1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __ro_after_init; 58 static unsigned int i_hash_shift __ro_after_init; 59 static struct hlist_head *inode_hashtable __ro_after_init; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __ro_after_init; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 }; 133 134 static int __init init_fs_inode_sysctls(void) 135 { 136 register_sysctl_init("fs", inodes_sysctls); 137 return 0; 138 } 139 early_initcall(init_fs_inode_sysctls); 140 #endif 141 142 static int no_open(struct inode *inode, struct file *file) 143 { 144 return -ENXIO; 145 } 146 147 /** 148 * inode_init_always - perform inode structure initialisation 149 * @sb: superblock inode belongs to 150 * @inode: inode to initialise 151 * 152 * These are initializations that need to be done on every inode 153 * allocation as the fields are not initialised by slab allocation. 154 */ 155 int inode_init_always(struct super_block *sb, struct inode *inode) 156 { 157 static const struct inode_operations empty_iops; 158 static const struct file_operations no_open_fops = {.open = no_open}; 159 struct address_space *const mapping = &inode->i_data; 160 161 inode->i_sb = sb; 162 inode->i_blkbits = sb->s_blocksize_bits; 163 inode->i_flags = 0; 164 atomic64_set(&inode->i_sequence, 0); 165 atomic_set(&inode->i_count, 1); 166 inode->i_op = &empty_iops; 167 inode->i_fop = &no_open_fops; 168 inode->i_ino = 0; 169 inode->__i_nlink = 1; 170 inode->i_opflags = 0; 171 if (sb->s_xattr) 172 inode->i_opflags |= IOP_XATTR; 173 i_uid_write(inode, 0); 174 i_gid_write(inode, 0); 175 atomic_set(&inode->i_writecount, 0); 176 inode->i_size = 0; 177 inode->i_write_hint = WRITE_LIFE_NOT_SET; 178 inode->i_blocks = 0; 179 inode->i_bytes = 0; 180 inode->i_generation = 0; 181 inode->i_pipe = NULL; 182 inode->i_cdev = NULL; 183 inode->i_link = NULL; 184 inode->i_dir_seq = 0; 185 inode->i_rdev = 0; 186 inode->dirtied_when = 0; 187 188 #ifdef CONFIG_CGROUP_WRITEBACK 189 inode->i_wb_frn_winner = 0; 190 inode->i_wb_frn_avg_time = 0; 191 inode->i_wb_frn_history = 0; 192 #endif 193 194 spin_lock_init(&inode->i_lock); 195 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 196 197 init_rwsem(&inode->i_rwsem); 198 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 199 200 atomic_set(&inode->i_dio_count, 0); 201 202 mapping->a_ops = &empty_aops; 203 mapping->host = inode; 204 mapping->flags = 0; 205 mapping->wb_err = 0; 206 atomic_set(&mapping->i_mmap_writable, 0); 207 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 208 atomic_set(&mapping->nr_thps, 0); 209 #endif 210 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 211 mapping->i_private_data = NULL; 212 mapping->writeback_index = 0; 213 init_rwsem(&mapping->invalidate_lock); 214 lockdep_set_class_and_name(&mapping->invalidate_lock, 215 &sb->s_type->invalidate_lock_key, 216 "mapping.invalidate_lock"); 217 if (sb->s_iflags & SB_I_STABLE_WRITES) 218 mapping_set_stable_writes(mapping); 219 inode->i_private = NULL; 220 inode->i_mapping = mapping; 221 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 222 #ifdef CONFIG_FS_POSIX_ACL 223 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 224 #endif 225 226 #ifdef CONFIG_FSNOTIFY 227 inode->i_fsnotify_mask = 0; 228 #endif 229 inode->i_flctx = NULL; 230 231 if (unlikely(security_inode_alloc(inode))) 232 return -ENOMEM; 233 this_cpu_inc(nr_inodes); 234 235 return 0; 236 } 237 EXPORT_SYMBOL(inode_init_always); 238 239 void free_inode_nonrcu(struct inode *inode) 240 { 241 kmem_cache_free(inode_cachep, inode); 242 } 243 EXPORT_SYMBOL(free_inode_nonrcu); 244 245 static void i_callback(struct rcu_head *head) 246 { 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252 } 253 254 static struct inode *alloc_inode(struct super_block *sb) 255 { 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279 } 280 281 void __destroy_inode(struct inode *inode) 282 { 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293 #ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298 #endif 299 this_cpu_dec(nr_inodes); 300 } 301 EXPORT_SYMBOL(__destroy_inode); 302 303 static void destroy_inode(struct inode *inode) 304 { 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316 } 317 318 /** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329 void drop_nlink(struct inode *inode) 330 { 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335 } 336 EXPORT_SYMBOL(drop_nlink); 337 338 /** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346 void clear_nlink(struct inode *inode) 347 { 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352 } 353 EXPORT_SYMBOL(clear_nlink); 354 355 /** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363 void set_nlink(struct inode *inode, unsigned int nlink) 364 { 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374 } 375 EXPORT_SYMBOL(set_nlink); 376 377 /** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385 void inc_nlink(struct inode *inode) 386 { 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393 } 394 EXPORT_SYMBOL(inc_nlink); 395 396 static void __address_space_init_once(struct address_space *mapping) 397 { 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->i_private_list); 401 spin_lock_init(&mapping->i_private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403 } 404 405 void address_space_init_once(struct address_space *mapping) 406 { 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409 } 410 EXPORT_SYMBOL(address_space_init_once); 411 412 /* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417 void inode_init_once(struct inode *inode) 418 { 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 INIT_LIST_HEAD(&inode->i_sb_list); 426 __address_space_init_once(&inode->i_data); 427 i_size_ordered_init(inode); 428 } 429 EXPORT_SYMBOL(inode_init_once); 430 431 static void init_once(void *foo) 432 { 433 struct inode *inode = (struct inode *) foo; 434 435 inode_init_once(inode); 436 } 437 438 /* 439 * inode->i_lock must be held 440 */ 441 void __iget(struct inode *inode) 442 { 443 atomic_inc(&inode->i_count); 444 } 445 446 /* 447 * get additional reference to inode; caller must already hold one. 448 */ 449 void ihold(struct inode *inode) 450 { 451 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 452 } 453 EXPORT_SYMBOL(ihold); 454 455 static void __inode_add_lru(struct inode *inode, bool rotate) 456 { 457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 458 return; 459 if (atomic_read(&inode->i_count)) 460 return; 461 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 462 return; 463 if (!mapping_shrinkable(&inode->i_data)) 464 return; 465 466 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 467 this_cpu_inc(nr_unused); 468 else if (rotate) 469 inode->i_state |= I_REFERENCED; 470 } 471 472 /* 473 * Add inode to LRU if needed (inode is unused and clean). 474 * 475 * Needs inode->i_lock held. 476 */ 477 void inode_add_lru(struct inode *inode) 478 { 479 __inode_add_lru(inode, false); 480 } 481 482 static void inode_lru_list_del(struct inode *inode) 483 { 484 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 485 this_cpu_dec(nr_unused); 486 } 487 488 /** 489 * inode_sb_list_add - add inode to the superblock list of inodes 490 * @inode: inode to add 491 */ 492 void inode_sb_list_add(struct inode *inode) 493 { 494 spin_lock(&inode->i_sb->s_inode_list_lock); 495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 496 spin_unlock(&inode->i_sb->s_inode_list_lock); 497 } 498 EXPORT_SYMBOL_GPL(inode_sb_list_add); 499 500 static inline void inode_sb_list_del(struct inode *inode) 501 { 502 if (!list_empty(&inode->i_sb_list)) { 503 spin_lock(&inode->i_sb->s_inode_list_lock); 504 list_del_init(&inode->i_sb_list); 505 spin_unlock(&inode->i_sb->s_inode_list_lock); 506 } 507 } 508 509 static unsigned long hash(struct super_block *sb, unsigned long hashval) 510 { 511 unsigned long tmp; 512 513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 514 L1_CACHE_BYTES; 515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 516 return tmp & i_hash_mask; 517 } 518 519 /** 520 * __insert_inode_hash - hash an inode 521 * @inode: unhashed inode 522 * @hashval: unsigned long value used to locate this object in the 523 * inode_hashtable. 524 * 525 * Add an inode to the inode hash for this superblock. 526 */ 527 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 528 { 529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 530 531 spin_lock(&inode_hash_lock); 532 spin_lock(&inode->i_lock); 533 hlist_add_head_rcu(&inode->i_hash, b); 534 spin_unlock(&inode->i_lock); 535 spin_unlock(&inode_hash_lock); 536 } 537 EXPORT_SYMBOL(__insert_inode_hash); 538 539 /** 540 * __remove_inode_hash - remove an inode from the hash 541 * @inode: inode to unhash 542 * 543 * Remove an inode from the superblock. 544 */ 545 void __remove_inode_hash(struct inode *inode) 546 { 547 spin_lock(&inode_hash_lock); 548 spin_lock(&inode->i_lock); 549 hlist_del_init_rcu(&inode->i_hash); 550 spin_unlock(&inode->i_lock); 551 spin_unlock(&inode_hash_lock); 552 } 553 EXPORT_SYMBOL(__remove_inode_hash); 554 555 void dump_mapping(const struct address_space *mapping) 556 { 557 struct inode *host; 558 const struct address_space_operations *a_ops; 559 struct hlist_node *dentry_first; 560 struct dentry *dentry_ptr; 561 struct dentry dentry; 562 unsigned long ino; 563 564 /* 565 * If mapping is an invalid pointer, we don't want to crash 566 * accessing it, so probe everything depending on it carefully. 567 */ 568 if (get_kernel_nofault(host, &mapping->host) || 569 get_kernel_nofault(a_ops, &mapping->a_ops)) { 570 pr_warn("invalid mapping:%px\n", mapping); 571 return; 572 } 573 574 if (!host) { 575 pr_warn("aops:%ps\n", a_ops); 576 return; 577 } 578 579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 580 get_kernel_nofault(ino, &host->i_ino)) { 581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 582 return; 583 } 584 585 if (!dentry_first) { 586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 587 return; 588 } 589 590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 591 if (get_kernel_nofault(dentry, dentry_ptr)) { 592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 593 a_ops, ino, dentry_ptr); 594 return; 595 } 596 597 /* 598 * if dentry is corrupted, the %pd handler may still crash, 599 * but it's unlikely that we reach here with a corrupt mapping 600 */ 601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 602 } 603 604 void clear_inode(struct inode *inode) 605 { 606 /* 607 * We have to cycle the i_pages lock here because reclaim can be in the 608 * process of removing the last page (in __filemap_remove_folio()) 609 * and we must not free the mapping under it. 610 */ 611 xa_lock_irq(&inode->i_data.i_pages); 612 BUG_ON(inode->i_data.nrpages); 613 /* 614 * Almost always, mapping_empty(&inode->i_data) here; but there are 615 * two known and long-standing ways in which nodes may get left behind 616 * (when deep radix-tree node allocation failed partway; or when THP 617 * collapse_file() failed). Until those two known cases are cleaned up, 618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 619 * nor even WARN_ON(!mapping_empty). 620 */ 621 xa_unlock_irq(&inode->i_data.i_pages); 622 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 623 BUG_ON(!(inode->i_state & I_FREEING)); 624 BUG_ON(inode->i_state & I_CLEAR); 625 BUG_ON(!list_empty(&inode->i_wb_list)); 626 /* don't need i_lock here, no concurrent mods to i_state */ 627 inode->i_state = I_FREEING | I_CLEAR; 628 } 629 EXPORT_SYMBOL(clear_inode); 630 631 /* 632 * Free the inode passed in, removing it from the lists it is still connected 633 * to. We remove any pages still attached to the inode and wait for any IO that 634 * is still in progress before finally destroying the inode. 635 * 636 * An inode must already be marked I_FREEING so that we avoid the inode being 637 * moved back onto lists if we race with other code that manipulates the lists 638 * (e.g. writeback_single_inode). The caller is responsible for setting this. 639 * 640 * An inode must already be removed from the LRU list before being evicted from 641 * the cache. This should occur atomically with setting the I_FREEING state 642 * flag, so no inodes here should ever be on the LRU when being evicted. 643 */ 644 static void evict(struct inode *inode) 645 { 646 const struct super_operations *op = inode->i_sb->s_op; 647 648 BUG_ON(!(inode->i_state & I_FREEING)); 649 BUG_ON(!list_empty(&inode->i_lru)); 650 651 if (!list_empty(&inode->i_io_list)) 652 inode_io_list_del(inode); 653 654 inode_sb_list_del(inode); 655 656 /* 657 * Wait for flusher thread to be done with the inode so that filesystem 658 * does not start destroying it while writeback is still running. Since 659 * the inode has I_FREEING set, flusher thread won't start new work on 660 * the inode. We just have to wait for running writeback to finish. 661 */ 662 inode_wait_for_writeback(inode); 663 664 if (op->evict_inode) { 665 op->evict_inode(inode); 666 } else { 667 truncate_inode_pages_final(&inode->i_data); 668 clear_inode(inode); 669 } 670 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 671 cd_forget(inode); 672 673 remove_inode_hash(inode); 674 675 spin_lock(&inode->i_lock); 676 wake_up_bit(&inode->i_state, __I_NEW); 677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 678 spin_unlock(&inode->i_lock); 679 680 destroy_inode(inode); 681 } 682 683 /* 684 * dispose_list - dispose of the contents of a local list 685 * @head: the head of the list to free 686 * 687 * Dispose-list gets a local list with local inodes in it, so it doesn't 688 * need to worry about list corruption and SMP locks. 689 */ 690 static void dispose_list(struct list_head *head) 691 { 692 while (!list_empty(head)) { 693 struct inode *inode; 694 695 inode = list_first_entry(head, struct inode, i_lru); 696 list_del_init(&inode->i_lru); 697 698 evict(inode); 699 cond_resched(); 700 } 701 } 702 703 /** 704 * evict_inodes - evict all evictable inodes for a superblock 705 * @sb: superblock to operate on 706 * 707 * Make sure that no inodes with zero refcount are retained. This is 708 * called by superblock shutdown after having SB_ACTIVE flag removed, 709 * so any inode reaching zero refcount during or after that call will 710 * be immediately evicted. 711 */ 712 void evict_inodes(struct super_block *sb) 713 { 714 struct inode *inode, *next; 715 LIST_HEAD(dispose); 716 717 again: 718 spin_lock(&sb->s_inode_list_lock); 719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 720 if (atomic_read(&inode->i_count)) 721 continue; 722 723 spin_lock(&inode->i_lock); 724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 725 spin_unlock(&inode->i_lock); 726 continue; 727 } 728 729 inode->i_state |= I_FREEING; 730 inode_lru_list_del(inode); 731 spin_unlock(&inode->i_lock); 732 list_add(&inode->i_lru, &dispose); 733 734 /* 735 * We can have a ton of inodes to evict at unmount time given 736 * enough memory, check to see if we need to go to sleep for a 737 * bit so we don't livelock. 738 */ 739 if (need_resched()) { 740 spin_unlock(&sb->s_inode_list_lock); 741 cond_resched(); 742 dispose_list(&dispose); 743 goto again; 744 } 745 } 746 spin_unlock(&sb->s_inode_list_lock); 747 748 dispose_list(&dispose); 749 } 750 EXPORT_SYMBOL_GPL(evict_inodes); 751 752 /** 753 * invalidate_inodes - attempt to free all inodes on a superblock 754 * @sb: superblock to operate on 755 * 756 * Attempts to free all inodes (including dirty inodes) for a given superblock. 757 */ 758 void invalidate_inodes(struct super_block *sb) 759 { 760 struct inode *inode, *next; 761 LIST_HEAD(dispose); 762 763 again: 764 spin_lock(&sb->s_inode_list_lock); 765 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 766 spin_lock(&inode->i_lock); 767 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 768 spin_unlock(&inode->i_lock); 769 continue; 770 } 771 if (atomic_read(&inode->i_count)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 776 inode->i_state |= I_FREEING; 777 inode_lru_list_del(inode); 778 spin_unlock(&inode->i_lock); 779 list_add(&inode->i_lru, &dispose); 780 if (need_resched()) { 781 spin_unlock(&sb->s_inode_list_lock); 782 cond_resched(); 783 dispose_list(&dispose); 784 goto again; 785 } 786 } 787 spin_unlock(&sb->s_inode_list_lock); 788 789 dispose_list(&dispose); 790 } 791 792 /* 793 * Isolate the inode from the LRU in preparation for freeing it. 794 * 795 * If the inode has the I_REFERENCED flag set, then it means that it has been 796 * used recently - the flag is set in iput_final(). When we encounter such an 797 * inode, clear the flag and move it to the back of the LRU so it gets another 798 * pass through the LRU before it gets reclaimed. This is necessary because of 799 * the fact we are doing lazy LRU updates to minimise lock contention so the 800 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 801 * with this flag set because they are the inodes that are out of order. 802 */ 803 static enum lru_status inode_lru_isolate(struct list_head *item, 804 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 805 { 806 struct list_head *freeable = arg; 807 struct inode *inode = container_of(item, struct inode, i_lru); 808 809 /* 810 * We are inverting the lru lock/inode->i_lock here, so use a 811 * trylock. If we fail to get the lock, just skip it. 812 */ 813 if (!spin_trylock(&inode->i_lock)) 814 return LRU_SKIP; 815 816 /* 817 * Inodes can get referenced, redirtied, or repopulated while 818 * they're already on the LRU, and this can make them 819 * unreclaimable for a while. Remove them lazily here; iput, 820 * sync, or the last page cache deletion will requeue them. 821 */ 822 if (atomic_read(&inode->i_count) || 823 (inode->i_state & ~I_REFERENCED) || 824 !mapping_shrinkable(&inode->i_data)) { 825 list_lru_isolate(lru, &inode->i_lru); 826 spin_unlock(&inode->i_lock); 827 this_cpu_dec(nr_unused); 828 return LRU_REMOVED; 829 } 830 831 /* Recently referenced inodes get one more pass */ 832 if (inode->i_state & I_REFERENCED) { 833 inode->i_state &= ~I_REFERENCED; 834 spin_unlock(&inode->i_lock); 835 return LRU_ROTATE; 836 } 837 838 /* 839 * On highmem systems, mapping_shrinkable() permits dropping 840 * page cache in order to free up struct inodes: lowmem might 841 * be under pressure before the cache inside the highmem zone. 842 */ 843 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 844 __iget(inode); 845 spin_unlock(&inode->i_lock); 846 spin_unlock(lru_lock); 847 if (remove_inode_buffers(inode)) { 848 unsigned long reap; 849 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 850 if (current_is_kswapd()) 851 __count_vm_events(KSWAPD_INODESTEAL, reap); 852 else 853 __count_vm_events(PGINODESTEAL, reap); 854 mm_account_reclaimed_pages(reap); 855 } 856 iput(inode); 857 spin_lock(lru_lock); 858 return LRU_RETRY; 859 } 860 861 WARN_ON(inode->i_state & I_NEW); 862 inode->i_state |= I_FREEING; 863 list_lru_isolate_move(lru, &inode->i_lru, freeable); 864 spin_unlock(&inode->i_lock); 865 866 this_cpu_dec(nr_unused); 867 return LRU_REMOVED; 868 } 869 870 /* 871 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 872 * This is called from the superblock shrinker function with a number of inodes 873 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 874 * then are freed outside inode_lock by dispose_list(). 875 */ 876 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 877 { 878 LIST_HEAD(freeable); 879 long freed; 880 881 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 882 inode_lru_isolate, &freeable); 883 dispose_list(&freeable); 884 return freed; 885 } 886 887 static void __wait_on_freeing_inode(struct inode *inode); 888 /* 889 * Called with the inode lock held. 890 */ 891 static struct inode *find_inode(struct super_block *sb, 892 struct hlist_head *head, 893 int (*test)(struct inode *, void *), 894 void *data) 895 { 896 struct inode *inode = NULL; 897 898 repeat: 899 hlist_for_each_entry(inode, head, i_hash) { 900 if (inode->i_sb != sb) 901 continue; 902 if (!test(inode, data)) 903 continue; 904 spin_lock(&inode->i_lock); 905 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 906 __wait_on_freeing_inode(inode); 907 goto repeat; 908 } 909 if (unlikely(inode->i_state & I_CREATING)) { 910 spin_unlock(&inode->i_lock); 911 return ERR_PTR(-ESTALE); 912 } 913 __iget(inode); 914 spin_unlock(&inode->i_lock); 915 return inode; 916 } 917 return NULL; 918 } 919 920 /* 921 * find_inode_fast is the fast path version of find_inode, see the comment at 922 * iget_locked for details. 923 */ 924 static struct inode *find_inode_fast(struct super_block *sb, 925 struct hlist_head *head, unsigned long ino) 926 { 927 struct inode *inode = NULL; 928 929 repeat: 930 hlist_for_each_entry(inode, head, i_hash) { 931 if (inode->i_ino != ino) 932 continue; 933 if (inode->i_sb != sb) 934 continue; 935 spin_lock(&inode->i_lock); 936 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 937 __wait_on_freeing_inode(inode); 938 goto repeat; 939 } 940 if (unlikely(inode->i_state & I_CREATING)) { 941 spin_unlock(&inode->i_lock); 942 return ERR_PTR(-ESTALE); 943 } 944 __iget(inode); 945 spin_unlock(&inode->i_lock); 946 return inode; 947 } 948 return NULL; 949 } 950 951 /* 952 * Each cpu owns a range of LAST_INO_BATCH numbers. 953 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 954 * to renew the exhausted range. 955 * 956 * This does not significantly increase overflow rate because every CPU can 957 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 958 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 959 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 960 * overflow rate by 2x, which does not seem too significant. 961 * 962 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 963 * error if st_ino won't fit in target struct field. Use 32bit counter 964 * here to attempt to avoid that. 965 */ 966 #define LAST_INO_BATCH 1024 967 static DEFINE_PER_CPU(unsigned int, last_ino); 968 969 unsigned int get_next_ino(void) 970 { 971 unsigned int *p = &get_cpu_var(last_ino); 972 unsigned int res = *p; 973 974 #ifdef CONFIG_SMP 975 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 976 static atomic_t shared_last_ino; 977 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 978 979 res = next - LAST_INO_BATCH; 980 } 981 #endif 982 983 res++; 984 /* get_next_ino should not provide a 0 inode number */ 985 if (unlikely(!res)) 986 res++; 987 *p = res; 988 put_cpu_var(last_ino); 989 return res; 990 } 991 EXPORT_SYMBOL(get_next_ino); 992 993 /** 994 * new_inode_pseudo - obtain an inode 995 * @sb: superblock 996 * 997 * Allocates a new inode for given superblock. 998 * Inode wont be chained in superblock s_inodes list 999 * This means : 1000 * - fs can't be unmount 1001 * - quotas, fsnotify, writeback can't work 1002 */ 1003 struct inode *new_inode_pseudo(struct super_block *sb) 1004 { 1005 struct inode *inode = alloc_inode(sb); 1006 1007 if (inode) { 1008 spin_lock(&inode->i_lock); 1009 inode->i_state = 0; 1010 spin_unlock(&inode->i_lock); 1011 } 1012 return inode; 1013 } 1014 1015 /** 1016 * new_inode - obtain an inode 1017 * @sb: superblock 1018 * 1019 * Allocates a new inode for given superblock. The default gfp_mask 1020 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1021 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1022 * for the page cache are not reclaimable or migratable, 1023 * mapping_set_gfp_mask() must be called with suitable flags on the 1024 * newly created inode's mapping 1025 * 1026 */ 1027 struct inode *new_inode(struct super_block *sb) 1028 { 1029 struct inode *inode; 1030 1031 inode = new_inode_pseudo(sb); 1032 if (inode) 1033 inode_sb_list_add(inode); 1034 return inode; 1035 } 1036 EXPORT_SYMBOL(new_inode); 1037 1038 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1039 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1040 { 1041 if (S_ISDIR(inode->i_mode)) { 1042 struct file_system_type *type = inode->i_sb->s_type; 1043 1044 /* Set new key only if filesystem hasn't already changed it */ 1045 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1046 /* 1047 * ensure nobody is actually holding i_mutex 1048 */ 1049 // mutex_destroy(&inode->i_mutex); 1050 init_rwsem(&inode->i_rwsem); 1051 lockdep_set_class(&inode->i_rwsem, 1052 &type->i_mutex_dir_key); 1053 } 1054 } 1055 } 1056 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1057 #endif 1058 1059 /** 1060 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1061 * @inode: new inode to unlock 1062 * 1063 * Called when the inode is fully initialised to clear the new state of the 1064 * inode and wake up anyone waiting for the inode to finish initialisation. 1065 */ 1066 void unlock_new_inode(struct inode *inode) 1067 { 1068 lockdep_annotate_inode_mutex_key(inode); 1069 spin_lock(&inode->i_lock); 1070 WARN_ON(!(inode->i_state & I_NEW)); 1071 inode->i_state &= ~I_NEW & ~I_CREATING; 1072 smp_mb(); 1073 wake_up_bit(&inode->i_state, __I_NEW); 1074 spin_unlock(&inode->i_lock); 1075 } 1076 EXPORT_SYMBOL(unlock_new_inode); 1077 1078 void discard_new_inode(struct inode *inode) 1079 { 1080 lockdep_annotate_inode_mutex_key(inode); 1081 spin_lock(&inode->i_lock); 1082 WARN_ON(!(inode->i_state & I_NEW)); 1083 inode->i_state &= ~I_NEW; 1084 smp_mb(); 1085 wake_up_bit(&inode->i_state, __I_NEW); 1086 spin_unlock(&inode->i_lock); 1087 iput(inode); 1088 } 1089 EXPORT_SYMBOL(discard_new_inode); 1090 1091 /** 1092 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1093 * 1094 * Lock any non-NULL argument. Passed objects must not be directories. 1095 * Zero, one or two objects may be locked by this function. 1096 * 1097 * @inode1: first inode to lock 1098 * @inode2: second inode to lock 1099 */ 1100 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1101 { 1102 if (inode1) 1103 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1104 if (inode2) 1105 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1106 if (inode1 > inode2) 1107 swap(inode1, inode2); 1108 if (inode1) 1109 inode_lock(inode1); 1110 if (inode2 && inode2 != inode1) 1111 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1112 } 1113 EXPORT_SYMBOL(lock_two_nondirectories); 1114 1115 /** 1116 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1117 * @inode1: first inode to unlock 1118 * @inode2: second inode to unlock 1119 */ 1120 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1121 { 1122 if (inode1) { 1123 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1124 inode_unlock(inode1); 1125 } 1126 if (inode2 && inode2 != inode1) { 1127 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1128 inode_unlock(inode2); 1129 } 1130 } 1131 EXPORT_SYMBOL(unlock_two_nondirectories); 1132 1133 /** 1134 * inode_insert5 - obtain an inode from a mounted file system 1135 * @inode: pre-allocated inode to use for insert to cache 1136 * @hashval: hash value (usually inode number) to get 1137 * @test: callback used for comparisons between inodes 1138 * @set: callback used to initialize a new struct inode 1139 * @data: opaque data pointer to pass to @test and @set 1140 * 1141 * Search for the inode specified by @hashval and @data in the inode cache, 1142 * and if present it is return it with an increased reference count. This is 1143 * a variant of iget5_locked() for callers that don't want to fail on memory 1144 * allocation of inode. 1145 * 1146 * If the inode is not in cache, insert the pre-allocated inode to cache and 1147 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1148 * to fill it in before unlocking it via unlock_new_inode(). 1149 * 1150 * Note both @test and @set are called with the inode_hash_lock held, so can't 1151 * sleep. 1152 */ 1153 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1154 int (*test)(struct inode *, void *), 1155 int (*set)(struct inode *, void *), void *data) 1156 { 1157 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1158 struct inode *old; 1159 1160 again: 1161 spin_lock(&inode_hash_lock); 1162 old = find_inode(inode->i_sb, head, test, data); 1163 if (unlikely(old)) { 1164 /* 1165 * Uhhuh, somebody else created the same inode under us. 1166 * Use the old inode instead of the preallocated one. 1167 */ 1168 spin_unlock(&inode_hash_lock); 1169 if (IS_ERR(old)) 1170 return NULL; 1171 wait_on_inode(old); 1172 if (unlikely(inode_unhashed(old))) { 1173 iput(old); 1174 goto again; 1175 } 1176 return old; 1177 } 1178 1179 if (set && unlikely(set(inode, data))) { 1180 inode = NULL; 1181 goto unlock; 1182 } 1183 1184 /* 1185 * Return the locked inode with I_NEW set, the 1186 * caller is responsible for filling in the contents 1187 */ 1188 spin_lock(&inode->i_lock); 1189 inode->i_state |= I_NEW; 1190 hlist_add_head_rcu(&inode->i_hash, head); 1191 spin_unlock(&inode->i_lock); 1192 1193 /* 1194 * Add inode to the sb list if it's not already. It has I_NEW at this 1195 * point, so it should be safe to test i_sb_list locklessly. 1196 */ 1197 if (list_empty(&inode->i_sb_list)) 1198 inode_sb_list_add(inode); 1199 unlock: 1200 spin_unlock(&inode_hash_lock); 1201 1202 return inode; 1203 } 1204 EXPORT_SYMBOL(inode_insert5); 1205 1206 /** 1207 * iget5_locked - obtain an inode from a mounted file system 1208 * @sb: super block of file system 1209 * @hashval: hash value (usually inode number) to get 1210 * @test: callback used for comparisons between inodes 1211 * @set: callback used to initialize a new struct inode 1212 * @data: opaque data pointer to pass to @test and @set 1213 * 1214 * Search for the inode specified by @hashval and @data in the inode cache, 1215 * and if present it is return it with an increased reference count. This is 1216 * a generalized version of iget_locked() for file systems where the inode 1217 * number is not sufficient for unique identification of an inode. 1218 * 1219 * If the inode is not in cache, allocate a new inode and return it locked, 1220 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1221 * before unlocking it via unlock_new_inode(). 1222 * 1223 * Note both @test and @set are called with the inode_hash_lock held, so can't 1224 * sleep. 1225 */ 1226 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1227 int (*test)(struct inode *, void *), 1228 int (*set)(struct inode *, void *), void *data) 1229 { 1230 struct inode *inode = ilookup5(sb, hashval, test, data); 1231 1232 if (!inode) { 1233 struct inode *new = alloc_inode(sb); 1234 1235 if (new) { 1236 new->i_state = 0; 1237 inode = inode_insert5(new, hashval, test, set, data); 1238 if (unlikely(inode != new)) 1239 destroy_inode(new); 1240 } 1241 } 1242 return inode; 1243 } 1244 EXPORT_SYMBOL(iget5_locked); 1245 1246 /** 1247 * iget_locked - obtain an inode from a mounted file system 1248 * @sb: super block of file system 1249 * @ino: inode number to get 1250 * 1251 * Search for the inode specified by @ino in the inode cache and if present 1252 * return it with an increased reference count. This is for file systems 1253 * where the inode number is sufficient for unique identification of an inode. 1254 * 1255 * If the inode is not in cache, allocate a new inode and return it locked, 1256 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1257 * before unlocking it via unlock_new_inode(). 1258 */ 1259 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1260 { 1261 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1262 struct inode *inode; 1263 again: 1264 spin_lock(&inode_hash_lock); 1265 inode = find_inode_fast(sb, head, ino); 1266 spin_unlock(&inode_hash_lock); 1267 if (inode) { 1268 if (IS_ERR(inode)) 1269 return NULL; 1270 wait_on_inode(inode); 1271 if (unlikely(inode_unhashed(inode))) { 1272 iput(inode); 1273 goto again; 1274 } 1275 return inode; 1276 } 1277 1278 inode = alloc_inode(sb); 1279 if (inode) { 1280 struct inode *old; 1281 1282 spin_lock(&inode_hash_lock); 1283 /* We released the lock, so.. */ 1284 old = find_inode_fast(sb, head, ino); 1285 if (!old) { 1286 inode->i_ino = ino; 1287 spin_lock(&inode->i_lock); 1288 inode->i_state = I_NEW; 1289 hlist_add_head_rcu(&inode->i_hash, head); 1290 spin_unlock(&inode->i_lock); 1291 inode_sb_list_add(inode); 1292 spin_unlock(&inode_hash_lock); 1293 1294 /* Return the locked inode with I_NEW set, the 1295 * caller is responsible for filling in the contents 1296 */ 1297 return inode; 1298 } 1299 1300 /* 1301 * Uhhuh, somebody else created the same inode under 1302 * us. Use the old inode instead of the one we just 1303 * allocated. 1304 */ 1305 spin_unlock(&inode_hash_lock); 1306 destroy_inode(inode); 1307 if (IS_ERR(old)) 1308 return NULL; 1309 inode = old; 1310 wait_on_inode(inode); 1311 if (unlikely(inode_unhashed(inode))) { 1312 iput(inode); 1313 goto again; 1314 } 1315 } 1316 return inode; 1317 } 1318 EXPORT_SYMBOL(iget_locked); 1319 1320 /* 1321 * search the inode cache for a matching inode number. 1322 * If we find one, then the inode number we are trying to 1323 * allocate is not unique and so we should not use it. 1324 * 1325 * Returns 1 if the inode number is unique, 0 if it is not. 1326 */ 1327 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1328 { 1329 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1330 struct inode *inode; 1331 1332 hlist_for_each_entry_rcu(inode, b, i_hash) { 1333 if (inode->i_ino == ino && inode->i_sb == sb) 1334 return 0; 1335 } 1336 return 1; 1337 } 1338 1339 /** 1340 * iunique - get a unique inode number 1341 * @sb: superblock 1342 * @max_reserved: highest reserved inode number 1343 * 1344 * Obtain an inode number that is unique on the system for a given 1345 * superblock. This is used by file systems that have no natural 1346 * permanent inode numbering system. An inode number is returned that 1347 * is higher than the reserved limit but unique. 1348 * 1349 * BUGS: 1350 * With a large number of inodes live on the file system this function 1351 * currently becomes quite slow. 1352 */ 1353 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1354 { 1355 /* 1356 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1357 * error if st_ino won't fit in target struct field. Use 32bit counter 1358 * here to attempt to avoid that. 1359 */ 1360 static DEFINE_SPINLOCK(iunique_lock); 1361 static unsigned int counter; 1362 ino_t res; 1363 1364 rcu_read_lock(); 1365 spin_lock(&iunique_lock); 1366 do { 1367 if (counter <= max_reserved) 1368 counter = max_reserved + 1; 1369 res = counter++; 1370 } while (!test_inode_iunique(sb, res)); 1371 spin_unlock(&iunique_lock); 1372 rcu_read_unlock(); 1373 1374 return res; 1375 } 1376 EXPORT_SYMBOL(iunique); 1377 1378 struct inode *igrab(struct inode *inode) 1379 { 1380 spin_lock(&inode->i_lock); 1381 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1382 __iget(inode); 1383 spin_unlock(&inode->i_lock); 1384 } else { 1385 spin_unlock(&inode->i_lock); 1386 /* 1387 * Handle the case where s_op->clear_inode is not been 1388 * called yet, and somebody is calling igrab 1389 * while the inode is getting freed. 1390 */ 1391 inode = NULL; 1392 } 1393 return inode; 1394 } 1395 EXPORT_SYMBOL(igrab); 1396 1397 /** 1398 * ilookup5_nowait - search for an inode in the inode cache 1399 * @sb: super block of file system to search 1400 * @hashval: hash value (usually inode number) to search for 1401 * @test: callback used for comparisons between inodes 1402 * @data: opaque data pointer to pass to @test 1403 * 1404 * Search for the inode specified by @hashval and @data in the inode cache. 1405 * If the inode is in the cache, the inode is returned with an incremented 1406 * reference count. 1407 * 1408 * Note: I_NEW is not waited upon so you have to be very careful what you do 1409 * with the returned inode. You probably should be using ilookup5() instead. 1410 * 1411 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1412 */ 1413 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1414 int (*test)(struct inode *, void *), void *data) 1415 { 1416 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1417 struct inode *inode; 1418 1419 spin_lock(&inode_hash_lock); 1420 inode = find_inode(sb, head, test, data); 1421 spin_unlock(&inode_hash_lock); 1422 1423 return IS_ERR(inode) ? NULL : inode; 1424 } 1425 EXPORT_SYMBOL(ilookup5_nowait); 1426 1427 /** 1428 * ilookup5 - search for an inode in the inode cache 1429 * @sb: super block of file system to search 1430 * @hashval: hash value (usually inode number) to search for 1431 * @test: callback used for comparisons between inodes 1432 * @data: opaque data pointer to pass to @test 1433 * 1434 * Search for the inode specified by @hashval and @data in the inode cache, 1435 * and if the inode is in the cache, return the inode with an incremented 1436 * reference count. Waits on I_NEW before returning the inode. 1437 * returned with an incremented reference count. 1438 * 1439 * This is a generalized version of ilookup() for file systems where the 1440 * inode number is not sufficient for unique identification of an inode. 1441 * 1442 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1443 */ 1444 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1445 int (*test)(struct inode *, void *), void *data) 1446 { 1447 struct inode *inode; 1448 again: 1449 inode = ilookup5_nowait(sb, hashval, test, data); 1450 if (inode) { 1451 wait_on_inode(inode); 1452 if (unlikely(inode_unhashed(inode))) { 1453 iput(inode); 1454 goto again; 1455 } 1456 } 1457 return inode; 1458 } 1459 EXPORT_SYMBOL(ilookup5); 1460 1461 /** 1462 * ilookup - search for an inode in the inode cache 1463 * @sb: super block of file system to search 1464 * @ino: inode number to search for 1465 * 1466 * Search for the inode @ino in the inode cache, and if the inode is in the 1467 * cache, the inode is returned with an incremented reference count. 1468 */ 1469 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1470 { 1471 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1472 struct inode *inode; 1473 again: 1474 spin_lock(&inode_hash_lock); 1475 inode = find_inode_fast(sb, head, ino); 1476 spin_unlock(&inode_hash_lock); 1477 1478 if (inode) { 1479 if (IS_ERR(inode)) 1480 return NULL; 1481 wait_on_inode(inode); 1482 if (unlikely(inode_unhashed(inode))) { 1483 iput(inode); 1484 goto again; 1485 } 1486 } 1487 return inode; 1488 } 1489 EXPORT_SYMBOL(ilookup); 1490 1491 /** 1492 * find_inode_nowait - find an inode in the inode cache 1493 * @sb: super block of file system to search 1494 * @hashval: hash value (usually inode number) to search for 1495 * @match: callback used for comparisons between inodes 1496 * @data: opaque data pointer to pass to @match 1497 * 1498 * Search for the inode specified by @hashval and @data in the inode 1499 * cache, where the helper function @match will return 0 if the inode 1500 * does not match, 1 if the inode does match, and -1 if the search 1501 * should be stopped. The @match function must be responsible for 1502 * taking the i_lock spin_lock and checking i_state for an inode being 1503 * freed or being initialized, and incrementing the reference count 1504 * before returning 1. It also must not sleep, since it is called with 1505 * the inode_hash_lock spinlock held. 1506 * 1507 * This is a even more generalized version of ilookup5() when the 1508 * function must never block --- find_inode() can block in 1509 * __wait_on_freeing_inode() --- or when the caller can not increment 1510 * the reference count because the resulting iput() might cause an 1511 * inode eviction. The tradeoff is that the @match funtion must be 1512 * very carefully implemented. 1513 */ 1514 struct inode *find_inode_nowait(struct super_block *sb, 1515 unsigned long hashval, 1516 int (*match)(struct inode *, unsigned long, 1517 void *), 1518 void *data) 1519 { 1520 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1521 struct inode *inode, *ret_inode = NULL; 1522 int mval; 1523 1524 spin_lock(&inode_hash_lock); 1525 hlist_for_each_entry(inode, head, i_hash) { 1526 if (inode->i_sb != sb) 1527 continue; 1528 mval = match(inode, hashval, data); 1529 if (mval == 0) 1530 continue; 1531 if (mval == 1) 1532 ret_inode = inode; 1533 goto out; 1534 } 1535 out: 1536 spin_unlock(&inode_hash_lock); 1537 return ret_inode; 1538 } 1539 EXPORT_SYMBOL(find_inode_nowait); 1540 1541 /** 1542 * find_inode_rcu - find an inode in the inode cache 1543 * @sb: Super block of file system to search 1544 * @hashval: Key to hash 1545 * @test: Function to test match on an inode 1546 * @data: Data for test function 1547 * 1548 * Search for the inode specified by @hashval and @data in the inode cache, 1549 * where the helper function @test will return 0 if the inode does not match 1550 * and 1 if it does. The @test function must be responsible for taking the 1551 * i_lock spin_lock and checking i_state for an inode being freed or being 1552 * initialized. 1553 * 1554 * If successful, this will return the inode for which the @test function 1555 * returned 1 and NULL otherwise. 1556 * 1557 * The @test function is not permitted to take a ref on any inode presented. 1558 * It is also not permitted to sleep. 1559 * 1560 * The caller must hold the RCU read lock. 1561 */ 1562 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1563 int (*test)(struct inode *, void *), void *data) 1564 { 1565 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1566 struct inode *inode; 1567 1568 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1569 "suspicious find_inode_rcu() usage"); 1570 1571 hlist_for_each_entry_rcu(inode, head, i_hash) { 1572 if (inode->i_sb == sb && 1573 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1574 test(inode, data)) 1575 return inode; 1576 } 1577 return NULL; 1578 } 1579 EXPORT_SYMBOL(find_inode_rcu); 1580 1581 /** 1582 * find_inode_by_ino_rcu - Find an inode in the inode cache 1583 * @sb: Super block of file system to search 1584 * @ino: The inode number to match 1585 * 1586 * Search for the inode specified by @hashval and @data in the inode cache, 1587 * where the helper function @test will return 0 if the inode does not match 1588 * and 1 if it does. The @test function must be responsible for taking the 1589 * i_lock spin_lock and checking i_state for an inode being freed or being 1590 * initialized. 1591 * 1592 * If successful, this will return the inode for which the @test function 1593 * returned 1 and NULL otherwise. 1594 * 1595 * The @test function is not permitted to take a ref on any inode presented. 1596 * It is also not permitted to sleep. 1597 * 1598 * The caller must hold the RCU read lock. 1599 */ 1600 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1601 unsigned long ino) 1602 { 1603 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1604 struct inode *inode; 1605 1606 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1607 "suspicious find_inode_by_ino_rcu() usage"); 1608 1609 hlist_for_each_entry_rcu(inode, head, i_hash) { 1610 if (inode->i_ino == ino && 1611 inode->i_sb == sb && 1612 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1613 return inode; 1614 } 1615 return NULL; 1616 } 1617 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1618 1619 int insert_inode_locked(struct inode *inode) 1620 { 1621 struct super_block *sb = inode->i_sb; 1622 ino_t ino = inode->i_ino; 1623 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1624 1625 while (1) { 1626 struct inode *old = NULL; 1627 spin_lock(&inode_hash_lock); 1628 hlist_for_each_entry(old, head, i_hash) { 1629 if (old->i_ino != ino) 1630 continue; 1631 if (old->i_sb != sb) 1632 continue; 1633 spin_lock(&old->i_lock); 1634 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1635 spin_unlock(&old->i_lock); 1636 continue; 1637 } 1638 break; 1639 } 1640 if (likely(!old)) { 1641 spin_lock(&inode->i_lock); 1642 inode->i_state |= I_NEW | I_CREATING; 1643 hlist_add_head_rcu(&inode->i_hash, head); 1644 spin_unlock(&inode->i_lock); 1645 spin_unlock(&inode_hash_lock); 1646 return 0; 1647 } 1648 if (unlikely(old->i_state & I_CREATING)) { 1649 spin_unlock(&old->i_lock); 1650 spin_unlock(&inode_hash_lock); 1651 return -EBUSY; 1652 } 1653 __iget(old); 1654 spin_unlock(&old->i_lock); 1655 spin_unlock(&inode_hash_lock); 1656 wait_on_inode(old); 1657 if (unlikely(!inode_unhashed(old))) { 1658 iput(old); 1659 return -EBUSY; 1660 } 1661 iput(old); 1662 } 1663 } 1664 EXPORT_SYMBOL(insert_inode_locked); 1665 1666 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1667 int (*test)(struct inode *, void *), void *data) 1668 { 1669 struct inode *old; 1670 1671 inode->i_state |= I_CREATING; 1672 old = inode_insert5(inode, hashval, test, NULL, data); 1673 1674 if (old != inode) { 1675 iput(old); 1676 return -EBUSY; 1677 } 1678 return 0; 1679 } 1680 EXPORT_SYMBOL(insert_inode_locked4); 1681 1682 1683 int generic_delete_inode(struct inode *inode) 1684 { 1685 return 1; 1686 } 1687 EXPORT_SYMBOL(generic_delete_inode); 1688 1689 /* 1690 * Called when we're dropping the last reference 1691 * to an inode. 1692 * 1693 * Call the FS "drop_inode()" function, defaulting to 1694 * the legacy UNIX filesystem behaviour. If it tells 1695 * us to evict inode, do so. Otherwise, retain inode 1696 * in cache if fs is alive, sync and evict if fs is 1697 * shutting down. 1698 */ 1699 static void iput_final(struct inode *inode) 1700 { 1701 struct super_block *sb = inode->i_sb; 1702 const struct super_operations *op = inode->i_sb->s_op; 1703 unsigned long state; 1704 int drop; 1705 1706 WARN_ON(inode->i_state & I_NEW); 1707 1708 if (op->drop_inode) 1709 drop = op->drop_inode(inode); 1710 else 1711 drop = generic_drop_inode(inode); 1712 1713 if (!drop && 1714 !(inode->i_state & I_DONTCACHE) && 1715 (sb->s_flags & SB_ACTIVE)) { 1716 __inode_add_lru(inode, true); 1717 spin_unlock(&inode->i_lock); 1718 return; 1719 } 1720 1721 state = inode->i_state; 1722 if (!drop) { 1723 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1724 spin_unlock(&inode->i_lock); 1725 1726 write_inode_now(inode, 1); 1727 1728 spin_lock(&inode->i_lock); 1729 state = inode->i_state; 1730 WARN_ON(state & I_NEW); 1731 state &= ~I_WILL_FREE; 1732 } 1733 1734 WRITE_ONCE(inode->i_state, state | I_FREEING); 1735 if (!list_empty(&inode->i_lru)) 1736 inode_lru_list_del(inode); 1737 spin_unlock(&inode->i_lock); 1738 1739 evict(inode); 1740 } 1741 1742 /** 1743 * iput - put an inode 1744 * @inode: inode to put 1745 * 1746 * Puts an inode, dropping its usage count. If the inode use count hits 1747 * zero, the inode is then freed and may also be destroyed. 1748 * 1749 * Consequently, iput() can sleep. 1750 */ 1751 void iput(struct inode *inode) 1752 { 1753 if (!inode) 1754 return; 1755 BUG_ON(inode->i_state & I_CLEAR); 1756 retry: 1757 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1758 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1759 atomic_inc(&inode->i_count); 1760 spin_unlock(&inode->i_lock); 1761 trace_writeback_lazytime_iput(inode); 1762 mark_inode_dirty_sync(inode); 1763 goto retry; 1764 } 1765 iput_final(inode); 1766 } 1767 } 1768 EXPORT_SYMBOL(iput); 1769 1770 #ifdef CONFIG_BLOCK 1771 /** 1772 * bmap - find a block number in a file 1773 * @inode: inode owning the block number being requested 1774 * @block: pointer containing the block to find 1775 * 1776 * Replaces the value in ``*block`` with the block number on the device holding 1777 * corresponding to the requested block number in the file. 1778 * That is, asked for block 4 of inode 1 the function will replace the 1779 * 4 in ``*block``, with disk block relative to the disk start that holds that 1780 * block of the file. 1781 * 1782 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1783 * hole, returns 0 and ``*block`` is also set to 0. 1784 */ 1785 int bmap(struct inode *inode, sector_t *block) 1786 { 1787 if (!inode->i_mapping->a_ops->bmap) 1788 return -EINVAL; 1789 1790 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(bmap); 1794 #endif 1795 1796 /* 1797 * With relative atime, only update atime if the previous atime is 1798 * earlier than or equal to either the ctime or mtime, 1799 * or if at least a day has passed since the last atime update. 1800 */ 1801 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1802 struct timespec64 now) 1803 { 1804 struct timespec64 atime, mtime, ctime; 1805 1806 if (!(mnt->mnt_flags & MNT_RELATIME)) 1807 return true; 1808 /* 1809 * Is mtime younger than or equal to atime? If yes, update atime: 1810 */ 1811 atime = inode_get_atime(inode); 1812 mtime = inode_get_mtime(inode); 1813 if (timespec64_compare(&mtime, &atime) >= 0) 1814 return true; 1815 /* 1816 * Is ctime younger than or equal to atime? If yes, update atime: 1817 */ 1818 ctime = inode_get_ctime(inode); 1819 if (timespec64_compare(&ctime, &atime) >= 0) 1820 return true; 1821 1822 /* 1823 * Is the previous atime value older than a day? If yes, 1824 * update atime: 1825 */ 1826 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1827 return true; 1828 /* 1829 * Good, we can skip the atime update: 1830 */ 1831 return false; 1832 } 1833 1834 /** 1835 * inode_update_timestamps - update the timestamps on the inode 1836 * @inode: inode to be updated 1837 * @flags: S_* flags that needed to be updated 1838 * 1839 * The update_time function is called when an inode's timestamps need to be 1840 * updated for a read or write operation. This function handles updating the 1841 * actual timestamps. It's up to the caller to ensure that the inode is marked 1842 * dirty appropriately. 1843 * 1844 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1845 * attempt to update all three of them. S_ATIME updates can be handled 1846 * independently of the rest. 1847 * 1848 * Returns a set of S_* flags indicating which values changed. 1849 */ 1850 int inode_update_timestamps(struct inode *inode, int flags) 1851 { 1852 int updated = 0; 1853 struct timespec64 now; 1854 1855 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1856 struct timespec64 ctime = inode_get_ctime(inode); 1857 struct timespec64 mtime = inode_get_mtime(inode); 1858 1859 now = inode_set_ctime_current(inode); 1860 if (!timespec64_equal(&now, &ctime)) 1861 updated |= S_CTIME; 1862 if (!timespec64_equal(&now, &mtime)) { 1863 inode_set_mtime_to_ts(inode, now); 1864 updated |= S_MTIME; 1865 } 1866 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1867 updated |= S_VERSION; 1868 } else { 1869 now = current_time(inode); 1870 } 1871 1872 if (flags & S_ATIME) { 1873 struct timespec64 atime = inode_get_atime(inode); 1874 1875 if (!timespec64_equal(&now, &atime)) { 1876 inode_set_atime_to_ts(inode, now); 1877 updated |= S_ATIME; 1878 } 1879 } 1880 return updated; 1881 } 1882 EXPORT_SYMBOL(inode_update_timestamps); 1883 1884 /** 1885 * generic_update_time - update the timestamps on the inode 1886 * @inode: inode to be updated 1887 * @flags: S_* flags that needed to be updated 1888 * 1889 * The update_time function is called when an inode's timestamps need to be 1890 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1891 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1892 * updates can be handled done independently of the rest. 1893 * 1894 * Returns a S_* mask indicating which fields were updated. 1895 */ 1896 int generic_update_time(struct inode *inode, int flags) 1897 { 1898 int updated = inode_update_timestamps(inode, flags); 1899 int dirty_flags = 0; 1900 1901 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1902 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1903 if (updated & S_VERSION) 1904 dirty_flags |= I_DIRTY_SYNC; 1905 __mark_inode_dirty(inode, dirty_flags); 1906 return updated; 1907 } 1908 EXPORT_SYMBOL(generic_update_time); 1909 1910 /* 1911 * This does the actual work of updating an inodes time or version. Must have 1912 * had called mnt_want_write() before calling this. 1913 */ 1914 int inode_update_time(struct inode *inode, int flags) 1915 { 1916 if (inode->i_op->update_time) 1917 return inode->i_op->update_time(inode, flags); 1918 generic_update_time(inode, flags); 1919 return 0; 1920 } 1921 EXPORT_SYMBOL(inode_update_time); 1922 1923 /** 1924 * atime_needs_update - update the access time 1925 * @path: the &struct path to update 1926 * @inode: inode to update 1927 * 1928 * Update the accessed time on an inode and mark it for writeback. 1929 * This function automatically handles read only file systems and media, 1930 * as well as the "noatime" flag and inode specific "noatime" markers. 1931 */ 1932 bool atime_needs_update(const struct path *path, struct inode *inode) 1933 { 1934 struct vfsmount *mnt = path->mnt; 1935 struct timespec64 now, atime; 1936 1937 if (inode->i_flags & S_NOATIME) 1938 return false; 1939 1940 /* Atime updates will likely cause i_uid and i_gid to be written 1941 * back improprely if their true value is unknown to the vfs. 1942 */ 1943 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1944 return false; 1945 1946 if (IS_NOATIME(inode)) 1947 return false; 1948 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1949 return false; 1950 1951 if (mnt->mnt_flags & MNT_NOATIME) 1952 return false; 1953 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1954 return false; 1955 1956 now = current_time(inode); 1957 1958 if (!relatime_need_update(mnt, inode, now)) 1959 return false; 1960 1961 atime = inode_get_atime(inode); 1962 if (timespec64_equal(&atime, &now)) 1963 return false; 1964 1965 return true; 1966 } 1967 1968 void touch_atime(const struct path *path) 1969 { 1970 struct vfsmount *mnt = path->mnt; 1971 struct inode *inode = d_inode(path->dentry); 1972 1973 if (!atime_needs_update(path, inode)) 1974 return; 1975 1976 if (!sb_start_write_trylock(inode->i_sb)) 1977 return; 1978 1979 if (mnt_get_write_access(mnt) != 0) 1980 goto skip_update; 1981 /* 1982 * File systems can error out when updating inodes if they need to 1983 * allocate new space to modify an inode (such is the case for 1984 * Btrfs), but since we touch atime while walking down the path we 1985 * really don't care if we failed to update the atime of the file, 1986 * so just ignore the return value. 1987 * We may also fail on filesystems that have the ability to make parts 1988 * of the fs read only, e.g. subvolumes in Btrfs. 1989 */ 1990 inode_update_time(inode, S_ATIME); 1991 mnt_put_write_access(mnt); 1992 skip_update: 1993 sb_end_write(inode->i_sb); 1994 } 1995 EXPORT_SYMBOL(touch_atime); 1996 1997 /* 1998 * Return mask of changes for notify_change() that need to be done as a 1999 * response to write or truncate. Return 0 if nothing has to be changed. 2000 * Negative value on error (change should be denied). 2001 */ 2002 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2003 struct dentry *dentry) 2004 { 2005 struct inode *inode = d_inode(dentry); 2006 int mask = 0; 2007 int ret; 2008 2009 if (IS_NOSEC(inode)) 2010 return 0; 2011 2012 mask = setattr_should_drop_suidgid(idmap, inode); 2013 ret = security_inode_need_killpriv(dentry); 2014 if (ret < 0) 2015 return ret; 2016 if (ret) 2017 mask |= ATTR_KILL_PRIV; 2018 return mask; 2019 } 2020 2021 static int __remove_privs(struct mnt_idmap *idmap, 2022 struct dentry *dentry, int kill) 2023 { 2024 struct iattr newattrs; 2025 2026 newattrs.ia_valid = ATTR_FORCE | kill; 2027 /* 2028 * Note we call this on write, so notify_change will not 2029 * encounter any conflicting delegations: 2030 */ 2031 return notify_change(idmap, dentry, &newattrs, NULL); 2032 } 2033 2034 static int __file_remove_privs(struct file *file, unsigned int flags) 2035 { 2036 struct dentry *dentry = file_dentry(file); 2037 struct inode *inode = file_inode(file); 2038 int error = 0; 2039 int kill; 2040 2041 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2042 return 0; 2043 2044 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2045 if (kill < 0) 2046 return kill; 2047 2048 if (kill) { 2049 if (flags & IOCB_NOWAIT) 2050 return -EAGAIN; 2051 2052 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2053 } 2054 2055 if (!error) 2056 inode_has_no_xattr(inode); 2057 return error; 2058 } 2059 2060 /** 2061 * file_remove_privs - remove special file privileges (suid, capabilities) 2062 * @file: file to remove privileges from 2063 * 2064 * When file is modified by a write or truncation ensure that special 2065 * file privileges are removed. 2066 * 2067 * Return: 0 on success, negative errno on failure. 2068 */ 2069 int file_remove_privs(struct file *file) 2070 { 2071 return __file_remove_privs(file, 0); 2072 } 2073 EXPORT_SYMBOL(file_remove_privs); 2074 2075 static int inode_needs_update_time(struct inode *inode) 2076 { 2077 int sync_it = 0; 2078 struct timespec64 now = current_time(inode); 2079 struct timespec64 ts; 2080 2081 /* First try to exhaust all avenues to not sync */ 2082 if (IS_NOCMTIME(inode)) 2083 return 0; 2084 2085 ts = inode_get_mtime(inode); 2086 if (!timespec64_equal(&ts, &now)) 2087 sync_it = S_MTIME; 2088 2089 ts = inode_get_ctime(inode); 2090 if (!timespec64_equal(&ts, &now)) 2091 sync_it |= S_CTIME; 2092 2093 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2094 sync_it |= S_VERSION; 2095 2096 return sync_it; 2097 } 2098 2099 static int __file_update_time(struct file *file, int sync_mode) 2100 { 2101 int ret = 0; 2102 struct inode *inode = file_inode(file); 2103 2104 /* try to update time settings */ 2105 if (!mnt_get_write_access_file(file)) { 2106 ret = inode_update_time(inode, sync_mode); 2107 mnt_put_write_access_file(file); 2108 } 2109 2110 return ret; 2111 } 2112 2113 /** 2114 * file_update_time - update mtime and ctime time 2115 * @file: file accessed 2116 * 2117 * Update the mtime and ctime members of an inode and mark the inode for 2118 * writeback. Note that this function is meant exclusively for usage in 2119 * the file write path of filesystems, and filesystems may choose to 2120 * explicitly ignore updates via this function with the _NOCMTIME inode 2121 * flag, e.g. for network filesystem where these imestamps are handled 2122 * by the server. This can return an error for file systems who need to 2123 * allocate space in order to update an inode. 2124 * 2125 * Return: 0 on success, negative errno on failure. 2126 */ 2127 int file_update_time(struct file *file) 2128 { 2129 int ret; 2130 struct inode *inode = file_inode(file); 2131 2132 ret = inode_needs_update_time(inode); 2133 if (ret <= 0) 2134 return ret; 2135 2136 return __file_update_time(file, ret); 2137 } 2138 EXPORT_SYMBOL(file_update_time); 2139 2140 /** 2141 * file_modified_flags - handle mandated vfs changes when modifying a file 2142 * @file: file that was modified 2143 * @flags: kiocb flags 2144 * 2145 * When file has been modified ensure that special 2146 * file privileges are removed and time settings are updated. 2147 * 2148 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2149 * time settings will not be updated. It will return -EAGAIN. 2150 * 2151 * Context: Caller must hold the file's inode lock. 2152 * 2153 * Return: 0 on success, negative errno on failure. 2154 */ 2155 static int file_modified_flags(struct file *file, int flags) 2156 { 2157 int ret; 2158 struct inode *inode = file_inode(file); 2159 2160 /* 2161 * Clear the security bits if the process is not being run by root. 2162 * This keeps people from modifying setuid and setgid binaries. 2163 */ 2164 ret = __file_remove_privs(file, flags); 2165 if (ret) 2166 return ret; 2167 2168 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2169 return 0; 2170 2171 ret = inode_needs_update_time(inode); 2172 if (ret <= 0) 2173 return ret; 2174 if (flags & IOCB_NOWAIT) 2175 return -EAGAIN; 2176 2177 return __file_update_time(file, ret); 2178 } 2179 2180 /** 2181 * file_modified - handle mandated vfs changes when modifying a file 2182 * @file: file that was modified 2183 * 2184 * When file has been modified ensure that special 2185 * file privileges are removed and time settings are updated. 2186 * 2187 * Context: Caller must hold the file's inode lock. 2188 * 2189 * Return: 0 on success, negative errno on failure. 2190 */ 2191 int file_modified(struct file *file) 2192 { 2193 return file_modified_flags(file, 0); 2194 } 2195 EXPORT_SYMBOL(file_modified); 2196 2197 /** 2198 * kiocb_modified - handle mandated vfs changes when modifying a file 2199 * @iocb: iocb that was modified 2200 * 2201 * When file has been modified ensure that special 2202 * file privileges are removed and time settings are updated. 2203 * 2204 * Context: Caller must hold the file's inode lock. 2205 * 2206 * Return: 0 on success, negative errno on failure. 2207 */ 2208 int kiocb_modified(struct kiocb *iocb) 2209 { 2210 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2211 } 2212 EXPORT_SYMBOL_GPL(kiocb_modified); 2213 2214 int inode_needs_sync(struct inode *inode) 2215 { 2216 if (IS_SYNC(inode)) 2217 return 1; 2218 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2219 return 1; 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(inode_needs_sync); 2223 2224 /* 2225 * If we try to find an inode in the inode hash while it is being 2226 * deleted, we have to wait until the filesystem completes its 2227 * deletion before reporting that it isn't found. This function waits 2228 * until the deletion _might_ have completed. Callers are responsible 2229 * to recheck inode state. 2230 * 2231 * It doesn't matter if I_NEW is not set initially, a call to 2232 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2233 * will DTRT. 2234 */ 2235 static void __wait_on_freeing_inode(struct inode *inode) 2236 { 2237 wait_queue_head_t *wq; 2238 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2239 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2240 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2241 spin_unlock(&inode->i_lock); 2242 spin_unlock(&inode_hash_lock); 2243 schedule(); 2244 finish_wait(wq, &wait.wq_entry); 2245 spin_lock(&inode_hash_lock); 2246 } 2247 2248 static __initdata unsigned long ihash_entries; 2249 static int __init set_ihash_entries(char *str) 2250 { 2251 if (!str) 2252 return 0; 2253 ihash_entries = simple_strtoul(str, &str, 0); 2254 return 1; 2255 } 2256 __setup("ihash_entries=", set_ihash_entries); 2257 2258 /* 2259 * Initialize the waitqueues and inode hash table. 2260 */ 2261 void __init inode_init_early(void) 2262 { 2263 /* If hashes are distributed across NUMA nodes, defer 2264 * hash allocation until vmalloc space is available. 2265 */ 2266 if (hashdist) 2267 return; 2268 2269 inode_hashtable = 2270 alloc_large_system_hash("Inode-cache", 2271 sizeof(struct hlist_head), 2272 ihash_entries, 2273 14, 2274 HASH_EARLY | HASH_ZERO, 2275 &i_hash_shift, 2276 &i_hash_mask, 2277 0, 2278 0); 2279 } 2280 2281 void __init inode_init(void) 2282 { 2283 /* inode slab cache */ 2284 inode_cachep = kmem_cache_create("inode_cache", 2285 sizeof(struct inode), 2286 0, 2287 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2288 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2289 init_once); 2290 2291 /* Hash may have been set up in inode_init_early */ 2292 if (!hashdist) 2293 return; 2294 2295 inode_hashtable = 2296 alloc_large_system_hash("Inode-cache", 2297 sizeof(struct hlist_head), 2298 ihash_entries, 2299 14, 2300 HASH_ZERO, 2301 &i_hash_shift, 2302 &i_hash_mask, 2303 0, 2304 0); 2305 } 2306 2307 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2308 { 2309 inode->i_mode = mode; 2310 if (S_ISCHR(mode)) { 2311 inode->i_fop = &def_chr_fops; 2312 inode->i_rdev = rdev; 2313 } else if (S_ISBLK(mode)) { 2314 if (IS_ENABLED(CONFIG_BLOCK)) 2315 inode->i_fop = &def_blk_fops; 2316 inode->i_rdev = rdev; 2317 } else if (S_ISFIFO(mode)) 2318 inode->i_fop = &pipefifo_fops; 2319 else if (S_ISSOCK(mode)) 2320 ; /* leave it no_open_fops */ 2321 else 2322 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2323 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2324 inode->i_ino); 2325 } 2326 EXPORT_SYMBOL(init_special_inode); 2327 2328 /** 2329 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2330 * @idmap: idmap of the mount the inode was created from 2331 * @inode: New inode 2332 * @dir: Directory inode 2333 * @mode: mode of the new inode 2334 * 2335 * If the inode has been created through an idmapped mount the idmap of 2336 * the vfsmount must be passed through @idmap. This function will then take 2337 * care to map the inode according to @idmap before checking permissions 2338 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2339 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2340 */ 2341 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2342 const struct inode *dir, umode_t mode) 2343 { 2344 inode_fsuid_set(inode, idmap); 2345 if (dir && dir->i_mode & S_ISGID) { 2346 inode->i_gid = dir->i_gid; 2347 2348 /* Directories are special, and always inherit S_ISGID */ 2349 if (S_ISDIR(mode)) 2350 mode |= S_ISGID; 2351 } else 2352 inode_fsgid_set(inode, idmap); 2353 inode->i_mode = mode; 2354 } 2355 EXPORT_SYMBOL(inode_init_owner); 2356 2357 /** 2358 * inode_owner_or_capable - check current task permissions to inode 2359 * @idmap: idmap of the mount the inode was found from 2360 * @inode: inode being checked 2361 * 2362 * Return true if current either has CAP_FOWNER in a namespace with the 2363 * inode owner uid mapped, or owns the file. 2364 * 2365 * If the inode has been found through an idmapped mount the idmap of 2366 * the vfsmount must be passed through @idmap. This function will then take 2367 * care to map the inode according to @idmap before checking permissions. 2368 * On non-idmapped mounts or if permission checking is to be performed on the 2369 * raw inode simply pass @nop_mnt_idmap. 2370 */ 2371 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2372 const struct inode *inode) 2373 { 2374 vfsuid_t vfsuid; 2375 struct user_namespace *ns; 2376 2377 vfsuid = i_uid_into_vfsuid(idmap, inode); 2378 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2379 return true; 2380 2381 ns = current_user_ns(); 2382 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2383 return true; 2384 return false; 2385 } 2386 EXPORT_SYMBOL(inode_owner_or_capable); 2387 2388 /* 2389 * Direct i/o helper functions 2390 */ 2391 static void __inode_dio_wait(struct inode *inode) 2392 { 2393 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2394 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2395 2396 do { 2397 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2398 if (atomic_read(&inode->i_dio_count)) 2399 schedule(); 2400 } while (atomic_read(&inode->i_dio_count)); 2401 finish_wait(wq, &q.wq_entry); 2402 } 2403 2404 /** 2405 * inode_dio_wait - wait for outstanding DIO requests to finish 2406 * @inode: inode to wait for 2407 * 2408 * Waits for all pending direct I/O requests to finish so that we can 2409 * proceed with a truncate or equivalent operation. 2410 * 2411 * Must be called under a lock that serializes taking new references 2412 * to i_dio_count, usually by inode->i_mutex. 2413 */ 2414 void inode_dio_wait(struct inode *inode) 2415 { 2416 if (atomic_read(&inode->i_dio_count)) 2417 __inode_dio_wait(inode); 2418 } 2419 EXPORT_SYMBOL(inode_dio_wait); 2420 2421 /* 2422 * inode_set_flags - atomically set some inode flags 2423 * 2424 * Note: the caller should be holding i_mutex, or else be sure that 2425 * they have exclusive access to the inode structure (i.e., while the 2426 * inode is being instantiated). The reason for the cmpxchg() loop 2427 * --- which wouldn't be necessary if all code paths which modify 2428 * i_flags actually followed this rule, is that there is at least one 2429 * code path which doesn't today so we use cmpxchg() out of an abundance 2430 * of caution. 2431 * 2432 * In the long run, i_mutex is overkill, and we should probably look 2433 * at using the i_lock spinlock to protect i_flags, and then make sure 2434 * it is so documented in include/linux/fs.h and that all code follows 2435 * the locking convention!! 2436 */ 2437 void inode_set_flags(struct inode *inode, unsigned int flags, 2438 unsigned int mask) 2439 { 2440 WARN_ON_ONCE(flags & ~mask); 2441 set_mask_bits(&inode->i_flags, mask, flags); 2442 } 2443 EXPORT_SYMBOL(inode_set_flags); 2444 2445 void inode_nohighmem(struct inode *inode) 2446 { 2447 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2448 } 2449 EXPORT_SYMBOL(inode_nohighmem); 2450 2451 /** 2452 * timestamp_truncate - Truncate timespec to a granularity 2453 * @t: Timespec 2454 * @inode: inode being updated 2455 * 2456 * Truncate a timespec to the granularity supported by the fs 2457 * containing the inode. Always rounds down. gran must 2458 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2459 */ 2460 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2461 { 2462 struct super_block *sb = inode->i_sb; 2463 unsigned int gran = sb->s_time_gran; 2464 2465 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2466 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2467 t.tv_nsec = 0; 2468 2469 /* Avoid division in the common cases 1 ns and 1 s. */ 2470 if (gran == 1) 2471 ; /* nothing */ 2472 else if (gran == NSEC_PER_SEC) 2473 t.tv_nsec = 0; 2474 else if (gran > 1 && gran < NSEC_PER_SEC) 2475 t.tv_nsec -= t.tv_nsec % gran; 2476 else 2477 WARN(1, "invalid file time granularity: %u", gran); 2478 return t; 2479 } 2480 EXPORT_SYMBOL(timestamp_truncate); 2481 2482 /** 2483 * current_time - Return FS time 2484 * @inode: inode. 2485 * 2486 * Return the current time truncated to the time granularity supported by 2487 * the fs. 2488 * 2489 * Note that inode and inode->sb cannot be NULL. 2490 * Otherwise, the function warns and returns time without truncation. 2491 */ 2492 struct timespec64 current_time(struct inode *inode) 2493 { 2494 struct timespec64 now; 2495 2496 ktime_get_coarse_real_ts64(&now); 2497 return timestamp_truncate(now, inode); 2498 } 2499 EXPORT_SYMBOL(current_time); 2500 2501 /** 2502 * inode_set_ctime_current - set the ctime to current_time 2503 * @inode: inode 2504 * 2505 * Set the inode->i_ctime to the current value for the inode. Returns 2506 * the current value that was assigned to i_ctime. 2507 */ 2508 struct timespec64 inode_set_ctime_current(struct inode *inode) 2509 { 2510 struct timespec64 now = current_time(inode); 2511 2512 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2513 return now; 2514 } 2515 EXPORT_SYMBOL(inode_set_ctime_current); 2516 2517 /** 2518 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2519 * @idmap: idmap of the mount @inode was found from 2520 * @inode: inode to check 2521 * @vfsgid: the new/current vfsgid of @inode 2522 * 2523 * Check wether @vfsgid is in the caller's group list or if the caller is 2524 * privileged with CAP_FSETID over @inode. This can be used to determine 2525 * whether the setgid bit can be kept or must be dropped. 2526 * 2527 * Return: true if the caller is sufficiently privileged, false if not. 2528 */ 2529 bool in_group_or_capable(struct mnt_idmap *idmap, 2530 const struct inode *inode, vfsgid_t vfsgid) 2531 { 2532 if (vfsgid_in_group_p(vfsgid)) 2533 return true; 2534 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2535 return true; 2536 return false; 2537 } 2538 2539 /** 2540 * mode_strip_sgid - handle the sgid bit for non-directories 2541 * @idmap: idmap of the mount the inode was created from 2542 * @dir: parent directory inode 2543 * @mode: mode of the file to be created in @dir 2544 * 2545 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2546 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2547 * either in the group of the parent directory or they have CAP_FSETID 2548 * in their user namespace and are privileged over the parent directory. 2549 * In all other cases, strip the S_ISGID bit from @mode. 2550 * 2551 * Return: the new mode to use for the file 2552 */ 2553 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2554 const struct inode *dir, umode_t mode) 2555 { 2556 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2557 return mode; 2558 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2559 return mode; 2560 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2561 return mode; 2562 return mode & ~S_ISGID; 2563 } 2564 EXPORT_SYMBOL(mode_strip_sgid); 2565