xref: /linux/fs/inode.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static const struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static const struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->dirtied_when = 0;
137 		if (security_inode_alloc(inode)) {
138 			if (inode->i_sb->s_op->destroy_inode)
139 				inode->i_sb->s_op->destroy_inode(inode);
140 			else
141 				kmem_cache_free(inode_cachep, (inode));
142 			return NULL;
143 		}
144 
145 		mapping->a_ops = &empty_aops;
146  		mapping->host = inode;
147 		mapping->flags = 0;
148 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 		mapping->assoc_mapping = NULL;
150 		mapping->backing_dev_info = &default_backing_dev_info;
151 
152 		/*
153 		 * If the block_device provides a backing_dev_info for client
154 		 * inodes then use that.  Otherwise the inode share the bdev's
155 		 * backing_dev_info.
156 		 */
157 		if (sb->s_bdev) {
158 			struct backing_dev_info *bdi;
159 
160 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
161 			if (!bdi)
162 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 			mapping->backing_dev_info = bdi;
164 		}
165 		inode->i_private = NULL;
166 		inode->i_mapping = mapping;
167 	}
168 	return inode;
169 }
170 
171 void destroy_inode(struct inode *inode)
172 {
173 	BUG_ON(inode_has_buffers(inode));
174 	security_inode_free(inode);
175 	if (inode->i_sb->s_op->destroy_inode)
176 		inode->i_sb->s_op->destroy_inode(inode);
177 	else
178 		kmem_cache_free(inode_cachep, (inode));
179 }
180 
181 
182 /*
183  * These are initializations that only need to be done
184  * once, because the fields are idempotent across use
185  * of the inode, so let the slab aware of that.
186  */
187 void inode_init_once(struct inode *inode)
188 {
189 	memset(inode, 0, sizeof(*inode));
190 	INIT_HLIST_NODE(&inode->i_hash);
191 	INIT_LIST_HEAD(&inode->i_dentry);
192 	INIT_LIST_HEAD(&inode->i_devices);
193 	mutex_init(&inode->i_mutex);
194 	init_rwsem(&inode->i_alloc_sem);
195 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
196 	rwlock_init(&inode->i_data.tree_lock);
197 	spin_lock_init(&inode->i_data.i_mmap_lock);
198 	INIT_LIST_HEAD(&inode->i_data.private_list);
199 	spin_lock_init(&inode->i_data.private_lock);
200 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
201 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
202 	spin_lock_init(&inode->i_lock);
203 	i_size_ordered_init(inode);
204 #ifdef CONFIG_INOTIFY
205 	INIT_LIST_HEAD(&inode->inotify_watches);
206 	mutex_init(&inode->inotify_mutex);
207 #endif
208 }
209 
210 EXPORT_SYMBOL(inode_init_once);
211 
212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
213 {
214 	struct inode * inode = (struct inode *) foo;
215 
216 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
217 	    SLAB_CTOR_CONSTRUCTOR)
218 		inode_init_once(inode);
219 }
220 
221 /*
222  * inode_lock must be held
223  */
224 void __iget(struct inode * inode)
225 {
226 	if (atomic_read(&inode->i_count)) {
227 		atomic_inc(&inode->i_count);
228 		return;
229 	}
230 	atomic_inc(&inode->i_count);
231 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
232 		list_move(&inode->i_list, &inode_in_use);
233 	inodes_stat.nr_unused--;
234 }
235 
236 /**
237  * clear_inode - clear an inode
238  * @inode: inode to clear
239  *
240  * This is called by the filesystem to tell us
241  * that the inode is no longer useful. We just
242  * terminate it with extreme prejudice.
243  */
244 void clear_inode(struct inode *inode)
245 {
246 	might_sleep();
247 	invalidate_inode_buffers(inode);
248 
249 	BUG_ON(inode->i_data.nrpages);
250 	BUG_ON(!(inode->i_state & I_FREEING));
251 	BUG_ON(inode->i_state & I_CLEAR);
252 	wait_on_inode(inode);
253 	DQUOT_DROP(inode);
254 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
255 		inode->i_sb->s_op->clear_inode(inode);
256 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
257 		bd_forget(inode);
258 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
259 		cd_forget(inode);
260 	inode->i_state = I_CLEAR;
261 }
262 
263 EXPORT_SYMBOL(clear_inode);
264 
265 /*
266  * dispose_list - dispose of the contents of a local list
267  * @head: the head of the list to free
268  *
269  * Dispose-list gets a local list with local inodes in it, so it doesn't
270  * need to worry about list corruption and SMP locks.
271  */
272 static void dispose_list(struct list_head *head)
273 {
274 	int nr_disposed = 0;
275 
276 	while (!list_empty(head)) {
277 		struct inode *inode;
278 
279 		inode = list_entry(head->next, struct inode, i_list);
280 		list_del(&inode->i_list);
281 
282 		if (inode->i_data.nrpages)
283 			truncate_inode_pages(&inode->i_data, 0);
284 		clear_inode(inode);
285 
286 		spin_lock(&inode_lock);
287 		hlist_del_init(&inode->i_hash);
288 		list_del_init(&inode->i_sb_list);
289 		spin_unlock(&inode_lock);
290 
291 		wake_up_inode(inode);
292 		destroy_inode(inode);
293 		nr_disposed++;
294 	}
295 	spin_lock(&inode_lock);
296 	inodes_stat.nr_inodes -= nr_disposed;
297 	spin_unlock(&inode_lock);
298 }
299 
300 /*
301  * Invalidate all inodes for a device.
302  */
303 static int invalidate_list(struct list_head *head, struct list_head *dispose)
304 {
305 	struct list_head *next;
306 	int busy = 0, count = 0;
307 
308 	next = head->next;
309 	for (;;) {
310 		struct list_head * tmp = next;
311 		struct inode * inode;
312 
313 		/*
314 		 * We can reschedule here without worrying about the list's
315 		 * consistency because the per-sb list of inodes must not
316 		 * change during umount anymore, and because iprune_mutex keeps
317 		 * shrink_icache_memory() away.
318 		 */
319 		cond_resched_lock(&inode_lock);
320 
321 		next = next->next;
322 		if (tmp == head)
323 			break;
324 		inode = list_entry(tmp, struct inode, i_sb_list);
325 		invalidate_inode_buffers(inode);
326 		if (!atomic_read(&inode->i_count)) {
327 			list_move(&inode->i_list, dispose);
328 			inode->i_state |= I_FREEING;
329 			count++;
330 			continue;
331 		}
332 		busy = 1;
333 	}
334 	/* only unused inodes may be cached with i_count zero */
335 	inodes_stat.nr_unused -= count;
336 	return busy;
337 }
338 
339 /**
340  *	invalidate_inodes	- discard the inodes on a device
341  *	@sb: superblock
342  *
343  *	Discard all of the inodes for a given superblock. If the discard
344  *	fails because there are busy inodes then a non zero value is returned.
345  *	If the discard is successful all the inodes have been discarded.
346  */
347 int invalidate_inodes(struct super_block * sb)
348 {
349 	int busy;
350 	LIST_HEAD(throw_away);
351 
352 	mutex_lock(&iprune_mutex);
353 	spin_lock(&inode_lock);
354 	inotify_unmount_inodes(&sb->s_inodes);
355 	busy = invalidate_list(&sb->s_inodes, &throw_away);
356 	spin_unlock(&inode_lock);
357 
358 	dispose_list(&throw_away);
359 	mutex_unlock(&iprune_mutex);
360 
361 	return busy;
362 }
363 
364 EXPORT_SYMBOL(invalidate_inodes);
365 
366 static int can_unuse(struct inode *inode)
367 {
368 	if (inode->i_state)
369 		return 0;
370 	if (inode_has_buffers(inode))
371 		return 0;
372 	if (atomic_read(&inode->i_count))
373 		return 0;
374 	if (inode->i_data.nrpages)
375 		return 0;
376 	return 1;
377 }
378 
379 /*
380  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
381  * a temporary list and then are freed outside inode_lock by dispose_list().
382  *
383  * Any inodes which are pinned purely because of attached pagecache have their
384  * pagecache removed.  We expect the final iput() on that inode to add it to
385  * the front of the inode_unused list.  So look for it there and if the
386  * inode is still freeable, proceed.  The right inode is found 99.9% of the
387  * time in testing on a 4-way.
388  *
389  * If the inode has metadata buffers attached to mapping->private_list then
390  * try to remove them.
391  */
392 static void prune_icache(int nr_to_scan)
393 {
394 	LIST_HEAD(freeable);
395 	int nr_pruned = 0;
396 	int nr_scanned;
397 	unsigned long reap = 0;
398 
399 	mutex_lock(&iprune_mutex);
400 	spin_lock(&inode_lock);
401 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
402 		struct inode *inode;
403 
404 		if (list_empty(&inode_unused))
405 			break;
406 
407 		inode = list_entry(inode_unused.prev, struct inode, i_list);
408 
409 		if (inode->i_state || atomic_read(&inode->i_count)) {
410 			list_move(&inode->i_list, &inode_unused);
411 			continue;
412 		}
413 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
414 			__iget(inode);
415 			spin_unlock(&inode_lock);
416 			if (remove_inode_buffers(inode))
417 				reap += invalidate_inode_pages(&inode->i_data);
418 			iput(inode);
419 			spin_lock(&inode_lock);
420 
421 			if (inode != list_entry(inode_unused.next,
422 						struct inode, i_list))
423 				continue;	/* wrong inode or list_empty */
424 			if (!can_unuse(inode))
425 				continue;
426 		}
427 		list_move(&inode->i_list, &freeable);
428 		inode->i_state |= I_FREEING;
429 		nr_pruned++;
430 	}
431 	inodes_stat.nr_unused -= nr_pruned;
432 	if (current_is_kswapd())
433 		__count_vm_events(KSWAPD_INODESTEAL, reap);
434 	else
435 		__count_vm_events(PGINODESTEAL, reap);
436 	spin_unlock(&inode_lock);
437 
438 	dispose_list(&freeable);
439 	mutex_unlock(&iprune_mutex);
440 }
441 
442 /*
443  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
444  * "unused" means that no dentries are referring to the inodes: the files are
445  * not open and the dcache references to those inodes have already been
446  * reclaimed.
447  *
448  * This function is passed the number of inodes to scan, and it returns the
449  * total number of remaining possibly-reclaimable inodes.
450  */
451 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
452 {
453 	if (nr) {
454 		/*
455 		 * Nasty deadlock avoidance.  We may hold various FS locks,
456 		 * and we don't want to recurse into the FS that called us
457 		 * in clear_inode() and friends..
458 	 	 */
459 		if (!(gfp_mask & __GFP_FS))
460 			return -1;
461 		prune_icache(nr);
462 	}
463 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
464 }
465 
466 static void __wait_on_freeing_inode(struct inode *inode);
467 /*
468  * Called with the inode lock held.
469  * NOTE: we are not increasing the inode-refcount, you must call __iget()
470  * by hand after calling find_inode now! This simplifies iunique and won't
471  * add any additional branch in the common code.
472  */
473 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
474 {
475 	struct hlist_node *node;
476 	struct inode * inode = NULL;
477 
478 repeat:
479 	hlist_for_each (node, head) {
480 		inode = hlist_entry(node, struct inode, i_hash);
481 		if (inode->i_sb != sb)
482 			continue;
483 		if (!test(inode, data))
484 			continue;
485 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
486 			__wait_on_freeing_inode(inode);
487 			goto repeat;
488 		}
489 		break;
490 	}
491 	return node ? inode : NULL;
492 }
493 
494 /*
495  * find_inode_fast is the fast path version of find_inode, see the comment at
496  * iget_locked for details.
497  */
498 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
499 {
500 	struct hlist_node *node;
501 	struct inode * inode = NULL;
502 
503 repeat:
504 	hlist_for_each (node, head) {
505 		inode = hlist_entry(node, struct inode, i_hash);
506 		if (inode->i_ino != ino)
507 			continue;
508 		if (inode->i_sb != sb)
509 			continue;
510 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
511 			__wait_on_freeing_inode(inode);
512 			goto repeat;
513 		}
514 		break;
515 	}
516 	return node ? inode : NULL;
517 }
518 
519 /**
520  *	new_inode 	- obtain an inode
521  *	@sb: superblock
522  *
523  *	Allocates a new inode for given superblock.
524  */
525 struct inode *new_inode(struct super_block *sb)
526 {
527 	static unsigned long last_ino;
528 	struct inode * inode;
529 
530 	spin_lock_prefetch(&inode_lock);
531 
532 	inode = alloc_inode(sb);
533 	if (inode) {
534 		spin_lock(&inode_lock);
535 		inodes_stat.nr_inodes++;
536 		list_add(&inode->i_list, &inode_in_use);
537 		list_add(&inode->i_sb_list, &sb->s_inodes);
538 		inode->i_ino = ++last_ino;
539 		inode->i_state = 0;
540 		spin_unlock(&inode_lock);
541 	}
542 	return inode;
543 }
544 
545 EXPORT_SYMBOL(new_inode);
546 
547 void unlock_new_inode(struct inode *inode)
548 {
549 	/*
550 	 * This is special!  We do not need the spinlock
551 	 * when clearing I_LOCK, because we're guaranteed
552 	 * that nobody else tries to do anything about the
553 	 * state of the inode when it is locked, as we
554 	 * just created it (so there can be no old holders
555 	 * that haven't tested I_LOCK).
556 	 */
557 	inode->i_state &= ~(I_LOCK|I_NEW);
558 	wake_up_inode(inode);
559 }
560 
561 EXPORT_SYMBOL(unlock_new_inode);
562 
563 /*
564  * This is called without the inode lock held.. Be careful.
565  *
566  * We no longer cache the sb_flags in i_flags - see fs.h
567  *	-- rmk@arm.uk.linux.org
568  */
569 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
570 {
571 	struct inode * inode;
572 
573 	inode = alloc_inode(sb);
574 	if (inode) {
575 		struct inode * old;
576 
577 		spin_lock(&inode_lock);
578 		/* We released the lock, so.. */
579 		old = find_inode(sb, head, test, data);
580 		if (!old) {
581 			if (set(inode, data))
582 				goto set_failed;
583 
584 			inodes_stat.nr_inodes++;
585 			list_add(&inode->i_list, &inode_in_use);
586 			list_add(&inode->i_sb_list, &sb->s_inodes);
587 			hlist_add_head(&inode->i_hash, head);
588 			inode->i_state = I_LOCK|I_NEW;
589 			spin_unlock(&inode_lock);
590 
591 			/* Return the locked inode with I_NEW set, the
592 			 * caller is responsible for filling in the contents
593 			 */
594 			return inode;
595 		}
596 
597 		/*
598 		 * Uhhuh, somebody else created the same inode under
599 		 * us. Use the old inode instead of the one we just
600 		 * allocated.
601 		 */
602 		__iget(old);
603 		spin_unlock(&inode_lock);
604 		destroy_inode(inode);
605 		inode = old;
606 		wait_on_inode(inode);
607 	}
608 	return inode;
609 
610 set_failed:
611 	spin_unlock(&inode_lock);
612 	destroy_inode(inode);
613 	return NULL;
614 }
615 
616 /*
617  * get_new_inode_fast is the fast path version of get_new_inode, see the
618  * comment at iget_locked for details.
619  */
620 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
621 {
622 	struct inode * inode;
623 
624 	inode = alloc_inode(sb);
625 	if (inode) {
626 		struct inode * old;
627 
628 		spin_lock(&inode_lock);
629 		/* We released the lock, so.. */
630 		old = find_inode_fast(sb, head, ino);
631 		if (!old) {
632 			inode->i_ino = ino;
633 			inodes_stat.nr_inodes++;
634 			list_add(&inode->i_list, &inode_in_use);
635 			list_add(&inode->i_sb_list, &sb->s_inodes);
636 			hlist_add_head(&inode->i_hash, head);
637 			inode->i_state = I_LOCK|I_NEW;
638 			spin_unlock(&inode_lock);
639 
640 			/* Return the locked inode with I_NEW set, the
641 			 * caller is responsible for filling in the contents
642 			 */
643 			return inode;
644 		}
645 
646 		/*
647 		 * Uhhuh, somebody else created the same inode under
648 		 * us. Use the old inode instead of the one we just
649 		 * allocated.
650 		 */
651 		__iget(old);
652 		spin_unlock(&inode_lock);
653 		destroy_inode(inode);
654 		inode = old;
655 		wait_on_inode(inode);
656 	}
657 	return inode;
658 }
659 
660 static unsigned long hash(struct super_block *sb, unsigned long hashval)
661 {
662 	unsigned long tmp;
663 
664 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
665 			L1_CACHE_BYTES;
666 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
667 	return tmp & I_HASHMASK;
668 }
669 
670 /**
671  *	iunique - get a unique inode number
672  *	@sb: superblock
673  *	@max_reserved: highest reserved inode number
674  *
675  *	Obtain an inode number that is unique on the system for a given
676  *	superblock. This is used by file systems that have no natural
677  *	permanent inode numbering system. An inode number is returned that
678  *	is higher than the reserved limit but unique.
679  *
680  *	BUGS:
681  *	With a large number of inodes live on the file system this function
682  *	currently becomes quite slow.
683  */
684 ino_t iunique(struct super_block *sb, ino_t max_reserved)
685 {
686 	static ino_t counter;
687 	struct inode *inode;
688 	struct hlist_head * head;
689 	ino_t res;
690 	spin_lock(&inode_lock);
691 retry:
692 	if (counter > max_reserved) {
693 		head = inode_hashtable + hash(sb,counter);
694 		res = counter++;
695 		inode = find_inode_fast(sb, head, res);
696 		if (!inode) {
697 			spin_unlock(&inode_lock);
698 			return res;
699 		}
700 	} else {
701 		counter = max_reserved + 1;
702 	}
703 	goto retry;
704 
705 }
706 
707 EXPORT_SYMBOL(iunique);
708 
709 struct inode *igrab(struct inode *inode)
710 {
711 	spin_lock(&inode_lock);
712 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
713 		__iget(inode);
714 	else
715 		/*
716 		 * Handle the case where s_op->clear_inode is not been
717 		 * called yet, and somebody is calling igrab
718 		 * while the inode is getting freed.
719 		 */
720 		inode = NULL;
721 	spin_unlock(&inode_lock);
722 	return inode;
723 }
724 
725 EXPORT_SYMBOL(igrab);
726 
727 /**
728  * ifind - internal function, you want ilookup5() or iget5().
729  * @sb:		super block of file system to search
730  * @head:       the head of the list to search
731  * @test:	callback used for comparisons between inodes
732  * @data:	opaque data pointer to pass to @test
733  * @wait:	if true wait for the inode to be unlocked, if false do not
734  *
735  * ifind() searches for the inode specified by @data in the inode
736  * cache. This is a generalized version of ifind_fast() for file systems where
737  * the inode number is not sufficient for unique identification of an inode.
738  *
739  * If the inode is in the cache, the inode is returned with an incremented
740  * reference count.
741  *
742  * Otherwise NULL is returned.
743  *
744  * Note, @test is called with the inode_lock held, so can't sleep.
745  */
746 static struct inode *ifind(struct super_block *sb,
747 		struct hlist_head *head, int (*test)(struct inode *, void *),
748 		void *data, const int wait)
749 {
750 	struct inode *inode;
751 
752 	spin_lock(&inode_lock);
753 	inode = find_inode(sb, head, test, data);
754 	if (inode) {
755 		__iget(inode);
756 		spin_unlock(&inode_lock);
757 		if (likely(wait))
758 			wait_on_inode(inode);
759 		return inode;
760 	}
761 	spin_unlock(&inode_lock);
762 	return NULL;
763 }
764 
765 /**
766  * ifind_fast - internal function, you want ilookup() or iget().
767  * @sb:		super block of file system to search
768  * @head:       head of the list to search
769  * @ino:	inode number to search for
770  *
771  * ifind_fast() searches for the inode @ino in the inode cache. This is for
772  * file systems where the inode number is sufficient for unique identification
773  * of an inode.
774  *
775  * If the inode is in the cache, the inode is returned with an incremented
776  * reference count.
777  *
778  * Otherwise NULL is returned.
779  */
780 static struct inode *ifind_fast(struct super_block *sb,
781 		struct hlist_head *head, unsigned long ino)
782 {
783 	struct inode *inode;
784 
785 	spin_lock(&inode_lock);
786 	inode = find_inode_fast(sb, head, ino);
787 	if (inode) {
788 		__iget(inode);
789 		spin_unlock(&inode_lock);
790 		wait_on_inode(inode);
791 		return inode;
792 	}
793 	spin_unlock(&inode_lock);
794 	return NULL;
795 }
796 
797 /**
798  * ilookup5_nowait - search for an inode in the inode cache
799  * @sb:		super block of file system to search
800  * @hashval:	hash value (usually inode number) to search for
801  * @test:	callback used for comparisons between inodes
802  * @data:	opaque data pointer to pass to @test
803  *
804  * ilookup5() uses ifind() to search for the inode specified by @hashval and
805  * @data in the inode cache. This is a generalized version of ilookup() for
806  * file systems where the inode number is not sufficient for unique
807  * identification of an inode.
808  *
809  * If the inode is in the cache, the inode is returned with an incremented
810  * reference count.  Note, the inode lock is not waited upon so you have to be
811  * very careful what you do with the returned inode.  You probably should be
812  * using ilookup5() instead.
813  *
814  * Otherwise NULL is returned.
815  *
816  * Note, @test is called with the inode_lock held, so can't sleep.
817  */
818 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
819 		int (*test)(struct inode *, void *), void *data)
820 {
821 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
822 
823 	return ifind(sb, head, test, data, 0);
824 }
825 
826 EXPORT_SYMBOL(ilookup5_nowait);
827 
828 /**
829  * ilookup5 - search for an inode in the inode cache
830  * @sb:		super block of file system to search
831  * @hashval:	hash value (usually inode number) to search for
832  * @test:	callback used for comparisons between inodes
833  * @data:	opaque data pointer to pass to @test
834  *
835  * ilookup5() uses ifind() to search for the inode specified by @hashval and
836  * @data in the inode cache. This is a generalized version of ilookup() for
837  * file systems where the inode number is not sufficient for unique
838  * identification of an inode.
839  *
840  * If the inode is in the cache, the inode lock is waited upon and the inode is
841  * returned with an incremented reference count.
842  *
843  * Otherwise NULL is returned.
844  *
845  * Note, @test is called with the inode_lock held, so can't sleep.
846  */
847 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
848 		int (*test)(struct inode *, void *), void *data)
849 {
850 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
851 
852 	return ifind(sb, head, test, data, 1);
853 }
854 
855 EXPORT_SYMBOL(ilookup5);
856 
857 /**
858  * ilookup - search for an inode in the inode cache
859  * @sb:		super block of file system to search
860  * @ino:	inode number to search for
861  *
862  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
863  * This is for file systems where the inode number is sufficient for unique
864  * identification of an inode.
865  *
866  * If the inode is in the cache, the inode is returned with an incremented
867  * reference count.
868  *
869  * Otherwise NULL is returned.
870  */
871 struct inode *ilookup(struct super_block *sb, unsigned long ino)
872 {
873 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
874 
875 	return ifind_fast(sb, head, ino);
876 }
877 
878 EXPORT_SYMBOL(ilookup);
879 
880 /**
881  * iget5_locked - obtain an inode from a mounted file system
882  * @sb:		super block of file system
883  * @hashval:	hash value (usually inode number) to get
884  * @test:	callback used for comparisons between inodes
885  * @set:	callback used to initialize a new struct inode
886  * @data:	opaque data pointer to pass to @test and @set
887  *
888  * This is iget() without the read_inode() portion of get_new_inode().
889  *
890  * iget5_locked() uses ifind() to search for the inode specified by @hashval
891  * and @data in the inode cache and if present it is returned with an increased
892  * reference count. This is a generalized version of iget_locked() for file
893  * systems where the inode number is not sufficient for unique identification
894  * of an inode.
895  *
896  * If the inode is not in cache, get_new_inode() is called to allocate a new
897  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
898  * file system gets to fill it in before unlocking it via unlock_new_inode().
899  *
900  * Note both @test and @set are called with the inode_lock held, so can't sleep.
901  */
902 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
903 		int (*test)(struct inode *, void *),
904 		int (*set)(struct inode *, void *), void *data)
905 {
906 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
907 	struct inode *inode;
908 
909 	inode = ifind(sb, head, test, data, 1);
910 	if (inode)
911 		return inode;
912 	/*
913 	 * get_new_inode() will do the right thing, re-trying the search
914 	 * in case it had to block at any point.
915 	 */
916 	return get_new_inode(sb, head, test, set, data);
917 }
918 
919 EXPORT_SYMBOL(iget5_locked);
920 
921 /**
922  * iget_locked - obtain an inode from a mounted file system
923  * @sb:		super block of file system
924  * @ino:	inode number to get
925  *
926  * This is iget() without the read_inode() portion of get_new_inode_fast().
927  *
928  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
929  * the inode cache and if present it is returned with an increased reference
930  * count. This is for file systems where the inode number is sufficient for
931  * unique identification of an inode.
932  *
933  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
934  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
935  * The file system gets to fill it in before unlocking it via
936  * unlock_new_inode().
937  */
938 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
939 {
940 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
941 	struct inode *inode;
942 
943 	inode = ifind_fast(sb, head, ino);
944 	if (inode)
945 		return inode;
946 	/*
947 	 * get_new_inode_fast() will do the right thing, re-trying the search
948 	 * in case it had to block at any point.
949 	 */
950 	return get_new_inode_fast(sb, head, ino);
951 }
952 
953 EXPORT_SYMBOL(iget_locked);
954 
955 /**
956  *	__insert_inode_hash - hash an inode
957  *	@inode: unhashed inode
958  *	@hashval: unsigned long value used to locate this object in the
959  *		inode_hashtable.
960  *
961  *	Add an inode to the inode hash for this superblock.
962  */
963 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
964 {
965 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
966 	spin_lock(&inode_lock);
967 	hlist_add_head(&inode->i_hash, head);
968 	spin_unlock(&inode_lock);
969 }
970 
971 EXPORT_SYMBOL(__insert_inode_hash);
972 
973 /**
974  *	remove_inode_hash - remove an inode from the hash
975  *	@inode: inode to unhash
976  *
977  *	Remove an inode from the superblock.
978  */
979 void remove_inode_hash(struct inode *inode)
980 {
981 	spin_lock(&inode_lock);
982 	hlist_del_init(&inode->i_hash);
983 	spin_unlock(&inode_lock);
984 }
985 
986 EXPORT_SYMBOL(remove_inode_hash);
987 
988 /*
989  * Tell the filesystem that this inode is no longer of any interest and should
990  * be completely destroyed.
991  *
992  * We leave the inode in the inode hash table until *after* the filesystem's
993  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
994  * instigate) will always find up-to-date information either in the hash or on
995  * disk.
996  *
997  * I_FREEING is set so that no-one will take a new reference to the inode while
998  * it is being deleted.
999  */
1000 void generic_delete_inode(struct inode *inode)
1001 {
1002 	struct super_operations *op = inode->i_sb->s_op;
1003 
1004 	list_del_init(&inode->i_list);
1005 	list_del_init(&inode->i_sb_list);
1006 	inode->i_state |= I_FREEING;
1007 	inodes_stat.nr_inodes--;
1008 	spin_unlock(&inode_lock);
1009 
1010 	security_inode_delete(inode);
1011 
1012 	if (op->delete_inode) {
1013 		void (*delete)(struct inode *) = op->delete_inode;
1014 		if (!is_bad_inode(inode))
1015 			DQUOT_INIT(inode);
1016 		/* Filesystems implementing their own
1017 		 * s_op->delete_inode are required to call
1018 		 * truncate_inode_pages and clear_inode()
1019 		 * internally */
1020 		delete(inode);
1021 	} else {
1022 		truncate_inode_pages(&inode->i_data, 0);
1023 		clear_inode(inode);
1024 	}
1025 	spin_lock(&inode_lock);
1026 	hlist_del_init(&inode->i_hash);
1027 	spin_unlock(&inode_lock);
1028 	wake_up_inode(inode);
1029 	BUG_ON(inode->i_state != I_CLEAR);
1030 	destroy_inode(inode);
1031 }
1032 
1033 EXPORT_SYMBOL(generic_delete_inode);
1034 
1035 static void generic_forget_inode(struct inode *inode)
1036 {
1037 	struct super_block *sb = inode->i_sb;
1038 
1039 	if (!hlist_unhashed(&inode->i_hash)) {
1040 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1041 			list_move(&inode->i_list, &inode_unused);
1042 		inodes_stat.nr_unused++;
1043 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1044 			spin_unlock(&inode_lock);
1045 			return;
1046 		}
1047 		inode->i_state |= I_WILL_FREE;
1048 		spin_unlock(&inode_lock);
1049 		write_inode_now(inode, 1);
1050 		spin_lock(&inode_lock);
1051 		inode->i_state &= ~I_WILL_FREE;
1052 		inodes_stat.nr_unused--;
1053 		hlist_del_init(&inode->i_hash);
1054 	}
1055 	list_del_init(&inode->i_list);
1056 	list_del_init(&inode->i_sb_list);
1057 	inode->i_state |= I_FREEING;
1058 	inodes_stat.nr_inodes--;
1059 	spin_unlock(&inode_lock);
1060 	if (inode->i_data.nrpages)
1061 		truncate_inode_pages(&inode->i_data, 0);
1062 	clear_inode(inode);
1063 	wake_up_inode(inode);
1064 	destroy_inode(inode);
1065 }
1066 
1067 /*
1068  * Normal UNIX filesystem behaviour: delete the
1069  * inode when the usage count drops to zero, and
1070  * i_nlink is zero.
1071  */
1072 void generic_drop_inode(struct inode *inode)
1073 {
1074 	if (!inode->i_nlink)
1075 		generic_delete_inode(inode);
1076 	else
1077 		generic_forget_inode(inode);
1078 }
1079 
1080 EXPORT_SYMBOL_GPL(generic_drop_inode);
1081 
1082 /*
1083  * Called when we're dropping the last reference
1084  * to an inode.
1085  *
1086  * Call the FS "drop()" function, defaulting to
1087  * the legacy UNIX filesystem behaviour..
1088  *
1089  * NOTE! NOTE! NOTE! We're called with the inode lock
1090  * held, and the drop function is supposed to release
1091  * the lock!
1092  */
1093 static inline void iput_final(struct inode *inode)
1094 {
1095 	struct super_operations *op = inode->i_sb->s_op;
1096 	void (*drop)(struct inode *) = generic_drop_inode;
1097 
1098 	if (op && op->drop_inode)
1099 		drop = op->drop_inode;
1100 	drop(inode);
1101 }
1102 
1103 /**
1104  *	iput	- put an inode
1105  *	@inode: inode to put
1106  *
1107  *	Puts an inode, dropping its usage count. If the inode use count hits
1108  *	zero, the inode is then freed and may also be destroyed.
1109  *
1110  *	Consequently, iput() can sleep.
1111  */
1112 void iput(struct inode *inode)
1113 {
1114 	if (inode) {
1115 		struct super_operations *op = inode->i_sb->s_op;
1116 
1117 		BUG_ON(inode->i_state == I_CLEAR);
1118 
1119 		if (op && op->put_inode)
1120 			op->put_inode(inode);
1121 
1122 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1123 			iput_final(inode);
1124 	}
1125 }
1126 
1127 EXPORT_SYMBOL(iput);
1128 
1129 /**
1130  *	bmap	- find a block number in a file
1131  *	@inode: inode of file
1132  *	@block: block to find
1133  *
1134  *	Returns the block number on the device holding the inode that
1135  *	is the disk block number for the block of the file requested.
1136  *	That is, asked for block 4 of inode 1 the function will return the
1137  *	disk block relative to the disk start that holds that block of the
1138  *	file.
1139  */
1140 sector_t bmap(struct inode * inode, sector_t block)
1141 {
1142 	sector_t res = 0;
1143 	if (inode->i_mapping->a_ops->bmap)
1144 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1145 	return res;
1146 }
1147 EXPORT_SYMBOL(bmap);
1148 
1149 /**
1150  *	touch_atime	-	update the access time
1151  *	@mnt: mount the inode is accessed on
1152  *	@dentry: dentry accessed
1153  *
1154  *	Update the accessed time on an inode and mark it for writeback.
1155  *	This function automatically handles read only file systems and media,
1156  *	as well as the "noatime" flag and inode specific "noatime" markers.
1157  */
1158 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1159 {
1160 	struct inode *inode = dentry->d_inode;
1161 	struct timespec now;
1162 
1163 	if (IS_RDONLY(inode))
1164 		return;
1165 	if (inode->i_flags & S_NOATIME)
1166 		return;
1167 	if (inode->i_sb->s_flags & MS_NOATIME)
1168 		return;
1169 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1170 		return;
1171 
1172 	/*
1173 	 * We may have a NULL vfsmount when coming from NFSD
1174 	 */
1175 	if (mnt) {
1176 		if (mnt->mnt_flags & MNT_NOATIME)
1177 			return;
1178 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1179 			return;
1180 
1181 		if (mnt->mnt_flags & MNT_RELATIME) {
1182 			/*
1183 			 * With relative atime, only update atime if the
1184 			 * previous atime is earlier than either the ctime or
1185 			 * mtime.
1186 			 */
1187 			if (timespec_compare(&inode->i_mtime,
1188 						&inode->i_atime) < 0 &&
1189 			    timespec_compare(&inode->i_ctime,
1190 						&inode->i_atime) < 0)
1191 				return;
1192 		}
1193 	}
1194 
1195 	now = current_fs_time(inode->i_sb);
1196 	if (timespec_equal(&inode->i_atime, &now))
1197 		return;
1198 
1199 	inode->i_atime = now;
1200 	mark_inode_dirty_sync(inode);
1201 }
1202 EXPORT_SYMBOL(touch_atime);
1203 
1204 /**
1205  *	file_update_time	-	update mtime and ctime time
1206  *	@file: file accessed
1207  *
1208  *	Update the mtime and ctime members of an inode and mark the inode
1209  *	for writeback.  Note that this function is meant exclusively for
1210  *	usage in the file write path of filesystems, and filesystems may
1211  *	choose to explicitly ignore update via this function with the
1212  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1213  *	timestamps are handled by the server.
1214  */
1215 
1216 void file_update_time(struct file *file)
1217 {
1218 	struct inode *inode = file->f_path.dentry->d_inode;
1219 	struct timespec now;
1220 	int sync_it = 0;
1221 
1222 	if (IS_NOCMTIME(inode))
1223 		return;
1224 	if (IS_RDONLY(inode))
1225 		return;
1226 
1227 	now = current_fs_time(inode->i_sb);
1228 	if (!timespec_equal(&inode->i_mtime, &now)) {
1229 		inode->i_mtime = now;
1230 		sync_it = 1;
1231 	}
1232 
1233 	if (!timespec_equal(&inode->i_ctime, &now)) {
1234 		inode->i_ctime = now;
1235 		sync_it = 1;
1236 	}
1237 
1238 	if (sync_it)
1239 		mark_inode_dirty_sync(inode);
1240 }
1241 
1242 EXPORT_SYMBOL(file_update_time);
1243 
1244 int inode_needs_sync(struct inode *inode)
1245 {
1246 	if (IS_SYNC(inode))
1247 		return 1;
1248 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1249 		return 1;
1250 	return 0;
1251 }
1252 
1253 EXPORT_SYMBOL(inode_needs_sync);
1254 
1255 /*
1256  *	Quota functions that want to walk the inode lists..
1257  */
1258 #ifdef CONFIG_QUOTA
1259 
1260 void remove_dquot_ref(struct super_block *sb, int type,
1261 			struct list_head *tofree_head)
1262 {
1263 	struct inode *inode;
1264 
1265 	if (!sb->dq_op)
1266 		return;	/* nothing to do */
1267 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1268 
1269 	/*
1270 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1271 	 * just for speedup...
1272 	 */
1273 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1274 		if (!IS_NOQUOTA(inode))
1275 			remove_inode_dquot_ref(inode, type, tofree_head);
1276 
1277 	spin_unlock(&inode_lock);
1278 }
1279 
1280 #endif
1281 
1282 int inode_wait(void *word)
1283 {
1284 	schedule();
1285 	return 0;
1286 }
1287 
1288 /*
1289  * If we try to find an inode in the inode hash while it is being
1290  * deleted, we have to wait until the filesystem completes its
1291  * deletion before reporting that it isn't found.  This function waits
1292  * until the deletion _might_ have completed.  Callers are responsible
1293  * to recheck inode state.
1294  *
1295  * It doesn't matter if I_LOCK is not set initially, a call to
1296  * wake_up_inode() after removing from the hash list will DTRT.
1297  *
1298  * This is called with inode_lock held.
1299  */
1300 static void __wait_on_freeing_inode(struct inode *inode)
1301 {
1302 	wait_queue_head_t *wq;
1303 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1304 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1305 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1306 	spin_unlock(&inode_lock);
1307 	schedule();
1308 	finish_wait(wq, &wait.wait);
1309 	spin_lock(&inode_lock);
1310 }
1311 
1312 void wake_up_inode(struct inode *inode)
1313 {
1314 	/*
1315 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1316 	 */
1317 	smp_mb();
1318 	wake_up_bit(&inode->i_state, __I_LOCK);
1319 }
1320 
1321 /*
1322  * We rarely want to lock two inodes that do not have a parent/child
1323  * relationship (such as directory, child inode) simultaneously. The
1324  * vast majority of file systems should be able to get along fine
1325  * without this. Do not use these functions except as a last resort.
1326  */
1327 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1328 {
1329 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1330 		if (inode1)
1331 			mutex_lock(&inode1->i_mutex);
1332 		else if (inode2)
1333 			mutex_lock(&inode2->i_mutex);
1334 		return;
1335 	}
1336 
1337 	if (inode1 < inode2) {
1338 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1339 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1340 	} else {
1341 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1342 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1343 	}
1344 }
1345 EXPORT_SYMBOL(inode_double_lock);
1346 
1347 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1348 {
1349 	if (inode1)
1350 		mutex_unlock(&inode1->i_mutex);
1351 
1352 	if (inode2 && inode2 != inode1)
1353 		mutex_unlock(&inode2->i_mutex);
1354 }
1355 EXPORT_SYMBOL(inode_double_unlock);
1356 
1357 static __initdata unsigned long ihash_entries;
1358 static int __init set_ihash_entries(char *str)
1359 {
1360 	if (!str)
1361 		return 0;
1362 	ihash_entries = simple_strtoul(str, &str, 0);
1363 	return 1;
1364 }
1365 __setup("ihash_entries=", set_ihash_entries);
1366 
1367 /*
1368  * Initialize the waitqueues and inode hash table.
1369  */
1370 void __init inode_init_early(void)
1371 {
1372 	int loop;
1373 
1374 	/* If hashes are distributed across NUMA nodes, defer
1375 	 * hash allocation until vmalloc space is available.
1376 	 */
1377 	if (hashdist)
1378 		return;
1379 
1380 	inode_hashtable =
1381 		alloc_large_system_hash("Inode-cache",
1382 					sizeof(struct hlist_head),
1383 					ihash_entries,
1384 					14,
1385 					HASH_EARLY,
1386 					&i_hash_shift,
1387 					&i_hash_mask,
1388 					0);
1389 
1390 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1391 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1392 }
1393 
1394 void __init inode_init(unsigned long mempages)
1395 {
1396 	int loop;
1397 
1398 	/* inode slab cache */
1399 	inode_cachep = kmem_cache_create("inode_cache",
1400 					 sizeof(struct inode),
1401 					 0,
1402 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1403 					 SLAB_MEM_SPREAD),
1404 					 init_once,
1405 					 NULL);
1406 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1407 
1408 	/* Hash may have been set up in inode_init_early */
1409 	if (!hashdist)
1410 		return;
1411 
1412 	inode_hashtable =
1413 		alloc_large_system_hash("Inode-cache",
1414 					sizeof(struct hlist_head),
1415 					ihash_entries,
1416 					14,
1417 					0,
1418 					&i_hash_shift,
1419 					&i_hash_mask,
1420 					0);
1421 
1422 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1423 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1424 }
1425 
1426 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1427 {
1428 	inode->i_mode = mode;
1429 	if (S_ISCHR(mode)) {
1430 		inode->i_fop = &def_chr_fops;
1431 		inode->i_rdev = rdev;
1432 	} else if (S_ISBLK(mode)) {
1433 		inode->i_fop = &def_blk_fops;
1434 		inode->i_rdev = rdev;
1435 	} else if (S_ISFIFO(mode))
1436 		inode->i_fop = &def_fifo_fops;
1437 	else if (S_ISSOCK(mode))
1438 		inode->i_fop = &bad_sock_fops;
1439 	else
1440 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1441 		       mode);
1442 }
1443 EXPORT_SYMBOL(init_special_inode);
1444