1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/mount.h> 26 #include <linux/async.h> 27 28 /* 29 * This is needed for the following functions: 30 * - inode_has_buffers 31 * - invalidate_inode_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 LIST_HEAD(inode_in_use); 76 LIST_HEAD(inode_unused); 77 static struct hlist_head *inode_hashtable __read_mostly; 78 79 /* 80 * A simple spinlock to protect the list manipulations. 81 * 82 * NOTE! You also have to own the lock if you change 83 * the i_state of an inode while it is in use.. 84 */ 85 DEFINE_SPINLOCK(inode_lock); 86 87 /* 88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 89 * icache shrinking path, and the umount path. Without this exclusion, 90 * by the time prune_icache calls iput for the inode whose pages it has 91 * been invalidating, or by the time it calls clear_inode & destroy_inode 92 * from its final dispose_list, the struct super_block they refer to 93 * (for inode->i_sb->s_op) may already have been freed and reused. 94 */ 95 static DEFINE_MUTEX(iprune_mutex); 96 97 /* 98 * Statistics gathering.. 99 */ 100 struct inodes_stat_t inodes_stat; 101 102 static struct kmem_cache * inode_cachep __read_mostly; 103 104 static void wake_up_inode(struct inode *inode) 105 { 106 /* 107 * Prevent speculative execution through spin_unlock(&inode_lock); 108 */ 109 smp_mb(); 110 wake_up_bit(&inode->i_state, __I_LOCK); 111 } 112 113 /** 114 * inode_init_always - perform inode structure intialisation 115 * @sb: superblock inode belongs to 116 * @inode: inode to initialise 117 * 118 * These are initializations that need to be done on every inode 119 * allocation as the fields are not initialised by slab allocation. 120 */ 121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 122 { 123 static const struct address_space_operations empty_aops; 124 static struct inode_operations empty_iops; 125 static const struct file_operations empty_fops; 126 127 struct address_space * const mapping = &inode->i_data; 128 129 inode->i_sb = sb; 130 inode->i_blkbits = sb->s_blocksize_bits; 131 inode->i_flags = 0; 132 atomic_set(&inode->i_count, 1); 133 inode->i_op = &empty_iops; 134 inode->i_fop = &empty_fops; 135 inode->i_nlink = 1; 136 inode->i_uid = 0; 137 inode->i_gid = 0; 138 atomic_set(&inode->i_writecount, 0); 139 inode->i_size = 0; 140 inode->i_blocks = 0; 141 inode->i_bytes = 0; 142 inode->i_generation = 0; 143 #ifdef CONFIG_QUOTA 144 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 145 #endif 146 inode->i_pipe = NULL; 147 inode->i_bdev = NULL; 148 inode->i_cdev = NULL; 149 inode->i_rdev = 0; 150 inode->dirtied_when = 0; 151 152 if (security_inode_alloc(inode)) 153 goto out_free_inode; 154 155 /* allocate and initialize an i_integrity */ 156 if (ima_inode_alloc(inode)) 157 goto out_free_security; 158 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 init_rwsem(&inode->i_alloc_sem); 166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 167 168 mapping->a_ops = &empty_aops; 169 mapping->host = inode; 170 mapping->flags = 0; 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->assoc_mapping = NULL; 173 mapping->backing_dev_info = &default_backing_dev_info; 174 mapping->writeback_index = 0; 175 176 /* 177 * If the block_device provides a backing_dev_info for client 178 * inodes then use that. Otherwise the inode share the bdev's 179 * backing_dev_info. 180 */ 181 if (sb->s_bdev) { 182 struct backing_dev_info *bdi; 183 184 bdi = sb->s_bdev->bd_inode_backing_dev_info; 185 if (!bdi) 186 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 187 mapping->backing_dev_info = bdi; 188 } 189 inode->i_private = NULL; 190 inode->i_mapping = mapping; 191 192 return inode; 193 194 out_free_security: 195 security_inode_free(inode); 196 out_free_inode: 197 if (inode->i_sb->s_op->destroy_inode) 198 inode->i_sb->s_op->destroy_inode(inode); 199 else 200 kmem_cache_free(inode_cachep, (inode)); 201 return NULL; 202 } 203 EXPORT_SYMBOL(inode_init_always); 204 205 static struct inode *alloc_inode(struct super_block *sb) 206 { 207 struct inode *inode; 208 209 if (sb->s_op->alloc_inode) 210 inode = sb->s_op->alloc_inode(sb); 211 else 212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 213 214 if (inode) 215 return inode_init_always(sb, inode); 216 return NULL; 217 } 218 219 void destroy_inode(struct inode *inode) 220 { 221 BUG_ON(inode_has_buffers(inode)); 222 security_inode_free(inode); 223 if (inode->i_sb->s_op->destroy_inode) 224 inode->i_sb->s_op->destroy_inode(inode); 225 else 226 kmem_cache_free(inode_cachep, (inode)); 227 } 228 EXPORT_SYMBOL(destroy_inode); 229 230 231 /* 232 * These are initializations that only need to be done 233 * once, because the fields are idempotent across use 234 * of the inode, so let the slab aware of that. 235 */ 236 void inode_init_once(struct inode *inode) 237 { 238 memset(inode, 0, sizeof(*inode)); 239 INIT_HLIST_NODE(&inode->i_hash); 240 INIT_LIST_HEAD(&inode->i_dentry); 241 INIT_LIST_HEAD(&inode->i_devices); 242 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 243 spin_lock_init(&inode->i_data.tree_lock); 244 spin_lock_init(&inode->i_data.i_mmap_lock); 245 INIT_LIST_HEAD(&inode->i_data.private_list); 246 spin_lock_init(&inode->i_data.private_lock); 247 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 248 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 249 i_size_ordered_init(inode); 250 #ifdef CONFIG_INOTIFY 251 INIT_LIST_HEAD(&inode->inotify_watches); 252 mutex_init(&inode->inotify_mutex); 253 #endif 254 } 255 256 EXPORT_SYMBOL(inode_init_once); 257 258 static void init_once(void *foo) 259 { 260 struct inode * inode = (struct inode *) foo; 261 262 inode_init_once(inode); 263 } 264 265 /* 266 * inode_lock must be held 267 */ 268 void __iget(struct inode * inode) 269 { 270 if (atomic_read(&inode->i_count)) { 271 atomic_inc(&inode->i_count); 272 return; 273 } 274 atomic_inc(&inode->i_count); 275 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 276 list_move(&inode->i_list, &inode_in_use); 277 inodes_stat.nr_unused--; 278 } 279 280 /** 281 * clear_inode - clear an inode 282 * @inode: inode to clear 283 * 284 * This is called by the filesystem to tell us 285 * that the inode is no longer useful. We just 286 * terminate it with extreme prejudice. 287 */ 288 void clear_inode(struct inode *inode) 289 { 290 might_sleep(); 291 invalidate_inode_buffers(inode); 292 293 BUG_ON(inode->i_data.nrpages); 294 BUG_ON(!(inode->i_state & I_FREEING)); 295 BUG_ON(inode->i_state & I_CLEAR); 296 inode_sync_wait(inode); 297 vfs_dq_drop(inode); 298 if (inode->i_sb->s_op->clear_inode) 299 inode->i_sb->s_op->clear_inode(inode); 300 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 301 bd_forget(inode); 302 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 303 cd_forget(inode); 304 inode->i_state = I_CLEAR; 305 } 306 307 EXPORT_SYMBOL(clear_inode); 308 309 /* 310 * dispose_list - dispose of the contents of a local list 311 * @head: the head of the list to free 312 * 313 * Dispose-list gets a local list with local inodes in it, so it doesn't 314 * need to worry about list corruption and SMP locks. 315 */ 316 static void dispose_list(struct list_head *head) 317 { 318 int nr_disposed = 0; 319 320 while (!list_empty(head)) { 321 struct inode *inode; 322 323 inode = list_first_entry(head, struct inode, i_list); 324 list_del(&inode->i_list); 325 326 if (inode->i_data.nrpages) 327 truncate_inode_pages(&inode->i_data, 0); 328 clear_inode(inode); 329 330 spin_lock(&inode_lock); 331 hlist_del_init(&inode->i_hash); 332 list_del_init(&inode->i_sb_list); 333 spin_unlock(&inode_lock); 334 335 wake_up_inode(inode); 336 destroy_inode(inode); 337 nr_disposed++; 338 } 339 spin_lock(&inode_lock); 340 inodes_stat.nr_inodes -= nr_disposed; 341 spin_unlock(&inode_lock); 342 } 343 344 /* 345 * Invalidate all inodes for a device. 346 */ 347 static int invalidate_list(struct list_head *head, struct list_head *dispose) 348 { 349 struct list_head *next; 350 int busy = 0, count = 0; 351 352 next = head->next; 353 for (;;) { 354 struct list_head * tmp = next; 355 struct inode * inode; 356 357 /* 358 * We can reschedule here without worrying about the list's 359 * consistency because the per-sb list of inodes must not 360 * change during umount anymore, and because iprune_mutex keeps 361 * shrink_icache_memory() away. 362 */ 363 cond_resched_lock(&inode_lock); 364 365 next = next->next; 366 if (tmp == head) 367 break; 368 inode = list_entry(tmp, struct inode, i_sb_list); 369 if (inode->i_state & I_NEW) 370 continue; 371 invalidate_inode_buffers(inode); 372 if (!atomic_read(&inode->i_count)) { 373 list_move(&inode->i_list, dispose); 374 WARN_ON(inode->i_state & I_NEW); 375 inode->i_state |= I_FREEING; 376 count++; 377 continue; 378 } 379 busy = 1; 380 } 381 /* only unused inodes may be cached with i_count zero */ 382 inodes_stat.nr_unused -= count; 383 return busy; 384 } 385 386 /** 387 * invalidate_inodes - discard the inodes on a device 388 * @sb: superblock 389 * 390 * Discard all of the inodes for a given superblock. If the discard 391 * fails because there are busy inodes then a non zero value is returned. 392 * If the discard is successful all the inodes have been discarded. 393 */ 394 int invalidate_inodes(struct super_block * sb) 395 { 396 int busy; 397 LIST_HEAD(throw_away); 398 399 mutex_lock(&iprune_mutex); 400 spin_lock(&inode_lock); 401 inotify_unmount_inodes(&sb->s_inodes); 402 busy = invalidate_list(&sb->s_inodes, &throw_away); 403 spin_unlock(&inode_lock); 404 405 dispose_list(&throw_away); 406 mutex_unlock(&iprune_mutex); 407 408 return busy; 409 } 410 411 EXPORT_SYMBOL(invalidate_inodes); 412 413 static int can_unuse(struct inode *inode) 414 { 415 if (inode->i_state) 416 return 0; 417 if (inode_has_buffers(inode)) 418 return 0; 419 if (atomic_read(&inode->i_count)) 420 return 0; 421 if (inode->i_data.nrpages) 422 return 0; 423 return 1; 424 } 425 426 /* 427 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 428 * a temporary list and then are freed outside inode_lock by dispose_list(). 429 * 430 * Any inodes which are pinned purely because of attached pagecache have their 431 * pagecache removed. We expect the final iput() on that inode to add it to 432 * the front of the inode_unused list. So look for it there and if the 433 * inode is still freeable, proceed. The right inode is found 99.9% of the 434 * time in testing on a 4-way. 435 * 436 * If the inode has metadata buffers attached to mapping->private_list then 437 * try to remove them. 438 */ 439 static void prune_icache(int nr_to_scan) 440 { 441 LIST_HEAD(freeable); 442 int nr_pruned = 0; 443 int nr_scanned; 444 unsigned long reap = 0; 445 446 mutex_lock(&iprune_mutex); 447 spin_lock(&inode_lock); 448 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 449 struct inode *inode; 450 451 if (list_empty(&inode_unused)) 452 break; 453 454 inode = list_entry(inode_unused.prev, struct inode, i_list); 455 456 if (inode->i_state || atomic_read(&inode->i_count)) { 457 list_move(&inode->i_list, &inode_unused); 458 continue; 459 } 460 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 461 __iget(inode); 462 spin_unlock(&inode_lock); 463 if (remove_inode_buffers(inode)) 464 reap += invalidate_mapping_pages(&inode->i_data, 465 0, -1); 466 iput(inode); 467 spin_lock(&inode_lock); 468 469 if (inode != list_entry(inode_unused.next, 470 struct inode, i_list)) 471 continue; /* wrong inode or list_empty */ 472 if (!can_unuse(inode)) 473 continue; 474 } 475 list_move(&inode->i_list, &freeable); 476 WARN_ON(inode->i_state & I_NEW); 477 inode->i_state |= I_FREEING; 478 nr_pruned++; 479 } 480 inodes_stat.nr_unused -= nr_pruned; 481 if (current_is_kswapd()) 482 __count_vm_events(KSWAPD_INODESTEAL, reap); 483 else 484 __count_vm_events(PGINODESTEAL, reap); 485 spin_unlock(&inode_lock); 486 487 dispose_list(&freeable); 488 mutex_unlock(&iprune_mutex); 489 } 490 491 /* 492 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 493 * "unused" means that no dentries are referring to the inodes: the files are 494 * not open and the dcache references to those inodes have already been 495 * reclaimed. 496 * 497 * This function is passed the number of inodes to scan, and it returns the 498 * total number of remaining possibly-reclaimable inodes. 499 */ 500 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 501 { 502 if (nr) { 503 /* 504 * Nasty deadlock avoidance. We may hold various FS locks, 505 * and we don't want to recurse into the FS that called us 506 * in clear_inode() and friends.. 507 */ 508 if (!(gfp_mask & __GFP_FS)) 509 return -1; 510 prune_icache(nr); 511 } 512 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 513 } 514 515 static struct shrinker icache_shrinker = { 516 .shrink = shrink_icache_memory, 517 .seeks = DEFAULT_SEEKS, 518 }; 519 520 static void __wait_on_freeing_inode(struct inode *inode); 521 /* 522 * Called with the inode lock held. 523 * NOTE: we are not increasing the inode-refcount, you must call __iget() 524 * by hand after calling find_inode now! This simplifies iunique and won't 525 * add any additional branch in the common code. 526 */ 527 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 528 { 529 struct hlist_node *node; 530 struct inode * inode = NULL; 531 532 repeat: 533 hlist_for_each_entry(inode, node, head, i_hash) { 534 if (inode->i_sb != sb) 535 continue; 536 if (!test(inode, data)) 537 continue; 538 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 539 __wait_on_freeing_inode(inode); 540 goto repeat; 541 } 542 break; 543 } 544 return node ? inode : NULL; 545 } 546 547 /* 548 * find_inode_fast is the fast path version of find_inode, see the comment at 549 * iget_locked for details. 550 */ 551 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 552 { 553 struct hlist_node *node; 554 struct inode * inode = NULL; 555 556 repeat: 557 hlist_for_each_entry(inode, node, head, i_hash) { 558 if (inode->i_ino != ino) 559 continue; 560 if (inode->i_sb != sb) 561 continue; 562 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 563 __wait_on_freeing_inode(inode); 564 goto repeat; 565 } 566 break; 567 } 568 return node ? inode : NULL; 569 } 570 571 static unsigned long hash(struct super_block *sb, unsigned long hashval) 572 { 573 unsigned long tmp; 574 575 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 576 L1_CACHE_BYTES; 577 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 578 return tmp & I_HASHMASK; 579 } 580 581 static inline void 582 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 583 struct inode *inode) 584 { 585 inodes_stat.nr_inodes++; 586 list_add(&inode->i_list, &inode_in_use); 587 list_add(&inode->i_sb_list, &sb->s_inodes); 588 if (head) 589 hlist_add_head(&inode->i_hash, head); 590 } 591 592 /** 593 * inode_add_to_lists - add a new inode to relevant lists 594 * @sb: superblock inode belongs to 595 * @inode: inode to mark in use 596 * 597 * When an inode is allocated it needs to be accounted for, added to the in use 598 * list, the owning superblock and the inode hash. This needs to be done under 599 * the inode_lock, so export a function to do this rather than the inode lock 600 * itself. We calculate the hash list to add to here so it is all internal 601 * which requires the caller to have already set up the inode number in the 602 * inode to add. 603 */ 604 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 605 { 606 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 607 608 spin_lock(&inode_lock); 609 __inode_add_to_lists(sb, head, inode); 610 spin_unlock(&inode_lock); 611 } 612 EXPORT_SYMBOL_GPL(inode_add_to_lists); 613 614 /** 615 * new_inode - obtain an inode 616 * @sb: superblock 617 * 618 * Allocates a new inode for given superblock. The default gfp_mask 619 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 620 * If HIGHMEM pages are unsuitable or it is known that pages allocated 621 * for the page cache are not reclaimable or migratable, 622 * mapping_set_gfp_mask() must be called with suitable flags on the 623 * newly created inode's mapping 624 * 625 */ 626 struct inode *new_inode(struct super_block *sb) 627 { 628 /* 629 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 630 * error if st_ino won't fit in target struct field. Use 32bit counter 631 * here to attempt to avoid that. 632 */ 633 static unsigned int last_ino; 634 struct inode * inode; 635 636 spin_lock_prefetch(&inode_lock); 637 638 inode = alloc_inode(sb); 639 if (inode) { 640 spin_lock(&inode_lock); 641 __inode_add_to_lists(sb, NULL, inode); 642 inode->i_ino = ++last_ino; 643 inode->i_state = 0; 644 spin_unlock(&inode_lock); 645 } 646 return inode; 647 } 648 649 EXPORT_SYMBOL(new_inode); 650 651 void unlock_new_inode(struct inode *inode) 652 { 653 #ifdef CONFIG_DEBUG_LOCK_ALLOC 654 if (inode->i_mode & S_IFDIR) { 655 struct file_system_type *type = inode->i_sb->s_type; 656 657 /* 658 * ensure nobody is actually holding i_mutex 659 */ 660 mutex_destroy(&inode->i_mutex); 661 mutex_init(&inode->i_mutex); 662 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 663 } 664 #endif 665 /* 666 * This is special! We do not need the spinlock 667 * when clearing I_LOCK, because we're guaranteed 668 * that nobody else tries to do anything about the 669 * state of the inode when it is locked, as we 670 * just created it (so there can be no old holders 671 * that haven't tested I_LOCK). 672 */ 673 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 674 inode->i_state &= ~(I_LOCK|I_NEW); 675 wake_up_inode(inode); 676 } 677 678 EXPORT_SYMBOL(unlock_new_inode); 679 680 /* 681 * This is called without the inode lock held.. Be careful. 682 * 683 * We no longer cache the sb_flags in i_flags - see fs.h 684 * -- rmk@arm.uk.linux.org 685 */ 686 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 687 { 688 struct inode * inode; 689 690 inode = alloc_inode(sb); 691 if (inode) { 692 struct inode * old; 693 694 spin_lock(&inode_lock); 695 /* We released the lock, so.. */ 696 old = find_inode(sb, head, test, data); 697 if (!old) { 698 if (set(inode, data)) 699 goto set_failed; 700 701 __inode_add_to_lists(sb, head, inode); 702 inode->i_state = I_LOCK|I_NEW; 703 spin_unlock(&inode_lock); 704 705 /* Return the locked inode with I_NEW set, the 706 * caller is responsible for filling in the contents 707 */ 708 return inode; 709 } 710 711 /* 712 * Uhhuh, somebody else created the same inode under 713 * us. Use the old inode instead of the one we just 714 * allocated. 715 */ 716 __iget(old); 717 spin_unlock(&inode_lock); 718 destroy_inode(inode); 719 inode = old; 720 wait_on_inode(inode); 721 } 722 return inode; 723 724 set_failed: 725 spin_unlock(&inode_lock); 726 destroy_inode(inode); 727 return NULL; 728 } 729 730 /* 731 * get_new_inode_fast is the fast path version of get_new_inode, see the 732 * comment at iget_locked for details. 733 */ 734 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 735 { 736 struct inode * inode; 737 738 inode = alloc_inode(sb); 739 if (inode) { 740 struct inode * old; 741 742 spin_lock(&inode_lock); 743 /* We released the lock, so.. */ 744 old = find_inode_fast(sb, head, ino); 745 if (!old) { 746 inode->i_ino = ino; 747 __inode_add_to_lists(sb, head, inode); 748 inode->i_state = I_LOCK|I_NEW; 749 spin_unlock(&inode_lock); 750 751 /* Return the locked inode with I_NEW set, the 752 * caller is responsible for filling in the contents 753 */ 754 return inode; 755 } 756 757 /* 758 * Uhhuh, somebody else created the same inode under 759 * us. Use the old inode instead of the one we just 760 * allocated. 761 */ 762 __iget(old); 763 spin_unlock(&inode_lock); 764 destroy_inode(inode); 765 inode = old; 766 wait_on_inode(inode); 767 } 768 return inode; 769 } 770 771 /** 772 * iunique - get a unique inode number 773 * @sb: superblock 774 * @max_reserved: highest reserved inode number 775 * 776 * Obtain an inode number that is unique on the system for a given 777 * superblock. This is used by file systems that have no natural 778 * permanent inode numbering system. An inode number is returned that 779 * is higher than the reserved limit but unique. 780 * 781 * BUGS: 782 * With a large number of inodes live on the file system this function 783 * currently becomes quite slow. 784 */ 785 ino_t iunique(struct super_block *sb, ino_t max_reserved) 786 { 787 /* 788 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 789 * error if st_ino won't fit in target struct field. Use 32bit counter 790 * here to attempt to avoid that. 791 */ 792 static unsigned int counter; 793 struct inode *inode; 794 struct hlist_head *head; 795 ino_t res; 796 797 spin_lock(&inode_lock); 798 do { 799 if (counter <= max_reserved) 800 counter = max_reserved + 1; 801 res = counter++; 802 head = inode_hashtable + hash(sb, res); 803 inode = find_inode_fast(sb, head, res); 804 } while (inode != NULL); 805 spin_unlock(&inode_lock); 806 807 return res; 808 } 809 EXPORT_SYMBOL(iunique); 810 811 struct inode *igrab(struct inode *inode) 812 { 813 spin_lock(&inode_lock); 814 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 815 __iget(inode); 816 else 817 /* 818 * Handle the case where s_op->clear_inode is not been 819 * called yet, and somebody is calling igrab 820 * while the inode is getting freed. 821 */ 822 inode = NULL; 823 spin_unlock(&inode_lock); 824 return inode; 825 } 826 827 EXPORT_SYMBOL(igrab); 828 829 /** 830 * ifind - internal function, you want ilookup5() or iget5(). 831 * @sb: super block of file system to search 832 * @head: the head of the list to search 833 * @test: callback used for comparisons between inodes 834 * @data: opaque data pointer to pass to @test 835 * @wait: if true wait for the inode to be unlocked, if false do not 836 * 837 * ifind() searches for the inode specified by @data in the inode 838 * cache. This is a generalized version of ifind_fast() for file systems where 839 * the inode number is not sufficient for unique identification of an inode. 840 * 841 * If the inode is in the cache, the inode is returned with an incremented 842 * reference count. 843 * 844 * Otherwise NULL is returned. 845 * 846 * Note, @test is called with the inode_lock held, so can't sleep. 847 */ 848 static struct inode *ifind(struct super_block *sb, 849 struct hlist_head *head, int (*test)(struct inode *, void *), 850 void *data, const int wait) 851 { 852 struct inode *inode; 853 854 spin_lock(&inode_lock); 855 inode = find_inode(sb, head, test, data); 856 if (inode) { 857 __iget(inode); 858 spin_unlock(&inode_lock); 859 if (likely(wait)) 860 wait_on_inode(inode); 861 return inode; 862 } 863 spin_unlock(&inode_lock); 864 return NULL; 865 } 866 867 /** 868 * ifind_fast - internal function, you want ilookup() or iget(). 869 * @sb: super block of file system to search 870 * @head: head of the list to search 871 * @ino: inode number to search for 872 * 873 * ifind_fast() searches for the inode @ino in the inode cache. This is for 874 * file systems where the inode number is sufficient for unique identification 875 * of an inode. 876 * 877 * If the inode is in the cache, the inode is returned with an incremented 878 * reference count. 879 * 880 * Otherwise NULL is returned. 881 */ 882 static struct inode *ifind_fast(struct super_block *sb, 883 struct hlist_head *head, unsigned long ino) 884 { 885 struct inode *inode; 886 887 spin_lock(&inode_lock); 888 inode = find_inode_fast(sb, head, ino); 889 if (inode) { 890 __iget(inode); 891 spin_unlock(&inode_lock); 892 wait_on_inode(inode); 893 return inode; 894 } 895 spin_unlock(&inode_lock); 896 return NULL; 897 } 898 899 /** 900 * ilookup5_nowait - search for an inode in the inode cache 901 * @sb: super block of file system to search 902 * @hashval: hash value (usually inode number) to search for 903 * @test: callback used for comparisons between inodes 904 * @data: opaque data pointer to pass to @test 905 * 906 * ilookup5() uses ifind() to search for the inode specified by @hashval and 907 * @data in the inode cache. This is a generalized version of ilookup() for 908 * file systems where the inode number is not sufficient for unique 909 * identification of an inode. 910 * 911 * If the inode is in the cache, the inode is returned with an incremented 912 * reference count. Note, the inode lock is not waited upon so you have to be 913 * very careful what you do with the returned inode. You probably should be 914 * using ilookup5() instead. 915 * 916 * Otherwise NULL is returned. 917 * 918 * Note, @test is called with the inode_lock held, so can't sleep. 919 */ 920 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 921 int (*test)(struct inode *, void *), void *data) 922 { 923 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 924 925 return ifind(sb, head, test, data, 0); 926 } 927 928 EXPORT_SYMBOL(ilookup5_nowait); 929 930 /** 931 * ilookup5 - search for an inode in the inode cache 932 * @sb: super block of file system to search 933 * @hashval: hash value (usually inode number) to search for 934 * @test: callback used for comparisons between inodes 935 * @data: opaque data pointer to pass to @test 936 * 937 * ilookup5() uses ifind() to search for the inode specified by @hashval and 938 * @data in the inode cache. This is a generalized version of ilookup() for 939 * file systems where the inode number is not sufficient for unique 940 * identification of an inode. 941 * 942 * If the inode is in the cache, the inode lock is waited upon and the inode is 943 * returned with an incremented reference count. 944 * 945 * Otherwise NULL is returned. 946 * 947 * Note, @test is called with the inode_lock held, so can't sleep. 948 */ 949 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 950 int (*test)(struct inode *, void *), void *data) 951 { 952 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 953 954 return ifind(sb, head, test, data, 1); 955 } 956 957 EXPORT_SYMBOL(ilookup5); 958 959 /** 960 * ilookup - search for an inode in the inode cache 961 * @sb: super block of file system to search 962 * @ino: inode number to search for 963 * 964 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 965 * This is for file systems where the inode number is sufficient for unique 966 * identification of an inode. 967 * 968 * If the inode is in the cache, the inode is returned with an incremented 969 * reference count. 970 * 971 * Otherwise NULL is returned. 972 */ 973 struct inode *ilookup(struct super_block *sb, unsigned long ino) 974 { 975 struct hlist_head *head = inode_hashtable + hash(sb, ino); 976 977 return ifind_fast(sb, head, ino); 978 } 979 980 EXPORT_SYMBOL(ilookup); 981 982 /** 983 * iget5_locked - obtain an inode from a mounted file system 984 * @sb: super block of file system 985 * @hashval: hash value (usually inode number) to get 986 * @test: callback used for comparisons between inodes 987 * @set: callback used to initialize a new struct inode 988 * @data: opaque data pointer to pass to @test and @set 989 * 990 * iget5_locked() uses ifind() to search for the inode specified by @hashval 991 * and @data in the inode cache and if present it is returned with an increased 992 * reference count. This is a generalized version of iget_locked() for file 993 * systems where the inode number is not sufficient for unique identification 994 * of an inode. 995 * 996 * If the inode is not in cache, get_new_inode() is called to allocate a new 997 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 998 * file system gets to fill it in before unlocking it via unlock_new_inode(). 999 * 1000 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1001 */ 1002 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1003 int (*test)(struct inode *, void *), 1004 int (*set)(struct inode *, void *), void *data) 1005 { 1006 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1007 struct inode *inode; 1008 1009 inode = ifind(sb, head, test, data, 1); 1010 if (inode) 1011 return inode; 1012 /* 1013 * get_new_inode() will do the right thing, re-trying the search 1014 * in case it had to block at any point. 1015 */ 1016 return get_new_inode(sb, head, test, set, data); 1017 } 1018 1019 EXPORT_SYMBOL(iget5_locked); 1020 1021 /** 1022 * iget_locked - obtain an inode from a mounted file system 1023 * @sb: super block of file system 1024 * @ino: inode number to get 1025 * 1026 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1027 * the inode cache and if present it is returned with an increased reference 1028 * count. This is for file systems where the inode number is sufficient for 1029 * unique identification of an inode. 1030 * 1031 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1032 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1033 * The file system gets to fill it in before unlocking it via 1034 * unlock_new_inode(). 1035 */ 1036 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1037 { 1038 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1039 struct inode *inode; 1040 1041 inode = ifind_fast(sb, head, ino); 1042 if (inode) 1043 return inode; 1044 /* 1045 * get_new_inode_fast() will do the right thing, re-trying the search 1046 * in case it had to block at any point. 1047 */ 1048 return get_new_inode_fast(sb, head, ino); 1049 } 1050 1051 EXPORT_SYMBOL(iget_locked); 1052 1053 int insert_inode_locked(struct inode *inode) 1054 { 1055 struct super_block *sb = inode->i_sb; 1056 ino_t ino = inode->i_ino; 1057 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1058 struct inode *old; 1059 1060 inode->i_state |= I_LOCK|I_NEW; 1061 while (1) { 1062 spin_lock(&inode_lock); 1063 old = find_inode_fast(sb, head, ino); 1064 if (likely(!old)) { 1065 hlist_add_head(&inode->i_hash, head); 1066 spin_unlock(&inode_lock); 1067 return 0; 1068 } 1069 __iget(old); 1070 spin_unlock(&inode_lock); 1071 wait_on_inode(old); 1072 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1073 iput(old); 1074 return -EBUSY; 1075 } 1076 iput(old); 1077 } 1078 } 1079 1080 EXPORT_SYMBOL(insert_inode_locked); 1081 1082 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1083 int (*test)(struct inode *, void *), void *data) 1084 { 1085 struct super_block *sb = inode->i_sb; 1086 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1087 struct inode *old; 1088 1089 inode->i_state |= I_LOCK|I_NEW; 1090 1091 while (1) { 1092 spin_lock(&inode_lock); 1093 old = find_inode(sb, head, test, data); 1094 if (likely(!old)) { 1095 hlist_add_head(&inode->i_hash, head); 1096 spin_unlock(&inode_lock); 1097 return 0; 1098 } 1099 __iget(old); 1100 spin_unlock(&inode_lock); 1101 wait_on_inode(old); 1102 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1103 iput(old); 1104 return -EBUSY; 1105 } 1106 iput(old); 1107 } 1108 } 1109 1110 EXPORT_SYMBOL(insert_inode_locked4); 1111 1112 /** 1113 * __insert_inode_hash - hash an inode 1114 * @inode: unhashed inode 1115 * @hashval: unsigned long value used to locate this object in the 1116 * inode_hashtable. 1117 * 1118 * Add an inode to the inode hash for this superblock. 1119 */ 1120 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1121 { 1122 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1123 spin_lock(&inode_lock); 1124 hlist_add_head(&inode->i_hash, head); 1125 spin_unlock(&inode_lock); 1126 } 1127 1128 EXPORT_SYMBOL(__insert_inode_hash); 1129 1130 /** 1131 * remove_inode_hash - remove an inode from the hash 1132 * @inode: inode to unhash 1133 * 1134 * Remove an inode from the superblock. 1135 */ 1136 void remove_inode_hash(struct inode *inode) 1137 { 1138 spin_lock(&inode_lock); 1139 hlist_del_init(&inode->i_hash); 1140 spin_unlock(&inode_lock); 1141 } 1142 1143 EXPORT_SYMBOL(remove_inode_hash); 1144 1145 /* 1146 * Tell the filesystem that this inode is no longer of any interest and should 1147 * be completely destroyed. 1148 * 1149 * We leave the inode in the inode hash table until *after* the filesystem's 1150 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1151 * instigate) will always find up-to-date information either in the hash or on 1152 * disk. 1153 * 1154 * I_FREEING is set so that no-one will take a new reference to the inode while 1155 * it is being deleted. 1156 */ 1157 void generic_delete_inode(struct inode *inode) 1158 { 1159 const struct super_operations *op = inode->i_sb->s_op; 1160 1161 list_del_init(&inode->i_list); 1162 list_del_init(&inode->i_sb_list); 1163 WARN_ON(inode->i_state & I_NEW); 1164 inode->i_state |= I_FREEING; 1165 inodes_stat.nr_inodes--; 1166 spin_unlock(&inode_lock); 1167 1168 security_inode_delete(inode); 1169 1170 if (op->delete_inode) { 1171 void (*delete)(struct inode *) = op->delete_inode; 1172 if (!is_bad_inode(inode)) 1173 vfs_dq_init(inode); 1174 /* Filesystems implementing their own 1175 * s_op->delete_inode are required to call 1176 * truncate_inode_pages and clear_inode() 1177 * internally */ 1178 delete(inode); 1179 } else { 1180 truncate_inode_pages(&inode->i_data, 0); 1181 clear_inode(inode); 1182 } 1183 spin_lock(&inode_lock); 1184 hlist_del_init(&inode->i_hash); 1185 spin_unlock(&inode_lock); 1186 wake_up_inode(inode); 1187 BUG_ON(inode->i_state != I_CLEAR); 1188 destroy_inode(inode); 1189 } 1190 1191 EXPORT_SYMBOL(generic_delete_inode); 1192 1193 static void generic_forget_inode(struct inode *inode) 1194 { 1195 struct super_block *sb = inode->i_sb; 1196 1197 if (!hlist_unhashed(&inode->i_hash)) { 1198 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1199 list_move(&inode->i_list, &inode_unused); 1200 inodes_stat.nr_unused++; 1201 if (sb->s_flags & MS_ACTIVE) { 1202 spin_unlock(&inode_lock); 1203 return; 1204 } 1205 WARN_ON(inode->i_state & I_NEW); 1206 inode->i_state |= I_WILL_FREE; 1207 spin_unlock(&inode_lock); 1208 write_inode_now(inode, 1); 1209 spin_lock(&inode_lock); 1210 WARN_ON(inode->i_state & I_NEW); 1211 inode->i_state &= ~I_WILL_FREE; 1212 inodes_stat.nr_unused--; 1213 hlist_del_init(&inode->i_hash); 1214 } 1215 list_del_init(&inode->i_list); 1216 list_del_init(&inode->i_sb_list); 1217 WARN_ON(inode->i_state & I_NEW); 1218 inode->i_state |= I_FREEING; 1219 inodes_stat.nr_inodes--; 1220 spin_unlock(&inode_lock); 1221 if (inode->i_data.nrpages) 1222 truncate_inode_pages(&inode->i_data, 0); 1223 clear_inode(inode); 1224 wake_up_inode(inode); 1225 destroy_inode(inode); 1226 } 1227 1228 /* 1229 * Normal UNIX filesystem behaviour: delete the 1230 * inode when the usage count drops to zero, and 1231 * i_nlink is zero. 1232 */ 1233 void generic_drop_inode(struct inode *inode) 1234 { 1235 if (!inode->i_nlink) 1236 generic_delete_inode(inode); 1237 else 1238 generic_forget_inode(inode); 1239 } 1240 1241 EXPORT_SYMBOL_GPL(generic_drop_inode); 1242 1243 /* 1244 * Called when we're dropping the last reference 1245 * to an inode. 1246 * 1247 * Call the FS "drop()" function, defaulting to 1248 * the legacy UNIX filesystem behaviour.. 1249 * 1250 * NOTE! NOTE! NOTE! We're called with the inode lock 1251 * held, and the drop function is supposed to release 1252 * the lock! 1253 */ 1254 static inline void iput_final(struct inode *inode) 1255 { 1256 const struct super_operations *op = inode->i_sb->s_op; 1257 void (*drop)(struct inode *) = generic_drop_inode; 1258 1259 if (op && op->drop_inode) 1260 drop = op->drop_inode; 1261 drop(inode); 1262 } 1263 1264 /** 1265 * iput - put an inode 1266 * @inode: inode to put 1267 * 1268 * Puts an inode, dropping its usage count. If the inode use count hits 1269 * zero, the inode is then freed and may also be destroyed. 1270 * 1271 * Consequently, iput() can sleep. 1272 */ 1273 void iput(struct inode *inode) 1274 { 1275 if (inode) { 1276 BUG_ON(inode->i_state == I_CLEAR); 1277 1278 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1279 iput_final(inode); 1280 } 1281 } 1282 1283 EXPORT_SYMBOL(iput); 1284 1285 /** 1286 * bmap - find a block number in a file 1287 * @inode: inode of file 1288 * @block: block to find 1289 * 1290 * Returns the block number on the device holding the inode that 1291 * is the disk block number for the block of the file requested. 1292 * That is, asked for block 4 of inode 1 the function will return the 1293 * disk block relative to the disk start that holds that block of the 1294 * file. 1295 */ 1296 sector_t bmap(struct inode * inode, sector_t block) 1297 { 1298 sector_t res = 0; 1299 if (inode->i_mapping->a_ops->bmap) 1300 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1301 return res; 1302 } 1303 EXPORT_SYMBOL(bmap); 1304 1305 /* 1306 * With relative atime, only update atime if the previous atime is 1307 * earlier than either the ctime or mtime or if at least a day has 1308 * passed since the last atime update. 1309 */ 1310 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1311 struct timespec now) 1312 { 1313 1314 if (!(mnt->mnt_flags & MNT_RELATIME)) 1315 return 1; 1316 /* 1317 * Is mtime younger than atime? If yes, update atime: 1318 */ 1319 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1320 return 1; 1321 /* 1322 * Is ctime younger than atime? If yes, update atime: 1323 */ 1324 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1325 return 1; 1326 1327 /* 1328 * Is the previous atime value older than a day? If yes, 1329 * update atime: 1330 */ 1331 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1332 return 1; 1333 /* 1334 * Good, we can skip the atime update: 1335 */ 1336 return 0; 1337 } 1338 1339 /** 1340 * touch_atime - update the access time 1341 * @mnt: mount the inode is accessed on 1342 * @dentry: dentry accessed 1343 * 1344 * Update the accessed time on an inode and mark it for writeback. 1345 * This function automatically handles read only file systems and media, 1346 * as well as the "noatime" flag and inode specific "noatime" markers. 1347 */ 1348 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1349 { 1350 struct inode *inode = dentry->d_inode; 1351 struct timespec now; 1352 1353 if (mnt_want_write(mnt)) 1354 return; 1355 if (inode->i_flags & S_NOATIME) 1356 goto out; 1357 if (IS_NOATIME(inode)) 1358 goto out; 1359 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1360 goto out; 1361 1362 if (mnt->mnt_flags & MNT_NOATIME) 1363 goto out; 1364 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1365 goto out; 1366 1367 now = current_fs_time(inode->i_sb); 1368 1369 if (!relatime_need_update(mnt, inode, now)) 1370 goto out; 1371 1372 if (timespec_equal(&inode->i_atime, &now)) 1373 goto out; 1374 1375 inode->i_atime = now; 1376 mark_inode_dirty_sync(inode); 1377 out: 1378 mnt_drop_write(mnt); 1379 } 1380 EXPORT_SYMBOL(touch_atime); 1381 1382 /** 1383 * file_update_time - update mtime and ctime time 1384 * @file: file accessed 1385 * 1386 * Update the mtime and ctime members of an inode and mark the inode 1387 * for writeback. Note that this function is meant exclusively for 1388 * usage in the file write path of filesystems, and filesystems may 1389 * choose to explicitly ignore update via this function with the 1390 * S_NOCTIME inode flag, e.g. for network filesystem where these 1391 * timestamps are handled by the server. 1392 */ 1393 1394 void file_update_time(struct file *file) 1395 { 1396 struct inode *inode = file->f_path.dentry->d_inode; 1397 struct timespec now; 1398 int sync_it = 0; 1399 int err; 1400 1401 if (IS_NOCMTIME(inode)) 1402 return; 1403 1404 err = mnt_want_write(file->f_path.mnt); 1405 if (err) 1406 return; 1407 1408 now = current_fs_time(inode->i_sb); 1409 if (!timespec_equal(&inode->i_mtime, &now)) { 1410 inode->i_mtime = now; 1411 sync_it = 1; 1412 } 1413 1414 if (!timespec_equal(&inode->i_ctime, &now)) { 1415 inode->i_ctime = now; 1416 sync_it = 1; 1417 } 1418 1419 if (IS_I_VERSION(inode)) { 1420 inode_inc_iversion(inode); 1421 sync_it = 1; 1422 } 1423 1424 if (sync_it) 1425 mark_inode_dirty_sync(inode); 1426 mnt_drop_write(file->f_path.mnt); 1427 } 1428 1429 EXPORT_SYMBOL(file_update_time); 1430 1431 int inode_needs_sync(struct inode *inode) 1432 { 1433 if (IS_SYNC(inode)) 1434 return 1; 1435 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1436 return 1; 1437 return 0; 1438 } 1439 1440 EXPORT_SYMBOL(inode_needs_sync); 1441 1442 int inode_wait(void *word) 1443 { 1444 schedule(); 1445 return 0; 1446 } 1447 EXPORT_SYMBOL(inode_wait); 1448 1449 /* 1450 * If we try to find an inode in the inode hash while it is being 1451 * deleted, we have to wait until the filesystem completes its 1452 * deletion before reporting that it isn't found. This function waits 1453 * until the deletion _might_ have completed. Callers are responsible 1454 * to recheck inode state. 1455 * 1456 * It doesn't matter if I_LOCK is not set initially, a call to 1457 * wake_up_inode() after removing from the hash list will DTRT. 1458 * 1459 * This is called with inode_lock held. 1460 */ 1461 static void __wait_on_freeing_inode(struct inode *inode) 1462 { 1463 wait_queue_head_t *wq; 1464 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1465 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1466 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1467 spin_unlock(&inode_lock); 1468 schedule(); 1469 finish_wait(wq, &wait.wait); 1470 spin_lock(&inode_lock); 1471 } 1472 1473 /* 1474 * We rarely want to lock two inodes that do not have a parent/child 1475 * relationship (such as directory, child inode) simultaneously. The 1476 * vast majority of file systems should be able to get along fine 1477 * without this. Do not use these functions except as a last resort. 1478 */ 1479 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1480 { 1481 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1482 if (inode1) 1483 mutex_lock(&inode1->i_mutex); 1484 else if (inode2) 1485 mutex_lock(&inode2->i_mutex); 1486 return; 1487 } 1488 1489 if (inode1 < inode2) { 1490 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1491 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1492 } else { 1493 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1494 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1495 } 1496 } 1497 EXPORT_SYMBOL(inode_double_lock); 1498 1499 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1500 { 1501 if (inode1) 1502 mutex_unlock(&inode1->i_mutex); 1503 1504 if (inode2 && inode2 != inode1) 1505 mutex_unlock(&inode2->i_mutex); 1506 } 1507 EXPORT_SYMBOL(inode_double_unlock); 1508 1509 static __initdata unsigned long ihash_entries; 1510 static int __init set_ihash_entries(char *str) 1511 { 1512 if (!str) 1513 return 0; 1514 ihash_entries = simple_strtoul(str, &str, 0); 1515 return 1; 1516 } 1517 __setup("ihash_entries=", set_ihash_entries); 1518 1519 /* 1520 * Initialize the waitqueues and inode hash table. 1521 */ 1522 void __init inode_init_early(void) 1523 { 1524 int loop; 1525 1526 /* If hashes are distributed across NUMA nodes, defer 1527 * hash allocation until vmalloc space is available. 1528 */ 1529 if (hashdist) 1530 return; 1531 1532 inode_hashtable = 1533 alloc_large_system_hash("Inode-cache", 1534 sizeof(struct hlist_head), 1535 ihash_entries, 1536 14, 1537 HASH_EARLY, 1538 &i_hash_shift, 1539 &i_hash_mask, 1540 0); 1541 1542 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1543 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1544 } 1545 1546 void __init inode_init(void) 1547 { 1548 int loop; 1549 1550 /* inode slab cache */ 1551 inode_cachep = kmem_cache_create("inode_cache", 1552 sizeof(struct inode), 1553 0, 1554 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1555 SLAB_MEM_SPREAD), 1556 init_once); 1557 register_shrinker(&icache_shrinker); 1558 1559 /* Hash may have been set up in inode_init_early */ 1560 if (!hashdist) 1561 return; 1562 1563 inode_hashtable = 1564 alloc_large_system_hash("Inode-cache", 1565 sizeof(struct hlist_head), 1566 ihash_entries, 1567 14, 1568 0, 1569 &i_hash_shift, 1570 &i_hash_mask, 1571 0); 1572 1573 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1574 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1575 } 1576 1577 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1578 { 1579 inode->i_mode = mode; 1580 if (S_ISCHR(mode)) { 1581 inode->i_fop = &def_chr_fops; 1582 inode->i_rdev = rdev; 1583 } else if (S_ISBLK(mode)) { 1584 inode->i_fop = &def_blk_fops; 1585 inode->i_rdev = rdev; 1586 } else if (S_ISFIFO(mode)) 1587 inode->i_fop = &def_fifo_fops; 1588 else if (S_ISSOCK(mode)) 1589 inode->i_fop = &bad_sock_fops; 1590 else 1591 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1592 mode); 1593 } 1594 EXPORT_SYMBOL(init_special_inode); 1595