1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 27 /* 28 * This is needed for the following functions: 29 * - inode_has_buffers 30 * - invalidate_inode_buffers 31 * - invalidate_bdev 32 * 33 * FIXME: remove all knowledge of the buffer layer from this file 34 */ 35 #include <linux/buffer_head.h> 36 37 /* 38 * New inode.c implementation. 39 * 40 * This implementation has the basic premise of trying 41 * to be extremely low-overhead and SMP-safe, yet be 42 * simple enough to be "obviously correct". 43 * 44 * Famous last words. 45 */ 46 47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 48 49 /* #define INODE_PARANOIA 1 */ 50 /* #define INODE_DEBUG 1 */ 51 52 /* 53 * Inode lookup is no longer as critical as it used to be: 54 * most of the lookups are going to be through the dcache. 55 */ 56 #define I_HASHBITS i_hash_shift 57 #define I_HASHMASK i_hash_mask 58 59 static unsigned int i_hash_mask __read_mostly; 60 static unsigned int i_hash_shift __read_mostly; 61 62 /* 63 * Each inode can be on two separate lists. One is 64 * the hash list of the inode, used for lookups. The 65 * other linked list is the "type" list: 66 * "in_use" - valid inode, i_count > 0, i_nlink > 0 67 * "dirty" - as "in_use" but also dirty 68 * "unused" - valid inode, i_count = 0 69 * 70 * A "dirty" list is maintained for each super block, 71 * allowing for low-overhead inode sync() operations. 72 */ 73 74 LIST_HEAD(inode_in_use); 75 LIST_HEAD(inode_unused); 76 static struct hlist_head *inode_hashtable __read_mostly; 77 78 /* 79 * A simple spinlock to protect the list manipulations. 80 * 81 * NOTE! You also have to own the lock if you change 82 * the i_state of an inode while it is in use.. 83 */ 84 DEFINE_SPINLOCK(inode_lock); 85 86 /* 87 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 88 * icache shrinking path, and the umount path. Without this exclusion, 89 * by the time prune_icache calls iput for the inode whose pages it has 90 * been invalidating, or by the time it calls clear_inode & destroy_inode 91 * from its final dispose_list, the struct super_block they refer to 92 * (for inode->i_sb->s_op) may already have been freed and reused. 93 */ 94 static DEFINE_MUTEX(iprune_mutex); 95 96 /* 97 * Statistics gathering.. 98 */ 99 struct inodes_stat_t inodes_stat; 100 101 static struct kmem_cache * inode_cachep __read_mostly; 102 103 static void wake_up_inode(struct inode *inode) 104 { 105 /* 106 * Prevent speculative execution through spin_unlock(&inode_lock); 107 */ 108 smp_mb(); 109 wake_up_bit(&inode->i_state, __I_LOCK); 110 } 111 112 /** 113 * inode_init_always - perform inode structure intialisation 114 * @sb: superblock inode belongs to 115 * @inode: inode to initialise 116 * 117 * These are initializations that need to be done on every inode 118 * allocation as the fields are not initialised by slab allocation. 119 */ 120 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 121 { 122 static const struct address_space_operations empty_aops; 123 static struct inode_operations empty_iops; 124 static const struct file_operations empty_fops; 125 126 struct address_space * const mapping = &inode->i_data; 127 128 inode->i_sb = sb; 129 inode->i_blkbits = sb->s_blocksize_bits; 130 inode->i_flags = 0; 131 atomic_set(&inode->i_count, 1); 132 inode->i_op = &empty_iops; 133 inode->i_fop = &empty_fops; 134 inode->i_nlink = 1; 135 inode->i_uid = 0; 136 inode->i_gid = 0; 137 atomic_set(&inode->i_writecount, 0); 138 inode->i_size = 0; 139 inode->i_blocks = 0; 140 inode->i_bytes = 0; 141 inode->i_generation = 0; 142 #ifdef CONFIG_QUOTA 143 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 144 #endif 145 inode->i_pipe = NULL; 146 inode->i_bdev = NULL; 147 inode->i_cdev = NULL; 148 inode->i_rdev = 0; 149 inode->dirtied_when = 0; 150 if (security_inode_alloc(inode)) { 151 if (inode->i_sb->s_op->destroy_inode) 152 inode->i_sb->s_op->destroy_inode(inode); 153 else 154 kmem_cache_free(inode_cachep, (inode)); 155 return NULL; 156 } 157 158 spin_lock_init(&inode->i_lock); 159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 160 161 mutex_init(&inode->i_mutex); 162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 163 164 init_rwsem(&inode->i_alloc_sem); 165 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 166 167 mapping->a_ops = &empty_aops; 168 mapping->host = inode; 169 mapping->flags = 0; 170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 171 mapping->assoc_mapping = NULL; 172 mapping->backing_dev_info = &default_backing_dev_info; 173 mapping->writeback_index = 0; 174 175 /* 176 * If the block_device provides a backing_dev_info for client 177 * inodes then use that. Otherwise the inode share the bdev's 178 * backing_dev_info. 179 */ 180 if (sb->s_bdev) { 181 struct backing_dev_info *bdi; 182 183 bdi = sb->s_bdev->bd_inode_backing_dev_info; 184 if (!bdi) 185 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 186 mapping->backing_dev_info = bdi; 187 } 188 inode->i_private = NULL; 189 inode->i_mapping = mapping; 190 191 return inode; 192 } 193 EXPORT_SYMBOL(inode_init_always); 194 195 static struct inode *alloc_inode(struct super_block *sb) 196 { 197 struct inode *inode; 198 199 if (sb->s_op->alloc_inode) 200 inode = sb->s_op->alloc_inode(sb); 201 else 202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 203 204 if (inode) 205 return inode_init_always(sb, inode); 206 return NULL; 207 } 208 209 void destroy_inode(struct inode *inode) 210 { 211 BUG_ON(inode_has_buffers(inode)); 212 security_inode_free(inode); 213 if (inode->i_sb->s_op->destroy_inode) 214 inode->i_sb->s_op->destroy_inode(inode); 215 else 216 kmem_cache_free(inode_cachep, (inode)); 217 } 218 EXPORT_SYMBOL(destroy_inode); 219 220 221 /* 222 * These are initializations that only need to be done 223 * once, because the fields are idempotent across use 224 * of the inode, so let the slab aware of that. 225 */ 226 void inode_init_once(struct inode *inode) 227 { 228 memset(inode, 0, sizeof(*inode)); 229 INIT_HLIST_NODE(&inode->i_hash); 230 INIT_LIST_HEAD(&inode->i_dentry); 231 INIT_LIST_HEAD(&inode->i_devices); 232 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 233 spin_lock_init(&inode->i_data.tree_lock); 234 spin_lock_init(&inode->i_data.i_mmap_lock); 235 INIT_LIST_HEAD(&inode->i_data.private_list); 236 spin_lock_init(&inode->i_data.private_lock); 237 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 238 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 239 i_size_ordered_init(inode); 240 #ifdef CONFIG_INOTIFY 241 INIT_LIST_HEAD(&inode->inotify_watches); 242 mutex_init(&inode->inotify_mutex); 243 #endif 244 } 245 246 EXPORT_SYMBOL(inode_init_once); 247 248 static void init_once(void *foo) 249 { 250 struct inode * inode = (struct inode *) foo; 251 252 inode_init_once(inode); 253 } 254 255 /* 256 * inode_lock must be held 257 */ 258 void __iget(struct inode * inode) 259 { 260 if (atomic_read(&inode->i_count)) { 261 atomic_inc(&inode->i_count); 262 return; 263 } 264 atomic_inc(&inode->i_count); 265 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 266 list_move(&inode->i_list, &inode_in_use); 267 inodes_stat.nr_unused--; 268 } 269 270 /** 271 * clear_inode - clear an inode 272 * @inode: inode to clear 273 * 274 * This is called by the filesystem to tell us 275 * that the inode is no longer useful. We just 276 * terminate it with extreme prejudice. 277 */ 278 void clear_inode(struct inode *inode) 279 { 280 might_sleep(); 281 invalidate_inode_buffers(inode); 282 283 BUG_ON(inode->i_data.nrpages); 284 BUG_ON(!(inode->i_state & I_FREEING)); 285 BUG_ON(inode->i_state & I_CLEAR); 286 inode_sync_wait(inode); 287 DQUOT_DROP(inode); 288 if (inode->i_sb->s_op->clear_inode) 289 inode->i_sb->s_op->clear_inode(inode); 290 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 291 bd_forget(inode); 292 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 293 cd_forget(inode); 294 inode->i_state = I_CLEAR; 295 } 296 297 EXPORT_SYMBOL(clear_inode); 298 299 /* 300 * dispose_list - dispose of the contents of a local list 301 * @head: the head of the list to free 302 * 303 * Dispose-list gets a local list with local inodes in it, so it doesn't 304 * need to worry about list corruption and SMP locks. 305 */ 306 static void dispose_list(struct list_head *head) 307 { 308 int nr_disposed = 0; 309 310 while (!list_empty(head)) { 311 struct inode *inode; 312 313 inode = list_first_entry(head, struct inode, i_list); 314 list_del(&inode->i_list); 315 316 if (inode->i_data.nrpages) 317 truncate_inode_pages(&inode->i_data, 0); 318 clear_inode(inode); 319 320 spin_lock(&inode_lock); 321 hlist_del_init(&inode->i_hash); 322 list_del_init(&inode->i_sb_list); 323 spin_unlock(&inode_lock); 324 325 wake_up_inode(inode); 326 destroy_inode(inode); 327 nr_disposed++; 328 } 329 spin_lock(&inode_lock); 330 inodes_stat.nr_inodes -= nr_disposed; 331 spin_unlock(&inode_lock); 332 } 333 334 /* 335 * Invalidate all inodes for a device. 336 */ 337 static int invalidate_list(struct list_head *head, struct list_head *dispose) 338 { 339 struct list_head *next; 340 int busy = 0, count = 0; 341 342 next = head->next; 343 for (;;) { 344 struct list_head * tmp = next; 345 struct inode * inode; 346 347 /* 348 * We can reschedule here without worrying about the list's 349 * consistency because the per-sb list of inodes must not 350 * change during umount anymore, and because iprune_mutex keeps 351 * shrink_icache_memory() away. 352 */ 353 cond_resched_lock(&inode_lock); 354 355 next = next->next; 356 if (tmp == head) 357 break; 358 inode = list_entry(tmp, struct inode, i_sb_list); 359 invalidate_inode_buffers(inode); 360 if (!atomic_read(&inode->i_count)) { 361 list_move(&inode->i_list, dispose); 362 inode->i_state |= I_FREEING; 363 count++; 364 continue; 365 } 366 busy = 1; 367 } 368 /* only unused inodes may be cached with i_count zero */ 369 inodes_stat.nr_unused -= count; 370 return busy; 371 } 372 373 /** 374 * invalidate_inodes - discard the inodes on a device 375 * @sb: superblock 376 * 377 * Discard all of the inodes for a given superblock. If the discard 378 * fails because there are busy inodes then a non zero value is returned. 379 * If the discard is successful all the inodes have been discarded. 380 */ 381 int invalidate_inodes(struct super_block * sb) 382 { 383 int busy; 384 LIST_HEAD(throw_away); 385 386 mutex_lock(&iprune_mutex); 387 spin_lock(&inode_lock); 388 inotify_unmount_inodes(&sb->s_inodes); 389 busy = invalidate_list(&sb->s_inodes, &throw_away); 390 spin_unlock(&inode_lock); 391 392 dispose_list(&throw_away); 393 mutex_unlock(&iprune_mutex); 394 395 return busy; 396 } 397 398 EXPORT_SYMBOL(invalidate_inodes); 399 400 static int can_unuse(struct inode *inode) 401 { 402 if (inode->i_state) 403 return 0; 404 if (inode_has_buffers(inode)) 405 return 0; 406 if (atomic_read(&inode->i_count)) 407 return 0; 408 if (inode->i_data.nrpages) 409 return 0; 410 return 1; 411 } 412 413 /* 414 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 415 * a temporary list and then are freed outside inode_lock by dispose_list(). 416 * 417 * Any inodes which are pinned purely because of attached pagecache have their 418 * pagecache removed. We expect the final iput() on that inode to add it to 419 * the front of the inode_unused list. So look for it there and if the 420 * inode is still freeable, proceed. The right inode is found 99.9% of the 421 * time in testing on a 4-way. 422 * 423 * If the inode has metadata buffers attached to mapping->private_list then 424 * try to remove them. 425 */ 426 static void prune_icache(int nr_to_scan) 427 { 428 LIST_HEAD(freeable); 429 int nr_pruned = 0; 430 int nr_scanned; 431 unsigned long reap = 0; 432 433 mutex_lock(&iprune_mutex); 434 spin_lock(&inode_lock); 435 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 436 struct inode *inode; 437 438 if (list_empty(&inode_unused)) 439 break; 440 441 inode = list_entry(inode_unused.prev, struct inode, i_list); 442 443 if (inode->i_state || atomic_read(&inode->i_count)) { 444 list_move(&inode->i_list, &inode_unused); 445 continue; 446 } 447 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 448 __iget(inode); 449 spin_unlock(&inode_lock); 450 if (remove_inode_buffers(inode)) 451 reap += invalidate_mapping_pages(&inode->i_data, 452 0, -1); 453 iput(inode); 454 spin_lock(&inode_lock); 455 456 if (inode != list_entry(inode_unused.next, 457 struct inode, i_list)) 458 continue; /* wrong inode or list_empty */ 459 if (!can_unuse(inode)) 460 continue; 461 } 462 list_move(&inode->i_list, &freeable); 463 inode->i_state |= I_FREEING; 464 nr_pruned++; 465 } 466 inodes_stat.nr_unused -= nr_pruned; 467 if (current_is_kswapd()) 468 __count_vm_events(KSWAPD_INODESTEAL, reap); 469 else 470 __count_vm_events(PGINODESTEAL, reap); 471 spin_unlock(&inode_lock); 472 473 dispose_list(&freeable); 474 mutex_unlock(&iprune_mutex); 475 } 476 477 /* 478 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 479 * "unused" means that no dentries are referring to the inodes: the files are 480 * not open and the dcache references to those inodes have already been 481 * reclaimed. 482 * 483 * This function is passed the number of inodes to scan, and it returns the 484 * total number of remaining possibly-reclaimable inodes. 485 */ 486 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 487 { 488 if (nr) { 489 /* 490 * Nasty deadlock avoidance. We may hold various FS locks, 491 * and we don't want to recurse into the FS that called us 492 * in clear_inode() and friends.. 493 */ 494 if (!(gfp_mask & __GFP_FS)) 495 return -1; 496 prune_icache(nr); 497 } 498 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 499 } 500 501 static struct shrinker icache_shrinker = { 502 .shrink = shrink_icache_memory, 503 .seeks = DEFAULT_SEEKS, 504 }; 505 506 static void __wait_on_freeing_inode(struct inode *inode); 507 /* 508 * Called with the inode lock held. 509 * NOTE: we are not increasing the inode-refcount, you must call __iget() 510 * by hand after calling find_inode now! This simplifies iunique and won't 511 * add any additional branch in the common code. 512 */ 513 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 514 { 515 struct hlist_node *node; 516 struct inode * inode = NULL; 517 518 repeat: 519 hlist_for_each_entry(inode, node, head, i_hash) { 520 if (inode->i_sb != sb) 521 continue; 522 if (!test(inode, data)) 523 continue; 524 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 525 __wait_on_freeing_inode(inode); 526 goto repeat; 527 } 528 break; 529 } 530 return node ? inode : NULL; 531 } 532 533 /* 534 * find_inode_fast is the fast path version of find_inode, see the comment at 535 * iget_locked for details. 536 */ 537 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 538 { 539 struct hlist_node *node; 540 struct inode * inode = NULL; 541 542 repeat: 543 hlist_for_each_entry(inode, node, head, i_hash) { 544 if (inode->i_ino != ino) 545 continue; 546 if (inode->i_sb != sb) 547 continue; 548 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 549 __wait_on_freeing_inode(inode); 550 goto repeat; 551 } 552 break; 553 } 554 return node ? inode : NULL; 555 } 556 557 static unsigned long hash(struct super_block *sb, unsigned long hashval) 558 { 559 unsigned long tmp; 560 561 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 562 L1_CACHE_BYTES; 563 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 564 return tmp & I_HASHMASK; 565 } 566 567 static inline void 568 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 569 struct inode *inode) 570 { 571 inodes_stat.nr_inodes++; 572 list_add(&inode->i_list, &inode_in_use); 573 list_add(&inode->i_sb_list, &sb->s_inodes); 574 if (head) 575 hlist_add_head(&inode->i_hash, head); 576 } 577 578 /** 579 * inode_add_to_lists - add a new inode to relevant lists 580 * @sb: superblock inode belongs to 581 * @inode: inode to mark in use 582 * 583 * When an inode is allocated it needs to be accounted for, added to the in use 584 * list, the owning superblock and the inode hash. This needs to be done under 585 * the inode_lock, so export a function to do this rather than the inode lock 586 * itself. We calculate the hash list to add to here so it is all internal 587 * which requires the caller to have already set up the inode number in the 588 * inode to add. 589 */ 590 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 591 { 592 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 593 594 spin_lock(&inode_lock); 595 __inode_add_to_lists(sb, head, inode); 596 spin_unlock(&inode_lock); 597 } 598 EXPORT_SYMBOL_GPL(inode_add_to_lists); 599 600 /** 601 * new_inode - obtain an inode 602 * @sb: superblock 603 * 604 * Allocates a new inode for given superblock. The default gfp_mask 605 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 606 * If HIGHMEM pages are unsuitable or it is known that pages allocated 607 * for the page cache are not reclaimable or migratable, 608 * mapping_set_gfp_mask() must be called with suitable flags on the 609 * newly created inode's mapping 610 * 611 */ 612 struct inode *new_inode(struct super_block *sb) 613 { 614 /* 615 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 616 * error if st_ino won't fit in target struct field. Use 32bit counter 617 * here to attempt to avoid that. 618 */ 619 static unsigned int last_ino; 620 struct inode * inode; 621 622 spin_lock_prefetch(&inode_lock); 623 624 inode = alloc_inode(sb); 625 if (inode) { 626 spin_lock(&inode_lock); 627 __inode_add_to_lists(sb, NULL, inode); 628 inode->i_ino = ++last_ino; 629 inode->i_state = 0; 630 spin_unlock(&inode_lock); 631 } 632 return inode; 633 } 634 635 EXPORT_SYMBOL(new_inode); 636 637 void unlock_new_inode(struct inode *inode) 638 { 639 #ifdef CONFIG_DEBUG_LOCK_ALLOC 640 if (inode->i_mode & S_IFDIR) { 641 struct file_system_type *type = inode->i_sb->s_type; 642 643 /* 644 * ensure nobody is actually holding i_mutex 645 */ 646 mutex_destroy(&inode->i_mutex); 647 mutex_init(&inode->i_mutex); 648 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 649 } 650 #endif 651 /* 652 * This is special! We do not need the spinlock 653 * when clearing I_LOCK, because we're guaranteed 654 * that nobody else tries to do anything about the 655 * state of the inode when it is locked, as we 656 * just created it (so there can be no old holders 657 * that haven't tested I_LOCK). 658 */ 659 inode->i_state &= ~(I_LOCK|I_NEW); 660 wake_up_inode(inode); 661 } 662 663 EXPORT_SYMBOL(unlock_new_inode); 664 665 /* 666 * This is called without the inode lock held.. Be careful. 667 * 668 * We no longer cache the sb_flags in i_flags - see fs.h 669 * -- rmk@arm.uk.linux.org 670 */ 671 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 672 { 673 struct inode * inode; 674 675 inode = alloc_inode(sb); 676 if (inode) { 677 struct inode * old; 678 679 spin_lock(&inode_lock); 680 /* We released the lock, so.. */ 681 old = find_inode(sb, head, test, data); 682 if (!old) { 683 if (set(inode, data)) 684 goto set_failed; 685 686 __inode_add_to_lists(sb, head, inode); 687 inode->i_state = I_LOCK|I_NEW; 688 spin_unlock(&inode_lock); 689 690 /* Return the locked inode with I_NEW set, the 691 * caller is responsible for filling in the contents 692 */ 693 return inode; 694 } 695 696 /* 697 * Uhhuh, somebody else created the same inode under 698 * us. Use the old inode instead of the one we just 699 * allocated. 700 */ 701 __iget(old); 702 spin_unlock(&inode_lock); 703 destroy_inode(inode); 704 inode = old; 705 wait_on_inode(inode); 706 } 707 return inode; 708 709 set_failed: 710 spin_unlock(&inode_lock); 711 destroy_inode(inode); 712 return NULL; 713 } 714 715 /* 716 * get_new_inode_fast is the fast path version of get_new_inode, see the 717 * comment at iget_locked for details. 718 */ 719 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 720 { 721 struct inode * inode; 722 723 inode = alloc_inode(sb); 724 if (inode) { 725 struct inode * old; 726 727 spin_lock(&inode_lock); 728 /* We released the lock, so.. */ 729 old = find_inode_fast(sb, head, ino); 730 if (!old) { 731 inode->i_ino = ino; 732 __inode_add_to_lists(sb, head, inode); 733 inode->i_state = I_LOCK|I_NEW; 734 spin_unlock(&inode_lock); 735 736 /* Return the locked inode with I_NEW set, the 737 * caller is responsible for filling in the contents 738 */ 739 return inode; 740 } 741 742 /* 743 * Uhhuh, somebody else created the same inode under 744 * us. Use the old inode instead of the one we just 745 * allocated. 746 */ 747 __iget(old); 748 spin_unlock(&inode_lock); 749 destroy_inode(inode); 750 inode = old; 751 wait_on_inode(inode); 752 } 753 return inode; 754 } 755 756 /** 757 * iunique - get a unique inode number 758 * @sb: superblock 759 * @max_reserved: highest reserved inode number 760 * 761 * Obtain an inode number that is unique on the system for a given 762 * superblock. This is used by file systems that have no natural 763 * permanent inode numbering system. An inode number is returned that 764 * is higher than the reserved limit but unique. 765 * 766 * BUGS: 767 * With a large number of inodes live on the file system this function 768 * currently becomes quite slow. 769 */ 770 ino_t iunique(struct super_block *sb, ino_t max_reserved) 771 { 772 /* 773 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 774 * error if st_ino won't fit in target struct field. Use 32bit counter 775 * here to attempt to avoid that. 776 */ 777 static unsigned int counter; 778 struct inode *inode; 779 struct hlist_head *head; 780 ino_t res; 781 782 spin_lock(&inode_lock); 783 do { 784 if (counter <= max_reserved) 785 counter = max_reserved + 1; 786 res = counter++; 787 head = inode_hashtable + hash(sb, res); 788 inode = find_inode_fast(sb, head, res); 789 } while (inode != NULL); 790 spin_unlock(&inode_lock); 791 792 return res; 793 } 794 EXPORT_SYMBOL(iunique); 795 796 struct inode *igrab(struct inode *inode) 797 { 798 spin_lock(&inode_lock); 799 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 800 __iget(inode); 801 else 802 /* 803 * Handle the case where s_op->clear_inode is not been 804 * called yet, and somebody is calling igrab 805 * while the inode is getting freed. 806 */ 807 inode = NULL; 808 spin_unlock(&inode_lock); 809 return inode; 810 } 811 812 EXPORT_SYMBOL(igrab); 813 814 /** 815 * ifind - internal function, you want ilookup5() or iget5(). 816 * @sb: super block of file system to search 817 * @head: the head of the list to search 818 * @test: callback used for comparisons between inodes 819 * @data: opaque data pointer to pass to @test 820 * @wait: if true wait for the inode to be unlocked, if false do not 821 * 822 * ifind() searches for the inode specified by @data in the inode 823 * cache. This is a generalized version of ifind_fast() for file systems where 824 * the inode number is not sufficient for unique identification of an inode. 825 * 826 * If the inode is in the cache, the inode is returned with an incremented 827 * reference count. 828 * 829 * Otherwise NULL is returned. 830 * 831 * Note, @test is called with the inode_lock held, so can't sleep. 832 */ 833 static struct inode *ifind(struct super_block *sb, 834 struct hlist_head *head, int (*test)(struct inode *, void *), 835 void *data, const int wait) 836 { 837 struct inode *inode; 838 839 spin_lock(&inode_lock); 840 inode = find_inode(sb, head, test, data); 841 if (inode) { 842 __iget(inode); 843 spin_unlock(&inode_lock); 844 if (likely(wait)) 845 wait_on_inode(inode); 846 return inode; 847 } 848 spin_unlock(&inode_lock); 849 return NULL; 850 } 851 852 /** 853 * ifind_fast - internal function, you want ilookup() or iget(). 854 * @sb: super block of file system to search 855 * @head: head of the list to search 856 * @ino: inode number to search for 857 * 858 * ifind_fast() searches for the inode @ino in the inode cache. This is for 859 * file systems where the inode number is sufficient for unique identification 860 * of an inode. 861 * 862 * If the inode is in the cache, the inode is returned with an incremented 863 * reference count. 864 * 865 * Otherwise NULL is returned. 866 */ 867 static struct inode *ifind_fast(struct super_block *sb, 868 struct hlist_head *head, unsigned long ino) 869 { 870 struct inode *inode; 871 872 spin_lock(&inode_lock); 873 inode = find_inode_fast(sb, head, ino); 874 if (inode) { 875 __iget(inode); 876 spin_unlock(&inode_lock); 877 wait_on_inode(inode); 878 return inode; 879 } 880 spin_unlock(&inode_lock); 881 return NULL; 882 } 883 884 /** 885 * ilookup5_nowait - search for an inode in the inode cache 886 * @sb: super block of file system to search 887 * @hashval: hash value (usually inode number) to search for 888 * @test: callback used for comparisons between inodes 889 * @data: opaque data pointer to pass to @test 890 * 891 * ilookup5() uses ifind() to search for the inode specified by @hashval and 892 * @data in the inode cache. This is a generalized version of ilookup() for 893 * file systems where the inode number is not sufficient for unique 894 * identification of an inode. 895 * 896 * If the inode is in the cache, the inode is returned with an incremented 897 * reference count. Note, the inode lock is not waited upon so you have to be 898 * very careful what you do with the returned inode. You probably should be 899 * using ilookup5() instead. 900 * 901 * Otherwise NULL is returned. 902 * 903 * Note, @test is called with the inode_lock held, so can't sleep. 904 */ 905 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 906 int (*test)(struct inode *, void *), void *data) 907 { 908 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 909 910 return ifind(sb, head, test, data, 0); 911 } 912 913 EXPORT_SYMBOL(ilookup5_nowait); 914 915 /** 916 * ilookup5 - search for an inode in the inode cache 917 * @sb: super block of file system to search 918 * @hashval: hash value (usually inode number) to search for 919 * @test: callback used for comparisons between inodes 920 * @data: opaque data pointer to pass to @test 921 * 922 * ilookup5() uses ifind() to search for the inode specified by @hashval and 923 * @data in the inode cache. This is a generalized version of ilookup() for 924 * file systems where the inode number is not sufficient for unique 925 * identification of an inode. 926 * 927 * If the inode is in the cache, the inode lock is waited upon and the inode is 928 * returned with an incremented reference count. 929 * 930 * Otherwise NULL is returned. 931 * 932 * Note, @test is called with the inode_lock held, so can't sleep. 933 */ 934 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 935 int (*test)(struct inode *, void *), void *data) 936 { 937 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 938 939 return ifind(sb, head, test, data, 1); 940 } 941 942 EXPORT_SYMBOL(ilookup5); 943 944 /** 945 * ilookup - search for an inode in the inode cache 946 * @sb: super block of file system to search 947 * @ino: inode number to search for 948 * 949 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 950 * This is for file systems where the inode number is sufficient for unique 951 * identification of an inode. 952 * 953 * If the inode is in the cache, the inode is returned with an incremented 954 * reference count. 955 * 956 * Otherwise NULL is returned. 957 */ 958 struct inode *ilookup(struct super_block *sb, unsigned long ino) 959 { 960 struct hlist_head *head = inode_hashtable + hash(sb, ino); 961 962 return ifind_fast(sb, head, ino); 963 } 964 965 EXPORT_SYMBOL(ilookup); 966 967 /** 968 * iget5_locked - obtain an inode from a mounted file system 969 * @sb: super block of file system 970 * @hashval: hash value (usually inode number) to get 971 * @test: callback used for comparisons between inodes 972 * @set: callback used to initialize a new struct inode 973 * @data: opaque data pointer to pass to @test and @set 974 * 975 * iget5_locked() uses ifind() to search for the inode specified by @hashval 976 * and @data in the inode cache and if present it is returned with an increased 977 * reference count. This is a generalized version of iget_locked() for file 978 * systems where the inode number is not sufficient for unique identification 979 * of an inode. 980 * 981 * If the inode is not in cache, get_new_inode() is called to allocate a new 982 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 983 * file system gets to fill it in before unlocking it via unlock_new_inode(). 984 * 985 * Note both @test and @set are called with the inode_lock held, so can't sleep. 986 */ 987 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 988 int (*test)(struct inode *, void *), 989 int (*set)(struct inode *, void *), void *data) 990 { 991 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 992 struct inode *inode; 993 994 inode = ifind(sb, head, test, data, 1); 995 if (inode) 996 return inode; 997 /* 998 * get_new_inode() will do the right thing, re-trying the search 999 * in case it had to block at any point. 1000 */ 1001 return get_new_inode(sb, head, test, set, data); 1002 } 1003 1004 EXPORT_SYMBOL(iget5_locked); 1005 1006 /** 1007 * iget_locked - obtain an inode from a mounted file system 1008 * @sb: super block of file system 1009 * @ino: inode number to get 1010 * 1011 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1012 * the inode cache and if present it is returned with an increased reference 1013 * count. This is for file systems where the inode number is sufficient for 1014 * unique identification of an inode. 1015 * 1016 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1017 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1018 * The file system gets to fill it in before unlocking it via 1019 * unlock_new_inode(). 1020 */ 1021 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1022 { 1023 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1024 struct inode *inode; 1025 1026 inode = ifind_fast(sb, head, ino); 1027 if (inode) 1028 return inode; 1029 /* 1030 * get_new_inode_fast() will do the right thing, re-trying the search 1031 * in case it had to block at any point. 1032 */ 1033 return get_new_inode_fast(sb, head, ino); 1034 } 1035 1036 EXPORT_SYMBOL(iget_locked); 1037 1038 int insert_inode_locked(struct inode *inode) 1039 { 1040 struct super_block *sb = inode->i_sb; 1041 ino_t ino = inode->i_ino; 1042 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1043 struct inode *old; 1044 1045 inode->i_state |= I_LOCK|I_NEW; 1046 while (1) { 1047 spin_lock(&inode_lock); 1048 old = find_inode_fast(sb, head, ino); 1049 if (likely(!old)) { 1050 hlist_add_head(&inode->i_hash, head); 1051 spin_unlock(&inode_lock); 1052 return 0; 1053 } 1054 __iget(old); 1055 spin_unlock(&inode_lock); 1056 wait_on_inode(old); 1057 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1058 iput(old); 1059 return -EBUSY; 1060 } 1061 iput(old); 1062 } 1063 } 1064 1065 EXPORT_SYMBOL(insert_inode_locked); 1066 1067 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1068 int (*test)(struct inode *, void *), void *data) 1069 { 1070 struct super_block *sb = inode->i_sb; 1071 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1072 struct inode *old; 1073 1074 inode->i_state |= I_LOCK|I_NEW; 1075 1076 while (1) { 1077 spin_lock(&inode_lock); 1078 old = find_inode(sb, head, test, data); 1079 if (likely(!old)) { 1080 hlist_add_head(&inode->i_hash, head); 1081 spin_unlock(&inode_lock); 1082 return 0; 1083 } 1084 __iget(old); 1085 spin_unlock(&inode_lock); 1086 wait_on_inode(old); 1087 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1088 iput(old); 1089 return -EBUSY; 1090 } 1091 iput(old); 1092 } 1093 } 1094 1095 EXPORT_SYMBOL(insert_inode_locked4); 1096 1097 /** 1098 * __insert_inode_hash - hash an inode 1099 * @inode: unhashed inode 1100 * @hashval: unsigned long value used to locate this object in the 1101 * inode_hashtable. 1102 * 1103 * Add an inode to the inode hash for this superblock. 1104 */ 1105 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1106 { 1107 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1108 spin_lock(&inode_lock); 1109 hlist_add_head(&inode->i_hash, head); 1110 spin_unlock(&inode_lock); 1111 } 1112 1113 EXPORT_SYMBOL(__insert_inode_hash); 1114 1115 /** 1116 * remove_inode_hash - remove an inode from the hash 1117 * @inode: inode to unhash 1118 * 1119 * Remove an inode from the superblock. 1120 */ 1121 void remove_inode_hash(struct inode *inode) 1122 { 1123 spin_lock(&inode_lock); 1124 hlist_del_init(&inode->i_hash); 1125 spin_unlock(&inode_lock); 1126 } 1127 1128 EXPORT_SYMBOL(remove_inode_hash); 1129 1130 /* 1131 * Tell the filesystem that this inode is no longer of any interest and should 1132 * be completely destroyed. 1133 * 1134 * We leave the inode in the inode hash table until *after* the filesystem's 1135 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1136 * instigate) will always find up-to-date information either in the hash or on 1137 * disk. 1138 * 1139 * I_FREEING is set so that no-one will take a new reference to the inode while 1140 * it is being deleted. 1141 */ 1142 void generic_delete_inode(struct inode *inode) 1143 { 1144 const struct super_operations *op = inode->i_sb->s_op; 1145 1146 list_del_init(&inode->i_list); 1147 list_del_init(&inode->i_sb_list); 1148 inode->i_state |= I_FREEING; 1149 inodes_stat.nr_inodes--; 1150 spin_unlock(&inode_lock); 1151 1152 security_inode_delete(inode); 1153 1154 if (op->delete_inode) { 1155 void (*delete)(struct inode *) = op->delete_inode; 1156 if (!is_bad_inode(inode)) 1157 DQUOT_INIT(inode); 1158 /* Filesystems implementing their own 1159 * s_op->delete_inode are required to call 1160 * truncate_inode_pages and clear_inode() 1161 * internally */ 1162 delete(inode); 1163 } else { 1164 truncate_inode_pages(&inode->i_data, 0); 1165 clear_inode(inode); 1166 } 1167 spin_lock(&inode_lock); 1168 hlist_del_init(&inode->i_hash); 1169 spin_unlock(&inode_lock); 1170 wake_up_inode(inode); 1171 BUG_ON(inode->i_state != I_CLEAR); 1172 destroy_inode(inode); 1173 } 1174 1175 EXPORT_SYMBOL(generic_delete_inode); 1176 1177 static void generic_forget_inode(struct inode *inode) 1178 { 1179 struct super_block *sb = inode->i_sb; 1180 1181 if (!hlist_unhashed(&inode->i_hash)) { 1182 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1183 list_move(&inode->i_list, &inode_unused); 1184 inodes_stat.nr_unused++; 1185 if (sb->s_flags & MS_ACTIVE) { 1186 spin_unlock(&inode_lock); 1187 return; 1188 } 1189 inode->i_state |= I_WILL_FREE; 1190 spin_unlock(&inode_lock); 1191 write_inode_now(inode, 1); 1192 spin_lock(&inode_lock); 1193 inode->i_state &= ~I_WILL_FREE; 1194 inodes_stat.nr_unused--; 1195 hlist_del_init(&inode->i_hash); 1196 } 1197 list_del_init(&inode->i_list); 1198 list_del_init(&inode->i_sb_list); 1199 inode->i_state |= I_FREEING; 1200 inodes_stat.nr_inodes--; 1201 spin_unlock(&inode_lock); 1202 if (inode->i_data.nrpages) 1203 truncate_inode_pages(&inode->i_data, 0); 1204 clear_inode(inode); 1205 wake_up_inode(inode); 1206 destroy_inode(inode); 1207 } 1208 1209 /* 1210 * Normal UNIX filesystem behaviour: delete the 1211 * inode when the usage count drops to zero, and 1212 * i_nlink is zero. 1213 */ 1214 void generic_drop_inode(struct inode *inode) 1215 { 1216 if (!inode->i_nlink) 1217 generic_delete_inode(inode); 1218 else 1219 generic_forget_inode(inode); 1220 } 1221 1222 EXPORT_SYMBOL_GPL(generic_drop_inode); 1223 1224 /* 1225 * Called when we're dropping the last reference 1226 * to an inode. 1227 * 1228 * Call the FS "drop()" function, defaulting to 1229 * the legacy UNIX filesystem behaviour.. 1230 * 1231 * NOTE! NOTE! NOTE! We're called with the inode lock 1232 * held, and the drop function is supposed to release 1233 * the lock! 1234 */ 1235 static inline void iput_final(struct inode *inode) 1236 { 1237 const struct super_operations *op = inode->i_sb->s_op; 1238 void (*drop)(struct inode *) = generic_drop_inode; 1239 1240 if (op && op->drop_inode) 1241 drop = op->drop_inode; 1242 drop(inode); 1243 } 1244 1245 /** 1246 * iput - put an inode 1247 * @inode: inode to put 1248 * 1249 * Puts an inode, dropping its usage count. If the inode use count hits 1250 * zero, the inode is then freed and may also be destroyed. 1251 * 1252 * Consequently, iput() can sleep. 1253 */ 1254 void iput(struct inode *inode) 1255 { 1256 if (inode) { 1257 BUG_ON(inode->i_state == I_CLEAR); 1258 1259 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1260 iput_final(inode); 1261 } 1262 } 1263 1264 EXPORT_SYMBOL(iput); 1265 1266 /** 1267 * bmap - find a block number in a file 1268 * @inode: inode of file 1269 * @block: block to find 1270 * 1271 * Returns the block number on the device holding the inode that 1272 * is the disk block number for the block of the file requested. 1273 * That is, asked for block 4 of inode 1 the function will return the 1274 * disk block relative to the disk start that holds that block of the 1275 * file. 1276 */ 1277 sector_t bmap(struct inode * inode, sector_t block) 1278 { 1279 sector_t res = 0; 1280 if (inode->i_mapping->a_ops->bmap) 1281 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1282 return res; 1283 } 1284 EXPORT_SYMBOL(bmap); 1285 1286 /** 1287 * touch_atime - update the access time 1288 * @mnt: mount the inode is accessed on 1289 * @dentry: dentry accessed 1290 * 1291 * Update the accessed time on an inode and mark it for writeback. 1292 * This function automatically handles read only file systems and media, 1293 * as well as the "noatime" flag and inode specific "noatime" markers. 1294 */ 1295 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1296 { 1297 struct inode *inode = dentry->d_inode; 1298 struct timespec now; 1299 1300 if (mnt_want_write(mnt)) 1301 return; 1302 if (inode->i_flags & S_NOATIME) 1303 goto out; 1304 if (IS_NOATIME(inode)) 1305 goto out; 1306 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1307 goto out; 1308 1309 if (mnt->mnt_flags & MNT_NOATIME) 1310 goto out; 1311 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1312 goto out; 1313 if (mnt->mnt_flags & MNT_RELATIME) { 1314 /* 1315 * With relative atime, only update atime if the previous 1316 * atime is earlier than either the ctime or mtime. 1317 */ 1318 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 && 1319 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0) 1320 goto out; 1321 } 1322 1323 now = current_fs_time(inode->i_sb); 1324 if (timespec_equal(&inode->i_atime, &now)) 1325 goto out; 1326 1327 inode->i_atime = now; 1328 mark_inode_dirty_sync(inode); 1329 out: 1330 mnt_drop_write(mnt); 1331 } 1332 EXPORT_SYMBOL(touch_atime); 1333 1334 /** 1335 * file_update_time - update mtime and ctime time 1336 * @file: file accessed 1337 * 1338 * Update the mtime and ctime members of an inode and mark the inode 1339 * for writeback. Note that this function is meant exclusively for 1340 * usage in the file write path of filesystems, and filesystems may 1341 * choose to explicitly ignore update via this function with the 1342 * S_NOCTIME inode flag, e.g. for network filesystem where these 1343 * timestamps are handled by the server. 1344 */ 1345 1346 void file_update_time(struct file *file) 1347 { 1348 struct inode *inode = file->f_path.dentry->d_inode; 1349 struct timespec now; 1350 int sync_it = 0; 1351 int err; 1352 1353 if (IS_NOCMTIME(inode)) 1354 return; 1355 1356 err = mnt_want_write(file->f_path.mnt); 1357 if (err) 1358 return; 1359 1360 now = current_fs_time(inode->i_sb); 1361 if (!timespec_equal(&inode->i_mtime, &now)) { 1362 inode->i_mtime = now; 1363 sync_it = 1; 1364 } 1365 1366 if (!timespec_equal(&inode->i_ctime, &now)) { 1367 inode->i_ctime = now; 1368 sync_it = 1; 1369 } 1370 1371 if (IS_I_VERSION(inode)) { 1372 inode_inc_iversion(inode); 1373 sync_it = 1; 1374 } 1375 1376 if (sync_it) 1377 mark_inode_dirty_sync(inode); 1378 mnt_drop_write(file->f_path.mnt); 1379 } 1380 1381 EXPORT_SYMBOL(file_update_time); 1382 1383 int inode_needs_sync(struct inode *inode) 1384 { 1385 if (IS_SYNC(inode)) 1386 return 1; 1387 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1388 return 1; 1389 return 0; 1390 } 1391 1392 EXPORT_SYMBOL(inode_needs_sync); 1393 1394 int inode_wait(void *word) 1395 { 1396 schedule(); 1397 return 0; 1398 } 1399 EXPORT_SYMBOL(inode_wait); 1400 1401 /* 1402 * If we try to find an inode in the inode hash while it is being 1403 * deleted, we have to wait until the filesystem completes its 1404 * deletion before reporting that it isn't found. This function waits 1405 * until the deletion _might_ have completed. Callers are responsible 1406 * to recheck inode state. 1407 * 1408 * It doesn't matter if I_LOCK is not set initially, a call to 1409 * wake_up_inode() after removing from the hash list will DTRT. 1410 * 1411 * This is called with inode_lock held. 1412 */ 1413 static void __wait_on_freeing_inode(struct inode *inode) 1414 { 1415 wait_queue_head_t *wq; 1416 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1417 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1418 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1419 spin_unlock(&inode_lock); 1420 schedule(); 1421 finish_wait(wq, &wait.wait); 1422 spin_lock(&inode_lock); 1423 } 1424 1425 /* 1426 * We rarely want to lock two inodes that do not have a parent/child 1427 * relationship (such as directory, child inode) simultaneously. The 1428 * vast majority of file systems should be able to get along fine 1429 * without this. Do not use these functions except as a last resort. 1430 */ 1431 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1432 { 1433 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1434 if (inode1) 1435 mutex_lock(&inode1->i_mutex); 1436 else if (inode2) 1437 mutex_lock(&inode2->i_mutex); 1438 return; 1439 } 1440 1441 if (inode1 < inode2) { 1442 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1443 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1444 } else { 1445 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1446 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1447 } 1448 } 1449 EXPORT_SYMBOL(inode_double_lock); 1450 1451 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1452 { 1453 if (inode1) 1454 mutex_unlock(&inode1->i_mutex); 1455 1456 if (inode2 && inode2 != inode1) 1457 mutex_unlock(&inode2->i_mutex); 1458 } 1459 EXPORT_SYMBOL(inode_double_unlock); 1460 1461 static __initdata unsigned long ihash_entries; 1462 static int __init set_ihash_entries(char *str) 1463 { 1464 if (!str) 1465 return 0; 1466 ihash_entries = simple_strtoul(str, &str, 0); 1467 return 1; 1468 } 1469 __setup("ihash_entries=", set_ihash_entries); 1470 1471 /* 1472 * Initialize the waitqueues and inode hash table. 1473 */ 1474 void __init inode_init_early(void) 1475 { 1476 int loop; 1477 1478 /* If hashes are distributed across NUMA nodes, defer 1479 * hash allocation until vmalloc space is available. 1480 */ 1481 if (hashdist) 1482 return; 1483 1484 inode_hashtable = 1485 alloc_large_system_hash("Inode-cache", 1486 sizeof(struct hlist_head), 1487 ihash_entries, 1488 14, 1489 HASH_EARLY, 1490 &i_hash_shift, 1491 &i_hash_mask, 1492 0); 1493 1494 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1495 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1496 } 1497 1498 void __init inode_init(void) 1499 { 1500 int loop; 1501 1502 /* inode slab cache */ 1503 inode_cachep = kmem_cache_create("inode_cache", 1504 sizeof(struct inode), 1505 0, 1506 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1507 SLAB_MEM_SPREAD), 1508 init_once); 1509 register_shrinker(&icache_shrinker); 1510 1511 /* Hash may have been set up in inode_init_early */ 1512 if (!hashdist) 1513 return; 1514 1515 inode_hashtable = 1516 alloc_large_system_hash("Inode-cache", 1517 sizeof(struct hlist_head), 1518 ihash_entries, 1519 14, 1520 0, 1521 &i_hash_shift, 1522 &i_hash_mask, 1523 0); 1524 1525 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1526 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1527 } 1528 1529 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1530 { 1531 inode->i_mode = mode; 1532 if (S_ISCHR(mode)) { 1533 inode->i_fop = &def_chr_fops; 1534 inode->i_rdev = rdev; 1535 } else if (S_ISBLK(mode)) { 1536 inode->i_fop = &def_blk_fops; 1537 inode->i_rdev = rdev; 1538 } else if (S_ISFIFO(mode)) 1539 inode->i_fop = &def_fifo_fops; 1540 else if (S_ISSOCK(mode)) 1541 inode->i_fop = &bad_sock_fops; 1542 else 1543 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1544 mode); 1545 } 1546 EXPORT_SYMBOL(init_special_inode); 1547