctls); 137 return 0; 138 } 139 early_initcall(init_fs_inode_sysctls); 140 #endif 141 142 static int no_open(struct inode *inode, struct file *file) 143 { 144 return -ENXIO; 145 } 146 147 /** 148 * inode_init_always - perform inode structure initialisation 149 * @sb: superblock inode belongs to 150 * @inode: inode to initialise 151 * 152 * These are initializations that need to be done on every inode 153 * allocation as the fields are not initialised by slab allocation. 154 */ 155 int inode_init_always(struct super_block *sb, struct inode *inode) 156 { 157 static const struct inode_operations empty_iops; 158 static const struct file_operations no_open_fops = {.open = no_open}; 159 struct address_space *const mapping = &inode->i_data; 160 161 inode->i_sb = sb; 162 inode->i_blkbits = sb->s_blocksize_bits; 163 inode->i_flags = 0; 164 atomic64_set(&inode->i_sequence, 0); 165 atomic_set(&inode->i_count, 1); 166 inode->i_op = &empty_iops; 167 inode->i_fop = &no_open_fops; 168 inode->i_ino = 0; 169 inode->__i_nlink = 1; 170 inode->i_opflags = 0; 171 if (sb->s_xattr) 172 inode->i_opflags |= IOP_XATTR; 173 i_uid_write(inode, 0); 174 i_gid_write(inode, 0); 175 atomic_set(&inode->i_writecount, 0); 176 inode->i_size = 0; 177 inode->i_write_hint = WRITE_LIFE_NOT_SET; 178 inode->i_blocks = 0; 179 inode->i_bytes = 0; 180 inode->i_generation = 0; 181 inode->i_pipe = NULL; 182 inode->i_cdev = NULL; 183 inode->i_link = NULL; 184 inode->i_dir_seq = 0; 185 inode->i_rdev = 0; 186 inode->dirtied_when = 0; 187 188 #ifdef CONFIG_CGROUP_WRITEBACK 189 inode->i_wb_frn_winner = 0; 190 inode->i_wb_frn_avg_time = 0; 191 inode->i_wb_frn_history = 0; 192 #endif 193 194 spin_lock_init(&inode->i_lock); 195 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 196 197 init_rwsem(&inode->i_rwsem); 198 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 199 200 atomic_set(&inode->i_dio_count, 0); 201 202 mapping->a_ops = &empty_aops; 203 mapping->host = inode; 204 mapping->flags = 0; 205 mapping->wb_err = 0; 206 atomic_set(&mapping->i_mmap_writable, 0); 207 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 208 atomic_set(&mapping->nr_thps, 0); 209 #endif 210 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 211 mapping->i_private_data = NULL; 212 mapping->writeback_index = 0; 213 init_rwsem(&mapping->invalidate_lock); 214 lockdep_set_class_and_name(&mapping->invalidate_lock, 215 &sb->s_type->invalidate_lock_key, 216 "mapping.invalidate_lock"); 217 if (sb->s_iflags & SB_I_STABLE_WRITES) 218 mapping_set_stable_writes(mapping); 219 inode->i_private = NULL; 220 inode->i_mapping = mapping; 221 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 222 #ifdef CONFIG_FS_POSIX_ACL 223 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 224 #endif 225 226 #ifdef CONFIG_FSNOTIFY 227 inode->i_fsnotify_mask = 0; 228 #endif 229 inode->i_flctx = NULL; 230 231 if (unlikely(security_inode_alloc(inode))) 232 return -ENOMEM; 233 this_cpu_inc(nr_inodes); 234 235 return 0; 236 } 237 EXPORT_SYMBOL(inode_init_always); 238 239 void free_inode_nonrcu(struct inode *inode) 240 { 241 kmem_cache_free(inode_cachep, inode); 242 } 243 EXPORT_SYMBOL(free_inode_nonrcu); 244 245 static void i_callback(struct rcu_head *head) 246 { 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252 } 253 254 static struct inode *alloc_inode(struct super_block *sb) 255 { 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279 } 280 281 void __destroy_inode(struct inode *inode) 282 { 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293 #ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298 #endif 299 this_cpu_dec(nr_inodes); 300 } 301 EXPORT_SYMBOL(__destroy_inode); 302 303 static void destroy_inode(struct inode *inode) 304 { 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316 } 317 318 /** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329 void drop_nlink(struct inode *inode) 330 { 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335 } 336 EXPORT_SYMBOL(drop_nlink); 337 338 /** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346 void clear_nlink(struct inode *inode) 347 { 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352 } 353 EXPORT_SYMBOL(clear_nlink); 354 355 /** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363 void set_nlink(struct inode *inode, unsigned int nlink) 364 { 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374 } 375 EXPORT_SYMBOL(set_nlink); 376 377 /** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385 void inc_nlink(struct inode *inode) 386 { 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393 } 394 EXPORT_SYMBOL(inc_nlink); 395 396 static void __address_space_init_once(struct address_space *mapping) 397 { 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->i_private_list); 401 spin_lock_init(&mapping->i_private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403 } 404 405 void address_space_init_once(struct address_space *mapping) 406 { 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409 } 410 EXPORT_SYMBOL(address_space_init_once); 411 412 /* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417 void inode_init_once(struct inode *inode) 418 { 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 INIT_LIST_HEAD(&inode->i_sb_list); 426 __address_space_init_once(&inode->i_data); 427 i_size_ordered_init(inode); 428 } 429 EXPORT_SYMBOL(inode_init_once); 430 431 static void init_once(void *foo) 432 { 433 struct inode *inode = (struct inode *) foo; 434 435 inode_init_once(inode); 436 } 437 438 /* 439 * inode->i_lock must be held 440 */ 441 void __iget(struct inode *inode) 442 { 443 atomic_inc(&inode->i_count); 444 } 445 446 /* 447 * get additional reference to inode; caller must already hold one. 448 */ 449 void ihold(struct inode *inode) 450 { 451 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 452 } 453 EXPORT_SYMBOL(ihold); 454 455 static void __inode_add_lru(struct inode *inode, bool rotate) 456 { 457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 458 return; 459 if (atomic_read(&inode->i_count)) 460 return; 461 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 462 return; 463 if (!mapping_shrinkable(&inode->i_data)) 464 return; 465 466 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 467 this_cpu_inc(nr_unused); 468 else if (rotate) 469 inode->i_state |= I_REFERENCED; 470 } 471 472 /* 473 * Add inode to LRU if needed (inode is unused and clean). 474 * 475 * Needs inode->i_lock held. 476 */ 477 void inode_add_lru(struct inode *inode) 478 { 479 __inode_add_lru(inode, false); 480 } 481 482 static void inode_lru_list_del(struct inode *inode) 483 { 484 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 485 this_cpu_dec(nr_unused); 486 } 487 488 /** 489 * inode_sb_list_add - add inode to the superblock list of inodes 490 * @inode: inode to add 491 */ 492 void inode_sb_list_add(struct inode *inode) 493 { 494 spin_lock(&inode->i_sb->s_inode_list_lock); 495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 496 spin_unlock(&inode->i_sb->s_inode_list_lock); 497 } 498 EXPORT_SYMBOL_GPL(inode_sb_list_add); 499 500 static inline void inode_sb_list_del(struct inode *inode) 501 { 502 if (!list_empty(&inode->i_sb_list)) { 503 spin_lock(&inode->i_sb->s_inode_list_lock); 504 list_del_init(&inode->i_sb_list); 505 spin_unlock(&inode->i_sb->s_inode_list_lock); 506 } 507 } 508 509 static unsigned long hash(struct super_block *sb, unsigned long hashval) 510 { 511 unsigned long tmp; 512 513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 514 L1_CACHE_BYTES; 515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 516 return tmp & i_hash_mask; 517 } 518 519 /** 520 * __insert_inode_hash - hash an inode 521 * @inode: unhashed inode 522 * @hashval: unsigned long value used to locate this object in the 523 * inode_hashtable. 524 * 525 * Add an inode to the inode hash for this superblock. 526 */ 527 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 528 { 529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 530 531 spin_lock(&inode_hash_lock); 532 spin_lock(&inode->i_lock); 533 hlist_add_head_rcu(&inode->i_hash, b); 534 spin_unlock(&inode->i_lock); 535 spin_unlock(&inode_hash_lock); 536 } 537 EXPORT_SYMBOL(__insert_inode_hash); 538 539 /** 540 * __remove_inode_hash - remove an inode from the hash 541 * @inode: inode to unhash 542 * 543 * Remove an inode from the superblock. 544 */ 545 void __remove_inode_hash(struct inode *inode) 546 { 547 spin_lock(&inode_hash_lock); 548 spin_lock(&inode->i_lock); 549 hlist_del_init_rcu(&inode->i_hash); 550 spin_unlock(&inode->i_lock); 551 spin_unlock(&inode_hash_lock); 552 } 553 EXPORT_SYMBOL(__remove_inode_hash); 554 555 void dump_mapping(const struct address_space *mapping) 556 { 557 struct inode *host; 558 const struct address_space_operations *a_ops; 559 struct hlist_node *dentry_first; 560 struct dentry *dentry_ptr; 561 struct dentry dentry; 562 unsigned long ino; 563 564 /* 565 * If mapping is an invalid pointer, we don't want to crash 566 * accessing it, so probe everything depending on it carefully. 567 */ 568 if (get_kernel_nofault(host, &mapping->host) || 569 get_kernel_nofault(a_ops, &mapping->a_ops)) { 570 pr_warn("invalid mapping:%px\n", mapping); 571 return; 572 } 573 574 if (!host) { 575 pr_warn("aops:%ps\n", a_ops); 576 return; 577 } 578 579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 580 get_kernel_nofault(ino, &host->i_ino)) { 581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 582 return; 583 } 584 585 if (!dentry_first) { 586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 587 return; 588 } 589 590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 591 if (get_kernel_nofault(dentry, dentry_ptr)) { 592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 593 a_ops, ino, dentry_ptr); 594 return; 595 } 596 597 /* 598 * if dentry is corrupted, the %pd handler may still crash, 599 * but it's unlikely that we reach here with a corrupt mapping 600 */ 601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 602 } 603 604 void clear_inode(struct inode *inode) 605 { 606 /* 607 * We have to cycle the i_pages lock here because reclaim can be in the 608 * process of removing the last page (in __filemap_remove_folio()) 609 * and we must not free the mapping under it. 610 */ 611 xa_lock_irq(&inode->i_data.i_pages); 612 BUG_ON(inode->i_data.nrpages); 613 /* 614 * Almost always, mapping_empty(&inode->i_data) here; but there are 615 * two known and long-standing ways in which nodes may get left behind 616 * (when deep radix-tree node allocation failed partway; or when THP 617 * collapse_file() failed). Until those two known cases are cleaned up, 618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 619 * nor even WARN_ON(!mapping_empty). 620 */ 621 xa_unlock_irq(&inode->i_data.i_pages); 622 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 623 BUG_ON(!(inode->i_state & I_FREEING)); 624 BUG_ON(inode->i_state & I_CLEAR); 625 BUG_ON(!list_empty(&inode->i_wb_list)); 626 /* don't need i_lock here, no concurrent mods to i_state */ 627 inode->i_state = I_FREEING | I_CLEAR; 628 } 629 EXPORT_SYMBOL(clear_inode); 630 631 /* 632 * Free the inode passed in, removing it from the lists it is still connected 633 * to. We remove any pages still attached to the inode and wait for any IO that 634 * is still in progress before finally destroying the inode. 635 * 636 * An inode must already be marked I_FREEING so that we avoid the inode being 637 * moved back onto lists if we race with other code that manipulates the lists 638 * (e.g. writeback_single_inode). The caller is responsible for setting this. 639 * 640 * An inode must already be removed from the LRU list before being evicted from 641 * the cache. This should occur atomically with setting the I_FREEING state 642 * flag, so no inodes here should ever be on the LRU when being evicted. 643 */ 644 static void evict(struct inode *inode) 645 { 646 const struct super_operations *op = inode->i_sb->s_op; 647 648 BUG_ON(!(inode->i_state & I_FREEING)); 649 BUG_ON(!list_empty(&inode->i_lru)); 650 651 if (!list_empty(&inode->i_io_list)) 652 inode_io_list_del(inode); 653 654 inode_sb_list_del(inode); 655 656 /* 657 * Wait for flusher thread to be done with the inode so that filesystem 658 * does not start destroying it while writeback is still running. Since 659 * the inode has I_FREEING set, flusher thread won't start new work on 660 * the inode. We just have to wait for running writeback to finish. 661 */ 662 inode_wait_for_writeback(inode); 663 664 if (op->evict_inode) { 665 op->evict_inode(inode); 666 } else { 667 truncate_inode_pages_final(&inode->i_data); 668 clear_inode(inode); 669 } 670 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 671 cd_forget(inode); 672 673 remove_inode_hash(inode); 674 675 spin_lock(&inode->i_lock); 676 wake_up_bit(&inode->i_state, __I_NEW); 677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 678 spin_unlock(&inode->i_lock); 679 680 destroy_inode(inode); 681 } 682 683 /* 684 * dispose_list - dispose of the contents of a local list 685 * @head: the head of the list to free 686 * 687 * Dispose-list gets a local list with local inodes in it, so it doesn't 688 * need to worry about list corruption and SMP locks. 689 */ 690 static void dispose_list(struct list_head *head) 691 { 692 while (!list_empty(head)) { 693 struct inode *inode; 694 695 inode = list_first_entry(head, struct inode, i_lru); 696 list_del_init(&inode->i_lru); 697 698 evict(inode); 699 cond_resched(); 700 } 701 } 702 703 /** 704 * evict_inodes - evict all evictable inodes for a superblock 705 * @sb: superblock to operate on 706 * 707 * Make sure that no inodes with zero refcount are retained. This is 708 * called by superblock shutdown after having SB_ACTIVE flag removed, 709 * so any inode reaching zero refcount during or after that call will 710 * be immediately evicted. 711 */ 712 void evict_inodes(struct super_block *sb) 713 { 714 struct inode *inode, *next; 715 LIST_HEAD(dispose); 716 717 again: 718 spin_lock(&sb->s_inode_list_lock); 719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 720 if (atomic_read(&inode->i_count)) 721 continue; 722 723 spin_lock(&inode->i_lock); 724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 725 spin_unlock(&inode->i_lock); 726 continue; 727 } 728 729 inode->i_state |= I_FREEING; 730 inode_lru_list_del(inode); 731 spin_unlock(&inode->i_lock); 732 list_add(&inode->i_lru, &dispose); 733 734 /* 735 * We can have a ton of inodes to evict at unmount time given 736 * enough memory, check to see if we need to go to sleep for a 737 * bit so we don't livelock. 738 */ 739 if (need_resched()) { 740 spin_unlock(&sb->s_inode_list_lock); 741 cond_resched(); 742 dispose_list(&dispose); 743 goto again; 744 } 745 } 746 spin_unlock(&sb->s_inode_list_lock); 747 748 dispose_list(&dispose); 749 } 750 EXPORT_SYMBOL_GPL(evict_inodes); 751 752 /** 753 * invalidate_inodes - attempt to free all inodes on a superblock 754 * @sb: superblock to operate on 755 * 756 * Attempts to free all inodes (including dirty inodes) for a given superblock. 757 */ 758 void invalidate_inodes(struct super_block *sb) 759 { 760 struct inode *inode, *next; 761 LIST_HEAD(dispose); 762 763 again: 764 spin_lock(&sb->s_inode_list_lock); 765 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 766 spin_lock(&inode->i_lock); 767 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 768 spin_unlock(&inode->i_lock); 769 continue; 770 } 771 if (atomic_read(&inode->i_count)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 776 inode->i_state |= I_FREEING; 777 inode_lru_list_del(inode); 778 spin_unlock(&inode->i_lock); 779 list_add(&inode->i_lru, &dispose); 780 if (need_resched()) { 781 spin_unlock(&sb->s_inode_list_lock); 782 cond_resched(); 783 dispose_list(&dispose); 784 goto again; 785 } 786 } 787 spin_unlock(&sb->s_inode_list_lock); 788 789 dispose_list(&dispose); 790 } 791 792 /* 793 * Isolate the inode from the LRU in preparation for freeing it. 794 * 795 * If the inode has the I_REFERENCED flag set, then it means that it has been 796 * used recently - the flag is set in iput_final(). When we encounter such an 797 * inode, clear the flag and move it to the back of the LRU so it gets another 798 * pass through the LRU before it gets reclaimed. This is necessary because of 799 * the fact we are doing lazy LRU updates to minimise lock contention so the 800 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 801 * with this flag set because they are the inodes that are out of order. 802 */ 803 static enum lru_status inode_lru_isolate(struct list_head *item, 804 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 805 { 806 struct list_head *freeable = arg; 807 struct inode *inode = container_of(item, struct inode, i_lru); 808 809 /* 810 * We are inverting the lru lock/inode->i_lock here, so use a 811 * trylock. If we fail to get the lock, just skip it. 812 */ 813 if (!spin_trylock(&inode->i_lock)) 814 return LRU_SKIP; 815 816 /* 817 * Inodes can get referenced, redirtied, or repopulated while 818 * they're already on the LRU, and this can make them 819 * unreclaimable for a while. Remove them lazily here; iput, 820 * sync, or the last page cache deletion will requeue them. 821 */ 822 if (atomic_read(&inode->i_count) || 823 (inode->i_state & ~I_REFERENCED) || 824 !mapping_shrinkable(&inode->i_data)) { 825 list_lru_isolate(lru, &inode->i_lru); 826 spin_unlock(&inode->i_lock); 827 this_cpu_dec(nr_unused); 828 return LRU_REMOVED; 829 } 830 831 /* Recently referenced inodes get one more pass */ 832 if (inode->i_state & I_REFERENCED) { 833 inode->i_state &= ~I_REFERENCED; 834 spin_unlock(&inode->i_lock); 835 return LRU_ROTATE; 836 } 837 838 /* 839 * On highmem systems, mapping_shrinkable() permits dropping 840 * page cache in order to free up struct inodes: lowmem might 841 * be under pressure before the cache inside the highmem zone. 842 */ 843 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 844 __iget(inode); 845 spin_unlock(&inode->i_lock); 846 spin_unlock(lru_lock); 847 if (remove_inode_buffers(inode)) { 848 unsigned long reap; 849 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 850 if (current_is_kswapd()) 851 __count_vm_events(KSWAPD_INODESTEAL, reap); 852 else 853 __count_vm_events(PGINODESTEAL, reap); 854 mm_account_reclaimed_pages(reap); 855 } 856 iput(inode); 857 spin_lock(lru_lock); 858 return LRU_RETRY; 859 } 860 861 WARN_ON(inode->i_state & I_NEW); 862 inode->i_state |= I_FREEING; 863 list_lru_isolate_move(lru, &inode->i_lru, freeable); 864 spin_unlock(&inode->i_lock); 865 866 this_cpu_dec(nr_unused); 867 return LRU_REMOVED; 868 } 869 870 /* 871 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 872 * This is called from the superblock shrinker function with a number of inodes 873 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 874 * then are freed outside inode_lock by dispose_list(). 875 */ 876 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 877 { 878 LIST_HEAD(freeable); 879 long freed; 880 881 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 882 inode_lru_isolate, &freeable); 883 dispose_list(&freeable); 884 return freed; 885 } 886 887 static void __wait_on_freeing_inode(struct inode *inode); 888 /* 889 * Called with the inode lock held. 890 */ 891 static struct inode *find_inode(struct super_block *sb, 892 struct hlist_head *head, 893 int (*test)(struct inode *, void *), 894 void *data) 895 { 896 struct inode *inode = NULL; 897 898 repeat: 899 hlist_for_each_entry(inode, head, i_hash) { 900 if (inode->i_sb != sb) 901 continue; 902 if (!test(inode, data)) 903 continue; 904 spin_lock(&inode->i_lock); 905 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 906 __wait_on_freeing_inode(inode); 907 goto repeat; 908 } 909 if (unlikely(inode->i_state & I_CREATING)) { 910 spin_unlock(&inode->i_lock); 911 return ERR_PTR(-ESTALE); 912 } 913 __iget(inode); 914 spin_unlock(&inode->i_lock); 915 return inode; 916 } 917 return NULL; 918 } 919 920 /* 921 * find_inode_fast is the fast path version of find_inode, see the comment at 922 * iget_locked for details. 923 */ 924 static struct inode *find_inode_fast(struct super_block *sb, 925 struct hlist_head *head, unsigned long ino) 926 { 927 struct inode *inode = NULL; 928 929 repeat: 930 hlist_for_each_entry(inode, head, i_hash) { 931 if (inode->i_ino != ino) 932 continue; 933 if (inode->i_sb != sb) 934 continue; 935 spin_lock(&inode->i_lock); 936 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 937 __wait_on_freeing_inode(inode); 938 goto repeat; 939 } 940 if (unlikely(inode->i_state & I_CREATING)) { 941 spin_unlock(&inode->i_lock); 942 return ERR_PTR(-ESTALE); 943 } 944 __iget(inode); 945 spin_unlock(&inode->i_lock); 946 return inode; 947 } 948 return NULL; 949 } 950 951 /* 952 * Each cpu owns a range of LAST_INO_BATCH numbers. 953 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 954 * to renew the exhausted range. 955 * 956 * This does not significantly increase overflow rate because every CPU can 957 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 958 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 959 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 960 * overflow rate by 2x, which does not seem too significant. 961 * 962 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 963 * error if st_ino won't fit in target struct field. Use 32bit counter 964 * here to attempt to avoid that. 965 */ 966 #define LAST_INO_BATCH 1024 967 static DEFINE_PER_CPU(unsigned int, last_ino); 968 969 unsigned int get_next_ino(void) 970 { 971 unsigned int *p = &get_cpu_var(last_ino); 972 unsigned int res = *p; 973 974 #ifdef CONFIG_SMP 975 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 976 static atomic_t shared_last_ino; 977 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 978 979 res = next - LAST_INO_BATCH; 980 } 981 #endif 982 983 res++; 984 /* get_next_ino should not provide a 0 inode number */ 985 if (unlikely(!res)) 986 res++; 987 *p = res; 988 put_cpu_var(last_ino); 989 return res; 990 } 991 EXPORT_SYMBOL(get_next_ino); 992 993 /** 994 * new_inode_pseudo - obtain an inode 995 * @sb: superblock 996 * 997 * Allocates a new inode for given superblock. 998 * Inode wont be chained in superblock s_inodes list 999 * This means : 1000 * - fs can't be unmount 1001 * - quotas, fsnotify, writeback can't work 1002 */ 1003 struct inode *new_inode_pseudo(struct super_block *sb) 1004 { 1005 struct inode *inode = alloc_inode(sb); 1006 1007 if (inode) { 1008 spin_lock(&inode->i_lock); 1009 inode->i_state = 0; 1010 spin_unlock(&inode->i_lock); 1011 } 1012 return inode; 1013 } 1014 1015 /** 1016 * new_inode - obtain an inode 1017 * @sb: superblock 1018 * 1019 * Allocates a new inode for given superblock. The default gfp_mask 1020 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1021 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1022 * for the page cache are not reclaimable or migratable, 1023 * mapping_set_gfp_mask() must be called with suitable flags on the 1024 * newly created inode's mapping 1025 * 1026 */ 1027 struct inode *new_inode(struct super_block *sb) 1028 { 1029 struct inode *inode; 1030 1031 inode = new_inode_pseudo(sb); 1032 if (inode) 1033 inode_sb_list_add(inode); 1034 return inode; 1035 } 1036 EXPORT_SYMBOL(new_inode); 1037 1038 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1039 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1040 { 1041 if (S_ISDIR(inode->i_mode)) { 1042 struct file_system_type *type = inode->i_sb->s_type; 1043 1044 /* Set new key only if filesystem hasn't already changed it */ 1045 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1046 /* 1047 * ensure nobody is actually holding i_mutex 1048 */ 1049 // mutex_destroy(&inode->i_mutex); 1050 init_rwsem(&inode->i_rwsem); 1051 lockdep_set_class(&inode->i_rwsem, 1052 &type->i_mutex_dir_key); 1053 } 1054 } 1055 } 1056 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1057 #endif 1058 1059 /** 1060 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1061 * @inode: new inode to unlock 1062 * 1063 * Called when the inode is fully initialised to clear the new state of the 1064 * inode and wake up anyone waiting for the inode to finish initialisation. 1065 */ 1066 void unlock_new_inode(struct inode *inode) 1067 { 1068 lockdep_annotate_inode_mutex_key(inode); 1069 spin_lock(&inode->i_lock); 1070 WARN_ON(!(inode->i_state & I_NEW)); 1071 inode->i_state &= ~I_NEW & ~I_CREATING; 1072 smp_mb(); 1073 wake_up_bit(&inode->i_state, __I_NEW); 1074 spin_unlock(&inode->i_lock); 1075 } 1076 EXPORT_SYMBOL(unlock_new_inode); 1077 1078 void discard_new_inode(struct inode *inode) 1079 { 1080 lockdep_annotate_inode_mutex_key(inode); 1081 spin_lock(&inode->i_lock); 1082 WARN_ON(!(inode->i_state & I_NEW)); 1083 inode->i_state &= ~I_NEW; 1084 smp_mb(); 1085 wake_up_bit(&inode->i_state, __I_NEW); 1086 spin_unlock(&inode->i_lock); 1087 iput(inode); 1088 } 1089 EXPORT_SYMBOL(discard_new_inode); 1090 1091 /** 1092 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1093 * 1094 * Lock any non-NULL argument. The caller must make sure that if he is passing 1095 * in two directories, one is not ancestor of the other. Zero, one or two 1096 * objects may be locked by this function. 1097 * 1098 * @inode1: first inode to lock 1099 * @inode2: second inode to lock 1100 * @subclass1: inode lock subclass for the first lock obtained 1101 * @subclass2: inode lock subclass for the second lock obtained 1102 */ 1103 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1104 unsigned subclass1, unsigned subclass2) 1105 { 1106 if (!inode1 || !inode2) { 1107 /* 1108 * Make sure @subclass1 will be used for the acquired lock. 1109 * This is not strictly necessary (no current caller cares) but 1110 * let's keep things consistent. 1111 */ 1112 if (!inode1) 1113 swap(inode1, inode2); 1114 goto lock; 1115 } 1116 1117 /* 1118 * If one object is directory and the other is not, we must make sure 1119 * to lock directory first as the other object may be its child. 1120 */ 1121 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1122 if (inode1 > inode2) 1123 swap(inode1, inode2); 1124 } else if (!S_ISDIR(inode1->i_mode)) 1125 swap(inode1, inode2); 1126 lock: 1127 if (inode1) 1128 inode_lock_nested(inode1, subclass1); 1129 if (inode2 && inode2 != inode1) 1130 inode_lock_nested(inode2, subclass2); 1131 } 1132 1133 /** 1134 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1135 * 1136 * Lock any non-NULL argument. Passed objects must not be directories. 1137 * Zero, one or two objects may be locked by this function. 1138 * 1139 * @inode1: first inode to lock 1140 * @inode2: second inode to lock 1141 */ 1142 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1143 { 1144 if (inode1) 1145 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1146 if (inode2) 1147 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1148 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1149 } 1150 EXPORT_SYMBOL(lock_two_nondirectories); 1151 1152 /** 1153 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1154 * @inode1: first inode to unlock 1155 * @inode2: second inode to unlock 1156 */ 1157 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1158 { 1159 if (inode1) { 1160 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1161 inode_unlock(inode1); 1162 } 1163 if (inode2 && inode2 != inode1) { 1164 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1165 inode_unlock(inode2); 1166 } 1167 } 1168 EXPORT_SYMBOL(unlock_two_nondirectories); 1169 1170 /** 1171 * inode_insert5 - obtain an inode from a mounted file system 1172 * @inode: pre-allocated inode to use for insert to cache 1173 * @hashval: hash value (usually inode number) to get 1174 * @test: callback used for comparisons between inodes 1175 * @set: callback used to initialize a new struct inode 1176 * @data: opaque data pointer to pass to @test and @set 1177 * 1178 * Search for the inode specified by @hashval and @data in the inode cache, 1179 * and if present it is return it with an increased reference count. This is 1180 * a variant of iget5_locked() for callers that don't want to fail on memory 1181 * allocation of inode. 1182 * 1183 * If the inode is not in cache, insert the pre-allocated inode to cache and 1184 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1185 * to fill it in before unlocking it via unlock_new_inode(). 1186 * 1187 * Note both @test and @set are called with the inode_hash_lock held, so can't 1188 * sleep. 1189 */ 1190 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1191 int (*test)(struct inode *, void *), 1192 int (*set)(struct inode *, void *), void *data) 1193 { 1194 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1195 struct inode *old; 1196 1197 again: 1198 spin_lock(&inode_hash_lock); 1199 old = find_inode(inode->i_sb, head, test, data); 1200 if (unlikely(old)) { 1201 /* 1202 * Uhhuh, somebody else created the same inode under us. 1203 * Use the old inode instead of the preallocated one. 1204 */ 1205 spin_unlock(&inode_hash_lock); 1206 if (IS_ERR(old)) 1207 return NULL; 1208 wait_on_inode(old); 1209 if (unlikely(inode_unhashed(old))) { 1210 iput(old); 1211 goto again; 1212 } 1213 return old; 1214 } 1215 1216 if (set && unlikely(set(inode, data))) { 1217 inode = NULL; 1218 goto unlock; 1219 } 1220 1221 /* 1222 * Return the locked inode with I_NEW set, the 1223 * caller is responsible for filling in the contents 1224 */ 1225 spin_lock(&inode->i_lock); 1226 inode->i_state |= I_NEW; 1227 hlist_add_head_rcu(&inode->i_hash, head); 1228 spin_unlock(&inode->i_lock); 1229 1230 /* 1231 * Add inode to the sb list if it's not already. It has I_NEW at this 1232 * point, so it should be safe to test i_sb_list locklessly. 1233 */ 1234 if (list_empty(&inode->i_sb_list)) 1235 inode_sb_list_add(inode); 1236 unlock: 1237 spin_unlock(&inode_hash_lock); 1238 1239 return inode; 1240 } 1241 EXPORT_SYMBOL(inode_insert5); 1242 1243 /** 1244 * iget5_locked - obtain an inode from a mounted file system 1245 * @sb: super block of file system 1246 * @hashval: hash value (usually inode number) to get 1247 * @test: callback used for comparisons between inodes 1248 * @set: callback used to initialize a new struct inode 1249 * @data: opaque data pointer to pass to @test and @set 1250 * 1251 * Search for the inode specified by @hashval and @data in the inode cache, 1252 * and if present it is return it with an increased reference count. This is 1253 * a generalized version of iget_locked() for file systems where the inode 1254 * number is not sufficient for unique identification of an inode. 1255 * 1256 * If the inode is not in cache, allocate a new inode and return it locked, 1257 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1258 * before unlocking it via unlock_new_inode(). 1259 * 1260 * Note both @test and @set are called with the inode_hash_lock held, so can't 1261 * sleep. 1262 */ 1263 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1264 int (*test)(struct inode *, void *), 1265 int (*set)(struct inode *, void *), void *data) 1266 { 1267 struct inode *inode = ilookup5(sb, hashval, test, data); 1268 1269 if (!inode) { 1270 struct inode *new = alloc_inode(sb); 1271 1272 if (new) { 1273 new->i_state = 0; 1274 inode = inode_insert5(new, hashval, test, set, data); 1275 if (unlikely(inode != new)) 1276 destroy_inode(new); 1277 } 1278 } 1279 return inode; 1280 } 1281 EXPORT_SYMBOL(iget5_locked); 1282 1283 /** 1284 * iget_locked - obtain an inode from a mounted file system 1285 * @sb: super block of file system 1286 * @ino: inode number to get 1287 * 1288 * Search for the inode specified by @ino in the inode cache and if present 1289 * return it with an increased reference count. This is for file systems 1290 * where the inode number is sufficient for unique identification of an inode. 1291 * 1292 * If the inode is not in cache, allocate a new inode and return it locked, 1293 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1294 * before unlocking it via unlock_new_inode(). 1295 */ 1296 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1297 { 1298 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1299 struct inode *inode; 1300 again: 1301 spin_lock(&inode_hash_lock); 1302 inode = find_inode_fast(sb, head, ino); 1303 spin_unlock(&inode_hash_lock); 1304 if (inode) { 1305 if (IS_ERR(inode)) 1306 return NULL; 1307 wait_on_inode(inode); 1308 if (unlikely(inode_unhashed(inode))) { 1309 iput(inode); 1310 goto again; 1311 } 1312 return inode; 1313 } 1314 1315 inode = alloc_inode(sb); 1316 if (inode) { 1317 struct inode *old; 1318 1319 spin_lock(&inode_hash_lock); 1320 /* We released the lock, so.. */ 1321 old = find_inode_fast(sb, head, ino); 1322 if (!old) { 1323 inode->i_ino = ino; 1324 spin_lock(&inode->i_lock); 1325 inode->i_state = I_NEW; 1326 hlist_add_head_rcu(&inode->i_hash, head); 1327 spin_unlock(&inode->i_lock); 1328 inode_sb_list_add(inode); 1329 spin_unlock(&inode_hash_lock); 1330 1331 /* Return the locked inode with I_NEW set, the 1332 * caller is responsible for filling in the contents 1333 */ 1334 return inode; 1335 } 1336 1337 /* 1338 * Uhhuh, somebody else created the same inode under 1339 * us. Use the old inode instead of the one we just 1340 * allocated. 1341 */ 1342 spin_unlock(&inode_hash_lock); 1343 destroy_inode(inode); 1344 if (IS_ERR(old)) 1345 return NULL; 1346 inode = old; 1347 wait_on_inode(inode); 1348 if (unlikely(inode_unhashed(inode))) { 1349 iput(inode); 1350 goto again; 1351 } 1352 } 1353 return inode; 1354 } 1355 EXPORT_SYMBOL(iget_locked); 1356 1357 /* 1358 * search the inode cache for a matching inode number. 1359 * If we find one, then the inode number we are trying to 1360 * allocate is not unique and so we should not use it. 1361 * 1362 * Returns 1 if the inode number is unique, 0 if it is not. 1363 */ 1364 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1365 { 1366 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1367 struct inode *inode; 1368 1369 hlist_for_each_entry_rcu(inode, b, i_hash) { 1370 if (inode->i_ino == ino && inode->i_sb == sb) 1371 return 0; 1372 } 1373 return 1; 1374 } 1375 1376 /** 1377 * iunique - get a unique inode number 1378 * @sb: superblock 1379 * @max_reserved: highest reserved inode number 1380 * 1381 * Obtain an inode number that is unique on the system for a given 1382 * superblock. This is used by file systems that have no natural 1383 * permanent inode numbering system. An inode number is returned that 1384 * is higher than the reserved limit but unique. 1385 * 1386 * BUGS: 1387 * With a large number of inodes live on the file system this function 1388 * currently becomes quite slow. 1389 */ 1390 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1391 { 1392 /* 1393 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1394 * error if st_ino won't fit in target struct field. Use 32bit counter 1395 * here to attempt to avoid that. 1396 */ 1397 static DEFINE_SPINLOCK(iunique_lock); 1398 static unsigned int counter; 1399 ino_t res; 1400 1401 rcu_read_lock(); 1402 spin_lock(&iunique_lock); 1403 do { 1404 if (counter <= max_reserved) 1405 counter = max_reserved + 1; 1406 res = counter++; 1407 } while (!test_inode_iunique(sb, res)); 1408 spin_unlock(&iunique_lock); 1409 rcu_read_unlock(); 1410 1411 return res; 1412 } 1413 EXPORT_SYMBOL(iunique); 1414 1415 struct inode *igrab(struct inode *inode) 1416 { 1417 spin_lock(&inode->i_lock); 1418 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1419 __iget(inode); 1420 spin_unlock(&inode->i_lock); 1421 } else { 1422 spin_unlock(&inode->i_lock); 1423 /* 1424 * Handle the case where s_op->clear_inode is not been 1425 * called yet, and somebody is calling igrab 1426 * while the inode is getting freed. 1427 */ 1428 inode = NULL; 1429 } 1430 return inode; 1431 } 1432 EXPORT_SYMBOL(igrab); 1433 1434 /** 1435 * ilookup5_nowait - search for an inode in the inode cache 1436 * @sb: super block of file system to search 1437 * @hashval: hash value (usually inode number) to search for 1438 * @test: callback used for comparisons between inodes 1439 * @data: opaque data pointer to pass to @test 1440 * 1441 * Search for the inode specified by @hashval and @data in the inode cache. 1442 * If the inode is in the cache, the inode is returned with an incremented 1443 * reference count. 1444 * 1445 * Note: I_NEW is not waited upon so you have to be very careful what you do 1446 * with the returned inode. You probably should be using ilookup5() instead. 1447 * 1448 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1449 */ 1450 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1451 int (*test)(struct inode *, void *), void *data) 1452 { 1453 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1454 struct inode *inode; 1455 1456 spin_lock(&inode_hash_lock); 1457 inode = find_inode(sb, head, test, data); 1458 spin_unlock(&inode_hash_lock); 1459 1460 return IS_ERR(inode) ? NULL : inode; 1461 } 1462 EXPORT_SYMBOL(ilookup5_nowait); 1463 1464 /** 1465 * ilookup5 - search for an inode in the inode cache 1466 * @sb: super block of file system to search 1467 * @hashval: hash value (usually inode number) to search for 1468 * @test: callback used for comparisons between inodes 1469 * @data: opaque data pointer to pass to @test 1470 * 1471 * Search for the inode specified by @hashval and @data in the inode cache, 1472 * and if the inode is in the cache, return the inode with an incremented 1473 * reference count. Waits on I_NEW before returning the inode. 1474 * returned with an incremented reference count. 1475 * 1476 * This is a generalized version of ilookup() for file systems where the 1477 * inode number is not sufficient for unique identification of an inode. 1478 * 1479 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1480 */ 1481 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1482 int (*test)(struct inode *, void *), void *data) 1483 { 1484 struct inode *inode; 1485 again: 1486 inode = ilookup5_nowait(sb, hashval, test, data); 1487 if (inode) { 1488 wait_on_inode(inode); 1489 if (unlikely(inode_unhashed(inode))) { 1490 iput(inode); 1491 goto again; 1492 } 1493 } 1494 return inode; 1495 } 1496 EXPORT_SYMBOL(ilookup5); 1497 1498 /** 1499 * ilookup - search for an inode in the inode cache 1500 * @sb: super block of file system to search 1501 * @ino: inode number to search for 1502 * 1503 * Search for the inode @ino in the inode cache, and if the inode is in the 1504 * cache, the inode is returned with an incremented reference count. 1505 */ 1506 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1507 { 1508 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1509 struct inode *inode; 1510 again: 1511 spin_lock(&inode_hash_lock); 1512 inode = find_inode_fast(sb, head, ino); 1513 spin_unlock(&inode_hash_lock); 1514 1515 if (inode) { 1516 if (IS_ERR(inode)) 1517 return NULL; 1518 wait_on_inode(inode); 1519 if (unlikely(inode_unhashed(inode))) { 1520 iput(inode); 1521 goto again; 1522 } 1523 } 1524 return inode; 1525 } 1526 EXPORT_SYMBOL(ilookup); 1527 1528 /** 1529 * find_inode_nowait - find an inode in the inode cache 1530 * @sb: super block of file system to search 1531 * @hashval: hash value (usually inode number) to search for 1532 * @match: callback used for comparisons between inodes 1533 * @data: opaque data pointer to pass to @match 1534 * 1535 * Search for the inode specified by @hashval and @data in the inode 1536 * cache, where the helper function @match will return 0 if the inode 1537 * does not match, 1 if the inode does match, and -1 if the search 1538 * should be stopped. The @match function must be responsible for 1539 * taking the i_lock spin_lock and checking i_state for an inode being 1540 * freed or being initialized, and incrementing the reference count 1541 * before returning 1. It also must not sleep, since it is called with 1542 * the inode_hash_lock spinlock held. 1543 * 1544 * This is a even more generalized version of ilookup5() when the 1545 * function must never block --- find_inode() can block in 1546 * __wait_on_freeing_inode() --- or when the caller can not increment 1547 * the reference count because the resulting iput() might cause an 1548 * inode eviction. The tradeoff is that the @match funtion must be 1549 * very carefully implemented. 1550 */ 1551 struct inode *find_inode_nowait(struct super_block *sb, 1552 unsigned long hashval, 1553 int (*match)(struct inode *, unsigned long, 1554 void *), 1555 void *data) 1556 { 1557 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1558 struct inode *inode, *ret_inode = NULL; 1559 int mval; 1560 1561 spin_lock(&inode_hash_lock); 1562 hlist_for_each_entry(inode, head, i_hash) { 1563 if (inode->i_sb != sb) 1564 continue; 1565 mval = match(inode, hashval, data); 1566 if (mval == 0) 1567 continue; 1568 if (mval == 1) 1569 ret_inode = inode; 1570 goto out; 1571 } 1572 out: 1573 spin_unlock(&inode_hash_lock); 1574 return ret_inode; 1575 } 1576 EXPORT_SYMBOL(find_inode_nowait); 1577 1578 /** 1579 * find_inode_rcu - find an inode in the inode cache 1580 * @sb: Super block of file system to search 1581 * @hashval: Key to hash 1582 * @test: Function to test match on an inode 1583 * @data: Data for test function 1584 * 1585 * Search for the inode specified by @hashval and @data in the inode cache, 1586 * where the helper function @test will return 0 if the inode does not match 1587 * and 1 if it does. The @test function must be responsible for taking the 1588 * i_lock spin_lock and checking i_state for an inode being freed or being 1589 * initialized. 1590 * 1591 * If successful, this will return the inode for which the @test function 1592 * returned 1 and NULL otherwise. 1593 * 1594 * The @test function is not permitted to take a ref on any inode presented. 1595 * It is also not permitted to sleep. 1596 * 1597 * The caller must hold the RCU read lock. 1598 */ 1599 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1600 int (*test)(struct inode *, void *), void *data) 1601 { 1602 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1603 struct inode *inode; 1604 1605 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1606 "suspicious find_inode_rcu() usage"); 1607 1608 hlist_for_each_entry_rcu(inode, head, i_hash) { 1609 if (inode->i_sb == sb && 1610 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1611 test(inode, data)) 1612 return inode; 1613 } 1614 return NULL; 1615 } 1616 EXPORT_SYMBOL(find_inode_rcu); 1617 1618 /** 1619 * find_inode_by_ino_rcu - Find an inode in the inode cache 1620 * @sb: Super block of file system to search 1621 * @ino: The inode number to match 1622 * 1623 * Search for the inode specified by @hashval and @data in the inode cache, 1624 * where the helper function @test will return 0 if the inode does not match 1625 * and 1 if it does. The @test function must be responsible for taking the 1626 * i_lock spin_lock and checking i_state for an inode being freed or being 1627 * initialized. 1628 * 1629 * If successful, this will return the inode for which the @test function 1630 * returned 1 and NULL otherwise. 1631 * 1632 * The @test function is not permitted to take a ref on any inode presented. 1633 * It is also not permitted to sleep. 1634 * 1635 * The caller must hold the RCU read lock. 1636 */ 1637 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1638 unsigned long ino) 1639 { 1640 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1641 struct inode *inode; 1642 1643 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1644 "suspicious find_inode_by_ino_rcu() usage"); 1645 1646 hlist_for_each_entry_rcu(inode, head, i_hash) { 1647 if (inode->i_ino == ino && 1648 inode->i_sb == sb && 1649 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1650 return inode; 1651 } 1652 return NULL; 1653 } 1654 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1655 1656 int insert_inode_locked(struct inode *inode) 1657 { 1658 struct super_block *sb = inode->i_sb; 1659 ino_t ino = inode->i_ino; 1660 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1661 1662 while (1) { 1663 struct inode *old = NULL; 1664 spin_lock(&inode_hash_lock); 1665 hlist_for_each_entry(old, head, i_hash) { 1666 if (old->i_ino != ino) 1667 continue; 1668 if (old->i_sb != sb) 1669 continue; 1670 spin_lock(&old->i_lock); 1671 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1672 spin_unlock(&old->i_lock); 1673 continue; 1674 } 1675 break; 1676 } 1677 if (likely(!old)) { 1678 spin_lock(&inode->i_lock); 1679 inode->i_state |= I_NEW | I_CREATING; 1680 hlist_add_head_rcu(&inode->i_hash, head); 1681 spin_unlock(&inode->i_lock); 1682 spin_unlock(&inode_hash_lock); 1683 return 0; 1684 } 1685 if (unlikely(old->i_state & I_CREATING)) { 1686 spin_unlock(&old->i_lock); 1687 spin_unlock(&inode_hash_lock); 1688 return -EBUSY; 1689 } 1690 __iget(old); 1691 spin_unlock(&old->i_lock); 1692 spin_unlock(&inode_hash_lock); 1693 wait_on_inode(old); 1694 if (unlikely(!inode_unhashed(old))) { 1695 iput(old); 1696 return -EBUSY; 1697 } 1698 iput(old); 1699 } 1700 } 1701 EXPORT_SYMBOL(insert_inode_locked); 1702 1703 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1704 int (*test)(struct inode *, void *), void *data) 1705 { 1706 struct inode *old; 1707 1708 inode->i_state |= I_CREATING; 1709 old = inode_insert5(inode, hashval, test, NULL, data); 1710 1711 if (old != inode) { 1712 iput(old); 1713 return -EBUSY; 1714 } 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(insert_inode_locked4); 1718 1719 1720 int generic_delete_inode(struct inode *inode) 1721 { 1722 return 1; 1723 } 1724 EXPORT_SYMBOL(generic_delete_inode); 1725 1726 /* 1727 * Called when we're dropping the last reference 1728 * to an inode. 1729 * 1730 * Call the FS "drop_inode()" function, defaulting to 1731 * the legacy UNIX filesystem behaviour. If it tells 1732 * us to evict inode, do so. Otherwise, retain inode 1733 * in cache if fs is alive, sync and evict if fs is 1734 * shutting down. 1735 */ 1736 static void iput_final(struct inode *inode) 1737 { 1738 struct super_block *sb = inode->i_sb; 1739 const struct super_operations *op = inode->i_sb->s_op; 1740 unsigned long state; 1741 int drop; 1742 1743 WARN_ON(inode->i_state & I_NEW); 1744 1745 if (op->drop_inode) 1746 drop = op->drop_inode(inode); 1747 else 1748 drop = generic_drop_inode(inode); 1749 1750 if (!drop && 1751 !(inode->i_state & I_DONTCACHE) && 1752 (sb->s_flags & SB_ACTIVE)) { 1753 __inode_add_lru(inode, true); 1754 spin_unlock(&inode->i_lock); 1755 return; 1756 } 1757 1758 state = inode->i_state; 1759 if (!drop) { 1760 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1761 spin_unlock(&inode->i_lock); 1762 1763 write_inode_now(inode, 1); 1764 1765 spin_lock(&inode->i_lock); 1766 state = inode->i_state; 1767 WARN_ON(state & I_NEW); 1768 state &= ~I_WILL_FREE; 1769 } 1770 1771 WRITE_ONCE(inode->i_state, state | I_FREEING); 1772 if (!list_empty(&inode->i_lru)) 1773 inode_lru_list_del(inode); 1774 spin_unlock(&inode->i_lock); 1775 1776 evict(inode); 1777 } 1778 1779 /** 1780 * iput - put an inode 1781 * @inode: inode to put 1782 * 1783 * Puts an inode, dropping its usage count. If the inode use count hits 1784 * zero, the inode is then freed and may also be destroyed. 1785 * 1786 * Consequently, iput() can sleep. 1787 */ 1788 void iput(struct inode *inode) 1789 { 1790 if (!inode) 1791 return; 1792 BUG_ON(inode->i_state & I_CLEAR); 1793 retry: 1794 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1795 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1796 atomic_inc(&inode->i_count); 1797 spin_unlock(&inode->i_lock); 1798 trace_writeback_lazytime_iput(inode); 1799 mark_inode_dirty_sync(inode); 1800 goto retry; 1801 } 1802 iput_final(inode); 1803 } 1804 } 1805 EXPORT_SYMBOL(iput); 1806 1807 #ifdef CONFIG_BLOCK 1808 /** 1809 * bmap - find a block number in a file 1810 * @inode: inode owning the block number being requested 1811 * @block: pointer containing the block to find 1812 * 1813 * Replaces the value in ``*block`` with the block number on the device holding 1814 * corresponding to the requested block number in the file. 1815 * That is, asked for block 4 of inode 1 the function will replace the 1816 * 4 in ``*block``, with disk block relative to the disk start that holds that 1817 * block of the file. 1818 * 1819 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1820 * hole, returns 0 and ``*block`` is also set to 0. 1821 */ 1822 int bmap(struct inode *inode, sector_t *block) 1823 { 1824 if (!inode->i_mapping->a_ops->bmap) 1825 return -EINVAL; 1826 1827 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1828 return 0; 1829 } 1830 EXPORT_SYMBOL(bmap); 1831 #endif 1832 1833 /* 1834 * With relative atime, only update atime if the previous atime is 1835 * earlier than or equal to either the ctime or mtime, 1836 * or if at least a day has passed since the last atime update. 1837 */ 1838 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1839 struct timespec64 now) 1840 { 1841 struct timespec64 atime, mtime, ctime; 1842 1843 if (!(mnt->mnt_flags & MNT_RELATIME)) 1844 return true; 1845 /* 1846 * Is mtime younger than or equal to atime? If yes, update atime: 1847 */ 1848 atime = inode_get_atime(inode); 1849 mtime = inode_get_mtime(inode); 1850 if (timespec64_compare(&mtime, &atime) >= 0) 1851 return true; 1852 /* 1853 * Is ctime younger than or equal to atime? If yes, update atime: 1854 */ 1855 ctime = inode_get_ctime(inode); 1856 if (timespec64_compare(&ctime, &atime) >= 0) 1857 return true; 1858 1859 /* 1860 * Is the previous atime value older than a day? If yes, 1861 * update atime: 1862 */ 1863 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1864 return true; 1865 /* 1866 * Good, we can skip the atime update: 1867 */ 1868 return false; 1869 } 1870 1871 /** 1872 * inode_update_timestamps - update the timestamps on the inode 1873 * @inode: inode to be updated 1874 * @flags: S_* flags that needed to be updated 1875 * 1876 * The update_time function is called when an inode's timestamps need to be 1877 * updated for a read or write operation. This function handles updating the 1878 * actual timestamps. It's up to the caller to ensure that the inode is marked 1879 * dirty appropriately. 1880 * 1881 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1882 * attempt to update all three of them. S_ATIME updates can be handled 1883 * independently of the rest. 1884 * 1885 * Returns a set of S_* flags indicating which values changed. 1886 */ 1887 int inode_update_timestamps(struct inode *inode, int flags) 1888 { 1889 int updated = 0; 1890 struct timespec64 now; 1891 1892 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1893 struct timespec64 ctime = inode_get_ctime(inode); 1894 struct timespec64 mtime = inode_get_mtime(inode); 1895 1896 now = inode_set_ctime_current(inode); 1897 if (!timespec64_equal(&now, &ctime)) 1898 updated |= S_CTIME; 1899 if (!timespec64_equal(&now, &mtime)) { 1900 inode_set_mtime_to_ts(inode, now); 1901 updated |= S_MTIME; 1902 } 1903 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1904 updated |= S_VERSION; 1905 } else { 1906 now = current_time(inode); 1907 } 1908 1909 if (flags & S_ATIME) { 1910 struct timespec64 atime = inode_get_atime(inode); 1911 1912 if (!timespec64_equal(&now, &atime)) { 1913 inode_set_atime_to_ts(inode, now); 1914 updated |= S_ATIME; 1915 } 1916 } 1917 return updated; 1918 } 1919 EXPORT_SYMBOL(inode_update_timestamps); 1920 1921 /** 1922 * generic_update_time - update the timestamps on the inode 1923 * @inode: inode to be updated 1924 * @flags: S_* flags that needed to be updated 1925 * 1926 * The update_time function is called when an inode's timestamps need to be 1927 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1928 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1929 * updates can be handled done independently of the rest. 1930 * 1931 * Returns a S_* mask indicating which fields were updated. 1932 */ 1933 int generic_update_time(struct inode *inode, int flags) 1934 { 1935 int updated = inode_update_timestamps(inode, flags); 1936 int dirty_flags = 0; 1937 1938 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1939 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1940 if (updated & S_VERSION) 1941 dirty_flags |= I_DIRTY_SYNC; 1942 __mark_inode_dirty(inode, dirty_flags); 1943 return updated; 1944 } 1945 EXPORT_SYMBOL(generic_update_time); 1946 1947 /* 1948 * This does the actual work of updating an inodes time or version. Must have 1949 * had called mnt_want_write() before calling this. 1950 */ 1951 int inode_update_time(struct inode *inode, int flags) 1952 { 1953 if (inode->i_op->update_time) 1954 return inode->i_op->update_time(inode, flags); 1955 generic_update_time(inode, flags); 1956 return 0; 1957 } 1958 EXPORT_SYMBOL(inode_update_time); 1959 1960 /** 1961 * atime_needs_update - update the access time 1962 * @path: the &struct path to update 1963 * @inode: inode to update 1964 * 1965 * Update the accessed time on an inode and mark it for writeback. 1966 * This function automatically handles read only file systems and media, 1967 * as well as the "noatime" flag and inode specific "noatime" markers. 1968 */ 1969 bool atime_needs_update(const struct path *path, struct inode *inode) 1970 { 1971 struct vfsmount *mnt = path->mnt; 1972 struct timespec64 now, atime; 1973 1974 if (inode->i_flags & S_NOATIME) 1975 return false; 1976 1977 /* Atime updates will likely cause i_uid and i_gid to be written 1978 * back improprely if their true value is unknown to the vfs. 1979 */ 1980 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1981 return false; 1982 1983 if (IS_NOATIME(inode)) 1984 return false; 1985 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1986 return false; 1987 1988 if (mnt->mnt_flags & MNT_NOATIME) 1989 return false; 1990 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1991 return false; 1992 1993 now = current_time(inode); 1994 1995 if (!relatime_need_update(mnt, inode, now)) 1996 return false; 1997 1998 atime = inode_get_atime(inode); 1999 if (timespec64_equal(&atime, &now)) 2000 return false; 2001 2002 return true; 2003 } 2004 2005 void touch_atime(const struct path *path) 2006 { 2007 struct vfsmount *mnt = path->mnt; 2008 struct inode *inode = d_inode(path->dentry); 2009 2010 if (!atime_needs_update(path, inode)) 2011 return; 2012 2013 if (!sb_start_write_trylock(inode->i_sb)) 2014 return; 2015 2016 if (mnt_get_write_access(mnt) != 0) 2017 goto skip_update; 2018 /* 2019 * File systems can error out when updating inodes if they need to 2020 * allocate new space to modify an inode (such is the case for 2021 * Btrfs), but since we touch atime while walking down the path we 2022 * really don't care if we failed to update the atime of the file, 2023 * so just ignore the return value. 2024 * We may also fail on filesystems that have the ability to make parts 2025 * of the fs read only, e.g. subvolumes in Btrfs. 2026 */ 2027 inode_update_time(inode, S_ATIME); 2028 mnt_put_write_access(mnt); 2029 skip_update: 2030 sb_end_write(inode->i_sb); 2031 } 2032 EXPORT_SYMBOL(touch_atime); 2033 2034 /* 2035 * Return mask of changes for notify_change() that need to be done as a 2036 * response to write or truncate. Return 0 if nothing has to be changed. 2037 * Negative value on error (change should be denied). 2038 */ 2039 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2040 struct dentry *dentry) 2041 { 2042 struct inode *inode = d_inode(dentry); 2043 int mask = 0; 2044 int ret; 2045 2046 if (IS_NOSEC(inode)) 2047 return 0; 2048 2049 mask = setattr_should_drop_suidgid(idmap, inode); 2050 ret = security_inode_need_killpriv(dentry); 2051 if (ret < 0) 2052 return ret; 2053 if (ret) 2054 mask |= ATTR_KILL_PRIV; 2055 return mask; 2056 } 2057 2058 static int __remove_privs(struct mnt_idmap *idmap, 2059 struct dentry *dentry, int kill) 2060 { 2061 struct iattr newattrs; 2062 2063 newattrs.ia_valid = ATTR_FORCE | kill; 2064 /* 2065 * Note we call this on write, so notify_change will not 2066 * encounter any conflicting delegations: 2067 */ 2068 return notify_change(idmap, dentry, &newattrs, NULL); 2069 } 2070 2071 static int __file_remove_privs(struct file *file, unsigned int flags) 2072 { 2073 struct dentry *dentry = file_dentry(file); 2074 struct inode *inode = file_inode(file); 2075 int error = 0; 2076 int kill; 2077 2078 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2079 return 0; 2080 2081 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2082 if (kill < 0) 2083 return kill; 2084 2085 if (kill) { 2086 if (flags & IOCB_NOWAIT) 2087 return -EAGAIN; 2088 2089 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2090 } 2091 2092 if (!error) 2093 inode_has_no_xattr(inode); 2094 return error; 2095 } 2096 2097 /** 2098 * file_remove_privs - remove special file privileges (suid, capabilities) 2099 * @file: file to remove privileges from 2100 * 2101 * When file is modified by a write or truncation ensure that special 2102 * file privileges are removed. 2103 * 2104 * Return: 0 on success, negative errno on failure. 2105 */ 2106 int file_remove_privs(struct file *file) 2107 { 2108 return __file_remove_privs(file, 0); 2109 } 2110 EXPORT_SYMBOL(file_remove_privs); 2111 2112 static int inode_needs_update_time(struct inode *inode) 2113 { 2114 int sync_it = 0; 2115 struct timespec64 now = current_time(inode); 2116 struct timespec64 ts; 2117 2118 /* First try to exhaust all avenues to not sync */ 2119 if (IS_NOCMTIME(inode)) 2120 return 0; 2121 2122 ts = inode_get_mtime(inode); 2123 if (!timespec64_equal(&ts, &now)) 2124 sync_it = S_MTIME; 2125 2126 ts = inode_get_ctime(inode); 2127 if (!timespec64_equal(&ts, &now)) 2128 sync_it |= S_CTIME; 2129 2130 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2131 sync_it |= S_VERSION; 2132 2133 return sync_it; 2134 } 2135 2136 static int __file_update_time(struct file *file, int sync_mode) 2137 { 2138 int ret = 0; 2139 struct inode *inode = file_inode(file); 2140 2141 /* try to update time settings */ 2142 if (!mnt_get_write_access_file(file)) { 2143 ret = inode_update_time(inode, sync_mode); 2144 mnt_put_write_access_file(file); 2145 } 2146 2147 return ret; 2148 } 2149 2150 /** 2151 * file_update_time - update mtime and ctime time 2152 * @file: file accessed 2153 * 2154 * Update the mtime and ctime members of an inode and mark the inode for 2155 * writeback. Note that this function is meant exclusively for usage in 2156 * the file write path of filesystems, and filesystems may choose to 2157 * explicitly ignore updates via this function with the _NOCMTIME inode 2158 * flag, e.g. for network filesystem where these imestamps are handled 2159 * by the server. This can return an error for file systems who need to 2160 * allocate space in order to update an inode. 2161 * 2162 * Return: 0 on success, negative errno on failure. 2163 */ 2164 int file_update_time(struct file *file) 2165 { 2166 int ret; 2167 struct inode *inode = file_inode(file); 2168 2169 ret = inode_needs_update_time(inode); 2170 if (ret <= 0) 2171 return ret; 2172 2173 return __file_update_time(file, ret); 2174 } 2175 EXPORT_SYMBOL(file_update_time); 2176 2177 /** 2178 * file_modified_flags - handle mandated vfs changes when modifying a file 2179 * @file: file that was modified 2180 * @flags: kiocb flags 2181 * 2182 * When file has been modified ensure that special 2183 * file privileges are removed and time settings are updated. 2184 * 2185 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2186 * time settings will not be updated. It will return -EAGAIN. 2187 * 2188 * Context: Caller must hold the file's inode lock. 2189 * 2190 * Return: 0 on success, negative errno on failure. 2191 */ 2192 static int file_modified_flags(struct file *file, int flags) 2193 { 2194 int ret; 2195 struct inode *inode = file_inode(file); 2196 2197 /* 2198 * Clear the security bits if the process is not being run by root. 2199 * This keeps people from modifying setuid and setgid binaries. 2200 */ 2201 ret = __file_remove_privs(file, flags); 2202 if (ret) 2203 return ret; 2204 2205 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2206 return 0; 2207 2208 ret = inode_needs_update_time(inode); 2209 if (ret <= 0) 2210 return ret; 2211 if (flags & IOCB_NOWAIT) 2212 return -EAGAIN; 2213 2214 return __file_update_time(file, ret); 2215 } 2216 2217 /** 2218 * file_modified - handle mandated vfs changes when modifying a file 2219 * @file: file that was modified 2220 * 2221 * When file has been modified ensure that special 2222 * file privileges are removed and time settings are updated. 2223 * 2224 * Context: Caller must hold the file's inode lock. 2225 * 2226 * Return: 0 on success, negative errno on failure. 2227 */ 2228 int file_modified(struct file *file) 2229 { 2230 return file_modified_flags(file, 0); 2231 } 2232 EXPORT_SYMBOL(file_modified); 2233 2234 /** 2235 * kiocb_modified - handle mandated vfs changes when modifying a file 2236 * @iocb: iocb that was modified 2237 * 2238 * When file has been modified ensure that special 2239 * file privileges are removed and time settings are updated. 2240 * 2241 * Context: Caller must hold the file's inode lock. 2242 * 2243 * Return: 0 on success, negative errno on failure. 2244 */ 2245 int kiocb_modified(struct kiocb *iocb) 2246 { 2247 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2248 } 2249 EXPORT_SYMBOL_GPL(kiocb_modified); 2250 2251 int inode_needs_sync(struct inode *inode) 2252 { 2253 if (IS_SYNC(inode)) 2254 return 1; 2255 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2256 return 1; 2257 return 0; 2258 } 2259 EXPORT_SYMBOL(inode_needs_sync); 2260 2261 /* 2262 * If we try to find an inode in the inode hash while it is being 2263 * deleted, we have to wait until the filesystem completes its 2264 * deletion before reporting that it isn't found. This function waits 2265 * until the deletion _might_ have completed. Callers are responsible 2266 * to recheck inode state. 2267 * 2268 * It doesn't matter if I_NEW is not set initially, a call to 2269 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2270 * will DTRT. 2271 */ 2272 static void __wait_on_freeing_inode(struct inode *inode) 2273 { 2274 wait_queue_head_t *wq; 2275 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2276 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2277 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2278 spin_unlock(&inode->i_lock); 2279 spin_unlock(&inode_hash_lock); 2280 schedule(); 2281 finish_wait(wq, &wait.wq_entry); 2282 spin_lock(&inode_hash_lock); 2283 } 2284 2285 static __initdata unsigned long ihash_entries; 2286 static int __init set_ihash_entries(char *str) 2287 { 2288 if (!str) 2289 return 0; 2290 ihash_entries = simple_strtoul(str, &str, 0); 2291 return 1; 2292 } 2293 __setup("ihash_entries=", set_ihash_entries); 2294 2295 /* 2296 * Initialize the waitqueues and inode hash table. 2297 */ 2298 void __init inode_init_early(void) 2299 { 2300 /* If hashes are distributed across NUMA nodes, defer 2301 * hash allocation until vmalloc space is available. 2302 */ 2303 if (hashdist) 2304 return; 2305 2306 inode_hashtable = 2307 alloc_large_system_hash("Inode-cache", 2308 sizeof(struct hlist_head), 2309 ihash_entries, 2310 14, 2311 HASH_EARLY | HASH_ZERO, 2312 &i_hash_shift, 2313 &i_hash_mask, 2314 0, 2315 0); 2316 } 2317 2318 void __init inode_init(void) 2319 { 2320 /* inode slab cache */ 2321 inode_cachep = kmem_cache_create("inode_cache", 2322 sizeof(struct inode), 2323 0, 2324 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2325 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2326 init_once); 2327 2328 /* Hash may have been set up in inode_init_early */ 2329 if (!hashdist) 2330 return; 2331 2332 inode_hashtable = 2333 alloc_large_system_hash("Inode-cache", 2334 sizeof(struct hlist_head), 2335 ihash_entries, 2336 14, 2337 HASH_ZERO, 2338 &i_hash_shift, 2339 &i_hash_mask, 2340 0, 2341 0); 2342 } 2343 2344 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2345 { 2346 inode->i_mode = mode; 2347 if (S_ISCHR(mode)) { 2348 inode->i_fop = &def_chr_fops; 2349 inode->i_rdev = rdev; 2350 } else if (S_ISBLK(mode)) { 2351 if (IS_ENABLED(CONFIG_BLOCK)) 2352 inode->i_fop = &def_blk_fops; 2353 inode->i_rdev = rdev; 2354 } else if (S_ISFIFO(mode)) 2355 inode->i_fop = &pipefifo_fops; 2356 else if (S_ISSOCK(mode)) 2357 ; /* leave it no_open_fops */ 2358 else 2359 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2360 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2361 inode->i_ino); 2362 } 2363 EXPORT_SYMBOL(init_special_inode); 2364 2365 /** 2366 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2367 * @idmap: idmap of the mount the inode was created from 2368 * @inode: New inode 2369 * @dir: Directory inode 2370 * @mode: mode of the new inode 2371 * 2372 * If the inode has been created through an idmapped mount the idmap of 2373 * the vfsmount must be passed through @idmap. This function will then take 2374 * care to map the inode according to @idmap before checking permissions 2375 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2376 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2377 */ 2378 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2379 const struct inode *dir, umode_t mode) 2380 { 2381 inode_fsuid_set(inode, idmap); 2382 if (dir && dir->i_mode & S_ISGID) { 2383 inode->i_gid = dir->i_gid; 2384 2385 /* Directories are special, and always inherit S_ISGID */ 2386 if (S_ISDIR(mode)) 2387 mode |= S_ISGID; 2388 } else 2389 inode_fsgid_set(inode, idmap); 2390 inode->i_mode = mode; 2391 } 2392 EXPORT_SYMBOL(inode_init_owner); 2393 2394 /** 2395 * inode_owner_or_capable - check current task permissions to inode 2396 * @idmap: idmap of the mount the inode was found from 2397 * @inode: inode being checked 2398 * 2399 * Return true if current either has CAP_FOWNER in a namespace with the 2400 * inode owner uid mapped, or owns the file. 2401 * 2402 * If the inode has been found through an idmapped mount the idmap of 2403 * the vfsmount must be passed through @idmap. This function will then take 2404 * care to map the inode according to @idmap before checking permissions. 2405 * On non-idmapped mounts or if permission checking is to be performed on the 2406 * raw inode simply pass @nop_mnt_idmap. 2407 */ 2408 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2409 const struct inode *inode) 2410 { 2411 vfsuid_t vfsuid; 2412 struct user_namespace *ns; 2413 2414 vfsuid = i_uid_into_vfsuid(idmap, inode); 2415 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2416 return true; 2417 2418 ns = current_user_ns(); 2419 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2420 return true; 2421 return false; 2422 } 2423 EXPORT_SYMBOL(inode_owner_or_capable); 2424 2425 /* 2426 * Direct i/o helper functions 2427 */ 2428 static void __inode_dio_wait(struct inode *inode) 2429 { 2430 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2431 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2432 2433 do { 2434 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2435 if (atomic_read(&inode->i_dio_count)) 2436 schedule(); 2437 } while (atomic_read(&inode->i_dio_count)); 2438 finish_wait(wq, &q.wq_entry); 2439 } 2440 2441 /** 2442 * inode_dio_wait - wait for outstanding DIO requests to finish 2443 * @inode: inode to wait for 2444 * 2445 * Waits for all pending direct I/O requests to finish so that we can 2446 * proceed with a truncate or equivalent operation. 2447 * 2448 * Must be called under a lock that serializes taking new references 2449 * to i_dio_count, usually by inode->i_mutex. 2450 */ 2451 void inode_dio_wait(struct inode *inode) 2452 { 2453 if (atomic_read(&inode->i_dio_count)) 2454 __inode_dio_wait(inode); 2455 } 2456 EXPORT_SYMBOL(inode_dio_wait); 2457 2458 /* 2459 * inode_set_flags - atomically set some inode flags 2460 * 2461 * Note: the caller should be holding i_mutex, or else be sure that 2462 * they have exclusive access to the inode structure (i.e., while the 2463 * inode is being instantiated). The reason for the cmpxchg() loop 2464 * --- which wouldn't be necessary if all code paths which modify 2465 * i_flags actually followed this rule, is that there is at least one 2466 * code path which doesn't today so we use cmpxchg() out of an abundance 2467 * of caution. 2468 * 2469 * In the long run, i_mutex is overkill, and we should probably look 2470 * at using the i_lock spinlock to protect i_flags, and then make sure 2471 * it is so documented in include/linux/fs.h and that all code follows 2472 * the locking convention!! 2473 */ 2474 void inode_set_flags(struct inode *inode, unsigned int flags, 2475 unsigned int mask) 2476 { 2477 WARN_ON_ONCE(flags & ~mask); 2478 set_mask_bits(&inode->i_flags, mask, flags); 2479 } 2480 EXPORT_SYMBOL(inode_set_flags); 2481 2482 void inode_nohighmem(struct inode *inode) 2483 { 2484 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2485 } 2486 EXPORT_SYMBOL(inode_nohighmem); 2487 2488 /** 2489 * timestamp_truncate - Truncate timespec to a granularity 2490 * @t: Timespec 2491 * @inode: inode being updated 2492 * 2493 * Truncate a timespec to the granularity supported by the fs 2494 * containing the inode. Always rounds down. gran must 2495 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2496 */ 2497 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2498 { 2499 struct super_block *sb = inode->i_sb; 2500 unsigned int gran = sb->s_time_gran; 2501 2502 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2503 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2504 t.tv_nsec = 0; 2505 2506 /* Avoid division in the common cases 1 ns and 1 s. */ 2507 if (gran == 1) 2508 ; /* nothing */ 2509 else if (gran == NSEC_PER_SEC) 2510 t.tv_nsec = 0; 2511 else if (gran > 1 && gran < NSEC_PER_SEC) 2512 t.tv_nsec -= t.tv_nsec % gran; 2513 else 2514 WARN(1, "invalid file time granularity: %u", gran); 2515 return t; 2516 } 2517 EXPORT_SYMBOL(timestamp_truncate); 2518 2519 /** 2520 * current_time - Return FS time 2521 * @inode: inode. 2522 * 2523 * Return the current time truncated to the time granularity supported by 2524 * the fs. 2525 * 2526 * Note that inode and inode->sb cannot be NULL. 2527 * Otherwise, the function warns and returns time without truncation. 2528 */ 2529 struct timespec64 current_time(struct inode *inode) 2530 { 2531 struct timespec64 now; 2532 2533 ktime_get_coarse_real_ts64(&now); 2534 return timestamp_truncate(now, inode); 2535 } 2536 EXPORT_SYMBOL(current_time); 2537 2538 /** 2539 * inode_set_ctime_current - set the ctime to current_time 2540 * @inode: inode 2541 * 2542 * Set the inode->i_ctime to the current value for the inode. Returns 2543 * the current value that was assigned to i_ctime. 2544 */ 2545 struct timespec64 inode_set_ctime_current(struct inode *inode) 2546 { 2547 struct timespec64 now = current_time(inode); 2548 2549 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2550 return now; 2551 } 2552 EXPORT_SYMBOL(inode_set_ctime_current); 2553 2554 /** 2555 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2556 * @idmap: idmap of the mount @inode was found from 2557 * @inode: inode to check 2558 * @vfsgid: the new/current vfsgid of @inode 2559 * 2560 * Check wether @vfsgid is in the caller's group list or if the caller is 2561 * privileged with CAP_FSETID over @inode. This can be used to determine 2562 * whether the setgid bit can be kept or must be dropped. 2563 * 2564 * Return: true if the caller is sufficiently privileged, false if not. 2565 */ 2566 bool in_group_or_capable(struct mnt_idmap *idmap, 2567 const struct inode *inode, vfsgid_t vfsgid) 2568 { 2569 if (vfsgid_in_group_p(vfsgid)) 2570 return true; 2571 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2572 return true; 2573 return false; 2574 } 2575 2576 /** 2577 * mode_strip_sgid - handle the sgid bit for non-directories 2578 * @idmap: idmap of the mount the inode was created from 2579 * @dir: parent directory inode 2580 * @mode: mode of the file to be created in @dir 2581 * 2582 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2583 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2584 * either in the group of the parent directory or they have CAP_FSETID 2585 * in their user namespace and are privileged over the parent directory. 2586 * In all other cases, strip the S_ISGID bit from @mode. 2587 * 2588 * Return: the new mode to use for the file 2589 */ 2590 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2591 const struct inode *dir, umode_t mode) 2592 { 2593 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2594 return mode; 2595 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2596 return mode; 2597 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2598 return mode; 2599 return mode & ~S_ISGID; 2600 } 2601 EXPORT_SYMBOL(mode_strip_sgid); 2602