1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 inode->i_state = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->i_private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 if (sb->s_iflags & SB_I_STABLE_WRITES) 220 mapping_set_stable_writes(mapping); 221 inode->i_private = NULL; 222 inode->i_mapping = mapping; 223 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 224 #ifdef CONFIG_FS_POSIX_ACL 225 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 226 #endif 227 228 #ifdef CONFIG_FSNOTIFY 229 inode->i_fsnotify_mask = 0; 230 #endif 231 inode->i_flctx = NULL; 232 233 if (unlikely(security_inode_alloc(inode))) 234 return -ENOMEM; 235 236 this_cpu_inc(nr_inodes); 237 238 return 0; 239 } 240 EXPORT_SYMBOL(inode_init_always); 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 static void i_callback(struct rcu_head *head) 249 { 250 struct inode *inode = container_of(head, struct inode, i_rcu); 251 if (inode->free_inode) 252 inode->free_inode(inode); 253 else 254 free_inode_nonrcu(inode); 255 } 256 257 static struct inode *alloc_inode(struct super_block *sb) 258 { 259 const struct super_operations *ops = sb->s_op; 260 struct inode *inode; 261 262 if (ops->alloc_inode) 263 inode = ops->alloc_inode(sb); 264 else 265 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 266 267 if (!inode) 268 return NULL; 269 270 if (unlikely(inode_init_always(sb, inode))) { 271 if (ops->destroy_inode) { 272 ops->destroy_inode(inode); 273 if (!ops->free_inode) 274 return NULL; 275 } 276 inode->free_inode = ops->free_inode; 277 i_callback(&inode->i_rcu); 278 return NULL; 279 } 280 281 return inode; 282 } 283 284 void __destroy_inode(struct inode *inode) 285 { 286 BUG_ON(inode_has_buffers(inode)); 287 inode_detach_wb(inode); 288 security_inode_free(inode); 289 fsnotify_inode_delete(inode); 290 locks_free_lock_context(inode); 291 if (!inode->i_nlink) { 292 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 293 atomic_long_dec(&inode->i_sb->s_remove_count); 294 } 295 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void destroy_inode(struct inode *inode) 307 { 308 const struct super_operations *ops = inode->i_sb->s_op; 309 310 BUG_ON(!list_empty(&inode->i_lru)); 311 __destroy_inode(inode); 312 if (ops->destroy_inode) { 313 ops->destroy_inode(inode); 314 if (!ops->free_inode) 315 return; 316 } 317 inode->free_inode = ops->free_inode; 318 call_rcu(&inode->i_rcu, i_callback); 319 } 320 321 /** 322 * drop_nlink - directly drop an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. In cases 327 * where we are attempting to track writes to the 328 * filesystem, a decrement to zero means an imminent 329 * write when the file is truncated and actually unlinked 330 * on the filesystem. 331 */ 332 void drop_nlink(struct inode *inode) 333 { 334 WARN_ON(inode->i_nlink == 0); 335 inode->__i_nlink--; 336 if (!inode->i_nlink) 337 atomic_long_inc(&inode->i_sb->s_remove_count); 338 } 339 EXPORT_SYMBOL(drop_nlink); 340 341 /** 342 * clear_nlink - directly zero an inode's link count 343 * @inode: inode 344 * 345 * This is a low-level filesystem helper to replace any 346 * direct filesystem manipulation of i_nlink. See 347 * drop_nlink() for why we care about i_nlink hitting zero. 348 */ 349 void clear_nlink(struct inode *inode) 350 { 351 if (inode->i_nlink) { 352 inode->__i_nlink = 0; 353 atomic_long_inc(&inode->i_sb->s_remove_count); 354 } 355 } 356 EXPORT_SYMBOL(clear_nlink); 357 358 /** 359 * set_nlink - directly set an inode's link count 360 * @inode: inode 361 * @nlink: new nlink (should be non-zero) 362 * 363 * This is a low-level filesystem helper to replace any 364 * direct filesystem manipulation of i_nlink. 365 */ 366 void set_nlink(struct inode *inode, unsigned int nlink) 367 { 368 if (!nlink) { 369 clear_nlink(inode); 370 } else { 371 /* Yes, some filesystems do change nlink from zero to one */ 372 if (inode->i_nlink == 0) 373 atomic_long_dec(&inode->i_sb->s_remove_count); 374 375 inode->__i_nlink = nlink; 376 } 377 } 378 EXPORT_SYMBOL(set_nlink); 379 380 /** 381 * inc_nlink - directly increment an inode's link count 382 * @inode: inode 383 * 384 * This is a low-level filesystem helper to replace any 385 * direct filesystem manipulation of i_nlink. Currently, 386 * it is only here for parity with dec_nlink(). 387 */ 388 void inc_nlink(struct inode *inode) 389 { 390 if (unlikely(inode->i_nlink == 0)) { 391 WARN_ON(!(inode->i_state & I_LINKABLE)); 392 atomic_long_dec(&inode->i_sb->s_remove_count); 393 } 394 395 inode->__i_nlink++; 396 } 397 EXPORT_SYMBOL(inc_nlink); 398 399 static void __address_space_init_once(struct address_space *mapping) 400 { 401 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 402 init_rwsem(&mapping->i_mmap_rwsem); 403 INIT_LIST_HEAD(&mapping->i_private_list); 404 spin_lock_init(&mapping->i_private_lock); 405 mapping->i_mmap = RB_ROOT_CACHED; 406 } 407 408 void address_space_init_once(struct address_space *mapping) 409 { 410 memset(mapping, 0, sizeof(*mapping)); 411 __address_space_init_once(mapping); 412 } 413 EXPORT_SYMBOL(address_space_init_once); 414 415 /* 416 * These are initializations that only need to be done 417 * once, because the fields are idempotent across use 418 * of the inode, so let the slab aware of that. 419 */ 420 void inode_init_once(struct inode *inode) 421 { 422 memset(inode, 0, sizeof(*inode)); 423 INIT_HLIST_NODE(&inode->i_hash); 424 INIT_LIST_HEAD(&inode->i_devices); 425 INIT_LIST_HEAD(&inode->i_io_list); 426 INIT_LIST_HEAD(&inode->i_wb_list); 427 INIT_LIST_HEAD(&inode->i_lru); 428 INIT_LIST_HEAD(&inode->i_sb_list); 429 __address_space_init_once(&inode->i_data); 430 i_size_ordered_init(inode); 431 } 432 EXPORT_SYMBOL(inode_init_once); 433 434 static void init_once(void *foo) 435 { 436 struct inode *inode = (struct inode *) foo; 437 438 inode_init_once(inode); 439 } 440 441 /* 442 * inode->i_lock must be held 443 */ 444 void __iget(struct inode *inode) 445 { 446 atomic_inc(&inode->i_count); 447 } 448 449 /* 450 * get additional reference to inode; caller must already hold one. 451 */ 452 void ihold(struct inode *inode) 453 { 454 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 455 } 456 EXPORT_SYMBOL(ihold); 457 458 static void __inode_add_lru(struct inode *inode, bool rotate) 459 { 460 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 461 return; 462 if (atomic_read(&inode->i_count)) 463 return; 464 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 465 return; 466 if (!mapping_shrinkable(&inode->i_data)) 467 return; 468 469 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 470 this_cpu_inc(nr_unused); 471 else if (rotate) 472 inode->i_state |= I_REFERENCED; 473 } 474 475 /* 476 * Add inode to LRU if needed (inode is unused and clean). 477 * 478 * Needs inode->i_lock held. 479 */ 480 void inode_add_lru(struct inode *inode) 481 { 482 __inode_add_lru(inode, false); 483 } 484 485 static void inode_lru_list_del(struct inode *inode) 486 { 487 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 488 this_cpu_dec(nr_unused); 489 } 490 491 /** 492 * inode_sb_list_add - add inode to the superblock list of inodes 493 * @inode: inode to add 494 */ 495 void inode_sb_list_add(struct inode *inode) 496 { 497 spin_lock(&inode->i_sb->s_inode_list_lock); 498 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 499 spin_unlock(&inode->i_sb->s_inode_list_lock); 500 } 501 EXPORT_SYMBOL_GPL(inode_sb_list_add); 502 503 static inline void inode_sb_list_del(struct inode *inode) 504 { 505 if (!list_empty(&inode->i_sb_list)) { 506 spin_lock(&inode->i_sb->s_inode_list_lock); 507 list_del_init(&inode->i_sb_list); 508 spin_unlock(&inode->i_sb->s_inode_list_lock); 509 } 510 } 511 512 static unsigned long hash(struct super_block *sb, unsigned long hashval) 513 { 514 unsigned long tmp; 515 516 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 517 L1_CACHE_BYTES; 518 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 519 return tmp & i_hash_mask; 520 } 521 522 /** 523 * __insert_inode_hash - hash an inode 524 * @inode: unhashed inode 525 * @hashval: unsigned long value used to locate this object in the 526 * inode_hashtable. 527 * 528 * Add an inode to the inode hash for this superblock. 529 */ 530 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 531 { 532 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 533 534 spin_lock(&inode_hash_lock); 535 spin_lock(&inode->i_lock); 536 hlist_add_head_rcu(&inode->i_hash, b); 537 spin_unlock(&inode->i_lock); 538 spin_unlock(&inode_hash_lock); 539 } 540 EXPORT_SYMBOL(__insert_inode_hash); 541 542 /** 543 * __remove_inode_hash - remove an inode from the hash 544 * @inode: inode to unhash 545 * 546 * Remove an inode from the superblock. 547 */ 548 void __remove_inode_hash(struct inode *inode) 549 { 550 spin_lock(&inode_hash_lock); 551 spin_lock(&inode->i_lock); 552 hlist_del_init_rcu(&inode->i_hash); 553 spin_unlock(&inode->i_lock); 554 spin_unlock(&inode_hash_lock); 555 } 556 EXPORT_SYMBOL(__remove_inode_hash); 557 558 void dump_mapping(const struct address_space *mapping) 559 { 560 struct inode *host; 561 const struct address_space_operations *a_ops; 562 struct hlist_node *dentry_first; 563 struct dentry *dentry_ptr; 564 struct dentry dentry; 565 unsigned long ino; 566 567 /* 568 * If mapping is an invalid pointer, we don't want to crash 569 * accessing it, so probe everything depending on it carefully. 570 */ 571 if (get_kernel_nofault(host, &mapping->host) || 572 get_kernel_nofault(a_ops, &mapping->a_ops)) { 573 pr_warn("invalid mapping:%px\n", mapping); 574 return; 575 } 576 577 if (!host) { 578 pr_warn("aops:%ps\n", a_ops); 579 return; 580 } 581 582 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 583 get_kernel_nofault(ino, &host->i_ino)) { 584 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 585 return; 586 } 587 588 if (!dentry_first) { 589 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 590 return; 591 } 592 593 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 594 if (get_kernel_nofault(dentry, dentry_ptr) || 595 !dentry.d_parent || !dentry.d_name.name) { 596 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 597 a_ops, ino, dentry_ptr); 598 return; 599 } 600 601 /* 602 * if dentry is corrupted, the %pd handler may still crash, 603 * but it's unlikely that we reach here with a corrupt mapping 604 */ 605 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 606 } 607 608 void clear_inode(struct inode *inode) 609 { 610 /* 611 * We have to cycle the i_pages lock here because reclaim can be in the 612 * process of removing the last page (in __filemap_remove_folio()) 613 * and we must not free the mapping under it. 614 */ 615 xa_lock_irq(&inode->i_data.i_pages); 616 BUG_ON(inode->i_data.nrpages); 617 /* 618 * Almost always, mapping_empty(&inode->i_data) here; but there are 619 * two known and long-standing ways in which nodes may get left behind 620 * (when deep radix-tree node allocation failed partway; or when THP 621 * collapse_file() failed). Until those two known cases are cleaned up, 622 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 623 * nor even WARN_ON(!mapping_empty). 624 */ 625 xa_unlock_irq(&inode->i_data.i_pages); 626 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 627 BUG_ON(!(inode->i_state & I_FREEING)); 628 BUG_ON(inode->i_state & I_CLEAR); 629 BUG_ON(!list_empty(&inode->i_wb_list)); 630 /* don't need i_lock here, no concurrent mods to i_state */ 631 inode->i_state = I_FREEING | I_CLEAR; 632 } 633 EXPORT_SYMBOL(clear_inode); 634 635 /* 636 * Free the inode passed in, removing it from the lists it is still connected 637 * to. We remove any pages still attached to the inode and wait for any IO that 638 * is still in progress before finally destroying the inode. 639 * 640 * An inode must already be marked I_FREEING so that we avoid the inode being 641 * moved back onto lists if we race with other code that manipulates the lists 642 * (e.g. writeback_single_inode). The caller is responsible for setting this. 643 * 644 * An inode must already be removed from the LRU list before being evicted from 645 * the cache. This should occur atomically with setting the I_FREEING state 646 * flag, so no inodes here should ever be on the LRU when being evicted. 647 */ 648 static void evict(struct inode *inode) 649 { 650 const struct super_operations *op = inode->i_sb->s_op; 651 652 BUG_ON(!(inode->i_state & I_FREEING)); 653 BUG_ON(!list_empty(&inode->i_lru)); 654 655 if (!list_empty(&inode->i_io_list)) 656 inode_io_list_del(inode); 657 658 inode_sb_list_del(inode); 659 660 /* 661 * Wait for flusher thread to be done with the inode so that filesystem 662 * does not start destroying it while writeback is still running. Since 663 * the inode has I_FREEING set, flusher thread won't start new work on 664 * the inode. We just have to wait for running writeback to finish. 665 */ 666 inode_wait_for_writeback(inode); 667 668 if (op->evict_inode) { 669 op->evict_inode(inode); 670 } else { 671 truncate_inode_pages_final(&inode->i_data); 672 clear_inode(inode); 673 } 674 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 675 cd_forget(inode); 676 677 remove_inode_hash(inode); 678 679 /* 680 * Wake up waiters in __wait_on_freeing_inode(). 681 * 682 * Lockless hash lookup may end up finding the inode before we removed 683 * it above, but only lock it *after* we are done with the wakeup below. 684 * In this case the potential waiter cannot safely block. 685 * 686 * The inode being unhashed after the call to remove_inode_hash() is 687 * used as an indicator whether blocking on it is safe. 688 */ 689 spin_lock(&inode->i_lock); 690 wake_up_bit(&inode->i_state, __I_NEW); 691 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 692 spin_unlock(&inode->i_lock); 693 694 destroy_inode(inode); 695 } 696 697 /* 698 * dispose_list - dispose of the contents of a local list 699 * @head: the head of the list to free 700 * 701 * Dispose-list gets a local list with local inodes in it, so it doesn't 702 * need to worry about list corruption and SMP locks. 703 */ 704 static void dispose_list(struct list_head *head) 705 { 706 while (!list_empty(head)) { 707 struct inode *inode; 708 709 inode = list_first_entry(head, struct inode, i_lru); 710 list_del_init(&inode->i_lru); 711 712 evict(inode); 713 cond_resched(); 714 } 715 } 716 717 /** 718 * evict_inodes - evict all evictable inodes for a superblock 719 * @sb: superblock to operate on 720 * 721 * Make sure that no inodes with zero refcount are retained. This is 722 * called by superblock shutdown after having SB_ACTIVE flag removed, 723 * so any inode reaching zero refcount during or after that call will 724 * be immediately evicted. 725 */ 726 void evict_inodes(struct super_block *sb) 727 { 728 struct inode *inode, *next; 729 LIST_HEAD(dispose); 730 731 again: 732 spin_lock(&sb->s_inode_list_lock); 733 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 734 if (atomic_read(&inode->i_count)) 735 continue; 736 737 spin_lock(&inode->i_lock); 738 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 739 spin_unlock(&inode->i_lock); 740 continue; 741 } 742 743 inode->i_state |= I_FREEING; 744 inode_lru_list_del(inode); 745 spin_unlock(&inode->i_lock); 746 list_add(&inode->i_lru, &dispose); 747 748 /* 749 * We can have a ton of inodes to evict at unmount time given 750 * enough memory, check to see if we need to go to sleep for a 751 * bit so we don't livelock. 752 */ 753 if (need_resched()) { 754 spin_unlock(&sb->s_inode_list_lock); 755 cond_resched(); 756 dispose_list(&dispose); 757 goto again; 758 } 759 } 760 spin_unlock(&sb->s_inode_list_lock); 761 762 dispose_list(&dispose); 763 } 764 EXPORT_SYMBOL_GPL(evict_inodes); 765 766 /** 767 * invalidate_inodes - attempt to free all inodes on a superblock 768 * @sb: superblock to operate on 769 * 770 * Attempts to free all inodes (including dirty inodes) for a given superblock. 771 */ 772 void invalidate_inodes(struct super_block *sb) 773 { 774 struct inode *inode, *next; 775 LIST_HEAD(dispose); 776 777 again: 778 spin_lock(&sb->s_inode_list_lock); 779 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 780 spin_lock(&inode->i_lock); 781 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 782 spin_unlock(&inode->i_lock); 783 continue; 784 } 785 if (atomic_read(&inode->i_count)) { 786 spin_unlock(&inode->i_lock); 787 continue; 788 } 789 790 inode->i_state |= I_FREEING; 791 inode_lru_list_del(inode); 792 spin_unlock(&inode->i_lock); 793 list_add(&inode->i_lru, &dispose); 794 if (need_resched()) { 795 spin_unlock(&sb->s_inode_list_lock); 796 cond_resched(); 797 dispose_list(&dispose); 798 goto again; 799 } 800 } 801 spin_unlock(&sb->s_inode_list_lock); 802 803 dispose_list(&dispose); 804 } 805 806 /* 807 * Isolate the inode from the LRU in preparation for freeing it. 808 * 809 * If the inode has the I_REFERENCED flag set, then it means that it has been 810 * used recently - the flag is set in iput_final(). When we encounter such an 811 * inode, clear the flag and move it to the back of the LRU so it gets another 812 * pass through the LRU before it gets reclaimed. This is necessary because of 813 * the fact we are doing lazy LRU updates to minimise lock contention so the 814 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 815 * with this flag set because they are the inodes that are out of order. 816 */ 817 static enum lru_status inode_lru_isolate(struct list_head *item, 818 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 819 { 820 struct list_head *freeable = arg; 821 struct inode *inode = container_of(item, struct inode, i_lru); 822 823 /* 824 * We are inverting the lru lock/inode->i_lock here, so use a 825 * trylock. If we fail to get the lock, just skip it. 826 */ 827 if (!spin_trylock(&inode->i_lock)) 828 return LRU_SKIP; 829 830 /* 831 * Inodes can get referenced, redirtied, or repopulated while 832 * they're already on the LRU, and this can make them 833 * unreclaimable for a while. Remove them lazily here; iput, 834 * sync, or the last page cache deletion will requeue them. 835 */ 836 if (atomic_read(&inode->i_count) || 837 (inode->i_state & ~I_REFERENCED) || 838 !mapping_shrinkable(&inode->i_data)) { 839 list_lru_isolate(lru, &inode->i_lru); 840 spin_unlock(&inode->i_lock); 841 this_cpu_dec(nr_unused); 842 return LRU_REMOVED; 843 } 844 845 /* Recently referenced inodes get one more pass */ 846 if (inode->i_state & I_REFERENCED) { 847 inode->i_state &= ~I_REFERENCED; 848 spin_unlock(&inode->i_lock); 849 return LRU_ROTATE; 850 } 851 852 /* 853 * On highmem systems, mapping_shrinkable() permits dropping 854 * page cache in order to free up struct inodes: lowmem might 855 * be under pressure before the cache inside the highmem zone. 856 */ 857 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 858 __iget(inode); 859 spin_unlock(&inode->i_lock); 860 spin_unlock(lru_lock); 861 if (remove_inode_buffers(inode)) { 862 unsigned long reap; 863 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 864 if (current_is_kswapd()) 865 __count_vm_events(KSWAPD_INODESTEAL, reap); 866 else 867 __count_vm_events(PGINODESTEAL, reap); 868 mm_account_reclaimed_pages(reap); 869 } 870 iput(inode); 871 spin_lock(lru_lock); 872 return LRU_RETRY; 873 } 874 875 WARN_ON(inode->i_state & I_NEW); 876 inode->i_state |= I_FREEING; 877 list_lru_isolate_move(lru, &inode->i_lru, freeable); 878 spin_unlock(&inode->i_lock); 879 880 this_cpu_dec(nr_unused); 881 return LRU_REMOVED; 882 } 883 884 /* 885 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 886 * This is called from the superblock shrinker function with a number of inodes 887 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 888 * then are freed outside inode_lock by dispose_list(). 889 */ 890 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 891 { 892 LIST_HEAD(freeable); 893 long freed; 894 895 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 896 inode_lru_isolate, &freeable); 897 dispose_list(&freeable); 898 return freed; 899 } 900 901 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 902 /* 903 * Called with the inode lock held. 904 */ 905 static struct inode *find_inode(struct super_block *sb, 906 struct hlist_head *head, 907 int (*test)(struct inode *, void *), 908 void *data, bool is_inode_hash_locked) 909 { 910 struct inode *inode = NULL; 911 912 if (is_inode_hash_locked) 913 lockdep_assert_held(&inode_hash_lock); 914 else 915 lockdep_assert_not_held(&inode_hash_lock); 916 917 rcu_read_lock(); 918 repeat: 919 hlist_for_each_entry_rcu(inode, head, i_hash) { 920 if (inode->i_sb != sb) 921 continue; 922 if (!test(inode, data)) 923 continue; 924 spin_lock(&inode->i_lock); 925 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 926 __wait_on_freeing_inode(inode, is_inode_hash_locked); 927 goto repeat; 928 } 929 if (unlikely(inode->i_state & I_CREATING)) { 930 spin_unlock(&inode->i_lock); 931 rcu_read_unlock(); 932 return ERR_PTR(-ESTALE); 933 } 934 __iget(inode); 935 spin_unlock(&inode->i_lock); 936 rcu_read_unlock(); 937 return inode; 938 } 939 rcu_read_unlock(); 940 return NULL; 941 } 942 943 /* 944 * find_inode_fast is the fast path version of find_inode, see the comment at 945 * iget_locked for details. 946 */ 947 static struct inode *find_inode_fast(struct super_block *sb, 948 struct hlist_head *head, unsigned long ino, 949 bool is_inode_hash_locked) 950 { 951 struct inode *inode = NULL; 952 953 if (is_inode_hash_locked) 954 lockdep_assert_held(&inode_hash_lock); 955 else 956 lockdep_assert_not_held(&inode_hash_lock); 957 958 rcu_read_lock(); 959 repeat: 960 hlist_for_each_entry_rcu(inode, head, i_hash) { 961 if (inode->i_ino != ino) 962 continue; 963 if (inode->i_sb != sb) 964 continue; 965 spin_lock(&inode->i_lock); 966 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 967 __wait_on_freeing_inode(inode, is_inode_hash_locked); 968 goto repeat; 969 } 970 if (unlikely(inode->i_state & I_CREATING)) { 971 spin_unlock(&inode->i_lock); 972 rcu_read_unlock(); 973 return ERR_PTR(-ESTALE); 974 } 975 __iget(inode); 976 spin_unlock(&inode->i_lock); 977 rcu_read_unlock(); 978 return inode; 979 } 980 rcu_read_unlock(); 981 return NULL; 982 } 983 984 /* 985 * Each cpu owns a range of LAST_INO_BATCH numbers. 986 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 987 * to renew the exhausted range. 988 * 989 * This does not significantly increase overflow rate because every CPU can 990 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 991 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 992 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 993 * overflow rate by 2x, which does not seem too significant. 994 * 995 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 996 * error if st_ino won't fit in target struct field. Use 32bit counter 997 * here to attempt to avoid that. 998 */ 999 #define LAST_INO_BATCH 1024 1000 static DEFINE_PER_CPU(unsigned int, last_ino); 1001 1002 unsigned int get_next_ino(void) 1003 { 1004 unsigned int *p = &get_cpu_var(last_ino); 1005 unsigned int res = *p; 1006 1007 #ifdef CONFIG_SMP 1008 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1009 static atomic_t shared_last_ino; 1010 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1011 1012 res = next - LAST_INO_BATCH; 1013 } 1014 #endif 1015 1016 res++; 1017 /* get_next_ino should not provide a 0 inode number */ 1018 if (unlikely(!res)) 1019 res++; 1020 *p = res; 1021 put_cpu_var(last_ino); 1022 return res; 1023 } 1024 EXPORT_SYMBOL(get_next_ino); 1025 1026 /** 1027 * new_inode_pseudo - obtain an inode 1028 * @sb: superblock 1029 * 1030 * Allocates a new inode for given superblock. 1031 * Inode wont be chained in superblock s_inodes list 1032 * This means : 1033 * - fs can't be unmount 1034 * - quotas, fsnotify, writeback can't work 1035 */ 1036 struct inode *new_inode_pseudo(struct super_block *sb) 1037 { 1038 return alloc_inode(sb); 1039 } 1040 1041 /** 1042 * new_inode - obtain an inode 1043 * @sb: superblock 1044 * 1045 * Allocates a new inode for given superblock. The default gfp_mask 1046 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1047 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1048 * for the page cache are not reclaimable or migratable, 1049 * mapping_set_gfp_mask() must be called with suitable flags on the 1050 * newly created inode's mapping 1051 * 1052 */ 1053 struct inode *new_inode(struct super_block *sb) 1054 { 1055 struct inode *inode; 1056 1057 inode = new_inode_pseudo(sb); 1058 if (inode) 1059 inode_sb_list_add(inode); 1060 return inode; 1061 } 1062 EXPORT_SYMBOL(new_inode); 1063 1064 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1065 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1066 { 1067 if (S_ISDIR(inode->i_mode)) { 1068 struct file_system_type *type = inode->i_sb->s_type; 1069 1070 /* Set new key only if filesystem hasn't already changed it */ 1071 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1072 /* 1073 * ensure nobody is actually holding i_mutex 1074 */ 1075 // mutex_destroy(&inode->i_mutex); 1076 init_rwsem(&inode->i_rwsem); 1077 lockdep_set_class(&inode->i_rwsem, 1078 &type->i_mutex_dir_key); 1079 } 1080 } 1081 } 1082 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1083 #endif 1084 1085 /** 1086 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1087 * @inode: new inode to unlock 1088 * 1089 * Called when the inode is fully initialised to clear the new state of the 1090 * inode and wake up anyone waiting for the inode to finish initialisation. 1091 */ 1092 void unlock_new_inode(struct inode *inode) 1093 { 1094 lockdep_annotate_inode_mutex_key(inode); 1095 spin_lock(&inode->i_lock); 1096 WARN_ON(!(inode->i_state & I_NEW)); 1097 inode->i_state &= ~I_NEW & ~I_CREATING; 1098 smp_mb(); 1099 wake_up_bit(&inode->i_state, __I_NEW); 1100 spin_unlock(&inode->i_lock); 1101 } 1102 EXPORT_SYMBOL(unlock_new_inode); 1103 1104 void discard_new_inode(struct inode *inode) 1105 { 1106 lockdep_annotate_inode_mutex_key(inode); 1107 spin_lock(&inode->i_lock); 1108 WARN_ON(!(inode->i_state & I_NEW)); 1109 inode->i_state &= ~I_NEW; 1110 smp_mb(); 1111 wake_up_bit(&inode->i_state, __I_NEW); 1112 spin_unlock(&inode->i_lock); 1113 iput(inode); 1114 } 1115 EXPORT_SYMBOL(discard_new_inode); 1116 1117 /** 1118 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1119 * 1120 * Lock any non-NULL argument. Passed objects must not be directories. 1121 * Zero, one or two objects may be locked by this function. 1122 * 1123 * @inode1: first inode to lock 1124 * @inode2: second inode to lock 1125 */ 1126 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1127 { 1128 if (inode1) 1129 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1130 if (inode2) 1131 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1132 if (inode1 > inode2) 1133 swap(inode1, inode2); 1134 if (inode1) 1135 inode_lock(inode1); 1136 if (inode2 && inode2 != inode1) 1137 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1138 } 1139 EXPORT_SYMBOL(lock_two_nondirectories); 1140 1141 /** 1142 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1143 * @inode1: first inode to unlock 1144 * @inode2: second inode to unlock 1145 */ 1146 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1147 { 1148 if (inode1) { 1149 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1150 inode_unlock(inode1); 1151 } 1152 if (inode2 && inode2 != inode1) { 1153 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1154 inode_unlock(inode2); 1155 } 1156 } 1157 EXPORT_SYMBOL(unlock_two_nondirectories); 1158 1159 /** 1160 * inode_insert5 - obtain an inode from a mounted file system 1161 * @inode: pre-allocated inode to use for insert to cache 1162 * @hashval: hash value (usually inode number) to get 1163 * @test: callback used for comparisons between inodes 1164 * @set: callback used to initialize a new struct inode 1165 * @data: opaque data pointer to pass to @test and @set 1166 * 1167 * Search for the inode specified by @hashval and @data in the inode cache, 1168 * and if present it is return it with an increased reference count. This is 1169 * a variant of iget5_locked() for callers that don't want to fail on memory 1170 * allocation of inode. 1171 * 1172 * If the inode is not in cache, insert the pre-allocated inode to cache and 1173 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1174 * to fill it in before unlocking it via unlock_new_inode(). 1175 * 1176 * Note both @test and @set are called with the inode_hash_lock held, so can't 1177 * sleep. 1178 */ 1179 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1180 int (*test)(struct inode *, void *), 1181 int (*set)(struct inode *, void *), void *data) 1182 { 1183 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1184 struct inode *old; 1185 1186 again: 1187 spin_lock(&inode_hash_lock); 1188 old = find_inode(inode->i_sb, head, test, data, true); 1189 if (unlikely(old)) { 1190 /* 1191 * Uhhuh, somebody else created the same inode under us. 1192 * Use the old inode instead of the preallocated one. 1193 */ 1194 spin_unlock(&inode_hash_lock); 1195 if (IS_ERR(old)) 1196 return NULL; 1197 wait_on_inode(old); 1198 if (unlikely(inode_unhashed(old))) { 1199 iput(old); 1200 goto again; 1201 } 1202 return old; 1203 } 1204 1205 if (set && unlikely(set(inode, data))) { 1206 inode = NULL; 1207 goto unlock; 1208 } 1209 1210 /* 1211 * Return the locked inode with I_NEW set, the 1212 * caller is responsible for filling in the contents 1213 */ 1214 spin_lock(&inode->i_lock); 1215 inode->i_state |= I_NEW; 1216 hlist_add_head_rcu(&inode->i_hash, head); 1217 spin_unlock(&inode->i_lock); 1218 1219 /* 1220 * Add inode to the sb list if it's not already. It has I_NEW at this 1221 * point, so it should be safe to test i_sb_list locklessly. 1222 */ 1223 if (list_empty(&inode->i_sb_list)) 1224 inode_sb_list_add(inode); 1225 unlock: 1226 spin_unlock(&inode_hash_lock); 1227 1228 return inode; 1229 } 1230 EXPORT_SYMBOL(inode_insert5); 1231 1232 /** 1233 * iget5_locked - obtain an inode from a mounted file system 1234 * @sb: super block of file system 1235 * @hashval: hash value (usually inode number) to get 1236 * @test: callback used for comparisons between inodes 1237 * @set: callback used to initialize a new struct inode 1238 * @data: opaque data pointer to pass to @test and @set 1239 * 1240 * Search for the inode specified by @hashval and @data in the inode cache, 1241 * and if present it is return it with an increased reference count. This is 1242 * a generalized version of iget_locked() for file systems where the inode 1243 * number is not sufficient for unique identification of an inode. 1244 * 1245 * If the inode is not in cache, allocate a new inode and return it locked, 1246 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1247 * before unlocking it via unlock_new_inode(). 1248 * 1249 * Note both @test and @set are called with the inode_hash_lock held, so can't 1250 * sleep. 1251 */ 1252 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1253 int (*test)(struct inode *, void *), 1254 int (*set)(struct inode *, void *), void *data) 1255 { 1256 struct inode *inode = ilookup5(sb, hashval, test, data); 1257 1258 if (!inode) { 1259 struct inode *new = alloc_inode(sb); 1260 1261 if (new) { 1262 inode = inode_insert5(new, hashval, test, set, data); 1263 if (unlikely(inode != new)) 1264 destroy_inode(new); 1265 } 1266 } 1267 return inode; 1268 } 1269 EXPORT_SYMBOL(iget5_locked); 1270 1271 /** 1272 * iget5_locked_rcu - obtain an inode from a mounted file system 1273 * @sb: super block of file system 1274 * @hashval: hash value (usually inode number) to get 1275 * @test: callback used for comparisons between inodes 1276 * @set: callback used to initialize a new struct inode 1277 * @data: opaque data pointer to pass to @test and @set 1278 * 1279 * This is equivalent to iget5_locked, except the @test callback must 1280 * tolerate the inode not being stable, including being mid-teardown. 1281 */ 1282 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1283 int (*test)(struct inode *, void *), 1284 int (*set)(struct inode *, void *), void *data) 1285 { 1286 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1287 struct inode *inode, *new; 1288 1289 again: 1290 inode = find_inode(sb, head, test, data, false); 1291 if (inode) { 1292 if (IS_ERR(inode)) 1293 return NULL; 1294 wait_on_inode(inode); 1295 if (unlikely(inode_unhashed(inode))) { 1296 iput(inode); 1297 goto again; 1298 } 1299 return inode; 1300 } 1301 1302 new = alloc_inode(sb); 1303 if (new) { 1304 inode = inode_insert5(new, hashval, test, set, data); 1305 if (unlikely(inode != new)) 1306 destroy_inode(new); 1307 } 1308 return inode; 1309 } 1310 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1311 1312 /** 1313 * iget_locked - obtain an inode from a mounted file system 1314 * @sb: super block of file system 1315 * @ino: inode number to get 1316 * 1317 * Search for the inode specified by @ino in the inode cache and if present 1318 * return it with an increased reference count. This is for file systems 1319 * where the inode number is sufficient for unique identification of an inode. 1320 * 1321 * If the inode is not in cache, allocate a new inode and return it locked, 1322 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1323 * before unlocking it via unlock_new_inode(). 1324 */ 1325 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1326 { 1327 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1328 struct inode *inode; 1329 again: 1330 inode = find_inode_fast(sb, head, ino, false); 1331 if (inode) { 1332 if (IS_ERR(inode)) 1333 return NULL; 1334 wait_on_inode(inode); 1335 if (unlikely(inode_unhashed(inode))) { 1336 iput(inode); 1337 goto again; 1338 } 1339 return inode; 1340 } 1341 1342 inode = alloc_inode(sb); 1343 if (inode) { 1344 struct inode *old; 1345 1346 spin_lock(&inode_hash_lock); 1347 /* We released the lock, so.. */ 1348 old = find_inode_fast(sb, head, ino, true); 1349 if (!old) { 1350 inode->i_ino = ino; 1351 spin_lock(&inode->i_lock); 1352 inode->i_state = I_NEW; 1353 hlist_add_head_rcu(&inode->i_hash, head); 1354 spin_unlock(&inode->i_lock); 1355 inode_sb_list_add(inode); 1356 spin_unlock(&inode_hash_lock); 1357 1358 /* Return the locked inode with I_NEW set, the 1359 * caller is responsible for filling in the contents 1360 */ 1361 return inode; 1362 } 1363 1364 /* 1365 * Uhhuh, somebody else created the same inode under 1366 * us. Use the old inode instead of the one we just 1367 * allocated. 1368 */ 1369 spin_unlock(&inode_hash_lock); 1370 destroy_inode(inode); 1371 if (IS_ERR(old)) 1372 return NULL; 1373 inode = old; 1374 wait_on_inode(inode); 1375 if (unlikely(inode_unhashed(inode))) { 1376 iput(inode); 1377 goto again; 1378 } 1379 } 1380 return inode; 1381 } 1382 EXPORT_SYMBOL(iget_locked); 1383 1384 /* 1385 * search the inode cache for a matching inode number. 1386 * If we find one, then the inode number we are trying to 1387 * allocate is not unique and so we should not use it. 1388 * 1389 * Returns 1 if the inode number is unique, 0 if it is not. 1390 */ 1391 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1392 { 1393 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1394 struct inode *inode; 1395 1396 hlist_for_each_entry_rcu(inode, b, i_hash) { 1397 if (inode->i_ino == ino && inode->i_sb == sb) 1398 return 0; 1399 } 1400 return 1; 1401 } 1402 1403 /** 1404 * iunique - get a unique inode number 1405 * @sb: superblock 1406 * @max_reserved: highest reserved inode number 1407 * 1408 * Obtain an inode number that is unique on the system for a given 1409 * superblock. This is used by file systems that have no natural 1410 * permanent inode numbering system. An inode number is returned that 1411 * is higher than the reserved limit but unique. 1412 * 1413 * BUGS: 1414 * With a large number of inodes live on the file system this function 1415 * currently becomes quite slow. 1416 */ 1417 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1418 { 1419 /* 1420 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1421 * error if st_ino won't fit in target struct field. Use 32bit counter 1422 * here to attempt to avoid that. 1423 */ 1424 static DEFINE_SPINLOCK(iunique_lock); 1425 static unsigned int counter; 1426 ino_t res; 1427 1428 rcu_read_lock(); 1429 spin_lock(&iunique_lock); 1430 do { 1431 if (counter <= max_reserved) 1432 counter = max_reserved + 1; 1433 res = counter++; 1434 } while (!test_inode_iunique(sb, res)); 1435 spin_unlock(&iunique_lock); 1436 rcu_read_unlock(); 1437 1438 return res; 1439 } 1440 EXPORT_SYMBOL(iunique); 1441 1442 struct inode *igrab(struct inode *inode) 1443 { 1444 spin_lock(&inode->i_lock); 1445 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1446 __iget(inode); 1447 spin_unlock(&inode->i_lock); 1448 } else { 1449 spin_unlock(&inode->i_lock); 1450 /* 1451 * Handle the case where s_op->clear_inode is not been 1452 * called yet, and somebody is calling igrab 1453 * while the inode is getting freed. 1454 */ 1455 inode = NULL; 1456 } 1457 return inode; 1458 } 1459 EXPORT_SYMBOL(igrab); 1460 1461 /** 1462 * ilookup5_nowait - search for an inode in the inode cache 1463 * @sb: super block of file system to search 1464 * @hashval: hash value (usually inode number) to search for 1465 * @test: callback used for comparisons between inodes 1466 * @data: opaque data pointer to pass to @test 1467 * 1468 * Search for the inode specified by @hashval and @data in the inode cache. 1469 * If the inode is in the cache, the inode is returned with an incremented 1470 * reference count. 1471 * 1472 * Note: I_NEW is not waited upon so you have to be very careful what you do 1473 * with the returned inode. You probably should be using ilookup5() instead. 1474 * 1475 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1476 */ 1477 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1478 int (*test)(struct inode *, void *), void *data) 1479 { 1480 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1481 struct inode *inode; 1482 1483 spin_lock(&inode_hash_lock); 1484 inode = find_inode(sb, head, test, data, true); 1485 spin_unlock(&inode_hash_lock); 1486 1487 return IS_ERR(inode) ? NULL : inode; 1488 } 1489 EXPORT_SYMBOL(ilookup5_nowait); 1490 1491 /** 1492 * ilookup5 - search for an inode in the inode cache 1493 * @sb: super block of file system to search 1494 * @hashval: hash value (usually inode number) to search for 1495 * @test: callback used for comparisons between inodes 1496 * @data: opaque data pointer to pass to @test 1497 * 1498 * Search for the inode specified by @hashval and @data in the inode cache, 1499 * and if the inode is in the cache, return the inode with an incremented 1500 * reference count. Waits on I_NEW before returning the inode. 1501 * returned with an incremented reference count. 1502 * 1503 * This is a generalized version of ilookup() for file systems where the 1504 * inode number is not sufficient for unique identification of an inode. 1505 * 1506 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1507 */ 1508 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1509 int (*test)(struct inode *, void *), void *data) 1510 { 1511 struct inode *inode; 1512 again: 1513 inode = ilookup5_nowait(sb, hashval, test, data); 1514 if (inode) { 1515 wait_on_inode(inode); 1516 if (unlikely(inode_unhashed(inode))) { 1517 iput(inode); 1518 goto again; 1519 } 1520 } 1521 return inode; 1522 } 1523 EXPORT_SYMBOL(ilookup5); 1524 1525 /** 1526 * ilookup - search for an inode in the inode cache 1527 * @sb: super block of file system to search 1528 * @ino: inode number to search for 1529 * 1530 * Search for the inode @ino in the inode cache, and if the inode is in the 1531 * cache, the inode is returned with an incremented reference count. 1532 */ 1533 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1534 { 1535 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1536 struct inode *inode; 1537 again: 1538 spin_lock(&inode_hash_lock); 1539 inode = find_inode_fast(sb, head, ino, true); 1540 spin_unlock(&inode_hash_lock); 1541 1542 if (inode) { 1543 if (IS_ERR(inode)) 1544 return NULL; 1545 wait_on_inode(inode); 1546 if (unlikely(inode_unhashed(inode))) { 1547 iput(inode); 1548 goto again; 1549 } 1550 } 1551 return inode; 1552 } 1553 EXPORT_SYMBOL(ilookup); 1554 1555 /** 1556 * find_inode_nowait - find an inode in the inode cache 1557 * @sb: super block of file system to search 1558 * @hashval: hash value (usually inode number) to search for 1559 * @match: callback used for comparisons between inodes 1560 * @data: opaque data pointer to pass to @match 1561 * 1562 * Search for the inode specified by @hashval and @data in the inode 1563 * cache, where the helper function @match will return 0 if the inode 1564 * does not match, 1 if the inode does match, and -1 if the search 1565 * should be stopped. The @match function must be responsible for 1566 * taking the i_lock spin_lock and checking i_state for an inode being 1567 * freed or being initialized, and incrementing the reference count 1568 * before returning 1. It also must not sleep, since it is called with 1569 * the inode_hash_lock spinlock held. 1570 * 1571 * This is a even more generalized version of ilookup5() when the 1572 * function must never block --- find_inode() can block in 1573 * __wait_on_freeing_inode() --- or when the caller can not increment 1574 * the reference count because the resulting iput() might cause an 1575 * inode eviction. The tradeoff is that the @match funtion must be 1576 * very carefully implemented. 1577 */ 1578 struct inode *find_inode_nowait(struct super_block *sb, 1579 unsigned long hashval, 1580 int (*match)(struct inode *, unsigned long, 1581 void *), 1582 void *data) 1583 { 1584 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1585 struct inode *inode, *ret_inode = NULL; 1586 int mval; 1587 1588 spin_lock(&inode_hash_lock); 1589 hlist_for_each_entry(inode, head, i_hash) { 1590 if (inode->i_sb != sb) 1591 continue; 1592 mval = match(inode, hashval, data); 1593 if (mval == 0) 1594 continue; 1595 if (mval == 1) 1596 ret_inode = inode; 1597 goto out; 1598 } 1599 out: 1600 spin_unlock(&inode_hash_lock); 1601 return ret_inode; 1602 } 1603 EXPORT_SYMBOL(find_inode_nowait); 1604 1605 /** 1606 * find_inode_rcu - find an inode in the inode cache 1607 * @sb: Super block of file system to search 1608 * @hashval: Key to hash 1609 * @test: Function to test match on an inode 1610 * @data: Data for test function 1611 * 1612 * Search for the inode specified by @hashval and @data in the inode cache, 1613 * where the helper function @test will return 0 if the inode does not match 1614 * and 1 if it does. The @test function must be responsible for taking the 1615 * i_lock spin_lock and checking i_state for an inode being freed or being 1616 * initialized. 1617 * 1618 * If successful, this will return the inode for which the @test function 1619 * returned 1 and NULL otherwise. 1620 * 1621 * The @test function is not permitted to take a ref on any inode presented. 1622 * It is also not permitted to sleep. 1623 * 1624 * The caller must hold the RCU read lock. 1625 */ 1626 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1627 int (*test)(struct inode *, void *), void *data) 1628 { 1629 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1630 struct inode *inode; 1631 1632 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1633 "suspicious find_inode_rcu() usage"); 1634 1635 hlist_for_each_entry_rcu(inode, head, i_hash) { 1636 if (inode->i_sb == sb && 1637 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1638 test(inode, data)) 1639 return inode; 1640 } 1641 return NULL; 1642 } 1643 EXPORT_SYMBOL(find_inode_rcu); 1644 1645 /** 1646 * find_inode_by_ino_rcu - Find an inode in the inode cache 1647 * @sb: Super block of file system to search 1648 * @ino: The inode number to match 1649 * 1650 * Search for the inode specified by @hashval and @data in the inode cache, 1651 * where the helper function @test will return 0 if the inode does not match 1652 * and 1 if it does. The @test function must be responsible for taking the 1653 * i_lock spin_lock and checking i_state for an inode being freed or being 1654 * initialized. 1655 * 1656 * If successful, this will return the inode for which the @test function 1657 * returned 1 and NULL otherwise. 1658 * 1659 * The @test function is not permitted to take a ref on any inode presented. 1660 * It is also not permitted to sleep. 1661 * 1662 * The caller must hold the RCU read lock. 1663 */ 1664 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1665 unsigned long ino) 1666 { 1667 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1668 struct inode *inode; 1669 1670 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1671 "suspicious find_inode_by_ino_rcu() usage"); 1672 1673 hlist_for_each_entry_rcu(inode, head, i_hash) { 1674 if (inode->i_ino == ino && 1675 inode->i_sb == sb && 1676 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1677 return inode; 1678 } 1679 return NULL; 1680 } 1681 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1682 1683 int insert_inode_locked(struct inode *inode) 1684 { 1685 struct super_block *sb = inode->i_sb; 1686 ino_t ino = inode->i_ino; 1687 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1688 1689 while (1) { 1690 struct inode *old = NULL; 1691 spin_lock(&inode_hash_lock); 1692 hlist_for_each_entry(old, head, i_hash) { 1693 if (old->i_ino != ino) 1694 continue; 1695 if (old->i_sb != sb) 1696 continue; 1697 spin_lock(&old->i_lock); 1698 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1699 spin_unlock(&old->i_lock); 1700 continue; 1701 } 1702 break; 1703 } 1704 if (likely(!old)) { 1705 spin_lock(&inode->i_lock); 1706 inode->i_state |= I_NEW | I_CREATING; 1707 hlist_add_head_rcu(&inode->i_hash, head); 1708 spin_unlock(&inode->i_lock); 1709 spin_unlock(&inode_hash_lock); 1710 return 0; 1711 } 1712 if (unlikely(old->i_state & I_CREATING)) { 1713 spin_unlock(&old->i_lock); 1714 spin_unlock(&inode_hash_lock); 1715 return -EBUSY; 1716 } 1717 __iget(old); 1718 spin_unlock(&old->i_lock); 1719 spin_unlock(&inode_hash_lock); 1720 wait_on_inode(old); 1721 if (unlikely(!inode_unhashed(old))) { 1722 iput(old); 1723 return -EBUSY; 1724 } 1725 iput(old); 1726 } 1727 } 1728 EXPORT_SYMBOL(insert_inode_locked); 1729 1730 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1731 int (*test)(struct inode *, void *), void *data) 1732 { 1733 struct inode *old; 1734 1735 inode->i_state |= I_CREATING; 1736 old = inode_insert5(inode, hashval, test, NULL, data); 1737 1738 if (old != inode) { 1739 iput(old); 1740 return -EBUSY; 1741 } 1742 return 0; 1743 } 1744 EXPORT_SYMBOL(insert_inode_locked4); 1745 1746 1747 int generic_delete_inode(struct inode *inode) 1748 { 1749 return 1; 1750 } 1751 EXPORT_SYMBOL(generic_delete_inode); 1752 1753 /* 1754 * Called when we're dropping the last reference 1755 * to an inode. 1756 * 1757 * Call the FS "drop_inode()" function, defaulting to 1758 * the legacy UNIX filesystem behaviour. If it tells 1759 * us to evict inode, do so. Otherwise, retain inode 1760 * in cache if fs is alive, sync and evict if fs is 1761 * shutting down. 1762 */ 1763 static void iput_final(struct inode *inode) 1764 { 1765 struct super_block *sb = inode->i_sb; 1766 const struct super_operations *op = inode->i_sb->s_op; 1767 unsigned long state; 1768 int drop; 1769 1770 WARN_ON(inode->i_state & I_NEW); 1771 1772 if (op->drop_inode) 1773 drop = op->drop_inode(inode); 1774 else 1775 drop = generic_drop_inode(inode); 1776 1777 if (!drop && 1778 !(inode->i_state & I_DONTCACHE) && 1779 (sb->s_flags & SB_ACTIVE)) { 1780 __inode_add_lru(inode, true); 1781 spin_unlock(&inode->i_lock); 1782 return; 1783 } 1784 1785 state = inode->i_state; 1786 if (!drop) { 1787 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1788 spin_unlock(&inode->i_lock); 1789 1790 write_inode_now(inode, 1); 1791 1792 spin_lock(&inode->i_lock); 1793 state = inode->i_state; 1794 WARN_ON(state & I_NEW); 1795 state &= ~I_WILL_FREE; 1796 } 1797 1798 WRITE_ONCE(inode->i_state, state | I_FREEING); 1799 if (!list_empty(&inode->i_lru)) 1800 inode_lru_list_del(inode); 1801 spin_unlock(&inode->i_lock); 1802 1803 evict(inode); 1804 } 1805 1806 /** 1807 * iput - put an inode 1808 * @inode: inode to put 1809 * 1810 * Puts an inode, dropping its usage count. If the inode use count hits 1811 * zero, the inode is then freed and may also be destroyed. 1812 * 1813 * Consequently, iput() can sleep. 1814 */ 1815 void iput(struct inode *inode) 1816 { 1817 if (!inode) 1818 return; 1819 BUG_ON(inode->i_state & I_CLEAR); 1820 retry: 1821 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1822 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1823 atomic_inc(&inode->i_count); 1824 spin_unlock(&inode->i_lock); 1825 trace_writeback_lazytime_iput(inode); 1826 mark_inode_dirty_sync(inode); 1827 goto retry; 1828 } 1829 iput_final(inode); 1830 } 1831 } 1832 EXPORT_SYMBOL(iput); 1833 1834 #ifdef CONFIG_BLOCK 1835 /** 1836 * bmap - find a block number in a file 1837 * @inode: inode owning the block number being requested 1838 * @block: pointer containing the block to find 1839 * 1840 * Replaces the value in ``*block`` with the block number on the device holding 1841 * corresponding to the requested block number in the file. 1842 * That is, asked for block 4 of inode 1 the function will replace the 1843 * 4 in ``*block``, with disk block relative to the disk start that holds that 1844 * block of the file. 1845 * 1846 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1847 * hole, returns 0 and ``*block`` is also set to 0. 1848 */ 1849 int bmap(struct inode *inode, sector_t *block) 1850 { 1851 if (!inode->i_mapping->a_ops->bmap) 1852 return -EINVAL; 1853 1854 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1855 return 0; 1856 } 1857 EXPORT_SYMBOL(bmap); 1858 #endif 1859 1860 /* 1861 * With relative atime, only update atime if the previous atime is 1862 * earlier than or equal to either the ctime or mtime, 1863 * or if at least a day has passed since the last atime update. 1864 */ 1865 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1866 struct timespec64 now) 1867 { 1868 struct timespec64 atime, mtime, ctime; 1869 1870 if (!(mnt->mnt_flags & MNT_RELATIME)) 1871 return true; 1872 /* 1873 * Is mtime younger than or equal to atime? If yes, update atime: 1874 */ 1875 atime = inode_get_atime(inode); 1876 mtime = inode_get_mtime(inode); 1877 if (timespec64_compare(&mtime, &atime) >= 0) 1878 return true; 1879 /* 1880 * Is ctime younger than or equal to atime? If yes, update atime: 1881 */ 1882 ctime = inode_get_ctime(inode); 1883 if (timespec64_compare(&ctime, &atime) >= 0) 1884 return true; 1885 1886 /* 1887 * Is the previous atime value older than a day? If yes, 1888 * update atime: 1889 */ 1890 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1891 return true; 1892 /* 1893 * Good, we can skip the atime update: 1894 */ 1895 return false; 1896 } 1897 1898 /** 1899 * inode_update_timestamps - update the timestamps on the inode 1900 * @inode: inode to be updated 1901 * @flags: S_* flags that needed to be updated 1902 * 1903 * The update_time function is called when an inode's timestamps need to be 1904 * updated for a read or write operation. This function handles updating the 1905 * actual timestamps. It's up to the caller to ensure that the inode is marked 1906 * dirty appropriately. 1907 * 1908 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1909 * attempt to update all three of them. S_ATIME updates can be handled 1910 * independently of the rest. 1911 * 1912 * Returns a set of S_* flags indicating which values changed. 1913 */ 1914 int inode_update_timestamps(struct inode *inode, int flags) 1915 { 1916 int updated = 0; 1917 struct timespec64 now; 1918 1919 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1920 struct timespec64 ctime = inode_get_ctime(inode); 1921 struct timespec64 mtime = inode_get_mtime(inode); 1922 1923 now = inode_set_ctime_current(inode); 1924 if (!timespec64_equal(&now, &ctime)) 1925 updated |= S_CTIME; 1926 if (!timespec64_equal(&now, &mtime)) { 1927 inode_set_mtime_to_ts(inode, now); 1928 updated |= S_MTIME; 1929 } 1930 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1931 updated |= S_VERSION; 1932 } else { 1933 now = current_time(inode); 1934 } 1935 1936 if (flags & S_ATIME) { 1937 struct timespec64 atime = inode_get_atime(inode); 1938 1939 if (!timespec64_equal(&now, &atime)) { 1940 inode_set_atime_to_ts(inode, now); 1941 updated |= S_ATIME; 1942 } 1943 } 1944 return updated; 1945 } 1946 EXPORT_SYMBOL(inode_update_timestamps); 1947 1948 /** 1949 * generic_update_time - update the timestamps on the inode 1950 * @inode: inode to be updated 1951 * @flags: S_* flags that needed to be updated 1952 * 1953 * The update_time function is called when an inode's timestamps need to be 1954 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1955 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1956 * updates can be handled done independently of the rest. 1957 * 1958 * Returns a S_* mask indicating which fields were updated. 1959 */ 1960 int generic_update_time(struct inode *inode, int flags) 1961 { 1962 int updated = inode_update_timestamps(inode, flags); 1963 int dirty_flags = 0; 1964 1965 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1966 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1967 if (updated & S_VERSION) 1968 dirty_flags |= I_DIRTY_SYNC; 1969 __mark_inode_dirty(inode, dirty_flags); 1970 return updated; 1971 } 1972 EXPORT_SYMBOL(generic_update_time); 1973 1974 /* 1975 * This does the actual work of updating an inodes time or version. Must have 1976 * had called mnt_want_write() before calling this. 1977 */ 1978 int inode_update_time(struct inode *inode, int flags) 1979 { 1980 if (inode->i_op->update_time) 1981 return inode->i_op->update_time(inode, flags); 1982 generic_update_time(inode, flags); 1983 return 0; 1984 } 1985 EXPORT_SYMBOL(inode_update_time); 1986 1987 /** 1988 * atime_needs_update - update the access time 1989 * @path: the &struct path to update 1990 * @inode: inode to update 1991 * 1992 * Update the accessed time on an inode and mark it for writeback. 1993 * This function automatically handles read only file systems and media, 1994 * as well as the "noatime" flag and inode specific "noatime" markers. 1995 */ 1996 bool atime_needs_update(const struct path *path, struct inode *inode) 1997 { 1998 struct vfsmount *mnt = path->mnt; 1999 struct timespec64 now, atime; 2000 2001 if (inode->i_flags & S_NOATIME) 2002 return false; 2003 2004 /* Atime updates will likely cause i_uid and i_gid to be written 2005 * back improprely if their true value is unknown to the vfs. 2006 */ 2007 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2008 return false; 2009 2010 if (IS_NOATIME(inode)) 2011 return false; 2012 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2013 return false; 2014 2015 if (mnt->mnt_flags & MNT_NOATIME) 2016 return false; 2017 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2018 return false; 2019 2020 now = current_time(inode); 2021 2022 if (!relatime_need_update(mnt, inode, now)) 2023 return false; 2024 2025 atime = inode_get_atime(inode); 2026 if (timespec64_equal(&atime, &now)) 2027 return false; 2028 2029 return true; 2030 } 2031 2032 void touch_atime(const struct path *path) 2033 { 2034 struct vfsmount *mnt = path->mnt; 2035 struct inode *inode = d_inode(path->dentry); 2036 2037 if (!atime_needs_update(path, inode)) 2038 return; 2039 2040 if (!sb_start_write_trylock(inode->i_sb)) 2041 return; 2042 2043 if (mnt_get_write_access(mnt) != 0) 2044 goto skip_update; 2045 /* 2046 * File systems can error out when updating inodes if they need to 2047 * allocate new space to modify an inode (such is the case for 2048 * Btrfs), but since we touch atime while walking down the path we 2049 * really don't care if we failed to update the atime of the file, 2050 * so just ignore the return value. 2051 * We may also fail on filesystems that have the ability to make parts 2052 * of the fs read only, e.g. subvolumes in Btrfs. 2053 */ 2054 inode_update_time(inode, S_ATIME); 2055 mnt_put_write_access(mnt); 2056 skip_update: 2057 sb_end_write(inode->i_sb); 2058 } 2059 EXPORT_SYMBOL(touch_atime); 2060 2061 /* 2062 * Return mask of changes for notify_change() that need to be done as a 2063 * response to write or truncate. Return 0 if nothing has to be changed. 2064 * Negative value on error (change should be denied). 2065 */ 2066 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2067 struct dentry *dentry) 2068 { 2069 struct inode *inode = d_inode(dentry); 2070 int mask = 0; 2071 int ret; 2072 2073 if (IS_NOSEC(inode)) 2074 return 0; 2075 2076 mask = setattr_should_drop_suidgid(idmap, inode); 2077 ret = security_inode_need_killpriv(dentry); 2078 if (ret < 0) 2079 return ret; 2080 if (ret) 2081 mask |= ATTR_KILL_PRIV; 2082 return mask; 2083 } 2084 2085 static int __remove_privs(struct mnt_idmap *idmap, 2086 struct dentry *dentry, int kill) 2087 { 2088 struct iattr newattrs; 2089 2090 newattrs.ia_valid = ATTR_FORCE | kill; 2091 /* 2092 * Note we call this on write, so notify_change will not 2093 * encounter any conflicting delegations: 2094 */ 2095 return notify_change(idmap, dentry, &newattrs, NULL); 2096 } 2097 2098 int file_remove_privs_flags(struct file *file, unsigned int flags) 2099 { 2100 struct dentry *dentry = file_dentry(file); 2101 struct inode *inode = file_inode(file); 2102 int error = 0; 2103 int kill; 2104 2105 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2106 return 0; 2107 2108 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2109 if (kill < 0) 2110 return kill; 2111 2112 if (kill) { 2113 if (flags & IOCB_NOWAIT) 2114 return -EAGAIN; 2115 2116 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2117 } 2118 2119 if (!error) 2120 inode_has_no_xattr(inode); 2121 return error; 2122 } 2123 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2124 2125 /** 2126 * file_remove_privs - remove special file privileges (suid, capabilities) 2127 * @file: file to remove privileges from 2128 * 2129 * When file is modified by a write or truncation ensure that special 2130 * file privileges are removed. 2131 * 2132 * Return: 0 on success, negative errno on failure. 2133 */ 2134 int file_remove_privs(struct file *file) 2135 { 2136 return file_remove_privs_flags(file, 0); 2137 } 2138 EXPORT_SYMBOL(file_remove_privs); 2139 2140 static int inode_needs_update_time(struct inode *inode) 2141 { 2142 int sync_it = 0; 2143 struct timespec64 now = current_time(inode); 2144 struct timespec64 ts; 2145 2146 /* First try to exhaust all avenues to not sync */ 2147 if (IS_NOCMTIME(inode)) 2148 return 0; 2149 2150 ts = inode_get_mtime(inode); 2151 if (!timespec64_equal(&ts, &now)) 2152 sync_it = S_MTIME; 2153 2154 ts = inode_get_ctime(inode); 2155 if (!timespec64_equal(&ts, &now)) 2156 sync_it |= S_CTIME; 2157 2158 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2159 sync_it |= S_VERSION; 2160 2161 return sync_it; 2162 } 2163 2164 static int __file_update_time(struct file *file, int sync_mode) 2165 { 2166 int ret = 0; 2167 struct inode *inode = file_inode(file); 2168 2169 /* try to update time settings */ 2170 if (!mnt_get_write_access_file(file)) { 2171 ret = inode_update_time(inode, sync_mode); 2172 mnt_put_write_access_file(file); 2173 } 2174 2175 return ret; 2176 } 2177 2178 /** 2179 * file_update_time - update mtime and ctime time 2180 * @file: file accessed 2181 * 2182 * Update the mtime and ctime members of an inode and mark the inode for 2183 * writeback. Note that this function is meant exclusively for usage in 2184 * the file write path of filesystems, and filesystems may choose to 2185 * explicitly ignore updates via this function with the _NOCMTIME inode 2186 * flag, e.g. for network filesystem where these imestamps are handled 2187 * by the server. This can return an error for file systems who need to 2188 * allocate space in order to update an inode. 2189 * 2190 * Return: 0 on success, negative errno on failure. 2191 */ 2192 int file_update_time(struct file *file) 2193 { 2194 int ret; 2195 struct inode *inode = file_inode(file); 2196 2197 ret = inode_needs_update_time(inode); 2198 if (ret <= 0) 2199 return ret; 2200 2201 return __file_update_time(file, ret); 2202 } 2203 EXPORT_SYMBOL(file_update_time); 2204 2205 /** 2206 * file_modified_flags - handle mandated vfs changes when modifying a file 2207 * @file: file that was modified 2208 * @flags: kiocb flags 2209 * 2210 * When file has been modified ensure that special 2211 * file privileges are removed and time settings are updated. 2212 * 2213 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2214 * time settings will not be updated. It will return -EAGAIN. 2215 * 2216 * Context: Caller must hold the file's inode lock. 2217 * 2218 * Return: 0 on success, negative errno on failure. 2219 */ 2220 static int file_modified_flags(struct file *file, int flags) 2221 { 2222 int ret; 2223 struct inode *inode = file_inode(file); 2224 2225 /* 2226 * Clear the security bits if the process is not being run by root. 2227 * This keeps people from modifying setuid and setgid binaries. 2228 */ 2229 ret = file_remove_privs_flags(file, flags); 2230 if (ret) 2231 return ret; 2232 2233 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2234 return 0; 2235 2236 ret = inode_needs_update_time(inode); 2237 if (ret <= 0) 2238 return ret; 2239 if (flags & IOCB_NOWAIT) 2240 return -EAGAIN; 2241 2242 return __file_update_time(file, ret); 2243 } 2244 2245 /** 2246 * file_modified - handle mandated vfs changes when modifying a file 2247 * @file: file that was modified 2248 * 2249 * When file has been modified ensure that special 2250 * file privileges are removed and time settings are updated. 2251 * 2252 * Context: Caller must hold the file's inode lock. 2253 * 2254 * Return: 0 on success, negative errno on failure. 2255 */ 2256 int file_modified(struct file *file) 2257 { 2258 return file_modified_flags(file, 0); 2259 } 2260 EXPORT_SYMBOL(file_modified); 2261 2262 /** 2263 * kiocb_modified - handle mandated vfs changes when modifying a file 2264 * @iocb: iocb that was modified 2265 * 2266 * When file has been modified ensure that special 2267 * file privileges are removed and time settings are updated. 2268 * 2269 * Context: Caller must hold the file's inode lock. 2270 * 2271 * Return: 0 on success, negative errno on failure. 2272 */ 2273 int kiocb_modified(struct kiocb *iocb) 2274 { 2275 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2276 } 2277 EXPORT_SYMBOL_GPL(kiocb_modified); 2278 2279 int inode_needs_sync(struct inode *inode) 2280 { 2281 if (IS_SYNC(inode)) 2282 return 1; 2283 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2284 return 1; 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(inode_needs_sync); 2288 2289 /* 2290 * If we try to find an inode in the inode hash while it is being 2291 * deleted, we have to wait until the filesystem completes its 2292 * deletion before reporting that it isn't found. This function waits 2293 * until the deletion _might_ have completed. Callers are responsible 2294 * to recheck inode state. 2295 * 2296 * It doesn't matter if I_NEW is not set initially, a call to 2297 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2298 * will DTRT. 2299 */ 2300 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2301 { 2302 wait_queue_head_t *wq; 2303 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2304 2305 /* 2306 * Handle racing against evict(), see that routine for more details. 2307 */ 2308 if (unlikely(inode_unhashed(inode))) { 2309 WARN_ON(is_inode_hash_locked); 2310 spin_unlock(&inode->i_lock); 2311 return; 2312 } 2313 2314 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2315 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2316 spin_unlock(&inode->i_lock); 2317 rcu_read_unlock(); 2318 if (is_inode_hash_locked) 2319 spin_unlock(&inode_hash_lock); 2320 schedule(); 2321 finish_wait(wq, &wait.wq_entry); 2322 if (is_inode_hash_locked) 2323 spin_lock(&inode_hash_lock); 2324 rcu_read_lock(); 2325 } 2326 2327 static __initdata unsigned long ihash_entries; 2328 static int __init set_ihash_entries(char *str) 2329 { 2330 if (!str) 2331 return 0; 2332 ihash_entries = simple_strtoul(str, &str, 0); 2333 return 1; 2334 } 2335 __setup("ihash_entries=", set_ihash_entries); 2336 2337 /* 2338 * Initialize the waitqueues and inode hash table. 2339 */ 2340 void __init inode_init_early(void) 2341 { 2342 /* If hashes are distributed across NUMA nodes, defer 2343 * hash allocation until vmalloc space is available. 2344 */ 2345 if (hashdist) 2346 return; 2347 2348 inode_hashtable = 2349 alloc_large_system_hash("Inode-cache", 2350 sizeof(struct hlist_head), 2351 ihash_entries, 2352 14, 2353 HASH_EARLY | HASH_ZERO, 2354 &i_hash_shift, 2355 &i_hash_mask, 2356 0, 2357 0); 2358 } 2359 2360 void __init inode_init(void) 2361 { 2362 /* inode slab cache */ 2363 inode_cachep = kmem_cache_create("inode_cache", 2364 sizeof(struct inode), 2365 0, 2366 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2367 SLAB_ACCOUNT), 2368 init_once); 2369 2370 /* Hash may have been set up in inode_init_early */ 2371 if (!hashdist) 2372 return; 2373 2374 inode_hashtable = 2375 alloc_large_system_hash("Inode-cache", 2376 sizeof(struct hlist_head), 2377 ihash_entries, 2378 14, 2379 HASH_ZERO, 2380 &i_hash_shift, 2381 &i_hash_mask, 2382 0, 2383 0); 2384 } 2385 2386 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2387 { 2388 inode->i_mode = mode; 2389 if (S_ISCHR(mode)) { 2390 inode->i_fop = &def_chr_fops; 2391 inode->i_rdev = rdev; 2392 } else if (S_ISBLK(mode)) { 2393 if (IS_ENABLED(CONFIG_BLOCK)) 2394 inode->i_fop = &def_blk_fops; 2395 inode->i_rdev = rdev; 2396 } else if (S_ISFIFO(mode)) 2397 inode->i_fop = &pipefifo_fops; 2398 else if (S_ISSOCK(mode)) 2399 ; /* leave it no_open_fops */ 2400 else 2401 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2402 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2403 inode->i_ino); 2404 } 2405 EXPORT_SYMBOL(init_special_inode); 2406 2407 /** 2408 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2409 * @idmap: idmap of the mount the inode was created from 2410 * @inode: New inode 2411 * @dir: Directory inode 2412 * @mode: mode of the new inode 2413 * 2414 * If the inode has been created through an idmapped mount the idmap of 2415 * the vfsmount must be passed through @idmap. This function will then take 2416 * care to map the inode according to @idmap before checking permissions 2417 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2418 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2419 */ 2420 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2421 const struct inode *dir, umode_t mode) 2422 { 2423 inode_fsuid_set(inode, idmap); 2424 if (dir && dir->i_mode & S_ISGID) { 2425 inode->i_gid = dir->i_gid; 2426 2427 /* Directories are special, and always inherit S_ISGID */ 2428 if (S_ISDIR(mode)) 2429 mode |= S_ISGID; 2430 } else 2431 inode_fsgid_set(inode, idmap); 2432 inode->i_mode = mode; 2433 } 2434 EXPORT_SYMBOL(inode_init_owner); 2435 2436 /** 2437 * inode_owner_or_capable - check current task permissions to inode 2438 * @idmap: idmap of the mount the inode was found from 2439 * @inode: inode being checked 2440 * 2441 * Return true if current either has CAP_FOWNER in a namespace with the 2442 * inode owner uid mapped, or owns the file. 2443 * 2444 * If the inode has been found through an idmapped mount the idmap of 2445 * the vfsmount must be passed through @idmap. This function will then take 2446 * care to map the inode according to @idmap before checking permissions. 2447 * On non-idmapped mounts or if permission checking is to be performed on the 2448 * raw inode simply pass @nop_mnt_idmap. 2449 */ 2450 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2451 const struct inode *inode) 2452 { 2453 vfsuid_t vfsuid; 2454 struct user_namespace *ns; 2455 2456 vfsuid = i_uid_into_vfsuid(idmap, inode); 2457 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2458 return true; 2459 2460 ns = current_user_ns(); 2461 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2462 return true; 2463 return false; 2464 } 2465 EXPORT_SYMBOL(inode_owner_or_capable); 2466 2467 /* 2468 * Direct i/o helper functions 2469 */ 2470 static void __inode_dio_wait(struct inode *inode) 2471 { 2472 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2473 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2474 2475 do { 2476 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2477 if (atomic_read(&inode->i_dio_count)) 2478 schedule(); 2479 } while (atomic_read(&inode->i_dio_count)); 2480 finish_wait(wq, &q.wq_entry); 2481 } 2482 2483 /** 2484 * inode_dio_wait - wait for outstanding DIO requests to finish 2485 * @inode: inode to wait for 2486 * 2487 * Waits for all pending direct I/O requests to finish so that we can 2488 * proceed with a truncate or equivalent operation. 2489 * 2490 * Must be called under a lock that serializes taking new references 2491 * to i_dio_count, usually by inode->i_mutex. 2492 */ 2493 void inode_dio_wait(struct inode *inode) 2494 { 2495 if (atomic_read(&inode->i_dio_count)) 2496 __inode_dio_wait(inode); 2497 } 2498 EXPORT_SYMBOL(inode_dio_wait); 2499 2500 /* 2501 * inode_set_flags - atomically set some inode flags 2502 * 2503 * Note: the caller should be holding i_mutex, or else be sure that 2504 * they have exclusive access to the inode structure (i.e., while the 2505 * inode is being instantiated). The reason for the cmpxchg() loop 2506 * --- which wouldn't be necessary if all code paths which modify 2507 * i_flags actually followed this rule, is that there is at least one 2508 * code path which doesn't today so we use cmpxchg() out of an abundance 2509 * of caution. 2510 * 2511 * In the long run, i_mutex is overkill, and we should probably look 2512 * at using the i_lock spinlock to protect i_flags, and then make sure 2513 * it is so documented in include/linux/fs.h and that all code follows 2514 * the locking convention!! 2515 */ 2516 void inode_set_flags(struct inode *inode, unsigned int flags, 2517 unsigned int mask) 2518 { 2519 WARN_ON_ONCE(flags & ~mask); 2520 set_mask_bits(&inode->i_flags, mask, flags); 2521 } 2522 EXPORT_SYMBOL(inode_set_flags); 2523 2524 void inode_nohighmem(struct inode *inode) 2525 { 2526 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2527 } 2528 EXPORT_SYMBOL(inode_nohighmem); 2529 2530 /** 2531 * timestamp_truncate - Truncate timespec to a granularity 2532 * @t: Timespec 2533 * @inode: inode being updated 2534 * 2535 * Truncate a timespec to the granularity supported by the fs 2536 * containing the inode. Always rounds down. gran must 2537 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2538 */ 2539 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2540 { 2541 struct super_block *sb = inode->i_sb; 2542 unsigned int gran = sb->s_time_gran; 2543 2544 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2545 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2546 t.tv_nsec = 0; 2547 2548 /* Avoid division in the common cases 1 ns and 1 s. */ 2549 if (gran == 1) 2550 ; /* nothing */ 2551 else if (gran == NSEC_PER_SEC) 2552 t.tv_nsec = 0; 2553 else if (gran > 1 && gran < NSEC_PER_SEC) 2554 t.tv_nsec -= t.tv_nsec % gran; 2555 else 2556 WARN(1, "invalid file time granularity: %u", gran); 2557 return t; 2558 } 2559 EXPORT_SYMBOL(timestamp_truncate); 2560 2561 /** 2562 * current_time - Return FS time 2563 * @inode: inode. 2564 * 2565 * Return the current time truncated to the time granularity supported by 2566 * the fs. 2567 * 2568 * Note that inode and inode->sb cannot be NULL. 2569 * Otherwise, the function warns and returns time without truncation. 2570 */ 2571 struct timespec64 current_time(struct inode *inode) 2572 { 2573 struct timespec64 now; 2574 2575 ktime_get_coarse_real_ts64(&now); 2576 return timestamp_truncate(now, inode); 2577 } 2578 EXPORT_SYMBOL(current_time); 2579 2580 /** 2581 * inode_set_ctime_current - set the ctime to current_time 2582 * @inode: inode 2583 * 2584 * Set the inode->i_ctime to the current value for the inode. Returns 2585 * the current value that was assigned to i_ctime. 2586 */ 2587 struct timespec64 inode_set_ctime_current(struct inode *inode) 2588 { 2589 struct timespec64 now = current_time(inode); 2590 2591 inode_set_ctime_to_ts(inode, now); 2592 return now; 2593 } 2594 EXPORT_SYMBOL(inode_set_ctime_current); 2595 2596 /** 2597 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2598 * @idmap: idmap of the mount @inode was found from 2599 * @inode: inode to check 2600 * @vfsgid: the new/current vfsgid of @inode 2601 * 2602 * Check wether @vfsgid is in the caller's group list or if the caller is 2603 * privileged with CAP_FSETID over @inode. This can be used to determine 2604 * whether the setgid bit can be kept or must be dropped. 2605 * 2606 * Return: true if the caller is sufficiently privileged, false if not. 2607 */ 2608 bool in_group_or_capable(struct mnt_idmap *idmap, 2609 const struct inode *inode, vfsgid_t vfsgid) 2610 { 2611 if (vfsgid_in_group_p(vfsgid)) 2612 return true; 2613 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2614 return true; 2615 return false; 2616 } 2617 EXPORT_SYMBOL(in_group_or_capable); 2618 2619 /** 2620 * mode_strip_sgid - handle the sgid bit for non-directories 2621 * @idmap: idmap of the mount the inode was created from 2622 * @dir: parent directory inode 2623 * @mode: mode of the file to be created in @dir 2624 * 2625 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2626 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2627 * either in the group of the parent directory or they have CAP_FSETID 2628 * in their user namespace and are privileged over the parent directory. 2629 * In all other cases, strip the S_ISGID bit from @mode. 2630 * 2631 * Return: the new mode to use for the file 2632 */ 2633 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2634 const struct inode *dir, umode_t mode) 2635 { 2636 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2637 return mode; 2638 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2639 return mode; 2640 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2641 return mode; 2642 return mode & ~S_ISGID; 2643 } 2644 EXPORT_SYMBOL(mode_strip_sgid); 2645