xref: /linux/fs/inode.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 
28 /*
29  * This is needed for the following functions:
30  *  - inode_has_buffers
31  *  - invalidate_inode_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78 
79 /*
80  * A simple spinlock to protect the list manipulations.
81  *
82  * NOTE! You also have to own the lock if you change
83  * the i_state of an inode while it is in use..
84  */
85 DEFINE_SPINLOCK(inode_lock);
86 
87 /*
88  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89  * icache shrinking path, and the umount path.  Without this exclusion,
90  * by the time prune_icache calls iput for the inode whose pages it has
91  * been invalidating, or by the time it calls clear_inode & destroy_inode
92  * from its final dispose_list, the struct super_block they refer to
93  * (for inode->i_sb->s_op) may already have been freed and reused.
94  */
95 static DEFINE_MUTEX(iprune_mutex);
96 
97 /*
98  * Statistics gathering..
99  */
100 struct inodes_stat_t inodes_stat;
101 
102 static struct kmem_cache * inode_cachep __read_mostly;
103 
104 static void wake_up_inode(struct inode *inode)
105 {
106 	/*
107 	 * Prevent speculative execution through spin_unlock(&inode_lock);
108 	 */
109 	smp_mb();
110 	wake_up_bit(&inode->i_state, __I_LOCK);
111 }
112 
113 /**
114  * inode_init_always - perform inode structure intialisation
115  * @sb: superblock inode belongs to
116  * @inode: inode to initialise
117  *
118  * These are initializations that need to be done on every inode
119  * allocation as the fields are not initialised by slab allocation.
120  */
121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
122 {
123 	static const struct address_space_operations empty_aops;
124 	static struct inode_operations empty_iops;
125 	static const struct file_operations empty_fops;
126 
127 	struct address_space * const mapping = &inode->i_data;
128 
129 	inode->i_sb = sb;
130 	inode->i_blkbits = sb->s_blocksize_bits;
131 	inode->i_flags = 0;
132 	atomic_set(&inode->i_count, 1);
133 	inode->i_op = &empty_iops;
134 	inode->i_fop = &empty_fops;
135 	inode->i_nlink = 1;
136 	inode->i_uid = 0;
137 	inode->i_gid = 0;
138 	atomic_set(&inode->i_writecount, 0);
139 	inode->i_size = 0;
140 	inode->i_blocks = 0;
141 	inode->i_bytes = 0;
142 	inode->i_generation = 0;
143 #ifdef CONFIG_QUOTA
144 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
145 #endif
146 	inode->i_pipe = NULL;
147 	inode->i_bdev = NULL;
148 	inode->i_cdev = NULL;
149 	inode->i_rdev = 0;
150 	inode->dirtied_when = 0;
151 
152 	if (security_inode_alloc(inode))
153 		goto out_free_inode;
154 
155 	/* allocate and initialize an i_integrity */
156 	if (ima_inode_alloc(inode))
157 		goto out_free_security;
158 
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	init_rwsem(&inode->i_alloc_sem);
166 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->assoc_mapping = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 		if (!bdi)
186 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 		mapping->backing_dev_info = bdi;
188 	}
189 	inode->i_private = NULL;
190 	inode->i_mapping = mapping;
191 
192 	return inode;
193 
194 out_free_security:
195 	security_inode_free(inode);
196 out_free_inode:
197 	if (inode->i_sb->s_op->destroy_inode)
198 		inode->i_sb->s_op->destroy_inode(inode);
199 	else
200 		kmem_cache_free(inode_cachep, (inode));
201 	return NULL;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (inode)
215 		return inode_init_always(sb, inode);
216 	return NULL;
217 }
218 
219 void destroy_inode(struct inode *inode)
220 {
221 	BUG_ON(inode_has_buffers(inode));
222 	security_inode_free(inode);
223 	if (inode->i_sb->s_op->destroy_inode)
224 		inode->i_sb->s_op->destroy_inode(inode);
225 	else
226 		kmem_cache_free(inode_cachep, (inode));
227 }
228 EXPORT_SYMBOL(destroy_inode);
229 
230 
231 /*
232  * These are initializations that only need to be done
233  * once, because the fields are idempotent across use
234  * of the inode, so let the slab aware of that.
235  */
236 void inode_init_once(struct inode *inode)
237 {
238 	memset(inode, 0, sizeof(*inode));
239 	INIT_HLIST_NODE(&inode->i_hash);
240 	INIT_LIST_HEAD(&inode->i_dentry);
241 	INIT_LIST_HEAD(&inode->i_devices);
242 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
243 	spin_lock_init(&inode->i_data.tree_lock);
244 	spin_lock_init(&inode->i_data.i_mmap_lock);
245 	INIT_LIST_HEAD(&inode->i_data.private_list);
246 	spin_lock_init(&inode->i_data.private_lock);
247 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
248 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
249 	i_size_ordered_init(inode);
250 #ifdef CONFIG_INOTIFY
251 	INIT_LIST_HEAD(&inode->inotify_watches);
252 	mutex_init(&inode->inotify_mutex);
253 #endif
254 }
255 
256 EXPORT_SYMBOL(inode_init_once);
257 
258 static void init_once(void *foo)
259 {
260 	struct inode * inode = (struct inode *) foo;
261 
262 	inode_init_once(inode);
263 }
264 
265 /*
266  * inode_lock must be held
267  */
268 void __iget(struct inode * inode)
269 {
270 	if (atomic_read(&inode->i_count)) {
271 		atomic_inc(&inode->i_count);
272 		return;
273 	}
274 	atomic_inc(&inode->i_count);
275 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
276 		list_move(&inode->i_list, &inode_in_use);
277 	inodes_stat.nr_unused--;
278 }
279 
280 /**
281  * clear_inode - clear an inode
282  * @inode: inode to clear
283  *
284  * This is called by the filesystem to tell us
285  * that the inode is no longer useful. We just
286  * terminate it with extreme prejudice.
287  */
288 void clear_inode(struct inode *inode)
289 {
290 	might_sleep();
291 	invalidate_inode_buffers(inode);
292 
293 	BUG_ON(inode->i_data.nrpages);
294 	BUG_ON(!(inode->i_state & I_FREEING));
295 	BUG_ON(inode->i_state & I_CLEAR);
296 	inode_sync_wait(inode);
297 	vfs_dq_drop(inode);
298 	if (inode->i_sb->s_op->clear_inode)
299 		inode->i_sb->s_op->clear_inode(inode);
300 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
301 		bd_forget(inode);
302 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
303 		cd_forget(inode);
304 	inode->i_state = I_CLEAR;
305 }
306 
307 EXPORT_SYMBOL(clear_inode);
308 
309 /*
310  * dispose_list - dispose of the contents of a local list
311  * @head: the head of the list to free
312  *
313  * Dispose-list gets a local list with local inodes in it, so it doesn't
314  * need to worry about list corruption and SMP locks.
315  */
316 static void dispose_list(struct list_head *head)
317 {
318 	int nr_disposed = 0;
319 
320 	while (!list_empty(head)) {
321 		struct inode *inode;
322 
323 		inode = list_first_entry(head, struct inode, i_list);
324 		list_del(&inode->i_list);
325 
326 		if (inode->i_data.nrpages)
327 			truncate_inode_pages(&inode->i_data, 0);
328 		clear_inode(inode);
329 
330 		spin_lock(&inode_lock);
331 		hlist_del_init(&inode->i_hash);
332 		list_del_init(&inode->i_sb_list);
333 		spin_unlock(&inode_lock);
334 
335 		wake_up_inode(inode);
336 		destroy_inode(inode);
337 		nr_disposed++;
338 	}
339 	spin_lock(&inode_lock);
340 	inodes_stat.nr_inodes -= nr_disposed;
341 	spin_unlock(&inode_lock);
342 }
343 
344 /*
345  * Invalidate all inodes for a device.
346  */
347 static int invalidate_list(struct list_head *head, struct list_head *dispose)
348 {
349 	struct list_head *next;
350 	int busy = 0, count = 0;
351 
352 	next = head->next;
353 	for (;;) {
354 		struct list_head * tmp = next;
355 		struct inode * inode;
356 
357 		/*
358 		 * We can reschedule here without worrying about the list's
359 		 * consistency because the per-sb list of inodes must not
360 		 * change during umount anymore, and because iprune_mutex keeps
361 		 * shrink_icache_memory() away.
362 		 */
363 		cond_resched_lock(&inode_lock);
364 
365 		next = next->next;
366 		if (tmp == head)
367 			break;
368 		inode = list_entry(tmp, struct inode, i_sb_list);
369 		if (inode->i_state & I_NEW)
370 			continue;
371 		invalidate_inode_buffers(inode);
372 		if (!atomic_read(&inode->i_count)) {
373 			list_move(&inode->i_list, dispose);
374 			WARN_ON(inode->i_state & I_NEW);
375 			inode->i_state |= I_FREEING;
376 			count++;
377 			continue;
378 		}
379 		busy = 1;
380 	}
381 	/* only unused inodes may be cached with i_count zero */
382 	inodes_stat.nr_unused -= count;
383 	return busy;
384 }
385 
386 /**
387  *	invalidate_inodes	- discard the inodes on a device
388  *	@sb: superblock
389  *
390  *	Discard all of the inodes for a given superblock. If the discard
391  *	fails because there are busy inodes then a non zero value is returned.
392  *	If the discard is successful all the inodes have been discarded.
393  */
394 int invalidate_inodes(struct super_block * sb)
395 {
396 	int busy;
397 	LIST_HEAD(throw_away);
398 
399 	mutex_lock(&iprune_mutex);
400 	spin_lock(&inode_lock);
401 	inotify_unmount_inodes(&sb->s_inodes);
402 	busy = invalidate_list(&sb->s_inodes, &throw_away);
403 	spin_unlock(&inode_lock);
404 
405 	dispose_list(&throw_away);
406 	mutex_unlock(&iprune_mutex);
407 
408 	return busy;
409 }
410 
411 EXPORT_SYMBOL(invalidate_inodes);
412 
413 static int can_unuse(struct inode *inode)
414 {
415 	if (inode->i_state)
416 		return 0;
417 	if (inode_has_buffers(inode))
418 		return 0;
419 	if (atomic_read(&inode->i_count))
420 		return 0;
421 	if (inode->i_data.nrpages)
422 		return 0;
423 	return 1;
424 }
425 
426 /*
427  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
428  * a temporary list and then are freed outside inode_lock by dispose_list().
429  *
430  * Any inodes which are pinned purely because of attached pagecache have their
431  * pagecache removed.  We expect the final iput() on that inode to add it to
432  * the front of the inode_unused list.  So look for it there and if the
433  * inode is still freeable, proceed.  The right inode is found 99.9% of the
434  * time in testing on a 4-way.
435  *
436  * If the inode has metadata buffers attached to mapping->private_list then
437  * try to remove them.
438  */
439 static void prune_icache(int nr_to_scan)
440 {
441 	LIST_HEAD(freeable);
442 	int nr_pruned = 0;
443 	int nr_scanned;
444 	unsigned long reap = 0;
445 
446 	mutex_lock(&iprune_mutex);
447 	spin_lock(&inode_lock);
448 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
449 		struct inode *inode;
450 
451 		if (list_empty(&inode_unused))
452 			break;
453 
454 		inode = list_entry(inode_unused.prev, struct inode, i_list);
455 
456 		if (inode->i_state || atomic_read(&inode->i_count)) {
457 			list_move(&inode->i_list, &inode_unused);
458 			continue;
459 		}
460 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
461 			__iget(inode);
462 			spin_unlock(&inode_lock);
463 			if (remove_inode_buffers(inode))
464 				reap += invalidate_mapping_pages(&inode->i_data,
465 								0, -1);
466 			iput(inode);
467 			spin_lock(&inode_lock);
468 
469 			if (inode != list_entry(inode_unused.next,
470 						struct inode, i_list))
471 				continue;	/* wrong inode or list_empty */
472 			if (!can_unuse(inode))
473 				continue;
474 		}
475 		list_move(&inode->i_list, &freeable);
476 		WARN_ON(inode->i_state & I_NEW);
477 		inode->i_state |= I_FREEING;
478 		nr_pruned++;
479 	}
480 	inodes_stat.nr_unused -= nr_pruned;
481 	if (current_is_kswapd())
482 		__count_vm_events(KSWAPD_INODESTEAL, reap);
483 	else
484 		__count_vm_events(PGINODESTEAL, reap);
485 	spin_unlock(&inode_lock);
486 
487 	dispose_list(&freeable);
488 	mutex_unlock(&iprune_mutex);
489 }
490 
491 /*
492  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
493  * "unused" means that no dentries are referring to the inodes: the files are
494  * not open and the dcache references to those inodes have already been
495  * reclaimed.
496  *
497  * This function is passed the number of inodes to scan, and it returns the
498  * total number of remaining possibly-reclaimable inodes.
499  */
500 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
501 {
502 	if (nr) {
503 		/*
504 		 * Nasty deadlock avoidance.  We may hold various FS locks,
505 		 * and we don't want to recurse into the FS that called us
506 		 * in clear_inode() and friends..
507 	 	 */
508 		if (!(gfp_mask & __GFP_FS))
509 			return -1;
510 		prune_icache(nr);
511 	}
512 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
513 }
514 
515 static struct shrinker icache_shrinker = {
516 	.shrink = shrink_icache_memory,
517 	.seeks = DEFAULT_SEEKS,
518 };
519 
520 static void __wait_on_freeing_inode(struct inode *inode);
521 /*
522  * Called with the inode lock held.
523  * NOTE: we are not increasing the inode-refcount, you must call __iget()
524  * by hand after calling find_inode now! This simplifies iunique and won't
525  * add any additional branch in the common code.
526  */
527 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
528 {
529 	struct hlist_node *node;
530 	struct inode * inode = NULL;
531 
532 repeat:
533 	hlist_for_each_entry(inode, node, head, i_hash) {
534 		if (inode->i_sb != sb)
535 			continue;
536 		if (!test(inode, data))
537 			continue;
538 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
539 			__wait_on_freeing_inode(inode);
540 			goto repeat;
541 		}
542 		break;
543 	}
544 	return node ? inode : NULL;
545 }
546 
547 /*
548  * find_inode_fast is the fast path version of find_inode, see the comment at
549  * iget_locked for details.
550  */
551 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
552 {
553 	struct hlist_node *node;
554 	struct inode * inode = NULL;
555 
556 repeat:
557 	hlist_for_each_entry(inode, node, head, i_hash) {
558 		if (inode->i_ino != ino)
559 			continue;
560 		if (inode->i_sb != sb)
561 			continue;
562 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
563 			__wait_on_freeing_inode(inode);
564 			goto repeat;
565 		}
566 		break;
567 	}
568 	return node ? inode : NULL;
569 }
570 
571 static unsigned long hash(struct super_block *sb, unsigned long hashval)
572 {
573 	unsigned long tmp;
574 
575 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
576 			L1_CACHE_BYTES;
577 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
578 	return tmp & I_HASHMASK;
579 }
580 
581 static inline void
582 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
583 			struct inode *inode)
584 {
585 	inodes_stat.nr_inodes++;
586 	list_add(&inode->i_list, &inode_in_use);
587 	list_add(&inode->i_sb_list, &sb->s_inodes);
588 	if (head)
589 		hlist_add_head(&inode->i_hash, head);
590 }
591 
592 /**
593  * inode_add_to_lists - add a new inode to relevant lists
594  * @sb: superblock inode belongs to
595  * @inode: inode to mark in use
596  *
597  * When an inode is allocated it needs to be accounted for, added to the in use
598  * list, the owning superblock and the inode hash. This needs to be done under
599  * the inode_lock, so export a function to do this rather than the inode lock
600  * itself. We calculate the hash list to add to here so it is all internal
601  * which requires the caller to have already set up the inode number in the
602  * inode to add.
603  */
604 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
605 {
606 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
607 
608 	spin_lock(&inode_lock);
609 	__inode_add_to_lists(sb, head, inode);
610 	spin_unlock(&inode_lock);
611 }
612 EXPORT_SYMBOL_GPL(inode_add_to_lists);
613 
614 /**
615  *	new_inode 	- obtain an inode
616  *	@sb: superblock
617  *
618  *	Allocates a new inode for given superblock. The default gfp_mask
619  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
620  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
621  *	for the page cache are not reclaimable or migratable,
622  *	mapping_set_gfp_mask() must be called with suitable flags on the
623  *	newly created inode's mapping
624  *
625  */
626 struct inode *new_inode(struct super_block *sb)
627 {
628 	/*
629 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
630 	 * error if st_ino won't fit in target struct field. Use 32bit counter
631 	 * here to attempt to avoid that.
632 	 */
633 	static unsigned int last_ino;
634 	struct inode * inode;
635 
636 	spin_lock_prefetch(&inode_lock);
637 
638 	inode = alloc_inode(sb);
639 	if (inode) {
640 		spin_lock(&inode_lock);
641 		__inode_add_to_lists(sb, NULL, inode);
642 		inode->i_ino = ++last_ino;
643 		inode->i_state = 0;
644 		spin_unlock(&inode_lock);
645 	}
646 	return inode;
647 }
648 
649 EXPORT_SYMBOL(new_inode);
650 
651 void unlock_new_inode(struct inode *inode)
652 {
653 #ifdef CONFIG_DEBUG_LOCK_ALLOC
654 	if (inode->i_mode & S_IFDIR) {
655 		struct file_system_type *type = inode->i_sb->s_type;
656 
657 		/*
658 		 * ensure nobody is actually holding i_mutex
659 		 */
660 		mutex_destroy(&inode->i_mutex);
661 		mutex_init(&inode->i_mutex);
662 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
663 	}
664 #endif
665 	/*
666 	 * This is special!  We do not need the spinlock
667 	 * when clearing I_LOCK, because we're guaranteed
668 	 * that nobody else tries to do anything about the
669 	 * state of the inode when it is locked, as we
670 	 * just created it (so there can be no old holders
671 	 * that haven't tested I_LOCK).
672 	 */
673 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
674 	inode->i_state &= ~(I_LOCK|I_NEW);
675 	wake_up_inode(inode);
676 }
677 
678 EXPORT_SYMBOL(unlock_new_inode);
679 
680 /*
681  * This is called without the inode lock held.. Be careful.
682  *
683  * We no longer cache the sb_flags in i_flags - see fs.h
684  *	-- rmk@arm.uk.linux.org
685  */
686 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
687 {
688 	struct inode * inode;
689 
690 	inode = alloc_inode(sb);
691 	if (inode) {
692 		struct inode * old;
693 
694 		spin_lock(&inode_lock);
695 		/* We released the lock, so.. */
696 		old = find_inode(sb, head, test, data);
697 		if (!old) {
698 			if (set(inode, data))
699 				goto set_failed;
700 
701 			__inode_add_to_lists(sb, head, inode);
702 			inode->i_state = I_LOCK|I_NEW;
703 			spin_unlock(&inode_lock);
704 
705 			/* Return the locked inode with I_NEW set, the
706 			 * caller is responsible for filling in the contents
707 			 */
708 			return inode;
709 		}
710 
711 		/*
712 		 * Uhhuh, somebody else created the same inode under
713 		 * us. Use the old inode instead of the one we just
714 		 * allocated.
715 		 */
716 		__iget(old);
717 		spin_unlock(&inode_lock);
718 		destroy_inode(inode);
719 		inode = old;
720 		wait_on_inode(inode);
721 	}
722 	return inode;
723 
724 set_failed:
725 	spin_unlock(&inode_lock);
726 	destroy_inode(inode);
727 	return NULL;
728 }
729 
730 /*
731  * get_new_inode_fast is the fast path version of get_new_inode, see the
732  * comment at iget_locked for details.
733  */
734 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
735 {
736 	struct inode * inode;
737 
738 	inode = alloc_inode(sb);
739 	if (inode) {
740 		struct inode * old;
741 
742 		spin_lock(&inode_lock);
743 		/* We released the lock, so.. */
744 		old = find_inode_fast(sb, head, ino);
745 		if (!old) {
746 			inode->i_ino = ino;
747 			__inode_add_to_lists(sb, head, inode);
748 			inode->i_state = I_LOCK|I_NEW;
749 			spin_unlock(&inode_lock);
750 
751 			/* Return the locked inode with I_NEW set, the
752 			 * caller is responsible for filling in the contents
753 			 */
754 			return inode;
755 		}
756 
757 		/*
758 		 * Uhhuh, somebody else created the same inode under
759 		 * us. Use the old inode instead of the one we just
760 		 * allocated.
761 		 */
762 		__iget(old);
763 		spin_unlock(&inode_lock);
764 		destroy_inode(inode);
765 		inode = old;
766 		wait_on_inode(inode);
767 	}
768 	return inode;
769 }
770 
771 /**
772  *	iunique - get a unique inode number
773  *	@sb: superblock
774  *	@max_reserved: highest reserved inode number
775  *
776  *	Obtain an inode number that is unique on the system for a given
777  *	superblock. This is used by file systems that have no natural
778  *	permanent inode numbering system. An inode number is returned that
779  *	is higher than the reserved limit but unique.
780  *
781  *	BUGS:
782  *	With a large number of inodes live on the file system this function
783  *	currently becomes quite slow.
784  */
785 ino_t iunique(struct super_block *sb, ino_t max_reserved)
786 {
787 	/*
788 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
789 	 * error if st_ino won't fit in target struct field. Use 32bit counter
790 	 * here to attempt to avoid that.
791 	 */
792 	static unsigned int counter;
793 	struct inode *inode;
794 	struct hlist_head *head;
795 	ino_t res;
796 
797 	spin_lock(&inode_lock);
798 	do {
799 		if (counter <= max_reserved)
800 			counter = max_reserved + 1;
801 		res = counter++;
802 		head = inode_hashtable + hash(sb, res);
803 		inode = find_inode_fast(sb, head, res);
804 	} while (inode != NULL);
805 	spin_unlock(&inode_lock);
806 
807 	return res;
808 }
809 EXPORT_SYMBOL(iunique);
810 
811 struct inode *igrab(struct inode *inode)
812 {
813 	spin_lock(&inode_lock);
814 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
815 		__iget(inode);
816 	else
817 		/*
818 		 * Handle the case where s_op->clear_inode is not been
819 		 * called yet, and somebody is calling igrab
820 		 * while the inode is getting freed.
821 		 */
822 		inode = NULL;
823 	spin_unlock(&inode_lock);
824 	return inode;
825 }
826 
827 EXPORT_SYMBOL(igrab);
828 
829 /**
830  * ifind - internal function, you want ilookup5() or iget5().
831  * @sb:		super block of file system to search
832  * @head:       the head of the list to search
833  * @test:	callback used for comparisons between inodes
834  * @data:	opaque data pointer to pass to @test
835  * @wait:	if true wait for the inode to be unlocked, if false do not
836  *
837  * ifind() searches for the inode specified by @data in the inode
838  * cache. This is a generalized version of ifind_fast() for file systems where
839  * the inode number is not sufficient for unique identification of an inode.
840  *
841  * If the inode is in the cache, the inode is returned with an incremented
842  * reference count.
843  *
844  * Otherwise NULL is returned.
845  *
846  * Note, @test is called with the inode_lock held, so can't sleep.
847  */
848 static struct inode *ifind(struct super_block *sb,
849 		struct hlist_head *head, int (*test)(struct inode *, void *),
850 		void *data, const int wait)
851 {
852 	struct inode *inode;
853 
854 	spin_lock(&inode_lock);
855 	inode = find_inode(sb, head, test, data);
856 	if (inode) {
857 		__iget(inode);
858 		spin_unlock(&inode_lock);
859 		if (likely(wait))
860 			wait_on_inode(inode);
861 		return inode;
862 	}
863 	spin_unlock(&inode_lock);
864 	return NULL;
865 }
866 
867 /**
868  * ifind_fast - internal function, you want ilookup() or iget().
869  * @sb:		super block of file system to search
870  * @head:       head of the list to search
871  * @ino:	inode number to search for
872  *
873  * ifind_fast() searches for the inode @ino in the inode cache. This is for
874  * file systems where the inode number is sufficient for unique identification
875  * of an inode.
876  *
877  * If the inode is in the cache, the inode is returned with an incremented
878  * reference count.
879  *
880  * Otherwise NULL is returned.
881  */
882 static struct inode *ifind_fast(struct super_block *sb,
883 		struct hlist_head *head, unsigned long ino)
884 {
885 	struct inode *inode;
886 
887 	spin_lock(&inode_lock);
888 	inode = find_inode_fast(sb, head, ino);
889 	if (inode) {
890 		__iget(inode);
891 		spin_unlock(&inode_lock);
892 		wait_on_inode(inode);
893 		return inode;
894 	}
895 	spin_unlock(&inode_lock);
896 	return NULL;
897 }
898 
899 /**
900  * ilookup5_nowait - search for an inode in the inode cache
901  * @sb:		super block of file system to search
902  * @hashval:	hash value (usually inode number) to search for
903  * @test:	callback used for comparisons between inodes
904  * @data:	opaque data pointer to pass to @test
905  *
906  * ilookup5() uses ifind() to search for the inode specified by @hashval and
907  * @data in the inode cache. This is a generalized version of ilookup() for
908  * file systems where the inode number is not sufficient for unique
909  * identification of an inode.
910  *
911  * If the inode is in the cache, the inode is returned with an incremented
912  * reference count.  Note, the inode lock is not waited upon so you have to be
913  * very careful what you do with the returned inode.  You probably should be
914  * using ilookup5() instead.
915  *
916  * Otherwise NULL is returned.
917  *
918  * Note, @test is called with the inode_lock held, so can't sleep.
919  */
920 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
921 		int (*test)(struct inode *, void *), void *data)
922 {
923 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
924 
925 	return ifind(sb, head, test, data, 0);
926 }
927 
928 EXPORT_SYMBOL(ilookup5_nowait);
929 
930 /**
931  * ilookup5 - search for an inode in the inode cache
932  * @sb:		super block of file system to search
933  * @hashval:	hash value (usually inode number) to search for
934  * @test:	callback used for comparisons between inodes
935  * @data:	opaque data pointer to pass to @test
936  *
937  * ilookup5() uses ifind() to search for the inode specified by @hashval and
938  * @data in the inode cache. This is a generalized version of ilookup() for
939  * file systems where the inode number is not sufficient for unique
940  * identification of an inode.
941  *
942  * If the inode is in the cache, the inode lock is waited upon and the inode is
943  * returned with an incremented reference count.
944  *
945  * Otherwise NULL is returned.
946  *
947  * Note, @test is called with the inode_lock held, so can't sleep.
948  */
949 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
950 		int (*test)(struct inode *, void *), void *data)
951 {
952 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
953 
954 	return ifind(sb, head, test, data, 1);
955 }
956 
957 EXPORT_SYMBOL(ilookup5);
958 
959 /**
960  * ilookup - search for an inode in the inode cache
961  * @sb:		super block of file system to search
962  * @ino:	inode number to search for
963  *
964  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
965  * This is for file systems where the inode number is sufficient for unique
966  * identification of an inode.
967  *
968  * If the inode is in the cache, the inode is returned with an incremented
969  * reference count.
970  *
971  * Otherwise NULL is returned.
972  */
973 struct inode *ilookup(struct super_block *sb, unsigned long ino)
974 {
975 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
976 
977 	return ifind_fast(sb, head, ino);
978 }
979 
980 EXPORT_SYMBOL(ilookup);
981 
982 /**
983  * iget5_locked - obtain an inode from a mounted file system
984  * @sb:		super block of file system
985  * @hashval:	hash value (usually inode number) to get
986  * @test:	callback used for comparisons between inodes
987  * @set:	callback used to initialize a new struct inode
988  * @data:	opaque data pointer to pass to @test and @set
989  *
990  * iget5_locked() uses ifind() to search for the inode specified by @hashval
991  * and @data in the inode cache and if present it is returned with an increased
992  * reference count. This is a generalized version of iget_locked() for file
993  * systems where the inode number is not sufficient for unique identification
994  * of an inode.
995  *
996  * If the inode is not in cache, get_new_inode() is called to allocate a new
997  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
998  * file system gets to fill it in before unlocking it via unlock_new_inode().
999  *
1000  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1001  */
1002 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1003 		int (*test)(struct inode *, void *),
1004 		int (*set)(struct inode *, void *), void *data)
1005 {
1006 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1007 	struct inode *inode;
1008 
1009 	inode = ifind(sb, head, test, data, 1);
1010 	if (inode)
1011 		return inode;
1012 	/*
1013 	 * get_new_inode() will do the right thing, re-trying the search
1014 	 * in case it had to block at any point.
1015 	 */
1016 	return get_new_inode(sb, head, test, set, data);
1017 }
1018 
1019 EXPORT_SYMBOL(iget5_locked);
1020 
1021 /**
1022  * iget_locked - obtain an inode from a mounted file system
1023  * @sb:		super block of file system
1024  * @ino:	inode number to get
1025  *
1026  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1027  * the inode cache and if present it is returned with an increased reference
1028  * count. This is for file systems where the inode number is sufficient for
1029  * unique identification of an inode.
1030  *
1031  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1032  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1033  * The file system gets to fill it in before unlocking it via
1034  * unlock_new_inode().
1035  */
1036 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1037 {
1038 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1039 	struct inode *inode;
1040 
1041 	inode = ifind_fast(sb, head, ino);
1042 	if (inode)
1043 		return inode;
1044 	/*
1045 	 * get_new_inode_fast() will do the right thing, re-trying the search
1046 	 * in case it had to block at any point.
1047 	 */
1048 	return get_new_inode_fast(sb, head, ino);
1049 }
1050 
1051 EXPORT_SYMBOL(iget_locked);
1052 
1053 int insert_inode_locked(struct inode *inode)
1054 {
1055 	struct super_block *sb = inode->i_sb;
1056 	ino_t ino = inode->i_ino;
1057 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1058 	struct inode *old;
1059 
1060 	inode->i_state |= I_LOCK|I_NEW;
1061 	while (1) {
1062 		spin_lock(&inode_lock);
1063 		old = find_inode_fast(sb, head, ino);
1064 		if (likely(!old)) {
1065 			hlist_add_head(&inode->i_hash, head);
1066 			spin_unlock(&inode_lock);
1067 			return 0;
1068 		}
1069 		__iget(old);
1070 		spin_unlock(&inode_lock);
1071 		wait_on_inode(old);
1072 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1073 			iput(old);
1074 			return -EBUSY;
1075 		}
1076 		iput(old);
1077 	}
1078 }
1079 
1080 EXPORT_SYMBOL(insert_inode_locked);
1081 
1082 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1083 		int (*test)(struct inode *, void *), void *data)
1084 {
1085 	struct super_block *sb = inode->i_sb;
1086 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1087 	struct inode *old;
1088 
1089 	inode->i_state |= I_LOCK|I_NEW;
1090 
1091 	while (1) {
1092 		spin_lock(&inode_lock);
1093 		old = find_inode(sb, head, test, data);
1094 		if (likely(!old)) {
1095 			hlist_add_head(&inode->i_hash, head);
1096 			spin_unlock(&inode_lock);
1097 			return 0;
1098 		}
1099 		__iget(old);
1100 		spin_unlock(&inode_lock);
1101 		wait_on_inode(old);
1102 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1103 			iput(old);
1104 			return -EBUSY;
1105 		}
1106 		iput(old);
1107 	}
1108 }
1109 
1110 EXPORT_SYMBOL(insert_inode_locked4);
1111 
1112 /**
1113  *	__insert_inode_hash - hash an inode
1114  *	@inode: unhashed inode
1115  *	@hashval: unsigned long value used to locate this object in the
1116  *		inode_hashtable.
1117  *
1118  *	Add an inode to the inode hash for this superblock.
1119  */
1120 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1121 {
1122 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1123 	spin_lock(&inode_lock);
1124 	hlist_add_head(&inode->i_hash, head);
1125 	spin_unlock(&inode_lock);
1126 }
1127 
1128 EXPORT_SYMBOL(__insert_inode_hash);
1129 
1130 /**
1131  *	remove_inode_hash - remove an inode from the hash
1132  *	@inode: inode to unhash
1133  *
1134  *	Remove an inode from the superblock.
1135  */
1136 void remove_inode_hash(struct inode *inode)
1137 {
1138 	spin_lock(&inode_lock);
1139 	hlist_del_init(&inode->i_hash);
1140 	spin_unlock(&inode_lock);
1141 }
1142 
1143 EXPORT_SYMBOL(remove_inode_hash);
1144 
1145 /*
1146  * Tell the filesystem that this inode is no longer of any interest and should
1147  * be completely destroyed.
1148  *
1149  * We leave the inode in the inode hash table until *after* the filesystem's
1150  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1151  * instigate) will always find up-to-date information either in the hash or on
1152  * disk.
1153  *
1154  * I_FREEING is set so that no-one will take a new reference to the inode while
1155  * it is being deleted.
1156  */
1157 void generic_delete_inode(struct inode *inode)
1158 {
1159 	const struct super_operations *op = inode->i_sb->s_op;
1160 
1161 	list_del_init(&inode->i_list);
1162 	list_del_init(&inode->i_sb_list);
1163 	WARN_ON(inode->i_state & I_NEW);
1164 	inode->i_state |= I_FREEING;
1165 	inodes_stat.nr_inodes--;
1166 	spin_unlock(&inode_lock);
1167 
1168 	security_inode_delete(inode);
1169 
1170 	if (op->delete_inode) {
1171 		void (*delete)(struct inode *) = op->delete_inode;
1172 		if (!is_bad_inode(inode))
1173 			vfs_dq_init(inode);
1174 		/* Filesystems implementing their own
1175 		 * s_op->delete_inode are required to call
1176 		 * truncate_inode_pages and clear_inode()
1177 		 * internally */
1178 		delete(inode);
1179 	} else {
1180 		truncate_inode_pages(&inode->i_data, 0);
1181 		clear_inode(inode);
1182 	}
1183 	spin_lock(&inode_lock);
1184 	hlist_del_init(&inode->i_hash);
1185 	spin_unlock(&inode_lock);
1186 	wake_up_inode(inode);
1187 	BUG_ON(inode->i_state != I_CLEAR);
1188 	destroy_inode(inode);
1189 }
1190 
1191 EXPORT_SYMBOL(generic_delete_inode);
1192 
1193 static void generic_forget_inode(struct inode *inode)
1194 {
1195 	struct super_block *sb = inode->i_sb;
1196 
1197 	if (!hlist_unhashed(&inode->i_hash)) {
1198 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1199 			list_move(&inode->i_list, &inode_unused);
1200 		inodes_stat.nr_unused++;
1201 		if (sb->s_flags & MS_ACTIVE) {
1202 			spin_unlock(&inode_lock);
1203 			return;
1204 		}
1205 		WARN_ON(inode->i_state & I_NEW);
1206 		inode->i_state |= I_WILL_FREE;
1207 		spin_unlock(&inode_lock);
1208 		write_inode_now(inode, 1);
1209 		spin_lock(&inode_lock);
1210 		WARN_ON(inode->i_state & I_NEW);
1211 		inode->i_state &= ~I_WILL_FREE;
1212 		inodes_stat.nr_unused--;
1213 		hlist_del_init(&inode->i_hash);
1214 	}
1215 	list_del_init(&inode->i_list);
1216 	list_del_init(&inode->i_sb_list);
1217 	WARN_ON(inode->i_state & I_NEW);
1218 	inode->i_state |= I_FREEING;
1219 	inodes_stat.nr_inodes--;
1220 	spin_unlock(&inode_lock);
1221 	if (inode->i_data.nrpages)
1222 		truncate_inode_pages(&inode->i_data, 0);
1223 	clear_inode(inode);
1224 	wake_up_inode(inode);
1225 	destroy_inode(inode);
1226 }
1227 
1228 /*
1229  * Normal UNIX filesystem behaviour: delete the
1230  * inode when the usage count drops to zero, and
1231  * i_nlink is zero.
1232  */
1233 void generic_drop_inode(struct inode *inode)
1234 {
1235 	if (!inode->i_nlink)
1236 		generic_delete_inode(inode);
1237 	else
1238 		generic_forget_inode(inode);
1239 }
1240 
1241 EXPORT_SYMBOL_GPL(generic_drop_inode);
1242 
1243 /*
1244  * Called when we're dropping the last reference
1245  * to an inode.
1246  *
1247  * Call the FS "drop()" function, defaulting to
1248  * the legacy UNIX filesystem behaviour..
1249  *
1250  * NOTE! NOTE! NOTE! We're called with the inode lock
1251  * held, and the drop function is supposed to release
1252  * the lock!
1253  */
1254 static inline void iput_final(struct inode *inode)
1255 {
1256 	const struct super_operations *op = inode->i_sb->s_op;
1257 	void (*drop)(struct inode *) = generic_drop_inode;
1258 
1259 	if (op && op->drop_inode)
1260 		drop = op->drop_inode;
1261 	drop(inode);
1262 }
1263 
1264 /**
1265  *	iput	- put an inode
1266  *	@inode: inode to put
1267  *
1268  *	Puts an inode, dropping its usage count. If the inode use count hits
1269  *	zero, the inode is then freed and may also be destroyed.
1270  *
1271  *	Consequently, iput() can sleep.
1272  */
1273 void iput(struct inode *inode)
1274 {
1275 	if (inode) {
1276 		BUG_ON(inode->i_state == I_CLEAR);
1277 
1278 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1279 			iput_final(inode);
1280 	}
1281 }
1282 
1283 EXPORT_SYMBOL(iput);
1284 
1285 /**
1286  *	bmap	- find a block number in a file
1287  *	@inode: inode of file
1288  *	@block: block to find
1289  *
1290  *	Returns the block number on the device holding the inode that
1291  *	is the disk block number for the block of the file requested.
1292  *	That is, asked for block 4 of inode 1 the function will return the
1293  *	disk block relative to the disk start that holds that block of the
1294  *	file.
1295  */
1296 sector_t bmap(struct inode * inode, sector_t block)
1297 {
1298 	sector_t res = 0;
1299 	if (inode->i_mapping->a_ops->bmap)
1300 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1301 	return res;
1302 }
1303 EXPORT_SYMBOL(bmap);
1304 
1305 /*
1306  * With relative atime, only update atime if the previous atime is
1307  * earlier than either the ctime or mtime or if at least a day has
1308  * passed since the last atime update.
1309  */
1310 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1311 			     struct timespec now)
1312 {
1313 
1314 	if (!(mnt->mnt_flags & MNT_RELATIME))
1315 		return 1;
1316 	/*
1317 	 * Is mtime younger than atime? If yes, update atime:
1318 	 */
1319 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1320 		return 1;
1321 	/*
1322 	 * Is ctime younger than atime? If yes, update atime:
1323 	 */
1324 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1325 		return 1;
1326 
1327 	/*
1328 	 * Is the previous atime value older than a day? If yes,
1329 	 * update atime:
1330 	 */
1331 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1332 		return 1;
1333 	/*
1334 	 * Good, we can skip the atime update:
1335 	 */
1336 	return 0;
1337 }
1338 
1339 /**
1340  *	touch_atime	-	update the access time
1341  *	@mnt: mount the inode is accessed on
1342  *	@dentry: dentry accessed
1343  *
1344  *	Update the accessed time on an inode and mark it for writeback.
1345  *	This function automatically handles read only file systems and media,
1346  *	as well as the "noatime" flag and inode specific "noatime" markers.
1347  */
1348 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1349 {
1350 	struct inode *inode = dentry->d_inode;
1351 	struct timespec now;
1352 
1353 	if (mnt_want_write(mnt))
1354 		return;
1355 	if (inode->i_flags & S_NOATIME)
1356 		goto out;
1357 	if (IS_NOATIME(inode))
1358 		goto out;
1359 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1360 		goto out;
1361 
1362 	if (mnt->mnt_flags & MNT_NOATIME)
1363 		goto out;
1364 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1365 		goto out;
1366 
1367 	now = current_fs_time(inode->i_sb);
1368 
1369 	if (!relatime_need_update(mnt, inode, now))
1370 		goto out;
1371 
1372 	if (timespec_equal(&inode->i_atime, &now))
1373 		goto out;
1374 
1375 	inode->i_atime = now;
1376 	mark_inode_dirty_sync(inode);
1377 out:
1378 	mnt_drop_write(mnt);
1379 }
1380 EXPORT_SYMBOL(touch_atime);
1381 
1382 /**
1383  *	file_update_time	-	update mtime and ctime time
1384  *	@file: file accessed
1385  *
1386  *	Update the mtime and ctime members of an inode and mark the inode
1387  *	for writeback.  Note that this function is meant exclusively for
1388  *	usage in the file write path of filesystems, and filesystems may
1389  *	choose to explicitly ignore update via this function with the
1390  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1391  *	timestamps are handled by the server.
1392  */
1393 
1394 void file_update_time(struct file *file)
1395 {
1396 	struct inode *inode = file->f_path.dentry->d_inode;
1397 	struct timespec now;
1398 	int sync_it = 0;
1399 	int err;
1400 
1401 	if (IS_NOCMTIME(inode))
1402 		return;
1403 
1404 	err = mnt_want_write(file->f_path.mnt);
1405 	if (err)
1406 		return;
1407 
1408 	now = current_fs_time(inode->i_sb);
1409 	if (!timespec_equal(&inode->i_mtime, &now)) {
1410 		inode->i_mtime = now;
1411 		sync_it = 1;
1412 	}
1413 
1414 	if (!timespec_equal(&inode->i_ctime, &now)) {
1415 		inode->i_ctime = now;
1416 		sync_it = 1;
1417 	}
1418 
1419 	if (IS_I_VERSION(inode)) {
1420 		inode_inc_iversion(inode);
1421 		sync_it = 1;
1422 	}
1423 
1424 	if (sync_it)
1425 		mark_inode_dirty_sync(inode);
1426 	mnt_drop_write(file->f_path.mnt);
1427 }
1428 
1429 EXPORT_SYMBOL(file_update_time);
1430 
1431 int inode_needs_sync(struct inode *inode)
1432 {
1433 	if (IS_SYNC(inode))
1434 		return 1;
1435 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1436 		return 1;
1437 	return 0;
1438 }
1439 
1440 EXPORT_SYMBOL(inode_needs_sync);
1441 
1442 int inode_wait(void *word)
1443 {
1444 	schedule();
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(inode_wait);
1448 
1449 /*
1450  * If we try to find an inode in the inode hash while it is being
1451  * deleted, we have to wait until the filesystem completes its
1452  * deletion before reporting that it isn't found.  This function waits
1453  * until the deletion _might_ have completed.  Callers are responsible
1454  * to recheck inode state.
1455  *
1456  * It doesn't matter if I_LOCK is not set initially, a call to
1457  * wake_up_inode() after removing from the hash list will DTRT.
1458  *
1459  * This is called with inode_lock held.
1460  */
1461 static void __wait_on_freeing_inode(struct inode *inode)
1462 {
1463 	wait_queue_head_t *wq;
1464 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1465 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1466 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1467 	spin_unlock(&inode_lock);
1468 	schedule();
1469 	finish_wait(wq, &wait.wait);
1470 	spin_lock(&inode_lock);
1471 }
1472 
1473 /*
1474  * We rarely want to lock two inodes that do not have a parent/child
1475  * relationship (such as directory, child inode) simultaneously. The
1476  * vast majority of file systems should be able to get along fine
1477  * without this. Do not use these functions except as a last resort.
1478  */
1479 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1480 {
1481 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1482 		if (inode1)
1483 			mutex_lock(&inode1->i_mutex);
1484 		else if (inode2)
1485 			mutex_lock(&inode2->i_mutex);
1486 		return;
1487 	}
1488 
1489 	if (inode1 < inode2) {
1490 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1491 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1492 	} else {
1493 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1494 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1495 	}
1496 }
1497 EXPORT_SYMBOL(inode_double_lock);
1498 
1499 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1500 {
1501 	if (inode1)
1502 		mutex_unlock(&inode1->i_mutex);
1503 
1504 	if (inode2 && inode2 != inode1)
1505 		mutex_unlock(&inode2->i_mutex);
1506 }
1507 EXPORT_SYMBOL(inode_double_unlock);
1508 
1509 static __initdata unsigned long ihash_entries;
1510 static int __init set_ihash_entries(char *str)
1511 {
1512 	if (!str)
1513 		return 0;
1514 	ihash_entries = simple_strtoul(str, &str, 0);
1515 	return 1;
1516 }
1517 __setup("ihash_entries=", set_ihash_entries);
1518 
1519 /*
1520  * Initialize the waitqueues and inode hash table.
1521  */
1522 void __init inode_init_early(void)
1523 {
1524 	int loop;
1525 
1526 	/* If hashes are distributed across NUMA nodes, defer
1527 	 * hash allocation until vmalloc space is available.
1528 	 */
1529 	if (hashdist)
1530 		return;
1531 
1532 	inode_hashtable =
1533 		alloc_large_system_hash("Inode-cache",
1534 					sizeof(struct hlist_head),
1535 					ihash_entries,
1536 					14,
1537 					HASH_EARLY,
1538 					&i_hash_shift,
1539 					&i_hash_mask,
1540 					0);
1541 
1542 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1543 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1544 }
1545 
1546 void __init inode_init(void)
1547 {
1548 	int loop;
1549 
1550 	/* inode slab cache */
1551 	inode_cachep = kmem_cache_create("inode_cache",
1552 					 sizeof(struct inode),
1553 					 0,
1554 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1555 					 SLAB_MEM_SPREAD),
1556 					 init_once);
1557 	register_shrinker(&icache_shrinker);
1558 
1559 	/* Hash may have been set up in inode_init_early */
1560 	if (!hashdist)
1561 		return;
1562 
1563 	inode_hashtable =
1564 		alloc_large_system_hash("Inode-cache",
1565 					sizeof(struct hlist_head),
1566 					ihash_entries,
1567 					14,
1568 					0,
1569 					&i_hash_shift,
1570 					&i_hash_mask,
1571 					0);
1572 
1573 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1574 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1575 }
1576 
1577 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1578 {
1579 	inode->i_mode = mode;
1580 	if (S_ISCHR(mode)) {
1581 		inode->i_fop = &def_chr_fops;
1582 		inode->i_rdev = rdev;
1583 	} else if (S_ISBLK(mode)) {
1584 		inode->i_fop = &def_blk_fops;
1585 		inode->i_rdev = rdev;
1586 	} else if (S_ISFIFO(mode))
1587 		inode->i_fop = &def_fifo_fops;
1588 	else if (S_ISSOCK(mode))
1589 		inode->i_fop = &bad_sock_fops;
1590 	else
1591 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1592 		       mode);
1593 }
1594 EXPORT_SYMBOL(init_special_inode);
1595