1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/dcache.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/writeback.h> 11 #include <linux/module.h> 12 #include <linux/backing-dev.h> 13 #include <linux/wait.h> 14 #include <linux/rwsem.h> 15 #include <linux/hash.h> 16 #include <linux/swap.h> 17 #include <linux/security.h> 18 #include <linux/pagemap.h> 19 #include <linux/cdev.h> 20 #include <linux/bootmem.h> 21 #include <linux/fsnotify.h> 22 #include <linux/mount.h> 23 #include <linux/async.h> 24 #include <linux/posix_acl.h> 25 #include <linux/prefetch.h> 26 #include <linux/ima.h> 27 #include <linux/cred.h> 28 #include <linux/buffer_head.h> /* for inode_has_buffers */ 29 #include <linux/ratelimit.h> 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget() 37 * inode->i_sb->s_inode_lru_lock protects: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode_sb_list_lock protects: 40 * sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode_sb_list_lock 49 * inode->i_lock 50 * inode->i_sb->s_inode_lru_lock 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode_sb_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __read_mostly; 64 static unsigned int i_hash_shift __read_mostly; 65 static struct hlist_head *inode_hashtable __read_mostly; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 69 70 /* 71 * Empty aops. Can be used for the cases where the user does not 72 * define any of the address_space operations. 73 */ 74 const struct address_space_operations empty_aops = { 75 }; 76 EXPORT_SYMBOL(empty_aops); 77 78 /* 79 * Statistics gathering.. 80 */ 81 struct inodes_stat_t inodes_stat; 82 83 static DEFINE_PER_CPU(unsigned int, nr_inodes); 84 static DEFINE_PER_CPU(unsigned int, nr_unused); 85 86 static struct kmem_cache *inode_cachep __read_mostly; 87 88 static int get_nr_inodes(void) 89 { 90 int i; 91 int sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_inodes, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 static inline int get_nr_inodes_unused(void) 98 { 99 int i; 100 int sum = 0; 101 for_each_possible_cpu(i) 102 sum += per_cpu(nr_unused, i); 103 return sum < 0 ? 0 : sum; 104 } 105 106 int get_nr_dirty_inodes(void) 107 { 108 /* not actually dirty inodes, but a wild approximation */ 109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 110 return nr_dirty > 0 ? nr_dirty : 0; 111 } 112 113 /* 114 * Handle nr_inode sysctl 115 */ 116 #ifdef CONFIG_SYSCTL 117 int proc_nr_inodes(ctl_table *table, int write, 118 void __user *buffer, size_t *lenp, loff_t *ppos) 119 { 120 inodes_stat.nr_inodes = get_nr_inodes(); 121 inodes_stat.nr_unused = get_nr_inodes_unused(); 122 return proc_dointvec(table, write, buffer, lenp, ppos); 123 } 124 #endif 125 126 /** 127 * inode_init_always - perform inode structure intialisation 128 * @sb: superblock inode belongs to 129 * @inode: inode to initialise 130 * 131 * These are initializations that need to be done on every inode 132 * allocation as the fields are not initialised by slab allocation. 133 */ 134 int inode_init_always(struct super_block *sb, struct inode *inode) 135 { 136 static const struct inode_operations empty_iops; 137 static const struct file_operations empty_fops; 138 struct address_space *const mapping = &inode->i_data; 139 140 inode->i_sb = sb; 141 inode->i_blkbits = sb->s_blocksize_bits; 142 inode->i_flags = 0; 143 atomic_set(&inode->i_count, 1); 144 inode->i_op = &empty_iops; 145 inode->i_fop = &empty_fops; 146 inode->__i_nlink = 1; 147 inode->i_opflags = 0; 148 inode->i_uid = 0; 149 inode->i_gid = 0; 150 atomic_set(&inode->i_writecount, 0); 151 inode->i_size = 0; 152 inode->i_blocks = 0; 153 inode->i_bytes = 0; 154 inode->i_generation = 0; 155 #ifdef CONFIG_QUOTA 156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 157 #endif 158 inode->i_pipe = NULL; 159 inode->i_bdev = NULL; 160 inode->i_cdev = NULL; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 if (security_inode_alloc(inode)) 165 goto out; 166 spin_lock_init(&inode->i_lock); 167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 168 169 mutex_init(&inode->i_mutex); 170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 171 172 atomic_set(&inode->i_dio_count, 0); 173 174 mapping->a_ops = &empty_aops; 175 mapping->host = inode; 176 mapping->flags = 0; 177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 178 mapping->assoc_mapping = NULL; 179 mapping->backing_dev_info = &default_backing_dev_info; 180 mapping->writeback_index = 0; 181 182 /* 183 * If the block_device provides a backing_dev_info for client 184 * inodes then use that. Otherwise the inode share the bdev's 185 * backing_dev_info. 186 */ 187 if (sb->s_bdev) { 188 struct backing_dev_info *bdi; 189 190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 191 mapping->backing_dev_info = bdi; 192 } 193 inode->i_private = NULL; 194 inode->i_mapping = mapping; 195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 196 #ifdef CONFIG_FS_POSIX_ACL 197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 198 #endif 199 200 #ifdef CONFIG_FSNOTIFY 201 inode->i_fsnotify_mask = 0; 202 #endif 203 204 this_cpu_inc(nr_inodes); 205 206 return 0; 207 out: 208 return -ENOMEM; 209 } 210 EXPORT_SYMBOL(inode_init_always); 211 212 static struct inode *alloc_inode(struct super_block *sb) 213 { 214 struct inode *inode; 215 216 if (sb->s_op->alloc_inode) 217 inode = sb->s_op->alloc_inode(sb); 218 else 219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 220 221 if (!inode) 222 return NULL; 223 224 if (unlikely(inode_init_always(sb, inode))) { 225 if (inode->i_sb->s_op->destroy_inode) 226 inode->i_sb->s_op->destroy_inode(inode); 227 else 228 kmem_cache_free(inode_cachep, inode); 229 return NULL; 230 } 231 232 return inode; 233 } 234 235 void free_inode_nonrcu(struct inode *inode) 236 { 237 kmem_cache_free(inode_cachep, inode); 238 } 239 EXPORT_SYMBOL(free_inode_nonrcu); 240 241 void __destroy_inode(struct inode *inode) 242 { 243 BUG_ON(inode_has_buffers(inode)); 244 security_inode_free(inode); 245 fsnotify_inode_delete(inode); 246 if (!inode->i_nlink) { 247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 248 atomic_long_dec(&inode->i_sb->s_remove_count); 249 } 250 251 #ifdef CONFIG_FS_POSIX_ACL 252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 253 posix_acl_release(inode->i_acl); 254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 255 posix_acl_release(inode->i_default_acl); 256 #endif 257 this_cpu_dec(nr_inodes); 258 } 259 EXPORT_SYMBOL(__destroy_inode); 260 261 static void i_callback(struct rcu_head *head) 262 { 263 struct inode *inode = container_of(head, struct inode, i_rcu); 264 kmem_cache_free(inode_cachep, inode); 265 } 266 267 static void destroy_inode(struct inode *inode) 268 { 269 BUG_ON(!list_empty(&inode->i_lru)); 270 __destroy_inode(inode); 271 if (inode->i_sb->s_op->destroy_inode) 272 inode->i_sb->s_op->destroy_inode(inode); 273 else 274 call_rcu(&inode->i_rcu, i_callback); 275 } 276 277 /** 278 * drop_nlink - directly drop an inode's link count 279 * @inode: inode 280 * 281 * This is a low-level filesystem helper to replace any 282 * direct filesystem manipulation of i_nlink. In cases 283 * where we are attempting to track writes to the 284 * filesystem, a decrement to zero means an imminent 285 * write when the file is truncated and actually unlinked 286 * on the filesystem. 287 */ 288 void drop_nlink(struct inode *inode) 289 { 290 WARN_ON(inode->i_nlink == 0); 291 inode->__i_nlink--; 292 if (!inode->i_nlink) 293 atomic_long_inc(&inode->i_sb->s_remove_count); 294 } 295 EXPORT_SYMBOL(drop_nlink); 296 297 /** 298 * clear_nlink - directly zero an inode's link count 299 * @inode: inode 300 * 301 * This is a low-level filesystem helper to replace any 302 * direct filesystem manipulation of i_nlink. See 303 * drop_nlink() for why we care about i_nlink hitting zero. 304 */ 305 void clear_nlink(struct inode *inode) 306 { 307 if (inode->i_nlink) { 308 inode->__i_nlink = 0; 309 atomic_long_inc(&inode->i_sb->s_remove_count); 310 } 311 } 312 EXPORT_SYMBOL(clear_nlink); 313 314 /** 315 * set_nlink - directly set an inode's link count 316 * @inode: inode 317 * @nlink: new nlink (should be non-zero) 318 * 319 * This is a low-level filesystem helper to replace any 320 * direct filesystem manipulation of i_nlink. 321 */ 322 void set_nlink(struct inode *inode, unsigned int nlink) 323 { 324 if (!nlink) { 325 clear_nlink(inode); 326 } else { 327 /* Yes, some filesystems do change nlink from zero to one */ 328 if (inode->i_nlink == 0) 329 atomic_long_dec(&inode->i_sb->s_remove_count); 330 331 inode->__i_nlink = nlink; 332 } 333 } 334 EXPORT_SYMBOL(set_nlink); 335 336 /** 337 * inc_nlink - directly increment an inode's link count 338 * @inode: inode 339 * 340 * This is a low-level filesystem helper to replace any 341 * direct filesystem manipulation of i_nlink. Currently, 342 * it is only here for parity with dec_nlink(). 343 */ 344 void inc_nlink(struct inode *inode) 345 { 346 if (WARN_ON(inode->i_nlink == 0)) 347 atomic_long_dec(&inode->i_sb->s_remove_count); 348 349 inode->__i_nlink++; 350 } 351 EXPORT_SYMBOL(inc_nlink); 352 353 void address_space_init_once(struct address_space *mapping) 354 { 355 memset(mapping, 0, sizeof(*mapping)); 356 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 357 spin_lock_init(&mapping->tree_lock); 358 mutex_init(&mapping->i_mmap_mutex); 359 INIT_LIST_HEAD(&mapping->private_list); 360 spin_lock_init(&mapping->private_lock); 361 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 362 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 363 } 364 EXPORT_SYMBOL(address_space_init_once); 365 366 /* 367 * These are initializations that only need to be done 368 * once, because the fields are idempotent across use 369 * of the inode, so let the slab aware of that. 370 */ 371 void inode_init_once(struct inode *inode) 372 { 373 memset(inode, 0, sizeof(*inode)); 374 INIT_HLIST_NODE(&inode->i_hash); 375 INIT_LIST_HEAD(&inode->i_devices); 376 INIT_LIST_HEAD(&inode->i_wb_list); 377 INIT_LIST_HEAD(&inode->i_lru); 378 address_space_init_once(&inode->i_data); 379 i_size_ordered_init(inode); 380 #ifdef CONFIG_FSNOTIFY 381 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 382 #endif 383 } 384 EXPORT_SYMBOL(inode_init_once); 385 386 static void init_once(void *foo) 387 { 388 struct inode *inode = (struct inode *) foo; 389 390 inode_init_once(inode); 391 } 392 393 /* 394 * inode->i_lock must be held 395 */ 396 void __iget(struct inode *inode) 397 { 398 atomic_inc(&inode->i_count); 399 } 400 401 /* 402 * get additional reference to inode; caller must already hold one. 403 */ 404 void ihold(struct inode *inode) 405 { 406 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 407 } 408 EXPORT_SYMBOL(ihold); 409 410 static void inode_lru_list_add(struct inode *inode) 411 { 412 spin_lock(&inode->i_sb->s_inode_lru_lock); 413 if (list_empty(&inode->i_lru)) { 414 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 415 inode->i_sb->s_nr_inodes_unused++; 416 this_cpu_inc(nr_unused); 417 } 418 spin_unlock(&inode->i_sb->s_inode_lru_lock); 419 } 420 421 static void inode_lru_list_del(struct inode *inode) 422 { 423 spin_lock(&inode->i_sb->s_inode_lru_lock); 424 if (!list_empty(&inode->i_lru)) { 425 list_del_init(&inode->i_lru); 426 inode->i_sb->s_nr_inodes_unused--; 427 this_cpu_dec(nr_unused); 428 } 429 spin_unlock(&inode->i_sb->s_inode_lru_lock); 430 } 431 432 /** 433 * inode_sb_list_add - add inode to the superblock list of inodes 434 * @inode: inode to add 435 */ 436 void inode_sb_list_add(struct inode *inode) 437 { 438 spin_lock(&inode_sb_list_lock); 439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 440 spin_unlock(&inode_sb_list_lock); 441 } 442 EXPORT_SYMBOL_GPL(inode_sb_list_add); 443 444 static inline void inode_sb_list_del(struct inode *inode) 445 { 446 if (!list_empty(&inode->i_sb_list)) { 447 spin_lock(&inode_sb_list_lock); 448 list_del_init(&inode->i_sb_list); 449 spin_unlock(&inode_sb_list_lock); 450 } 451 } 452 453 static unsigned long hash(struct super_block *sb, unsigned long hashval) 454 { 455 unsigned long tmp; 456 457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 458 L1_CACHE_BYTES; 459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 460 return tmp & i_hash_mask; 461 } 462 463 /** 464 * __insert_inode_hash - hash an inode 465 * @inode: unhashed inode 466 * @hashval: unsigned long value used to locate this object in the 467 * inode_hashtable. 468 * 469 * Add an inode to the inode hash for this superblock. 470 */ 471 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 472 { 473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 474 475 spin_lock(&inode_hash_lock); 476 spin_lock(&inode->i_lock); 477 hlist_add_head(&inode->i_hash, b); 478 spin_unlock(&inode->i_lock); 479 spin_unlock(&inode_hash_lock); 480 } 481 EXPORT_SYMBOL(__insert_inode_hash); 482 483 /** 484 * __remove_inode_hash - remove an inode from the hash 485 * @inode: inode to unhash 486 * 487 * Remove an inode from the superblock. 488 */ 489 void __remove_inode_hash(struct inode *inode) 490 { 491 spin_lock(&inode_hash_lock); 492 spin_lock(&inode->i_lock); 493 hlist_del_init(&inode->i_hash); 494 spin_unlock(&inode->i_lock); 495 spin_unlock(&inode_hash_lock); 496 } 497 EXPORT_SYMBOL(__remove_inode_hash); 498 499 void end_writeback(struct inode *inode) 500 { 501 might_sleep(); 502 /* 503 * We have to cycle tree_lock here because reclaim can be still in the 504 * process of removing the last page (in __delete_from_page_cache()) 505 * and we must not free mapping under it. 506 */ 507 spin_lock_irq(&inode->i_data.tree_lock); 508 BUG_ON(inode->i_data.nrpages); 509 spin_unlock_irq(&inode->i_data.tree_lock); 510 BUG_ON(!list_empty(&inode->i_data.private_list)); 511 BUG_ON(!(inode->i_state & I_FREEING)); 512 BUG_ON(inode->i_state & I_CLEAR); 513 inode_sync_wait(inode); 514 /* don't need i_lock here, no concurrent mods to i_state */ 515 inode->i_state = I_FREEING | I_CLEAR; 516 } 517 EXPORT_SYMBOL(end_writeback); 518 519 /* 520 * Free the inode passed in, removing it from the lists it is still connected 521 * to. We remove any pages still attached to the inode and wait for any IO that 522 * is still in progress before finally destroying the inode. 523 * 524 * An inode must already be marked I_FREEING so that we avoid the inode being 525 * moved back onto lists if we race with other code that manipulates the lists 526 * (e.g. writeback_single_inode). The caller is responsible for setting this. 527 * 528 * An inode must already be removed from the LRU list before being evicted from 529 * the cache. This should occur atomically with setting the I_FREEING state 530 * flag, so no inodes here should ever be on the LRU when being evicted. 531 */ 532 static void evict(struct inode *inode) 533 { 534 const struct super_operations *op = inode->i_sb->s_op; 535 536 BUG_ON(!(inode->i_state & I_FREEING)); 537 BUG_ON(!list_empty(&inode->i_lru)); 538 539 if (!list_empty(&inode->i_wb_list)) 540 inode_wb_list_del(inode); 541 542 inode_sb_list_del(inode); 543 544 if (op->evict_inode) { 545 op->evict_inode(inode); 546 } else { 547 if (inode->i_data.nrpages) 548 truncate_inode_pages(&inode->i_data, 0); 549 end_writeback(inode); 550 } 551 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 552 bd_forget(inode); 553 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 554 cd_forget(inode); 555 556 remove_inode_hash(inode); 557 558 spin_lock(&inode->i_lock); 559 wake_up_bit(&inode->i_state, __I_NEW); 560 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 561 spin_unlock(&inode->i_lock); 562 563 destroy_inode(inode); 564 } 565 566 /* 567 * dispose_list - dispose of the contents of a local list 568 * @head: the head of the list to free 569 * 570 * Dispose-list gets a local list with local inodes in it, so it doesn't 571 * need to worry about list corruption and SMP locks. 572 */ 573 static void dispose_list(struct list_head *head) 574 { 575 while (!list_empty(head)) { 576 struct inode *inode; 577 578 inode = list_first_entry(head, struct inode, i_lru); 579 list_del_init(&inode->i_lru); 580 581 evict(inode); 582 } 583 } 584 585 /** 586 * evict_inodes - evict all evictable inodes for a superblock 587 * @sb: superblock to operate on 588 * 589 * Make sure that no inodes with zero refcount are retained. This is 590 * called by superblock shutdown after having MS_ACTIVE flag removed, 591 * so any inode reaching zero refcount during or after that call will 592 * be immediately evicted. 593 */ 594 void evict_inodes(struct super_block *sb) 595 { 596 struct inode *inode, *next; 597 LIST_HEAD(dispose); 598 599 spin_lock(&inode_sb_list_lock); 600 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 601 if (atomic_read(&inode->i_count)) 602 continue; 603 604 spin_lock(&inode->i_lock); 605 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 606 spin_unlock(&inode->i_lock); 607 continue; 608 } 609 610 inode->i_state |= I_FREEING; 611 inode_lru_list_del(inode); 612 spin_unlock(&inode->i_lock); 613 list_add(&inode->i_lru, &dispose); 614 } 615 spin_unlock(&inode_sb_list_lock); 616 617 dispose_list(&dispose); 618 } 619 620 /** 621 * invalidate_inodes - attempt to free all inodes on a superblock 622 * @sb: superblock to operate on 623 * @kill_dirty: flag to guide handling of dirty inodes 624 * 625 * Attempts to free all inodes for a given superblock. If there were any 626 * busy inodes return a non-zero value, else zero. 627 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 628 * them as busy. 629 */ 630 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 631 { 632 int busy = 0; 633 struct inode *inode, *next; 634 LIST_HEAD(dispose); 635 636 spin_lock(&inode_sb_list_lock); 637 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 638 spin_lock(&inode->i_lock); 639 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 640 spin_unlock(&inode->i_lock); 641 continue; 642 } 643 if (inode->i_state & I_DIRTY && !kill_dirty) { 644 spin_unlock(&inode->i_lock); 645 busy = 1; 646 continue; 647 } 648 if (atomic_read(&inode->i_count)) { 649 spin_unlock(&inode->i_lock); 650 busy = 1; 651 continue; 652 } 653 654 inode->i_state |= I_FREEING; 655 inode_lru_list_del(inode); 656 spin_unlock(&inode->i_lock); 657 list_add(&inode->i_lru, &dispose); 658 } 659 spin_unlock(&inode_sb_list_lock); 660 661 dispose_list(&dispose); 662 663 return busy; 664 } 665 666 static int can_unuse(struct inode *inode) 667 { 668 if (inode->i_state & ~I_REFERENCED) 669 return 0; 670 if (inode_has_buffers(inode)) 671 return 0; 672 if (atomic_read(&inode->i_count)) 673 return 0; 674 if (inode->i_data.nrpages) 675 return 0; 676 return 1; 677 } 678 679 /* 680 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 681 * This is called from the superblock shrinker function with a number of inodes 682 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 683 * then are freed outside inode_lock by dispose_list(). 684 * 685 * Any inodes which are pinned purely because of attached pagecache have their 686 * pagecache removed. If the inode has metadata buffers attached to 687 * mapping->private_list then try to remove them. 688 * 689 * If the inode has the I_REFERENCED flag set, then it means that it has been 690 * used recently - the flag is set in iput_final(). When we encounter such an 691 * inode, clear the flag and move it to the back of the LRU so it gets another 692 * pass through the LRU before it gets reclaimed. This is necessary because of 693 * the fact we are doing lazy LRU updates to minimise lock contention so the 694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 695 * with this flag set because they are the inodes that are out of order. 696 */ 697 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 698 { 699 LIST_HEAD(freeable); 700 int nr_scanned; 701 unsigned long reap = 0; 702 703 spin_lock(&sb->s_inode_lru_lock); 704 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 705 struct inode *inode; 706 707 if (list_empty(&sb->s_inode_lru)) 708 break; 709 710 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 711 712 /* 713 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 714 * so use a trylock. If we fail to get the lock, just move the 715 * inode to the back of the list so we don't spin on it. 716 */ 717 if (!spin_trylock(&inode->i_lock)) { 718 list_move_tail(&inode->i_lru, &sb->s_inode_lru); 719 continue; 720 } 721 722 /* 723 * Referenced or dirty inodes are still in use. Give them 724 * another pass through the LRU as we canot reclaim them now. 725 */ 726 if (atomic_read(&inode->i_count) || 727 (inode->i_state & ~I_REFERENCED)) { 728 list_del_init(&inode->i_lru); 729 spin_unlock(&inode->i_lock); 730 sb->s_nr_inodes_unused--; 731 this_cpu_dec(nr_unused); 732 continue; 733 } 734 735 /* recently referenced inodes get one more pass */ 736 if (inode->i_state & I_REFERENCED) { 737 inode->i_state &= ~I_REFERENCED; 738 list_move(&inode->i_lru, &sb->s_inode_lru); 739 spin_unlock(&inode->i_lock); 740 continue; 741 } 742 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 743 __iget(inode); 744 spin_unlock(&inode->i_lock); 745 spin_unlock(&sb->s_inode_lru_lock); 746 if (remove_inode_buffers(inode)) 747 reap += invalidate_mapping_pages(&inode->i_data, 748 0, -1); 749 iput(inode); 750 spin_lock(&sb->s_inode_lru_lock); 751 752 if (inode != list_entry(sb->s_inode_lru.next, 753 struct inode, i_lru)) 754 continue; /* wrong inode or list_empty */ 755 /* avoid lock inversions with trylock */ 756 if (!spin_trylock(&inode->i_lock)) 757 continue; 758 if (!can_unuse(inode)) { 759 spin_unlock(&inode->i_lock); 760 continue; 761 } 762 } 763 WARN_ON(inode->i_state & I_NEW); 764 inode->i_state |= I_FREEING; 765 spin_unlock(&inode->i_lock); 766 767 list_move(&inode->i_lru, &freeable); 768 sb->s_nr_inodes_unused--; 769 this_cpu_dec(nr_unused); 770 } 771 if (current_is_kswapd()) 772 __count_vm_events(KSWAPD_INODESTEAL, reap); 773 else 774 __count_vm_events(PGINODESTEAL, reap); 775 spin_unlock(&sb->s_inode_lru_lock); 776 if (current->reclaim_state) 777 current->reclaim_state->reclaimed_slab += reap; 778 779 dispose_list(&freeable); 780 } 781 782 static void __wait_on_freeing_inode(struct inode *inode); 783 /* 784 * Called with the inode lock held. 785 */ 786 static struct inode *find_inode(struct super_block *sb, 787 struct hlist_head *head, 788 int (*test)(struct inode *, void *), 789 void *data) 790 { 791 struct hlist_node *node; 792 struct inode *inode = NULL; 793 794 repeat: 795 hlist_for_each_entry(inode, node, head, i_hash) { 796 spin_lock(&inode->i_lock); 797 if (inode->i_sb != sb) { 798 spin_unlock(&inode->i_lock); 799 continue; 800 } 801 if (!test(inode, data)) { 802 spin_unlock(&inode->i_lock); 803 continue; 804 } 805 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 806 __wait_on_freeing_inode(inode); 807 goto repeat; 808 } 809 __iget(inode); 810 spin_unlock(&inode->i_lock); 811 return inode; 812 } 813 return NULL; 814 } 815 816 /* 817 * find_inode_fast is the fast path version of find_inode, see the comment at 818 * iget_locked for details. 819 */ 820 static struct inode *find_inode_fast(struct super_block *sb, 821 struct hlist_head *head, unsigned long ino) 822 { 823 struct hlist_node *node; 824 struct inode *inode = NULL; 825 826 repeat: 827 hlist_for_each_entry(inode, node, head, i_hash) { 828 spin_lock(&inode->i_lock); 829 if (inode->i_ino != ino) { 830 spin_unlock(&inode->i_lock); 831 continue; 832 } 833 if (inode->i_sb != sb) { 834 spin_unlock(&inode->i_lock); 835 continue; 836 } 837 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 838 __wait_on_freeing_inode(inode); 839 goto repeat; 840 } 841 __iget(inode); 842 spin_unlock(&inode->i_lock); 843 return inode; 844 } 845 return NULL; 846 } 847 848 /* 849 * Each cpu owns a range of LAST_INO_BATCH numbers. 850 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 851 * to renew the exhausted range. 852 * 853 * This does not significantly increase overflow rate because every CPU can 854 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 855 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 856 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 857 * overflow rate by 2x, which does not seem too significant. 858 * 859 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 860 * error if st_ino won't fit in target struct field. Use 32bit counter 861 * here to attempt to avoid that. 862 */ 863 #define LAST_INO_BATCH 1024 864 static DEFINE_PER_CPU(unsigned int, last_ino); 865 866 unsigned int get_next_ino(void) 867 { 868 unsigned int *p = &get_cpu_var(last_ino); 869 unsigned int res = *p; 870 871 #ifdef CONFIG_SMP 872 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 873 static atomic_t shared_last_ino; 874 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 875 876 res = next - LAST_INO_BATCH; 877 } 878 #endif 879 880 *p = ++res; 881 put_cpu_var(last_ino); 882 return res; 883 } 884 EXPORT_SYMBOL(get_next_ino); 885 886 /** 887 * new_inode_pseudo - obtain an inode 888 * @sb: superblock 889 * 890 * Allocates a new inode for given superblock. 891 * Inode wont be chained in superblock s_inodes list 892 * This means : 893 * - fs can't be unmount 894 * - quotas, fsnotify, writeback can't work 895 */ 896 struct inode *new_inode_pseudo(struct super_block *sb) 897 { 898 struct inode *inode = alloc_inode(sb); 899 900 if (inode) { 901 spin_lock(&inode->i_lock); 902 inode->i_state = 0; 903 spin_unlock(&inode->i_lock); 904 INIT_LIST_HEAD(&inode->i_sb_list); 905 } 906 return inode; 907 } 908 909 /** 910 * new_inode - obtain an inode 911 * @sb: superblock 912 * 913 * Allocates a new inode for given superblock. The default gfp_mask 914 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 915 * If HIGHMEM pages are unsuitable or it is known that pages allocated 916 * for the page cache are not reclaimable or migratable, 917 * mapping_set_gfp_mask() must be called with suitable flags on the 918 * newly created inode's mapping 919 * 920 */ 921 struct inode *new_inode(struct super_block *sb) 922 { 923 struct inode *inode; 924 925 spin_lock_prefetch(&inode_sb_list_lock); 926 927 inode = new_inode_pseudo(sb); 928 if (inode) 929 inode_sb_list_add(inode); 930 return inode; 931 } 932 EXPORT_SYMBOL(new_inode); 933 934 #ifdef CONFIG_DEBUG_LOCK_ALLOC 935 void lockdep_annotate_inode_mutex_key(struct inode *inode) 936 { 937 if (S_ISDIR(inode->i_mode)) { 938 struct file_system_type *type = inode->i_sb->s_type; 939 940 /* Set new key only if filesystem hasn't already changed it */ 941 if (!lockdep_match_class(&inode->i_mutex, 942 &type->i_mutex_key)) { 943 /* 944 * ensure nobody is actually holding i_mutex 945 */ 946 mutex_destroy(&inode->i_mutex); 947 mutex_init(&inode->i_mutex); 948 lockdep_set_class(&inode->i_mutex, 949 &type->i_mutex_dir_key); 950 } 951 } 952 } 953 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 954 #endif 955 956 /** 957 * unlock_new_inode - clear the I_NEW state and wake up any waiters 958 * @inode: new inode to unlock 959 * 960 * Called when the inode is fully initialised to clear the new state of the 961 * inode and wake up anyone waiting for the inode to finish initialisation. 962 */ 963 void unlock_new_inode(struct inode *inode) 964 { 965 lockdep_annotate_inode_mutex_key(inode); 966 spin_lock(&inode->i_lock); 967 WARN_ON(!(inode->i_state & I_NEW)); 968 inode->i_state &= ~I_NEW; 969 wake_up_bit(&inode->i_state, __I_NEW); 970 spin_unlock(&inode->i_lock); 971 } 972 EXPORT_SYMBOL(unlock_new_inode); 973 974 /** 975 * iget5_locked - obtain an inode from a mounted file system 976 * @sb: super block of file system 977 * @hashval: hash value (usually inode number) to get 978 * @test: callback used for comparisons between inodes 979 * @set: callback used to initialize a new struct inode 980 * @data: opaque data pointer to pass to @test and @set 981 * 982 * Search for the inode specified by @hashval and @data in the inode cache, 983 * and if present it is return it with an increased reference count. This is 984 * a generalized version of iget_locked() for file systems where the inode 985 * number is not sufficient for unique identification of an inode. 986 * 987 * If the inode is not in cache, allocate a new inode and return it locked, 988 * hashed, and with the I_NEW flag set. The file system gets to fill it in 989 * before unlocking it via unlock_new_inode(). 990 * 991 * Note both @test and @set are called with the inode_hash_lock held, so can't 992 * sleep. 993 */ 994 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 995 int (*test)(struct inode *, void *), 996 int (*set)(struct inode *, void *), void *data) 997 { 998 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 999 struct inode *inode; 1000 1001 spin_lock(&inode_hash_lock); 1002 inode = find_inode(sb, head, test, data); 1003 spin_unlock(&inode_hash_lock); 1004 1005 if (inode) { 1006 wait_on_inode(inode); 1007 return inode; 1008 } 1009 1010 inode = alloc_inode(sb); 1011 if (inode) { 1012 struct inode *old; 1013 1014 spin_lock(&inode_hash_lock); 1015 /* We released the lock, so.. */ 1016 old = find_inode(sb, head, test, data); 1017 if (!old) { 1018 if (set(inode, data)) 1019 goto set_failed; 1020 1021 spin_lock(&inode->i_lock); 1022 inode->i_state = I_NEW; 1023 hlist_add_head(&inode->i_hash, head); 1024 spin_unlock(&inode->i_lock); 1025 inode_sb_list_add(inode); 1026 spin_unlock(&inode_hash_lock); 1027 1028 /* Return the locked inode with I_NEW set, the 1029 * caller is responsible for filling in the contents 1030 */ 1031 return inode; 1032 } 1033 1034 /* 1035 * Uhhuh, somebody else created the same inode under 1036 * us. Use the old inode instead of the one we just 1037 * allocated. 1038 */ 1039 spin_unlock(&inode_hash_lock); 1040 destroy_inode(inode); 1041 inode = old; 1042 wait_on_inode(inode); 1043 } 1044 return inode; 1045 1046 set_failed: 1047 spin_unlock(&inode_hash_lock); 1048 destroy_inode(inode); 1049 return NULL; 1050 } 1051 EXPORT_SYMBOL(iget5_locked); 1052 1053 /** 1054 * iget_locked - obtain an inode from a mounted file system 1055 * @sb: super block of file system 1056 * @ino: inode number to get 1057 * 1058 * Search for the inode specified by @ino in the inode cache and if present 1059 * return it with an increased reference count. This is for file systems 1060 * where the inode number is sufficient for unique identification of an inode. 1061 * 1062 * If the inode is not in cache, allocate a new inode and return it locked, 1063 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1064 * before unlocking it via unlock_new_inode(). 1065 */ 1066 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1067 { 1068 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1069 struct inode *inode; 1070 1071 spin_lock(&inode_hash_lock); 1072 inode = find_inode_fast(sb, head, ino); 1073 spin_unlock(&inode_hash_lock); 1074 if (inode) { 1075 wait_on_inode(inode); 1076 return inode; 1077 } 1078 1079 inode = alloc_inode(sb); 1080 if (inode) { 1081 struct inode *old; 1082 1083 spin_lock(&inode_hash_lock); 1084 /* We released the lock, so.. */ 1085 old = find_inode_fast(sb, head, ino); 1086 if (!old) { 1087 inode->i_ino = ino; 1088 spin_lock(&inode->i_lock); 1089 inode->i_state = I_NEW; 1090 hlist_add_head(&inode->i_hash, head); 1091 spin_unlock(&inode->i_lock); 1092 inode_sb_list_add(inode); 1093 spin_unlock(&inode_hash_lock); 1094 1095 /* Return the locked inode with I_NEW set, the 1096 * caller is responsible for filling in the contents 1097 */ 1098 return inode; 1099 } 1100 1101 /* 1102 * Uhhuh, somebody else created the same inode under 1103 * us. Use the old inode instead of the one we just 1104 * allocated. 1105 */ 1106 spin_unlock(&inode_hash_lock); 1107 destroy_inode(inode); 1108 inode = old; 1109 wait_on_inode(inode); 1110 } 1111 return inode; 1112 } 1113 EXPORT_SYMBOL(iget_locked); 1114 1115 /* 1116 * search the inode cache for a matching inode number. 1117 * If we find one, then the inode number we are trying to 1118 * allocate is not unique and so we should not use it. 1119 * 1120 * Returns 1 if the inode number is unique, 0 if it is not. 1121 */ 1122 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1123 { 1124 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1125 struct hlist_node *node; 1126 struct inode *inode; 1127 1128 spin_lock(&inode_hash_lock); 1129 hlist_for_each_entry(inode, node, b, i_hash) { 1130 if (inode->i_ino == ino && inode->i_sb == sb) { 1131 spin_unlock(&inode_hash_lock); 1132 return 0; 1133 } 1134 } 1135 spin_unlock(&inode_hash_lock); 1136 1137 return 1; 1138 } 1139 1140 /** 1141 * iunique - get a unique inode number 1142 * @sb: superblock 1143 * @max_reserved: highest reserved inode number 1144 * 1145 * Obtain an inode number that is unique on the system for a given 1146 * superblock. This is used by file systems that have no natural 1147 * permanent inode numbering system. An inode number is returned that 1148 * is higher than the reserved limit but unique. 1149 * 1150 * BUGS: 1151 * With a large number of inodes live on the file system this function 1152 * currently becomes quite slow. 1153 */ 1154 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1155 { 1156 /* 1157 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1158 * error if st_ino won't fit in target struct field. Use 32bit counter 1159 * here to attempt to avoid that. 1160 */ 1161 static DEFINE_SPINLOCK(iunique_lock); 1162 static unsigned int counter; 1163 ino_t res; 1164 1165 spin_lock(&iunique_lock); 1166 do { 1167 if (counter <= max_reserved) 1168 counter = max_reserved + 1; 1169 res = counter++; 1170 } while (!test_inode_iunique(sb, res)); 1171 spin_unlock(&iunique_lock); 1172 1173 return res; 1174 } 1175 EXPORT_SYMBOL(iunique); 1176 1177 struct inode *igrab(struct inode *inode) 1178 { 1179 spin_lock(&inode->i_lock); 1180 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1181 __iget(inode); 1182 spin_unlock(&inode->i_lock); 1183 } else { 1184 spin_unlock(&inode->i_lock); 1185 /* 1186 * Handle the case where s_op->clear_inode is not been 1187 * called yet, and somebody is calling igrab 1188 * while the inode is getting freed. 1189 */ 1190 inode = NULL; 1191 } 1192 return inode; 1193 } 1194 EXPORT_SYMBOL(igrab); 1195 1196 /** 1197 * ilookup5_nowait - search for an inode in the inode cache 1198 * @sb: super block of file system to search 1199 * @hashval: hash value (usually inode number) to search for 1200 * @test: callback used for comparisons between inodes 1201 * @data: opaque data pointer to pass to @test 1202 * 1203 * Search for the inode specified by @hashval and @data in the inode cache. 1204 * If the inode is in the cache, the inode is returned with an incremented 1205 * reference count. 1206 * 1207 * Note: I_NEW is not waited upon so you have to be very careful what you do 1208 * with the returned inode. You probably should be using ilookup5() instead. 1209 * 1210 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1211 */ 1212 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1213 int (*test)(struct inode *, void *), void *data) 1214 { 1215 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1216 struct inode *inode; 1217 1218 spin_lock(&inode_hash_lock); 1219 inode = find_inode(sb, head, test, data); 1220 spin_unlock(&inode_hash_lock); 1221 1222 return inode; 1223 } 1224 EXPORT_SYMBOL(ilookup5_nowait); 1225 1226 /** 1227 * ilookup5 - search for an inode in the inode cache 1228 * @sb: super block of file system to search 1229 * @hashval: hash value (usually inode number) to search for 1230 * @test: callback used for comparisons between inodes 1231 * @data: opaque data pointer to pass to @test 1232 * 1233 * Search for the inode specified by @hashval and @data in the inode cache, 1234 * and if the inode is in the cache, return the inode with an incremented 1235 * reference count. Waits on I_NEW before returning the inode. 1236 * returned with an incremented reference count. 1237 * 1238 * This is a generalized version of ilookup() for file systems where the 1239 * inode number is not sufficient for unique identification of an inode. 1240 * 1241 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1242 */ 1243 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1244 int (*test)(struct inode *, void *), void *data) 1245 { 1246 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1247 1248 if (inode) 1249 wait_on_inode(inode); 1250 return inode; 1251 } 1252 EXPORT_SYMBOL(ilookup5); 1253 1254 /** 1255 * ilookup - search for an inode in the inode cache 1256 * @sb: super block of file system to search 1257 * @ino: inode number to search for 1258 * 1259 * Search for the inode @ino in the inode cache, and if the inode is in the 1260 * cache, the inode is returned with an incremented reference count. 1261 */ 1262 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1263 { 1264 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1265 struct inode *inode; 1266 1267 spin_lock(&inode_hash_lock); 1268 inode = find_inode_fast(sb, head, ino); 1269 spin_unlock(&inode_hash_lock); 1270 1271 if (inode) 1272 wait_on_inode(inode); 1273 return inode; 1274 } 1275 EXPORT_SYMBOL(ilookup); 1276 1277 int insert_inode_locked(struct inode *inode) 1278 { 1279 struct super_block *sb = inode->i_sb; 1280 ino_t ino = inode->i_ino; 1281 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1282 1283 while (1) { 1284 struct hlist_node *node; 1285 struct inode *old = NULL; 1286 spin_lock(&inode_hash_lock); 1287 hlist_for_each_entry(old, node, head, i_hash) { 1288 if (old->i_ino != ino) 1289 continue; 1290 if (old->i_sb != sb) 1291 continue; 1292 spin_lock(&old->i_lock); 1293 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1294 spin_unlock(&old->i_lock); 1295 continue; 1296 } 1297 break; 1298 } 1299 if (likely(!node)) { 1300 spin_lock(&inode->i_lock); 1301 inode->i_state |= I_NEW; 1302 hlist_add_head(&inode->i_hash, head); 1303 spin_unlock(&inode->i_lock); 1304 spin_unlock(&inode_hash_lock); 1305 return 0; 1306 } 1307 __iget(old); 1308 spin_unlock(&old->i_lock); 1309 spin_unlock(&inode_hash_lock); 1310 wait_on_inode(old); 1311 if (unlikely(!inode_unhashed(old))) { 1312 iput(old); 1313 return -EBUSY; 1314 } 1315 iput(old); 1316 } 1317 } 1318 EXPORT_SYMBOL(insert_inode_locked); 1319 1320 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1321 int (*test)(struct inode *, void *), void *data) 1322 { 1323 struct super_block *sb = inode->i_sb; 1324 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1325 1326 while (1) { 1327 struct hlist_node *node; 1328 struct inode *old = NULL; 1329 1330 spin_lock(&inode_hash_lock); 1331 hlist_for_each_entry(old, node, head, i_hash) { 1332 if (old->i_sb != sb) 1333 continue; 1334 if (!test(old, data)) 1335 continue; 1336 spin_lock(&old->i_lock); 1337 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1338 spin_unlock(&old->i_lock); 1339 continue; 1340 } 1341 break; 1342 } 1343 if (likely(!node)) { 1344 spin_lock(&inode->i_lock); 1345 inode->i_state |= I_NEW; 1346 hlist_add_head(&inode->i_hash, head); 1347 spin_unlock(&inode->i_lock); 1348 spin_unlock(&inode_hash_lock); 1349 return 0; 1350 } 1351 __iget(old); 1352 spin_unlock(&old->i_lock); 1353 spin_unlock(&inode_hash_lock); 1354 wait_on_inode(old); 1355 if (unlikely(!inode_unhashed(old))) { 1356 iput(old); 1357 return -EBUSY; 1358 } 1359 iput(old); 1360 } 1361 } 1362 EXPORT_SYMBOL(insert_inode_locked4); 1363 1364 1365 int generic_delete_inode(struct inode *inode) 1366 { 1367 return 1; 1368 } 1369 EXPORT_SYMBOL(generic_delete_inode); 1370 1371 /* 1372 * Normal UNIX filesystem behaviour: delete the 1373 * inode when the usage count drops to zero, and 1374 * i_nlink is zero. 1375 */ 1376 int generic_drop_inode(struct inode *inode) 1377 { 1378 return !inode->i_nlink || inode_unhashed(inode); 1379 } 1380 EXPORT_SYMBOL_GPL(generic_drop_inode); 1381 1382 /* 1383 * Called when we're dropping the last reference 1384 * to an inode. 1385 * 1386 * Call the FS "drop_inode()" function, defaulting to 1387 * the legacy UNIX filesystem behaviour. If it tells 1388 * us to evict inode, do so. Otherwise, retain inode 1389 * in cache if fs is alive, sync and evict if fs is 1390 * shutting down. 1391 */ 1392 static void iput_final(struct inode *inode) 1393 { 1394 struct super_block *sb = inode->i_sb; 1395 const struct super_operations *op = inode->i_sb->s_op; 1396 int drop; 1397 1398 WARN_ON(inode->i_state & I_NEW); 1399 1400 if (op->drop_inode) 1401 drop = op->drop_inode(inode); 1402 else 1403 drop = generic_drop_inode(inode); 1404 1405 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1406 inode->i_state |= I_REFERENCED; 1407 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1408 inode_lru_list_add(inode); 1409 spin_unlock(&inode->i_lock); 1410 return; 1411 } 1412 1413 if (!drop) { 1414 inode->i_state |= I_WILL_FREE; 1415 spin_unlock(&inode->i_lock); 1416 write_inode_now(inode, 1); 1417 spin_lock(&inode->i_lock); 1418 WARN_ON(inode->i_state & I_NEW); 1419 inode->i_state &= ~I_WILL_FREE; 1420 } 1421 1422 inode->i_state |= I_FREEING; 1423 if (!list_empty(&inode->i_lru)) 1424 inode_lru_list_del(inode); 1425 spin_unlock(&inode->i_lock); 1426 1427 evict(inode); 1428 } 1429 1430 /** 1431 * iput - put an inode 1432 * @inode: inode to put 1433 * 1434 * Puts an inode, dropping its usage count. If the inode use count hits 1435 * zero, the inode is then freed and may also be destroyed. 1436 * 1437 * Consequently, iput() can sleep. 1438 */ 1439 void iput(struct inode *inode) 1440 { 1441 if (inode) { 1442 BUG_ON(inode->i_state & I_CLEAR); 1443 1444 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1445 iput_final(inode); 1446 } 1447 } 1448 EXPORT_SYMBOL(iput); 1449 1450 /** 1451 * bmap - find a block number in a file 1452 * @inode: inode of file 1453 * @block: block to find 1454 * 1455 * Returns the block number on the device holding the inode that 1456 * is the disk block number for the block of the file requested. 1457 * That is, asked for block 4 of inode 1 the function will return the 1458 * disk block relative to the disk start that holds that block of the 1459 * file. 1460 */ 1461 sector_t bmap(struct inode *inode, sector_t block) 1462 { 1463 sector_t res = 0; 1464 if (inode->i_mapping->a_ops->bmap) 1465 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1466 return res; 1467 } 1468 EXPORT_SYMBOL(bmap); 1469 1470 /* 1471 * With relative atime, only update atime if the previous atime is 1472 * earlier than either the ctime or mtime or if at least a day has 1473 * passed since the last atime update. 1474 */ 1475 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1476 struct timespec now) 1477 { 1478 1479 if (!(mnt->mnt_flags & MNT_RELATIME)) 1480 return 1; 1481 /* 1482 * Is mtime younger than atime? If yes, update atime: 1483 */ 1484 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1485 return 1; 1486 /* 1487 * Is ctime younger than atime? If yes, update atime: 1488 */ 1489 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1490 return 1; 1491 1492 /* 1493 * Is the previous atime value older than a day? If yes, 1494 * update atime: 1495 */ 1496 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1497 return 1; 1498 /* 1499 * Good, we can skip the atime update: 1500 */ 1501 return 0; 1502 } 1503 1504 /** 1505 * touch_atime - update the access time 1506 * @mnt: mount the inode is accessed on 1507 * @dentry: dentry accessed 1508 * 1509 * Update the accessed time on an inode and mark it for writeback. 1510 * This function automatically handles read only file systems and media, 1511 * as well as the "noatime" flag and inode specific "noatime" markers. 1512 */ 1513 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1514 { 1515 struct inode *inode = dentry->d_inode; 1516 struct timespec now; 1517 1518 if (inode->i_flags & S_NOATIME) 1519 return; 1520 if (IS_NOATIME(inode)) 1521 return; 1522 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1523 return; 1524 1525 if (mnt->mnt_flags & MNT_NOATIME) 1526 return; 1527 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1528 return; 1529 1530 now = current_fs_time(inode->i_sb); 1531 1532 if (!relatime_need_update(mnt, inode, now)) 1533 return; 1534 1535 if (timespec_equal(&inode->i_atime, &now)) 1536 return; 1537 1538 if (mnt_want_write(mnt)) 1539 return; 1540 1541 inode->i_atime = now; 1542 mark_inode_dirty_sync(inode); 1543 mnt_drop_write(mnt); 1544 } 1545 EXPORT_SYMBOL(touch_atime); 1546 1547 /** 1548 * file_update_time - update mtime and ctime time 1549 * @file: file accessed 1550 * 1551 * Update the mtime and ctime members of an inode and mark the inode 1552 * for writeback. Note that this function is meant exclusively for 1553 * usage in the file write path of filesystems, and filesystems may 1554 * choose to explicitly ignore update via this function with the 1555 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1556 * timestamps are handled by the server. 1557 */ 1558 1559 void file_update_time(struct file *file) 1560 { 1561 struct inode *inode = file->f_path.dentry->d_inode; 1562 struct timespec now; 1563 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1564 1565 /* First try to exhaust all avenues to not sync */ 1566 if (IS_NOCMTIME(inode)) 1567 return; 1568 1569 now = current_fs_time(inode->i_sb); 1570 if (!timespec_equal(&inode->i_mtime, &now)) 1571 sync_it = S_MTIME; 1572 1573 if (!timespec_equal(&inode->i_ctime, &now)) 1574 sync_it |= S_CTIME; 1575 1576 if (IS_I_VERSION(inode)) 1577 sync_it |= S_VERSION; 1578 1579 if (!sync_it) 1580 return; 1581 1582 /* Finally allowed to write? Takes lock. */ 1583 if (mnt_want_write_file(file)) 1584 return; 1585 1586 /* Only change inode inside the lock region */ 1587 if (sync_it & S_VERSION) 1588 inode_inc_iversion(inode); 1589 if (sync_it & S_CTIME) 1590 inode->i_ctime = now; 1591 if (sync_it & S_MTIME) 1592 inode->i_mtime = now; 1593 mark_inode_dirty_sync(inode); 1594 mnt_drop_write_file(file); 1595 } 1596 EXPORT_SYMBOL(file_update_time); 1597 1598 int inode_needs_sync(struct inode *inode) 1599 { 1600 if (IS_SYNC(inode)) 1601 return 1; 1602 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1603 return 1; 1604 return 0; 1605 } 1606 EXPORT_SYMBOL(inode_needs_sync); 1607 1608 int inode_wait(void *word) 1609 { 1610 schedule(); 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(inode_wait); 1614 1615 /* 1616 * If we try to find an inode in the inode hash while it is being 1617 * deleted, we have to wait until the filesystem completes its 1618 * deletion before reporting that it isn't found. This function waits 1619 * until the deletion _might_ have completed. Callers are responsible 1620 * to recheck inode state. 1621 * 1622 * It doesn't matter if I_NEW is not set initially, a call to 1623 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1624 * will DTRT. 1625 */ 1626 static void __wait_on_freeing_inode(struct inode *inode) 1627 { 1628 wait_queue_head_t *wq; 1629 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1630 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1631 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1632 spin_unlock(&inode->i_lock); 1633 spin_unlock(&inode_hash_lock); 1634 schedule(); 1635 finish_wait(wq, &wait.wait); 1636 spin_lock(&inode_hash_lock); 1637 } 1638 1639 static __initdata unsigned long ihash_entries; 1640 static int __init set_ihash_entries(char *str) 1641 { 1642 if (!str) 1643 return 0; 1644 ihash_entries = simple_strtoul(str, &str, 0); 1645 return 1; 1646 } 1647 __setup("ihash_entries=", set_ihash_entries); 1648 1649 /* 1650 * Initialize the waitqueues and inode hash table. 1651 */ 1652 void __init inode_init_early(void) 1653 { 1654 int loop; 1655 1656 /* If hashes are distributed across NUMA nodes, defer 1657 * hash allocation until vmalloc space is available. 1658 */ 1659 if (hashdist) 1660 return; 1661 1662 inode_hashtable = 1663 alloc_large_system_hash("Inode-cache", 1664 sizeof(struct hlist_head), 1665 ihash_entries, 1666 14, 1667 HASH_EARLY, 1668 &i_hash_shift, 1669 &i_hash_mask, 1670 0); 1671 1672 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1673 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1674 } 1675 1676 void __init inode_init(void) 1677 { 1678 int loop; 1679 1680 /* inode slab cache */ 1681 inode_cachep = kmem_cache_create("inode_cache", 1682 sizeof(struct inode), 1683 0, 1684 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1685 SLAB_MEM_SPREAD), 1686 init_once); 1687 1688 /* Hash may have been set up in inode_init_early */ 1689 if (!hashdist) 1690 return; 1691 1692 inode_hashtable = 1693 alloc_large_system_hash("Inode-cache", 1694 sizeof(struct hlist_head), 1695 ihash_entries, 1696 14, 1697 0, 1698 &i_hash_shift, 1699 &i_hash_mask, 1700 0); 1701 1702 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1703 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1704 } 1705 1706 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1707 { 1708 inode->i_mode = mode; 1709 if (S_ISCHR(mode)) { 1710 inode->i_fop = &def_chr_fops; 1711 inode->i_rdev = rdev; 1712 } else if (S_ISBLK(mode)) { 1713 inode->i_fop = &def_blk_fops; 1714 inode->i_rdev = rdev; 1715 } else if (S_ISFIFO(mode)) 1716 inode->i_fop = &def_fifo_fops; 1717 else if (S_ISSOCK(mode)) 1718 inode->i_fop = &bad_sock_fops; 1719 else 1720 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1721 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1722 inode->i_ino); 1723 } 1724 EXPORT_SYMBOL(init_special_inode); 1725 1726 /** 1727 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1728 * @inode: New inode 1729 * @dir: Directory inode 1730 * @mode: mode of the new inode 1731 */ 1732 void inode_init_owner(struct inode *inode, const struct inode *dir, 1733 umode_t mode) 1734 { 1735 inode->i_uid = current_fsuid(); 1736 if (dir && dir->i_mode & S_ISGID) { 1737 inode->i_gid = dir->i_gid; 1738 if (S_ISDIR(mode)) 1739 mode |= S_ISGID; 1740 } else 1741 inode->i_gid = current_fsgid(); 1742 inode->i_mode = mode; 1743 } 1744 EXPORT_SYMBOL(inode_init_owner); 1745 1746 /** 1747 * inode_owner_or_capable - check current task permissions to inode 1748 * @inode: inode being checked 1749 * 1750 * Return true if current either has CAP_FOWNER to the inode, or 1751 * owns the file. 1752 */ 1753 bool inode_owner_or_capable(const struct inode *inode) 1754 { 1755 struct user_namespace *ns = inode_userns(inode); 1756 1757 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1758 return true; 1759 if (ns_capable(ns, CAP_FOWNER)) 1760 return true; 1761 return false; 1762 } 1763 EXPORT_SYMBOL(inode_owner_or_capable); 1764