1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mount.h> 27 #include <linux/async.h> 28 #include <linux/posix_acl.h> 29 30 /* 31 * This is needed for the following functions: 32 * - inode_has_buffers 33 * - invalidate_inode_buffers 34 * - invalidate_bdev 35 * 36 * FIXME: remove all knowledge of the buffer layer from this file 37 */ 38 #include <linux/buffer_head.h> 39 40 /* 41 * New inode.c implementation. 42 * 43 * This implementation has the basic premise of trying 44 * to be extremely low-overhead and SMP-safe, yet be 45 * simple enough to be "obviously correct". 46 * 47 * Famous last words. 48 */ 49 50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 51 52 /* #define INODE_PARANOIA 1 */ 53 /* #define INODE_DEBUG 1 */ 54 55 /* 56 * Inode lookup is no longer as critical as it used to be: 57 * most of the lookups are going to be through the dcache. 58 */ 59 #define I_HASHBITS i_hash_shift 60 #define I_HASHMASK i_hash_mask 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 65 /* 66 * Each inode can be on two separate lists. One is 67 * the hash list of the inode, used for lookups. The 68 * other linked list is the "type" list: 69 * "in_use" - valid inode, i_count > 0, i_nlink > 0 70 * "dirty" - as "in_use" but also dirty 71 * "unused" - valid inode, i_count = 0 72 * 73 * A "dirty" list is maintained for each super block, 74 * allowing for low-overhead inode sync() operations. 75 */ 76 77 LIST_HEAD(inode_in_use); 78 LIST_HEAD(inode_unused); 79 static struct hlist_head *inode_hashtable __read_mostly; 80 81 /* 82 * A simple spinlock to protect the list manipulations. 83 * 84 * NOTE! You also have to own the lock if you change 85 * the i_state of an inode while it is in use.. 86 */ 87 DEFINE_SPINLOCK(inode_lock); 88 89 /* 90 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 91 * icache shrinking path, and the umount path. Without this exclusion, 92 * by the time prune_icache calls iput for the inode whose pages it has 93 * been invalidating, or by the time it calls clear_inode & destroy_inode 94 * from its final dispose_list, the struct super_block they refer to 95 * (for inode->i_sb->s_op) may already have been freed and reused. 96 */ 97 static DEFINE_MUTEX(iprune_mutex); 98 99 /* 100 * Statistics gathering.. 101 */ 102 struct inodes_stat_t inodes_stat; 103 104 static struct kmem_cache *inode_cachep __read_mostly; 105 106 static void wake_up_inode(struct inode *inode) 107 { 108 /* 109 * Prevent speculative execution through spin_unlock(&inode_lock); 110 */ 111 smp_mb(); 112 wake_up_bit(&inode->i_state, __I_LOCK); 113 } 114 115 /** 116 * inode_init_always - perform inode structure intialisation 117 * @sb: superblock inode belongs to 118 * @inode: inode to initialise 119 * 120 * These are initializations that need to be done on every inode 121 * allocation as the fields are not initialised by slab allocation. 122 */ 123 int inode_init_always(struct super_block *sb, struct inode *inode) 124 { 125 static const struct address_space_operations empty_aops; 126 static struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->i_nlink = 1; 137 inode->i_uid = 0; 138 inode->i_gid = 0; 139 atomic_set(&inode->i_writecount, 0); 140 inode->i_size = 0; 141 inode->i_blocks = 0; 142 inode->i_bytes = 0; 143 inode->i_generation = 0; 144 #ifdef CONFIG_QUOTA 145 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 146 #endif 147 inode->i_pipe = NULL; 148 inode->i_bdev = NULL; 149 inode->i_cdev = NULL; 150 inode->i_rdev = 0; 151 inode->dirtied_when = 0; 152 153 if (security_inode_alloc(inode)) 154 goto out; 155 156 /* allocate and initialize an i_integrity */ 157 if (ima_inode_alloc(inode)) 158 goto out_free_security; 159 160 spin_lock_init(&inode->i_lock); 161 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 162 163 mutex_init(&inode->i_mutex); 164 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 165 166 init_rwsem(&inode->i_alloc_sem); 167 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 168 169 mapping->a_ops = &empty_aops; 170 mapping->host = inode; 171 mapping->flags = 0; 172 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 173 mapping->assoc_mapping = NULL; 174 mapping->backing_dev_info = &default_backing_dev_info; 175 mapping->writeback_index = 0; 176 177 /* 178 * If the block_device provides a backing_dev_info for client 179 * inodes then use that. Otherwise the inode share the bdev's 180 * backing_dev_info. 181 */ 182 if (sb->s_bdev) { 183 struct backing_dev_info *bdi; 184 185 bdi = sb->s_bdev->bd_inode_backing_dev_info; 186 if (!bdi) 187 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 188 mapping->backing_dev_info = bdi; 189 } 190 inode->i_private = NULL; 191 inode->i_mapping = mapping; 192 #ifdef CONFIG_FS_POSIX_ACL 193 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 194 #endif 195 196 #ifdef CONFIG_FSNOTIFY 197 inode->i_fsnotify_mask = 0; 198 #endif 199 200 return 0; 201 202 out_free_security: 203 security_inode_free(inode); 204 out: 205 return -ENOMEM; 206 } 207 EXPORT_SYMBOL(inode_init_always); 208 209 static struct inode *alloc_inode(struct super_block *sb) 210 { 211 struct inode *inode; 212 213 if (sb->s_op->alloc_inode) 214 inode = sb->s_op->alloc_inode(sb); 215 else 216 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 217 218 if (!inode) 219 return NULL; 220 221 if (unlikely(inode_init_always(sb, inode))) { 222 if (inode->i_sb->s_op->destroy_inode) 223 inode->i_sb->s_op->destroy_inode(inode); 224 else 225 kmem_cache_free(inode_cachep, inode); 226 return NULL; 227 } 228 229 return inode; 230 } 231 232 void __destroy_inode(struct inode *inode) 233 { 234 BUG_ON(inode_has_buffers(inode)); 235 ima_inode_free(inode); 236 security_inode_free(inode); 237 fsnotify_inode_delete(inode); 238 #ifdef CONFIG_FS_POSIX_ACL 239 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 240 posix_acl_release(inode->i_acl); 241 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 242 posix_acl_release(inode->i_default_acl); 243 #endif 244 } 245 EXPORT_SYMBOL(__destroy_inode); 246 247 void destroy_inode(struct inode *inode) 248 { 249 __destroy_inode(inode); 250 if (inode->i_sb->s_op->destroy_inode) 251 inode->i_sb->s_op->destroy_inode(inode); 252 else 253 kmem_cache_free(inode_cachep, (inode)); 254 } 255 256 /* 257 * These are initializations that only need to be done 258 * once, because the fields are idempotent across use 259 * of the inode, so let the slab aware of that. 260 */ 261 void inode_init_once(struct inode *inode) 262 { 263 memset(inode, 0, sizeof(*inode)); 264 INIT_HLIST_NODE(&inode->i_hash); 265 INIT_LIST_HEAD(&inode->i_dentry); 266 INIT_LIST_HEAD(&inode->i_devices); 267 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 268 spin_lock_init(&inode->i_data.tree_lock); 269 spin_lock_init(&inode->i_data.i_mmap_lock); 270 INIT_LIST_HEAD(&inode->i_data.private_list); 271 spin_lock_init(&inode->i_data.private_lock); 272 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 273 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 274 i_size_ordered_init(inode); 275 #ifdef CONFIG_INOTIFY 276 INIT_LIST_HEAD(&inode->inotify_watches); 277 mutex_init(&inode->inotify_mutex); 278 #endif 279 #ifdef CONFIG_FSNOTIFY 280 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 281 #endif 282 } 283 EXPORT_SYMBOL(inode_init_once); 284 285 static void init_once(void *foo) 286 { 287 struct inode *inode = (struct inode *) foo; 288 289 inode_init_once(inode); 290 } 291 292 /* 293 * inode_lock must be held 294 */ 295 void __iget(struct inode *inode) 296 { 297 if (atomic_read(&inode->i_count)) { 298 atomic_inc(&inode->i_count); 299 return; 300 } 301 atomic_inc(&inode->i_count); 302 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 303 list_move(&inode->i_list, &inode_in_use); 304 inodes_stat.nr_unused--; 305 } 306 307 /** 308 * clear_inode - clear an inode 309 * @inode: inode to clear 310 * 311 * This is called by the filesystem to tell us 312 * that the inode is no longer useful. We just 313 * terminate it with extreme prejudice. 314 */ 315 void clear_inode(struct inode *inode) 316 { 317 might_sleep(); 318 invalidate_inode_buffers(inode); 319 320 BUG_ON(inode->i_data.nrpages); 321 BUG_ON(!(inode->i_state & I_FREEING)); 322 BUG_ON(inode->i_state & I_CLEAR); 323 inode_sync_wait(inode); 324 vfs_dq_drop(inode); 325 if (inode->i_sb->s_op->clear_inode) 326 inode->i_sb->s_op->clear_inode(inode); 327 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 328 bd_forget(inode); 329 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 330 cd_forget(inode); 331 inode->i_state = I_CLEAR; 332 } 333 EXPORT_SYMBOL(clear_inode); 334 335 /* 336 * dispose_list - dispose of the contents of a local list 337 * @head: the head of the list to free 338 * 339 * Dispose-list gets a local list with local inodes in it, so it doesn't 340 * need to worry about list corruption and SMP locks. 341 */ 342 static void dispose_list(struct list_head *head) 343 { 344 int nr_disposed = 0; 345 346 while (!list_empty(head)) { 347 struct inode *inode; 348 349 inode = list_first_entry(head, struct inode, i_list); 350 list_del(&inode->i_list); 351 352 if (inode->i_data.nrpages) 353 truncate_inode_pages(&inode->i_data, 0); 354 clear_inode(inode); 355 356 spin_lock(&inode_lock); 357 hlist_del_init(&inode->i_hash); 358 list_del_init(&inode->i_sb_list); 359 spin_unlock(&inode_lock); 360 361 wake_up_inode(inode); 362 destroy_inode(inode); 363 nr_disposed++; 364 } 365 spin_lock(&inode_lock); 366 inodes_stat.nr_inodes -= nr_disposed; 367 spin_unlock(&inode_lock); 368 } 369 370 /* 371 * Invalidate all inodes for a device. 372 */ 373 static int invalidate_list(struct list_head *head, struct list_head *dispose) 374 { 375 struct list_head *next; 376 int busy = 0, count = 0; 377 378 next = head->next; 379 for (;;) { 380 struct list_head *tmp = next; 381 struct inode *inode; 382 383 /* 384 * We can reschedule here without worrying about the list's 385 * consistency because the per-sb list of inodes must not 386 * change during umount anymore, and because iprune_mutex keeps 387 * shrink_icache_memory() away. 388 */ 389 cond_resched_lock(&inode_lock); 390 391 next = next->next; 392 if (tmp == head) 393 break; 394 inode = list_entry(tmp, struct inode, i_sb_list); 395 if (inode->i_state & I_NEW) 396 continue; 397 invalidate_inode_buffers(inode); 398 if (!atomic_read(&inode->i_count)) { 399 list_move(&inode->i_list, dispose); 400 WARN_ON(inode->i_state & I_NEW); 401 inode->i_state |= I_FREEING; 402 count++; 403 continue; 404 } 405 busy = 1; 406 } 407 /* only unused inodes may be cached with i_count zero */ 408 inodes_stat.nr_unused -= count; 409 return busy; 410 } 411 412 /** 413 * invalidate_inodes - discard the inodes on a device 414 * @sb: superblock 415 * 416 * Discard all of the inodes for a given superblock. If the discard 417 * fails because there are busy inodes then a non zero value is returned. 418 * If the discard is successful all the inodes have been discarded. 419 */ 420 int invalidate_inodes(struct super_block *sb) 421 { 422 int busy; 423 LIST_HEAD(throw_away); 424 425 mutex_lock(&iprune_mutex); 426 spin_lock(&inode_lock); 427 inotify_unmount_inodes(&sb->s_inodes); 428 fsnotify_unmount_inodes(&sb->s_inodes); 429 busy = invalidate_list(&sb->s_inodes, &throw_away); 430 spin_unlock(&inode_lock); 431 432 dispose_list(&throw_away); 433 mutex_unlock(&iprune_mutex); 434 435 return busy; 436 } 437 EXPORT_SYMBOL(invalidate_inodes); 438 439 static int can_unuse(struct inode *inode) 440 { 441 if (inode->i_state) 442 return 0; 443 if (inode_has_buffers(inode)) 444 return 0; 445 if (atomic_read(&inode->i_count)) 446 return 0; 447 if (inode->i_data.nrpages) 448 return 0; 449 return 1; 450 } 451 452 /* 453 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 454 * a temporary list and then are freed outside inode_lock by dispose_list(). 455 * 456 * Any inodes which are pinned purely because of attached pagecache have their 457 * pagecache removed. We expect the final iput() on that inode to add it to 458 * the front of the inode_unused list. So look for it there and if the 459 * inode is still freeable, proceed. The right inode is found 99.9% of the 460 * time in testing on a 4-way. 461 * 462 * If the inode has metadata buffers attached to mapping->private_list then 463 * try to remove them. 464 */ 465 static void prune_icache(int nr_to_scan) 466 { 467 LIST_HEAD(freeable); 468 int nr_pruned = 0; 469 int nr_scanned; 470 unsigned long reap = 0; 471 472 mutex_lock(&iprune_mutex); 473 spin_lock(&inode_lock); 474 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 475 struct inode *inode; 476 477 if (list_empty(&inode_unused)) 478 break; 479 480 inode = list_entry(inode_unused.prev, struct inode, i_list); 481 482 if (inode->i_state || atomic_read(&inode->i_count)) { 483 list_move(&inode->i_list, &inode_unused); 484 continue; 485 } 486 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 487 __iget(inode); 488 spin_unlock(&inode_lock); 489 if (remove_inode_buffers(inode)) 490 reap += invalidate_mapping_pages(&inode->i_data, 491 0, -1); 492 iput(inode); 493 spin_lock(&inode_lock); 494 495 if (inode != list_entry(inode_unused.next, 496 struct inode, i_list)) 497 continue; /* wrong inode or list_empty */ 498 if (!can_unuse(inode)) 499 continue; 500 } 501 list_move(&inode->i_list, &freeable); 502 WARN_ON(inode->i_state & I_NEW); 503 inode->i_state |= I_FREEING; 504 nr_pruned++; 505 } 506 inodes_stat.nr_unused -= nr_pruned; 507 if (current_is_kswapd()) 508 __count_vm_events(KSWAPD_INODESTEAL, reap); 509 else 510 __count_vm_events(PGINODESTEAL, reap); 511 spin_unlock(&inode_lock); 512 513 dispose_list(&freeable); 514 mutex_unlock(&iprune_mutex); 515 } 516 517 /* 518 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 519 * "unused" means that no dentries are referring to the inodes: the files are 520 * not open and the dcache references to those inodes have already been 521 * reclaimed. 522 * 523 * This function is passed the number of inodes to scan, and it returns the 524 * total number of remaining possibly-reclaimable inodes. 525 */ 526 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 527 { 528 if (nr) { 529 /* 530 * Nasty deadlock avoidance. We may hold various FS locks, 531 * and we don't want to recurse into the FS that called us 532 * in clear_inode() and friends.. 533 */ 534 if (!(gfp_mask & __GFP_FS)) 535 return -1; 536 prune_icache(nr); 537 } 538 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 539 } 540 541 static struct shrinker icache_shrinker = { 542 .shrink = shrink_icache_memory, 543 .seeks = DEFAULT_SEEKS, 544 }; 545 546 static void __wait_on_freeing_inode(struct inode *inode); 547 /* 548 * Called with the inode lock held. 549 * NOTE: we are not increasing the inode-refcount, you must call __iget() 550 * by hand after calling find_inode now! This simplifies iunique and won't 551 * add any additional branch in the common code. 552 */ 553 static struct inode *find_inode(struct super_block *sb, 554 struct hlist_head *head, 555 int (*test)(struct inode *, void *), 556 void *data) 557 { 558 struct hlist_node *node; 559 struct inode *inode = NULL; 560 561 repeat: 562 hlist_for_each_entry(inode, node, head, i_hash) { 563 if (inode->i_sb != sb) 564 continue; 565 if (!test(inode, data)) 566 continue; 567 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 568 __wait_on_freeing_inode(inode); 569 goto repeat; 570 } 571 break; 572 } 573 return node ? inode : NULL; 574 } 575 576 /* 577 * find_inode_fast is the fast path version of find_inode, see the comment at 578 * iget_locked for details. 579 */ 580 static struct inode *find_inode_fast(struct super_block *sb, 581 struct hlist_head *head, unsigned long ino) 582 { 583 struct hlist_node *node; 584 struct inode *inode = NULL; 585 586 repeat: 587 hlist_for_each_entry(inode, node, head, i_hash) { 588 if (inode->i_ino != ino) 589 continue; 590 if (inode->i_sb != sb) 591 continue; 592 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 593 __wait_on_freeing_inode(inode); 594 goto repeat; 595 } 596 break; 597 } 598 return node ? inode : NULL; 599 } 600 601 static unsigned long hash(struct super_block *sb, unsigned long hashval) 602 { 603 unsigned long tmp; 604 605 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 606 L1_CACHE_BYTES; 607 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 608 return tmp & I_HASHMASK; 609 } 610 611 static inline void 612 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 613 struct inode *inode) 614 { 615 inodes_stat.nr_inodes++; 616 list_add(&inode->i_list, &inode_in_use); 617 list_add(&inode->i_sb_list, &sb->s_inodes); 618 if (head) 619 hlist_add_head(&inode->i_hash, head); 620 } 621 622 /** 623 * inode_add_to_lists - add a new inode to relevant lists 624 * @sb: superblock inode belongs to 625 * @inode: inode to mark in use 626 * 627 * When an inode is allocated it needs to be accounted for, added to the in use 628 * list, the owning superblock and the inode hash. This needs to be done under 629 * the inode_lock, so export a function to do this rather than the inode lock 630 * itself. We calculate the hash list to add to here so it is all internal 631 * which requires the caller to have already set up the inode number in the 632 * inode to add. 633 */ 634 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 635 { 636 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 637 638 spin_lock(&inode_lock); 639 __inode_add_to_lists(sb, head, inode); 640 spin_unlock(&inode_lock); 641 } 642 EXPORT_SYMBOL_GPL(inode_add_to_lists); 643 644 /** 645 * new_inode - obtain an inode 646 * @sb: superblock 647 * 648 * Allocates a new inode for given superblock. The default gfp_mask 649 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 650 * If HIGHMEM pages are unsuitable or it is known that pages allocated 651 * for the page cache are not reclaimable or migratable, 652 * mapping_set_gfp_mask() must be called with suitable flags on the 653 * newly created inode's mapping 654 * 655 */ 656 struct inode *new_inode(struct super_block *sb) 657 { 658 /* 659 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 660 * error if st_ino won't fit in target struct field. Use 32bit counter 661 * here to attempt to avoid that. 662 */ 663 static unsigned int last_ino; 664 struct inode *inode; 665 666 spin_lock_prefetch(&inode_lock); 667 668 inode = alloc_inode(sb); 669 if (inode) { 670 spin_lock(&inode_lock); 671 __inode_add_to_lists(sb, NULL, inode); 672 inode->i_ino = ++last_ino; 673 inode->i_state = 0; 674 spin_unlock(&inode_lock); 675 } 676 return inode; 677 } 678 EXPORT_SYMBOL(new_inode); 679 680 void unlock_new_inode(struct inode *inode) 681 { 682 #ifdef CONFIG_DEBUG_LOCK_ALLOC 683 if (inode->i_mode & S_IFDIR) { 684 struct file_system_type *type = inode->i_sb->s_type; 685 686 /* Set new key only if filesystem hasn't already changed it */ 687 if (!lockdep_match_class(&inode->i_mutex, 688 &type->i_mutex_key)) { 689 /* 690 * ensure nobody is actually holding i_mutex 691 */ 692 mutex_destroy(&inode->i_mutex); 693 mutex_init(&inode->i_mutex); 694 lockdep_set_class(&inode->i_mutex, 695 &type->i_mutex_dir_key); 696 } 697 } 698 #endif 699 /* 700 * This is special! We do not need the spinlock 701 * when clearing I_LOCK, because we're guaranteed 702 * that nobody else tries to do anything about the 703 * state of the inode when it is locked, as we 704 * just created it (so there can be no old holders 705 * that haven't tested I_LOCK). 706 */ 707 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 708 inode->i_state &= ~(I_LOCK|I_NEW); 709 wake_up_inode(inode); 710 } 711 EXPORT_SYMBOL(unlock_new_inode); 712 713 /* 714 * This is called without the inode lock held.. Be careful. 715 * 716 * We no longer cache the sb_flags in i_flags - see fs.h 717 * -- rmk@arm.uk.linux.org 718 */ 719 static struct inode *get_new_inode(struct super_block *sb, 720 struct hlist_head *head, 721 int (*test)(struct inode *, void *), 722 int (*set)(struct inode *, void *), 723 void *data) 724 { 725 struct inode *inode; 726 727 inode = alloc_inode(sb); 728 if (inode) { 729 struct inode *old; 730 731 spin_lock(&inode_lock); 732 /* We released the lock, so.. */ 733 old = find_inode(sb, head, test, data); 734 if (!old) { 735 if (set(inode, data)) 736 goto set_failed; 737 738 __inode_add_to_lists(sb, head, inode); 739 inode->i_state = I_LOCK|I_NEW; 740 spin_unlock(&inode_lock); 741 742 /* Return the locked inode with I_NEW set, the 743 * caller is responsible for filling in the contents 744 */ 745 return inode; 746 } 747 748 /* 749 * Uhhuh, somebody else created the same inode under 750 * us. Use the old inode instead of the one we just 751 * allocated. 752 */ 753 __iget(old); 754 spin_unlock(&inode_lock); 755 destroy_inode(inode); 756 inode = old; 757 wait_on_inode(inode); 758 } 759 return inode; 760 761 set_failed: 762 spin_unlock(&inode_lock); 763 destroy_inode(inode); 764 return NULL; 765 } 766 767 /* 768 * get_new_inode_fast is the fast path version of get_new_inode, see the 769 * comment at iget_locked for details. 770 */ 771 static struct inode *get_new_inode_fast(struct super_block *sb, 772 struct hlist_head *head, unsigned long ino) 773 { 774 struct inode *inode; 775 776 inode = alloc_inode(sb); 777 if (inode) { 778 struct inode *old; 779 780 spin_lock(&inode_lock); 781 /* We released the lock, so.. */ 782 old = find_inode_fast(sb, head, ino); 783 if (!old) { 784 inode->i_ino = ino; 785 __inode_add_to_lists(sb, head, inode); 786 inode->i_state = I_LOCK|I_NEW; 787 spin_unlock(&inode_lock); 788 789 /* Return the locked inode with I_NEW set, the 790 * caller is responsible for filling in the contents 791 */ 792 return inode; 793 } 794 795 /* 796 * Uhhuh, somebody else created the same inode under 797 * us. Use the old inode instead of the one we just 798 * allocated. 799 */ 800 __iget(old); 801 spin_unlock(&inode_lock); 802 destroy_inode(inode); 803 inode = old; 804 wait_on_inode(inode); 805 } 806 return inode; 807 } 808 809 /** 810 * iunique - get a unique inode number 811 * @sb: superblock 812 * @max_reserved: highest reserved inode number 813 * 814 * Obtain an inode number that is unique on the system for a given 815 * superblock. This is used by file systems that have no natural 816 * permanent inode numbering system. An inode number is returned that 817 * is higher than the reserved limit but unique. 818 * 819 * BUGS: 820 * With a large number of inodes live on the file system this function 821 * currently becomes quite slow. 822 */ 823 ino_t iunique(struct super_block *sb, ino_t max_reserved) 824 { 825 /* 826 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 827 * error if st_ino won't fit in target struct field. Use 32bit counter 828 * here to attempt to avoid that. 829 */ 830 static unsigned int counter; 831 struct inode *inode; 832 struct hlist_head *head; 833 ino_t res; 834 835 spin_lock(&inode_lock); 836 do { 837 if (counter <= max_reserved) 838 counter = max_reserved + 1; 839 res = counter++; 840 head = inode_hashtable + hash(sb, res); 841 inode = find_inode_fast(sb, head, res); 842 } while (inode != NULL); 843 spin_unlock(&inode_lock); 844 845 return res; 846 } 847 EXPORT_SYMBOL(iunique); 848 849 struct inode *igrab(struct inode *inode) 850 { 851 spin_lock(&inode_lock); 852 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 853 __iget(inode); 854 else 855 /* 856 * Handle the case where s_op->clear_inode is not been 857 * called yet, and somebody is calling igrab 858 * while the inode is getting freed. 859 */ 860 inode = NULL; 861 spin_unlock(&inode_lock); 862 return inode; 863 } 864 EXPORT_SYMBOL(igrab); 865 866 /** 867 * ifind - internal function, you want ilookup5() or iget5(). 868 * @sb: super block of file system to search 869 * @head: the head of the list to search 870 * @test: callback used for comparisons between inodes 871 * @data: opaque data pointer to pass to @test 872 * @wait: if true wait for the inode to be unlocked, if false do not 873 * 874 * ifind() searches for the inode specified by @data in the inode 875 * cache. This is a generalized version of ifind_fast() for file systems where 876 * the inode number is not sufficient for unique identification of an inode. 877 * 878 * If the inode is in the cache, the inode is returned with an incremented 879 * reference count. 880 * 881 * Otherwise NULL is returned. 882 * 883 * Note, @test is called with the inode_lock held, so can't sleep. 884 */ 885 static struct inode *ifind(struct super_block *sb, 886 struct hlist_head *head, int (*test)(struct inode *, void *), 887 void *data, const int wait) 888 { 889 struct inode *inode; 890 891 spin_lock(&inode_lock); 892 inode = find_inode(sb, head, test, data); 893 if (inode) { 894 __iget(inode); 895 spin_unlock(&inode_lock); 896 if (likely(wait)) 897 wait_on_inode(inode); 898 return inode; 899 } 900 spin_unlock(&inode_lock); 901 return NULL; 902 } 903 904 /** 905 * ifind_fast - internal function, you want ilookup() or iget(). 906 * @sb: super block of file system to search 907 * @head: head of the list to search 908 * @ino: inode number to search for 909 * 910 * ifind_fast() searches for the inode @ino in the inode cache. This is for 911 * file systems where the inode number is sufficient for unique identification 912 * of an inode. 913 * 914 * If the inode is in the cache, the inode is returned with an incremented 915 * reference count. 916 * 917 * Otherwise NULL is returned. 918 */ 919 static struct inode *ifind_fast(struct super_block *sb, 920 struct hlist_head *head, unsigned long ino) 921 { 922 struct inode *inode; 923 924 spin_lock(&inode_lock); 925 inode = find_inode_fast(sb, head, ino); 926 if (inode) { 927 __iget(inode); 928 spin_unlock(&inode_lock); 929 wait_on_inode(inode); 930 return inode; 931 } 932 spin_unlock(&inode_lock); 933 return NULL; 934 } 935 936 /** 937 * ilookup5_nowait - search for an inode in the inode cache 938 * @sb: super block of file system to search 939 * @hashval: hash value (usually inode number) to search for 940 * @test: callback used for comparisons between inodes 941 * @data: opaque data pointer to pass to @test 942 * 943 * ilookup5() uses ifind() to search for the inode specified by @hashval and 944 * @data in the inode cache. This is a generalized version of ilookup() for 945 * file systems where the inode number is not sufficient for unique 946 * identification of an inode. 947 * 948 * If the inode is in the cache, the inode is returned with an incremented 949 * reference count. Note, the inode lock is not waited upon so you have to be 950 * very careful what you do with the returned inode. You probably should be 951 * using ilookup5() instead. 952 * 953 * Otherwise NULL is returned. 954 * 955 * Note, @test is called with the inode_lock held, so can't sleep. 956 */ 957 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 958 int (*test)(struct inode *, void *), void *data) 959 { 960 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 961 962 return ifind(sb, head, test, data, 0); 963 } 964 EXPORT_SYMBOL(ilookup5_nowait); 965 966 /** 967 * ilookup5 - search for an inode in the inode cache 968 * @sb: super block of file system to search 969 * @hashval: hash value (usually inode number) to search for 970 * @test: callback used for comparisons between inodes 971 * @data: opaque data pointer to pass to @test 972 * 973 * ilookup5() uses ifind() to search for the inode specified by @hashval and 974 * @data in the inode cache. This is a generalized version of ilookup() for 975 * file systems where the inode number is not sufficient for unique 976 * identification of an inode. 977 * 978 * If the inode is in the cache, the inode lock is waited upon and the inode is 979 * returned with an incremented reference count. 980 * 981 * Otherwise NULL is returned. 982 * 983 * Note, @test is called with the inode_lock held, so can't sleep. 984 */ 985 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 986 int (*test)(struct inode *, void *), void *data) 987 { 988 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 989 990 return ifind(sb, head, test, data, 1); 991 } 992 EXPORT_SYMBOL(ilookup5); 993 994 /** 995 * ilookup - search for an inode in the inode cache 996 * @sb: super block of file system to search 997 * @ino: inode number to search for 998 * 999 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 1000 * This is for file systems where the inode number is sufficient for unique 1001 * identification of an inode. 1002 * 1003 * If the inode is in the cache, the inode is returned with an incremented 1004 * reference count. 1005 * 1006 * Otherwise NULL is returned. 1007 */ 1008 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1009 { 1010 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1011 1012 return ifind_fast(sb, head, ino); 1013 } 1014 EXPORT_SYMBOL(ilookup); 1015 1016 /** 1017 * iget5_locked - obtain an inode from a mounted file system 1018 * @sb: super block of file system 1019 * @hashval: hash value (usually inode number) to get 1020 * @test: callback used for comparisons between inodes 1021 * @set: callback used to initialize a new struct inode 1022 * @data: opaque data pointer to pass to @test and @set 1023 * 1024 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1025 * and @data in the inode cache and if present it is returned with an increased 1026 * reference count. This is a generalized version of iget_locked() for file 1027 * systems where the inode number is not sufficient for unique identification 1028 * of an inode. 1029 * 1030 * If the inode is not in cache, get_new_inode() is called to allocate a new 1031 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1032 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1033 * 1034 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1035 */ 1036 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1037 int (*test)(struct inode *, void *), 1038 int (*set)(struct inode *, void *), void *data) 1039 { 1040 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1041 struct inode *inode; 1042 1043 inode = ifind(sb, head, test, data, 1); 1044 if (inode) 1045 return inode; 1046 /* 1047 * get_new_inode() will do the right thing, re-trying the search 1048 * in case it had to block at any point. 1049 */ 1050 return get_new_inode(sb, head, test, set, data); 1051 } 1052 EXPORT_SYMBOL(iget5_locked); 1053 1054 /** 1055 * iget_locked - obtain an inode from a mounted file system 1056 * @sb: super block of file system 1057 * @ino: inode number to get 1058 * 1059 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1060 * the inode cache and if present it is returned with an increased reference 1061 * count. This is for file systems where the inode number is sufficient for 1062 * unique identification of an inode. 1063 * 1064 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1065 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1066 * The file system gets to fill it in before unlocking it via 1067 * unlock_new_inode(). 1068 */ 1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1070 { 1071 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1072 struct inode *inode; 1073 1074 inode = ifind_fast(sb, head, ino); 1075 if (inode) 1076 return inode; 1077 /* 1078 * get_new_inode_fast() will do the right thing, re-trying the search 1079 * in case it had to block at any point. 1080 */ 1081 return get_new_inode_fast(sb, head, ino); 1082 } 1083 EXPORT_SYMBOL(iget_locked); 1084 1085 int insert_inode_locked(struct inode *inode) 1086 { 1087 struct super_block *sb = inode->i_sb; 1088 ino_t ino = inode->i_ino; 1089 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1090 1091 inode->i_state |= I_LOCK|I_NEW; 1092 while (1) { 1093 struct hlist_node *node; 1094 struct inode *old = NULL; 1095 spin_lock(&inode_lock); 1096 hlist_for_each_entry(old, node, head, i_hash) { 1097 if (old->i_ino != ino) 1098 continue; 1099 if (old->i_sb != sb) 1100 continue; 1101 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1102 continue; 1103 break; 1104 } 1105 if (likely(!node)) { 1106 hlist_add_head(&inode->i_hash, head); 1107 spin_unlock(&inode_lock); 1108 return 0; 1109 } 1110 __iget(old); 1111 spin_unlock(&inode_lock); 1112 wait_on_inode(old); 1113 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1114 iput(old); 1115 return -EBUSY; 1116 } 1117 iput(old); 1118 } 1119 } 1120 EXPORT_SYMBOL(insert_inode_locked); 1121 1122 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1123 int (*test)(struct inode *, void *), void *data) 1124 { 1125 struct super_block *sb = inode->i_sb; 1126 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1127 1128 inode->i_state |= I_LOCK|I_NEW; 1129 1130 while (1) { 1131 struct hlist_node *node; 1132 struct inode *old = NULL; 1133 1134 spin_lock(&inode_lock); 1135 hlist_for_each_entry(old, node, head, i_hash) { 1136 if (old->i_sb != sb) 1137 continue; 1138 if (!test(old, data)) 1139 continue; 1140 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1141 continue; 1142 break; 1143 } 1144 if (likely(!node)) { 1145 hlist_add_head(&inode->i_hash, head); 1146 spin_unlock(&inode_lock); 1147 return 0; 1148 } 1149 __iget(old); 1150 spin_unlock(&inode_lock); 1151 wait_on_inode(old); 1152 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1153 iput(old); 1154 return -EBUSY; 1155 } 1156 iput(old); 1157 } 1158 } 1159 EXPORT_SYMBOL(insert_inode_locked4); 1160 1161 /** 1162 * __insert_inode_hash - hash an inode 1163 * @inode: unhashed inode 1164 * @hashval: unsigned long value used to locate this object in the 1165 * inode_hashtable. 1166 * 1167 * Add an inode to the inode hash for this superblock. 1168 */ 1169 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1170 { 1171 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1172 spin_lock(&inode_lock); 1173 hlist_add_head(&inode->i_hash, head); 1174 spin_unlock(&inode_lock); 1175 } 1176 EXPORT_SYMBOL(__insert_inode_hash); 1177 1178 /** 1179 * remove_inode_hash - remove an inode from the hash 1180 * @inode: inode to unhash 1181 * 1182 * Remove an inode from the superblock. 1183 */ 1184 void remove_inode_hash(struct inode *inode) 1185 { 1186 spin_lock(&inode_lock); 1187 hlist_del_init(&inode->i_hash); 1188 spin_unlock(&inode_lock); 1189 } 1190 EXPORT_SYMBOL(remove_inode_hash); 1191 1192 /* 1193 * Tell the filesystem that this inode is no longer of any interest and should 1194 * be completely destroyed. 1195 * 1196 * We leave the inode in the inode hash table until *after* the filesystem's 1197 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1198 * instigate) will always find up-to-date information either in the hash or on 1199 * disk. 1200 * 1201 * I_FREEING is set so that no-one will take a new reference to the inode while 1202 * it is being deleted. 1203 */ 1204 void generic_delete_inode(struct inode *inode) 1205 { 1206 const struct super_operations *op = inode->i_sb->s_op; 1207 1208 list_del_init(&inode->i_list); 1209 list_del_init(&inode->i_sb_list); 1210 WARN_ON(inode->i_state & I_NEW); 1211 inode->i_state |= I_FREEING; 1212 inodes_stat.nr_inodes--; 1213 spin_unlock(&inode_lock); 1214 1215 security_inode_delete(inode); 1216 1217 if (op->delete_inode) { 1218 void (*delete)(struct inode *) = op->delete_inode; 1219 if (!is_bad_inode(inode)) 1220 vfs_dq_init(inode); 1221 /* Filesystems implementing their own 1222 * s_op->delete_inode are required to call 1223 * truncate_inode_pages and clear_inode() 1224 * internally */ 1225 delete(inode); 1226 } else { 1227 truncate_inode_pages(&inode->i_data, 0); 1228 clear_inode(inode); 1229 } 1230 spin_lock(&inode_lock); 1231 hlist_del_init(&inode->i_hash); 1232 spin_unlock(&inode_lock); 1233 wake_up_inode(inode); 1234 BUG_ON(inode->i_state != I_CLEAR); 1235 destroy_inode(inode); 1236 } 1237 EXPORT_SYMBOL(generic_delete_inode); 1238 1239 static void generic_forget_inode(struct inode *inode) 1240 { 1241 struct super_block *sb = inode->i_sb; 1242 1243 if (!hlist_unhashed(&inode->i_hash)) { 1244 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1245 list_move(&inode->i_list, &inode_unused); 1246 inodes_stat.nr_unused++; 1247 if (sb->s_flags & MS_ACTIVE) { 1248 spin_unlock(&inode_lock); 1249 return; 1250 } 1251 WARN_ON(inode->i_state & I_NEW); 1252 inode->i_state |= I_WILL_FREE; 1253 spin_unlock(&inode_lock); 1254 write_inode_now(inode, 1); 1255 spin_lock(&inode_lock); 1256 WARN_ON(inode->i_state & I_NEW); 1257 inode->i_state &= ~I_WILL_FREE; 1258 inodes_stat.nr_unused--; 1259 hlist_del_init(&inode->i_hash); 1260 } 1261 list_del_init(&inode->i_list); 1262 list_del_init(&inode->i_sb_list); 1263 WARN_ON(inode->i_state & I_NEW); 1264 inode->i_state |= I_FREEING; 1265 inodes_stat.nr_inodes--; 1266 spin_unlock(&inode_lock); 1267 if (inode->i_data.nrpages) 1268 truncate_inode_pages(&inode->i_data, 0); 1269 clear_inode(inode); 1270 wake_up_inode(inode); 1271 destroy_inode(inode); 1272 } 1273 1274 /* 1275 * Normal UNIX filesystem behaviour: delete the 1276 * inode when the usage count drops to zero, and 1277 * i_nlink is zero. 1278 */ 1279 void generic_drop_inode(struct inode *inode) 1280 { 1281 if (!inode->i_nlink) 1282 generic_delete_inode(inode); 1283 else 1284 generic_forget_inode(inode); 1285 } 1286 EXPORT_SYMBOL_GPL(generic_drop_inode); 1287 1288 /* 1289 * Called when we're dropping the last reference 1290 * to an inode. 1291 * 1292 * Call the FS "drop()" function, defaulting to 1293 * the legacy UNIX filesystem behaviour.. 1294 * 1295 * NOTE! NOTE! NOTE! We're called with the inode lock 1296 * held, and the drop function is supposed to release 1297 * the lock! 1298 */ 1299 static inline void iput_final(struct inode *inode) 1300 { 1301 const struct super_operations *op = inode->i_sb->s_op; 1302 void (*drop)(struct inode *) = generic_drop_inode; 1303 1304 if (op && op->drop_inode) 1305 drop = op->drop_inode; 1306 drop(inode); 1307 } 1308 1309 /** 1310 * iput - put an inode 1311 * @inode: inode to put 1312 * 1313 * Puts an inode, dropping its usage count. If the inode use count hits 1314 * zero, the inode is then freed and may also be destroyed. 1315 * 1316 * Consequently, iput() can sleep. 1317 */ 1318 void iput(struct inode *inode) 1319 { 1320 if (inode) { 1321 BUG_ON(inode->i_state == I_CLEAR); 1322 1323 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1324 iput_final(inode); 1325 } 1326 } 1327 EXPORT_SYMBOL(iput); 1328 1329 /** 1330 * bmap - find a block number in a file 1331 * @inode: inode of file 1332 * @block: block to find 1333 * 1334 * Returns the block number on the device holding the inode that 1335 * is the disk block number for the block of the file requested. 1336 * That is, asked for block 4 of inode 1 the function will return the 1337 * disk block relative to the disk start that holds that block of the 1338 * file. 1339 */ 1340 sector_t bmap(struct inode *inode, sector_t block) 1341 { 1342 sector_t res = 0; 1343 if (inode->i_mapping->a_ops->bmap) 1344 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1345 return res; 1346 } 1347 EXPORT_SYMBOL(bmap); 1348 1349 /* 1350 * With relative atime, only update atime if the previous atime is 1351 * earlier than either the ctime or mtime or if at least a day has 1352 * passed since the last atime update. 1353 */ 1354 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1355 struct timespec now) 1356 { 1357 1358 if (!(mnt->mnt_flags & MNT_RELATIME)) 1359 return 1; 1360 /* 1361 * Is mtime younger than atime? If yes, update atime: 1362 */ 1363 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1364 return 1; 1365 /* 1366 * Is ctime younger than atime? If yes, update atime: 1367 */ 1368 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1369 return 1; 1370 1371 /* 1372 * Is the previous atime value older than a day? If yes, 1373 * update atime: 1374 */ 1375 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1376 return 1; 1377 /* 1378 * Good, we can skip the atime update: 1379 */ 1380 return 0; 1381 } 1382 1383 /** 1384 * touch_atime - update the access time 1385 * @mnt: mount the inode is accessed on 1386 * @dentry: dentry accessed 1387 * 1388 * Update the accessed time on an inode and mark it for writeback. 1389 * This function automatically handles read only file systems and media, 1390 * as well as the "noatime" flag and inode specific "noatime" markers. 1391 */ 1392 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1393 { 1394 struct inode *inode = dentry->d_inode; 1395 struct timespec now; 1396 1397 if (mnt_want_write(mnt)) 1398 return; 1399 if (inode->i_flags & S_NOATIME) 1400 goto out; 1401 if (IS_NOATIME(inode)) 1402 goto out; 1403 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1404 goto out; 1405 1406 if (mnt->mnt_flags & MNT_NOATIME) 1407 goto out; 1408 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1409 goto out; 1410 1411 now = current_fs_time(inode->i_sb); 1412 1413 if (!relatime_need_update(mnt, inode, now)) 1414 goto out; 1415 1416 if (timespec_equal(&inode->i_atime, &now)) 1417 goto out; 1418 1419 inode->i_atime = now; 1420 mark_inode_dirty_sync(inode); 1421 out: 1422 mnt_drop_write(mnt); 1423 } 1424 EXPORT_SYMBOL(touch_atime); 1425 1426 /** 1427 * file_update_time - update mtime and ctime time 1428 * @file: file accessed 1429 * 1430 * Update the mtime and ctime members of an inode and mark the inode 1431 * for writeback. Note that this function is meant exclusively for 1432 * usage in the file write path of filesystems, and filesystems may 1433 * choose to explicitly ignore update via this function with the 1434 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1435 * timestamps are handled by the server. 1436 */ 1437 1438 void file_update_time(struct file *file) 1439 { 1440 struct inode *inode = file->f_path.dentry->d_inode; 1441 struct timespec now; 1442 int sync_it = 0; 1443 int err; 1444 1445 if (IS_NOCMTIME(inode)) 1446 return; 1447 1448 err = mnt_want_write_file(file); 1449 if (err) 1450 return; 1451 1452 now = current_fs_time(inode->i_sb); 1453 if (!timespec_equal(&inode->i_mtime, &now)) { 1454 inode->i_mtime = now; 1455 sync_it = 1; 1456 } 1457 1458 if (!timespec_equal(&inode->i_ctime, &now)) { 1459 inode->i_ctime = now; 1460 sync_it = 1; 1461 } 1462 1463 if (IS_I_VERSION(inode)) { 1464 inode_inc_iversion(inode); 1465 sync_it = 1; 1466 } 1467 1468 if (sync_it) 1469 mark_inode_dirty_sync(inode); 1470 mnt_drop_write(file->f_path.mnt); 1471 } 1472 EXPORT_SYMBOL(file_update_time); 1473 1474 int inode_needs_sync(struct inode *inode) 1475 { 1476 if (IS_SYNC(inode)) 1477 return 1; 1478 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1479 return 1; 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(inode_needs_sync); 1483 1484 int inode_wait(void *word) 1485 { 1486 schedule(); 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(inode_wait); 1490 1491 /* 1492 * If we try to find an inode in the inode hash while it is being 1493 * deleted, we have to wait until the filesystem completes its 1494 * deletion before reporting that it isn't found. This function waits 1495 * until the deletion _might_ have completed. Callers are responsible 1496 * to recheck inode state. 1497 * 1498 * It doesn't matter if I_LOCK is not set initially, a call to 1499 * wake_up_inode() after removing from the hash list will DTRT. 1500 * 1501 * This is called with inode_lock held. 1502 */ 1503 static void __wait_on_freeing_inode(struct inode *inode) 1504 { 1505 wait_queue_head_t *wq; 1506 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1507 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1508 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1509 spin_unlock(&inode_lock); 1510 schedule(); 1511 finish_wait(wq, &wait.wait); 1512 spin_lock(&inode_lock); 1513 } 1514 1515 static __initdata unsigned long ihash_entries; 1516 static int __init set_ihash_entries(char *str) 1517 { 1518 if (!str) 1519 return 0; 1520 ihash_entries = simple_strtoul(str, &str, 0); 1521 return 1; 1522 } 1523 __setup("ihash_entries=", set_ihash_entries); 1524 1525 /* 1526 * Initialize the waitqueues and inode hash table. 1527 */ 1528 void __init inode_init_early(void) 1529 { 1530 int loop; 1531 1532 /* If hashes are distributed across NUMA nodes, defer 1533 * hash allocation until vmalloc space is available. 1534 */ 1535 if (hashdist) 1536 return; 1537 1538 inode_hashtable = 1539 alloc_large_system_hash("Inode-cache", 1540 sizeof(struct hlist_head), 1541 ihash_entries, 1542 14, 1543 HASH_EARLY, 1544 &i_hash_shift, 1545 &i_hash_mask, 1546 0); 1547 1548 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1549 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1550 } 1551 1552 void __init inode_init(void) 1553 { 1554 int loop; 1555 1556 /* inode slab cache */ 1557 inode_cachep = kmem_cache_create("inode_cache", 1558 sizeof(struct inode), 1559 0, 1560 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1561 SLAB_MEM_SPREAD), 1562 init_once); 1563 register_shrinker(&icache_shrinker); 1564 1565 /* Hash may have been set up in inode_init_early */ 1566 if (!hashdist) 1567 return; 1568 1569 inode_hashtable = 1570 alloc_large_system_hash("Inode-cache", 1571 sizeof(struct hlist_head), 1572 ihash_entries, 1573 14, 1574 0, 1575 &i_hash_shift, 1576 &i_hash_mask, 1577 0); 1578 1579 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1580 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1581 } 1582 1583 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1584 { 1585 inode->i_mode = mode; 1586 if (S_ISCHR(mode)) { 1587 inode->i_fop = &def_chr_fops; 1588 inode->i_rdev = rdev; 1589 } else if (S_ISBLK(mode)) { 1590 inode->i_fop = &def_blk_fops; 1591 inode->i_rdev = rdev; 1592 } else if (S_ISFIFO(mode)) 1593 inode->i_fop = &def_fifo_fops; 1594 else if (S_ISSOCK(mode)) 1595 inode->i_fop = &bad_sock_fops; 1596 else 1597 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1598 mode); 1599 } 1600 EXPORT_SYMBOL(init_special_inode); 1601