1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __ro_after_init; 58 static unsigned int i_hash_shift __ro_after_init; 59 static struct hlist_head *inode_hashtable __ro_after_init; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __ro_after_init; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 if (sb->s_iflags & SB_I_STABLE_WRITES) 219 mapping_set_stable_writes(mapping); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 232 if (unlikely(security_inode_alloc(inode))) 233 return -ENOMEM; 234 this_cpu_inc(nr_inodes); 235 236 return 0; 237 } 238 EXPORT_SYMBOL(inode_init_always); 239 240 void free_inode_nonrcu(struct inode *inode) 241 { 242 kmem_cache_free(inode_cachep, inode); 243 } 244 EXPORT_SYMBOL(free_inode_nonrcu); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 if (inode->free_inode) 250 inode->free_inode(inode); 251 else 252 free_inode_nonrcu(inode); 253 } 254 255 static struct inode *alloc_inode(struct super_block *sb) 256 { 257 const struct super_operations *ops = sb->s_op; 258 struct inode *inode; 259 260 if (ops->alloc_inode) 261 inode = ops->alloc_inode(sb); 262 else 263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 264 265 if (!inode) 266 return NULL; 267 268 if (unlikely(inode_init_always(sb, inode))) { 269 if (ops->destroy_inode) { 270 ops->destroy_inode(inode); 271 if (!ops->free_inode) 272 return NULL; 273 } 274 inode->free_inode = ops->free_inode; 275 i_callback(&inode->i_rcu); 276 return NULL; 277 } 278 279 return inode; 280 } 281 282 void __destroy_inode(struct inode *inode) 283 { 284 BUG_ON(inode_has_buffers(inode)); 285 inode_detach_wb(inode); 286 security_inode_free(inode); 287 fsnotify_inode_delete(inode); 288 locks_free_lock_context(inode); 289 if (!inode->i_nlink) { 290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 291 atomic_long_dec(&inode->i_sb->s_remove_count); 292 } 293 294 #ifdef CONFIG_FS_POSIX_ACL 295 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 296 posix_acl_release(inode->i_acl); 297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 298 posix_acl_release(inode->i_default_acl); 299 #endif 300 this_cpu_dec(nr_inodes); 301 } 302 EXPORT_SYMBOL(__destroy_inode); 303 304 static void destroy_inode(struct inode *inode) 305 { 306 const struct super_operations *ops = inode->i_sb->s_op; 307 308 BUG_ON(!list_empty(&inode->i_lru)); 309 __destroy_inode(inode); 310 if (ops->destroy_inode) { 311 ops->destroy_inode(inode); 312 if (!ops->free_inode) 313 return; 314 } 315 inode->free_inode = ops->free_inode; 316 call_rcu(&inode->i_rcu, i_callback); 317 } 318 319 /** 320 * drop_nlink - directly drop an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. In cases 325 * where we are attempting to track writes to the 326 * filesystem, a decrement to zero means an imminent 327 * write when the file is truncated and actually unlinked 328 * on the filesystem. 329 */ 330 void drop_nlink(struct inode *inode) 331 { 332 WARN_ON(inode->i_nlink == 0); 333 inode->__i_nlink--; 334 if (!inode->i_nlink) 335 atomic_long_inc(&inode->i_sb->s_remove_count); 336 } 337 EXPORT_SYMBOL(drop_nlink); 338 339 /** 340 * clear_nlink - directly zero an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. See 345 * drop_nlink() for why we care about i_nlink hitting zero. 346 */ 347 void clear_nlink(struct inode *inode) 348 { 349 if (inode->i_nlink) { 350 inode->__i_nlink = 0; 351 atomic_long_inc(&inode->i_sb->s_remove_count); 352 } 353 } 354 EXPORT_SYMBOL(clear_nlink); 355 356 /** 357 * set_nlink - directly set an inode's link count 358 * @inode: inode 359 * @nlink: new nlink (should be non-zero) 360 * 361 * This is a low-level filesystem helper to replace any 362 * direct filesystem manipulation of i_nlink. 363 */ 364 void set_nlink(struct inode *inode, unsigned int nlink) 365 { 366 if (!nlink) { 367 clear_nlink(inode); 368 } else { 369 /* Yes, some filesystems do change nlink from zero to one */ 370 if (inode->i_nlink == 0) 371 atomic_long_dec(&inode->i_sb->s_remove_count); 372 373 inode->__i_nlink = nlink; 374 } 375 } 376 EXPORT_SYMBOL(set_nlink); 377 378 /** 379 * inc_nlink - directly increment an inode's link count 380 * @inode: inode 381 * 382 * This is a low-level filesystem helper to replace any 383 * direct filesystem manipulation of i_nlink. Currently, 384 * it is only here for parity with dec_nlink(). 385 */ 386 void inc_nlink(struct inode *inode) 387 { 388 if (unlikely(inode->i_nlink == 0)) { 389 WARN_ON(!(inode->i_state & I_LINKABLE)); 390 atomic_long_dec(&inode->i_sb->s_remove_count); 391 } 392 393 inode->__i_nlink++; 394 } 395 EXPORT_SYMBOL(inc_nlink); 396 397 static void __address_space_init_once(struct address_space *mapping) 398 { 399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 400 init_rwsem(&mapping->i_mmap_rwsem); 401 INIT_LIST_HEAD(&mapping->private_list); 402 spin_lock_init(&mapping->private_lock); 403 mapping->i_mmap = RB_ROOT_CACHED; 404 } 405 406 void address_space_init_once(struct address_space *mapping) 407 { 408 memset(mapping, 0, sizeof(*mapping)); 409 __address_space_init_once(mapping); 410 } 411 EXPORT_SYMBOL(address_space_init_once); 412 413 /* 414 * These are initializations that only need to be done 415 * once, because the fields are idempotent across use 416 * of the inode, so let the slab aware of that. 417 */ 418 void inode_init_once(struct inode *inode) 419 { 420 memset(inode, 0, sizeof(*inode)); 421 INIT_HLIST_NODE(&inode->i_hash); 422 INIT_LIST_HEAD(&inode->i_devices); 423 INIT_LIST_HEAD(&inode->i_io_list); 424 INIT_LIST_HEAD(&inode->i_wb_list); 425 INIT_LIST_HEAD(&inode->i_lru); 426 INIT_LIST_HEAD(&inode->i_sb_list); 427 __address_space_init_once(&inode->i_data); 428 i_size_ordered_init(inode); 429 } 430 EXPORT_SYMBOL(inode_init_once); 431 432 static void init_once(void *foo) 433 { 434 struct inode *inode = (struct inode *) foo; 435 436 inode_init_once(inode); 437 } 438 439 /* 440 * inode->i_lock must be held 441 */ 442 void __iget(struct inode *inode) 443 { 444 atomic_inc(&inode->i_count); 445 } 446 447 /* 448 * get additional reference to inode; caller must already hold one. 449 */ 450 void ihold(struct inode *inode) 451 { 452 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 453 } 454 EXPORT_SYMBOL(ihold); 455 456 static void __inode_add_lru(struct inode *inode, bool rotate) 457 { 458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 459 return; 460 if (atomic_read(&inode->i_count)) 461 return; 462 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 463 return; 464 if (!mapping_shrinkable(&inode->i_data)) 465 return; 466 467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 468 this_cpu_inc(nr_unused); 469 else if (rotate) 470 inode->i_state |= I_REFERENCED; 471 } 472 473 /* 474 * Add inode to LRU if needed (inode is unused and clean). 475 * 476 * Needs inode->i_lock held. 477 */ 478 void inode_add_lru(struct inode *inode) 479 { 480 __inode_add_lru(inode, false); 481 } 482 483 static void inode_lru_list_del(struct inode *inode) 484 { 485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 486 this_cpu_dec(nr_unused); 487 } 488 489 /** 490 * inode_sb_list_add - add inode to the superblock list of inodes 491 * @inode: inode to add 492 */ 493 void inode_sb_list_add(struct inode *inode) 494 { 495 spin_lock(&inode->i_sb->s_inode_list_lock); 496 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 497 spin_unlock(&inode->i_sb->s_inode_list_lock); 498 } 499 EXPORT_SYMBOL_GPL(inode_sb_list_add); 500 501 static inline void inode_sb_list_del(struct inode *inode) 502 { 503 if (!list_empty(&inode->i_sb_list)) { 504 spin_lock(&inode->i_sb->s_inode_list_lock); 505 list_del_init(&inode->i_sb_list); 506 spin_unlock(&inode->i_sb->s_inode_list_lock); 507 } 508 } 509 510 static unsigned long hash(struct super_block *sb, unsigned long hashval) 511 { 512 unsigned long tmp; 513 514 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 515 L1_CACHE_BYTES; 516 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 517 return tmp & i_hash_mask; 518 } 519 520 /** 521 * __insert_inode_hash - hash an inode 522 * @inode: unhashed inode 523 * @hashval: unsigned long value used to locate this object in the 524 * inode_hashtable. 525 * 526 * Add an inode to the inode hash for this superblock. 527 */ 528 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 529 { 530 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 531 532 spin_lock(&inode_hash_lock); 533 spin_lock(&inode->i_lock); 534 hlist_add_head_rcu(&inode->i_hash, b); 535 spin_unlock(&inode->i_lock); 536 spin_unlock(&inode_hash_lock); 537 } 538 EXPORT_SYMBOL(__insert_inode_hash); 539 540 /** 541 * __remove_inode_hash - remove an inode from the hash 542 * @inode: inode to unhash 543 * 544 * Remove an inode from the superblock. 545 */ 546 void __remove_inode_hash(struct inode *inode) 547 { 548 spin_lock(&inode_hash_lock); 549 spin_lock(&inode->i_lock); 550 hlist_del_init_rcu(&inode->i_hash); 551 spin_unlock(&inode->i_lock); 552 spin_unlock(&inode_hash_lock); 553 } 554 EXPORT_SYMBOL(__remove_inode_hash); 555 556 void dump_mapping(const struct address_space *mapping) 557 { 558 struct inode *host; 559 const struct address_space_operations *a_ops; 560 struct hlist_node *dentry_first; 561 struct dentry *dentry_ptr; 562 struct dentry dentry; 563 unsigned long ino; 564 565 /* 566 * If mapping is an invalid pointer, we don't want to crash 567 * accessing it, so probe everything depending on it carefully. 568 */ 569 if (get_kernel_nofault(host, &mapping->host) || 570 get_kernel_nofault(a_ops, &mapping->a_ops)) { 571 pr_warn("invalid mapping:%px\n", mapping); 572 return; 573 } 574 575 if (!host) { 576 pr_warn("aops:%ps\n", a_ops); 577 return; 578 } 579 580 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 581 get_kernel_nofault(ino, &host->i_ino)) { 582 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 583 return; 584 } 585 586 if (!dentry_first) { 587 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 588 return; 589 } 590 591 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 592 if (get_kernel_nofault(dentry, dentry_ptr)) { 593 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 594 a_ops, ino, dentry_ptr); 595 return; 596 } 597 598 /* 599 * if dentry is corrupted, the %pd handler may still crash, 600 * but it's unlikely that we reach here with a corrupt mapping 601 */ 602 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 603 } 604 605 void clear_inode(struct inode *inode) 606 { 607 /* 608 * We have to cycle the i_pages lock here because reclaim can be in the 609 * process of removing the last page (in __filemap_remove_folio()) 610 * and we must not free the mapping under it. 611 */ 612 xa_lock_irq(&inode->i_data.i_pages); 613 BUG_ON(inode->i_data.nrpages); 614 /* 615 * Almost always, mapping_empty(&inode->i_data) here; but there are 616 * two known and long-standing ways in which nodes may get left behind 617 * (when deep radix-tree node allocation failed partway; or when THP 618 * collapse_file() failed). Until those two known cases are cleaned up, 619 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 620 * nor even WARN_ON(!mapping_empty). 621 */ 622 xa_unlock_irq(&inode->i_data.i_pages); 623 BUG_ON(!list_empty(&inode->i_data.private_list)); 624 BUG_ON(!(inode->i_state & I_FREEING)); 625 BUG_ON(inode->i_state & I_CLEAR); 626 BUG_ON(!list_empty(&inode->i_wb_list)); 627 /* don't need i_lock here, no concurrent mods to i_state */ 628 inode->i_state = I_FREEING | I_CLEAR; 629 } 630 EXPORT_SYMBOL(clear_inode); 631 632 /* 633 * Free the inode passed in, removing it from the lists it is still connected 634 * to. We remove any pages still attached to the inode and wait for any IO that 635 * is still in progress before finally destroying the inode. 636 * 637 * An inode must already be marked I_FREEING so that we avoid the inode being 638 * moved back onto lists if we race with other code that manipulates the lists 639 * (e.g. writeback_single_inode). The caller is responsible for setting this. 640 * 641 * An inode must already be removed from the LRU list before being evicted from 642 * the cache. This should occur atomically with setting the I_FREEING state 643 * flag, so no inodes here should ever be on the LRU when being evicted. 644 */ 645 static void evict(struct inode *inode) 646 { 647 const struct super_operations *op = inode->i_sb->s_op; 648 649 BUG_ON(!(inode->i_state & I_FREEING)); 650 BUG_ON(!list_empty(&inode->i_lru)); 651 652 if (!list_empty(&inode->i_io_list)) 653 inode_io_list_del(inode); 654 655 inode_sb_list_del(inode); 656 657 /* 658 * Wait for flusher thread to be done with the inode so that filesystem 659 * does not start destroying it while writeback is still running. Since 660 * the inode has I_FREEING set, flusher thread won't start new work on 661 * the inode. We just have to wait for running writeback to finish. 662 */ 663 inode_wait_for_writeback(inode); 664 665 if (op->evict_inode) { 666 op->evict_inode(inode); 667 } else { 668 truncate_inode_pages_final(&inode->i_data); 669 clear_inode(inode); 670 } 671 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 672 cd_forget(inode); 673 674 remove_inode_hash(inode); 675 676 spin_lock(&inode->i_lock); 677 wake_up_bit(&inode->i_state, __I_NEW); 678 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 679 spin_unlock(&inode->i_lock); 680 681 destroy_inode(inode); 682 } 683 684 /* 685 * dispose_list - dispose of the contents of a local list 686 * @head: the head of the list to free 687 * 688 * Dispose-list gets a local list with local inodes in it, so it doesn't 689 * need to worry about list corruption and SMP locks. 690 */ 691 static void dispose_list(struct list_head *head) 692 { 693 while (!list_empty(head)) { 694 struct inode *inode; 695 696 inode = list_first_entry(head, struct inode, i_lru); 697 list_del_init(&inode->i_lru); 698 699 evict(inode); 700 cond_resched(); 701 } 702 } 703 704 /** 705 * evict_inodes - evict all evictable inodes for a superblock 706 * @sb: superblock to operate on 707 * 708 * Make sure that no inodes with zero refcount are retained. This is 709 * called by superblock shutdown after having SB_ACTIVE flag removed, 710 * so any inode reaching zero refcount during or after that call will 711 * be immediately evicted. 712 */ 713 void evict_inodes(struct super_block *sb) 714 { 715 struct inode *inode, *next; 716 LIST_HEAD(dispose); 717 718 again: 719 spin_lock(&sb->s_inode_list_lock); 720 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 721 if (atomic_read(&inode->i_count)) 722 continue; 723 724 spin_lock(&inode->i_lock); 725 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 726 spin_unlock(&inode->i_lock); 727 continue; 728 } 729 730 inode->i_state |= I_FREEING; 731 inode_lru_list_del(inode); 732 spin_unlock(&inode->i_lock); 733 list_add(&inode->i_lru, &dispose); 734 735 /* 736 * We can have a ton of inodes to evict at unmount time given 737 * enough memory, check to see if we need to go to sleep for a 738 * bit so we don't livelock. 739 */ 740 if (need_resched()) { 741 spin_unlock(&sb->s_inode_list_lock); 742 cond_resched(); 743 dispose_list(&dispose); 744 goto again; 745 } 746 } 747 spin_unlock(&sb->s_inode_list_lock); 748 749 dispose_list(&dispose); 750 } 751 EXPORT_SYMBOL_GPL(evict_inodes); 752 753 /** 754 * invalidate_inodes - attempt to free all inodes on a superblock 755 * @sb: superblock to operate on 756 * 757 * Attempts to free all inodes (including dirty inodes) for a given superblock. 758 */ 759 void invalidate_inodes(struct super_block *sb) 760 { 761 struct inode *inode, *next; 762 LIST_HEAD(dispose); 763 764 again: 765 spin_lock(&sb->s_inode_list_lock); 766 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 767 spin_lock(&inode->i_lock); 768 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 769 spin_unlock(&inode->i_lock); 770 continue; 771 } 772 if (atomic_read(&inode->i_count)) { 773 spin_unlock(&inode->i_lock); 774 continue; 775 } 776 777 inode->i_state |= I_FREEING; 778 inode_lru_list_del(inode); 779 spin_unlock(&inode->i_lock); 780 list_add(&inode->i_lru, &dispose); 781 if (need_resched()) { 782 spin_unlock(&sb->s_inode_list_lock); 783 cond_resched(); 784 dispose_list(&dispose); 785 goto again; 786 } 787 } 788 spin_unlock(&sb->s_inode_list_lock); 789 790 dispose_list(&dispose); 791 } 792 793 /* 794 * Isolate the inode from the LRU in preparation for freeing it. 795 * 796 * If the inode has the I_REFERENCED flag set, then it means that it has been 797 * used recently - the flag is set in iput_final(). When we encounter such an 798 * inode, clear the flag and move it to the back of the LRU so it gets another 799 * pass through the LRU before it gets reclaimed. This is necessary because of 800 * the fact we are doing lazy LRU updates to minimise lock contention so the 801 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 802 * with this flag set because they are the inodes that are out of order. 803 */ 804 static enum lru_status inode_lru_isolate(struct list_head *item, 805 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 806 { 807 struct list_head *freeable = arg; 808 struct inode *inode = container_of(item, struct inode, i_lru); 809 810 /* 811 * We are inverting the lru lock/inode->i_lock here, so use a 812 * trylock. If we fail to get the lock, just skip it. 813 */ 814 if (!spin_trylock(&inode->i_lock)) 815 return LRU_SKIP; 816 817 /* 818 * Inodes can get referenced, redirtied, or repopulated while 819 * they're already on the LRU, and this can make them 820 * unreclaimable for a while. Remove them lazily here; iput, 821 * sync, or the last page cache deletion will requeue them. 822 */ 823 if (atomic_read(&inode->i_count) || 824 (inode->i_state & ~I_REFERENCED) || 825 !mapping_shrinkable(&inode->i_data)) { 826 list_lru_isolate(lru, &inode->i_lru); 827 spin_unlock(&inode->i_lock); 828 this_cpu_dec(nr_unused); 829 return LRU_REMOVED; 830 } 831 832 /* Recently referenced inodes get one more pass */ 833 if (inode->i_state & I_REFERENCED) { 834 inode->i_state &= ~I_REFERENCED; 835 spin_unlock(&inode->i_lock); 836 return LRU_ROTATE; 837 } 838 839 /* 840 * On highmem systems, mapping_shrinkable() permits dropping 841 * page cache in order to free up struct inodes: lowmem might 842 * be under pressure before the cache inside the highmem zone. 843 */ 844 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 845 __iget(inode); 846 spin_unlock(&inode->i_lock); 847 spin_unlock(lru_lock); 848 if (remove_inode_buffers(inode)) { 849 unsigned long reap; 850 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 851 if (current_is_kswapd()) 852 __count_vm_events(KSWAPD_INODESTEAL, reap); 853 else 854 __count_vm_events(PGINODESTEAL, reap); 855 mm_account_reclaimed_pages(reap); 856 } 857 iput(inode); 858 spin_lock(lru_lock); 859 return LRU_RETRY; 860 } 861 862 WARN_ON(inode->i_state & I_NEW); 863 inode->i_state |= I_FREEING; 864 list_lru_isolate_move(lru, &inode->i_lru, freeable); 865 spin_unlock(&inode->i_lock); 866 867 this_cpu_dec(nr_unused); 868 return LRU_REMOVED; 869 } 870 871 /* 872 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 873 * This is called from the superblock shrinker function with a number of inodes 874 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 875 * then are freed outside inode_lock by dispose_list(). 876 */ 877 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 878 { 879 LIST_HEAD(freeable); 880 long freed; 881 882 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 883 inode_lru_isolate, &freeable); 884 dispose_list(&freeable); 885 return freed; 886 } 887 888 static void __wait_on_freeing_inode(struct inode *inode); 889 /* 890 * Called with the inode lock held. 891 */ 892 static struct inode *find_inode(struct super_block *sb, 893 struct hlist_head *head, 894 int (*test)(struct inode *, void *), 895 void *data) 896 { 897 struct inode *inode = NULL; 898 899 repeat: 900 hlist_for_each_entry(inode, head, i_hash) { 901 if (inode->i_sb != sb) 902 continue; 903 if (!test(inode, data)) 904 continue; 905 spin_lock(&inode->i_lock); 906 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 907 __wait_on_freeing_inode(inode); 908 goto repeat; 909 } 910 if (unlikely(inode->i_state & I_CREATING)) { 911 spin_unlock(&inode->i_lock); 912 return ERR_PTR(-ESTALE); 913 } 914 __iget(inode); 915 spin_unlock(&inode->i_lock); 916 return inode; 917 } 918 return NULL; 919 } 920 921 /* 922 * find_inode_fast is the fast path version of find_inode, see the comment at 923 * iget_locked for details. 924 */ 925 static struct inode *find_inode_fast(struct super_block *sb, 926 struct hlist_head *head, unsigned long ino) 927 { 928 struct inode *inode = NULL; 929 930 repeat: 931 hlist_for_each_entry(inode, head, i_hash) { 932 if (inode->i_ino != ino) 933 continue; 934 if (inode->i_sb != sb) 935 continue; 936 spin_lock(&inode->i_lock); 937 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 938 __wait_on_freeing_inode(inode); 939 goto repeat; 940 } 941 if (unlikely(inode->i_state & I_CREATING)) { 942 spin_unlock(&inode->i_lock); 943 return ERR_PTR(-ESTALE); 944 } 945 __iget(inode); 946 spin_unlock(&inode->i_lock); 947 return inode; 948 } 949 return NULL; 950 } 951 952 /* 953 * Each cpu owns a range of LAST_INO_BATCH numbers. 954 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 955 * to renew the exhausted range. 956 * 957 * This does not significantly increase overflow rate because every CPU can 958 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 959 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 960 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 961 * overflow rate by 2x, which does not seem too significant. 962 * 963 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 964 * error if st_ino won't fit in target struct field. Use 32bit counter 965 * here to attempt to avoid that. 966 */ 967 #define LAST_INO_BATCH 1024 968 static DEFINE_PER_CPU(unsigned int, last_ino); 969 970 unsigned int get_next_ino(void) 971 { 972 unsigned int *p = &get_cpu_var(last_ino); 973 unsigned int res = *p; 974 975 #ifdef CONFIG_SMP 976 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 977 static atomic_t shared_last_ino; 978 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 979 980 res = next - LAST_INO_BATCH; 981 } 982 #endif 983 984 res++; 985 /* get_next_ino should not provide a 0 inode number */ 986 if (unlikely(!res)) 987 res++; 988 *p = res; 989 put_cpu_var(last_ino); 990 return res; 991 } 992 EXPORT_SYMBOL(get_next_ino); 993 994 /** 995 * new_inode_pseudo - obtain an inode 996 * @sb: superblock 997 * 998 * Allocates a new inode for given superblock. 999 * Inode wont be chained in superblock s_inodes list 1000 * This means : 1001 * - fs can't be unmount 1002 * - quotas, fsnotify, writeback can't work 1003 */ 1004 struct inode *new_inode_pseudo(struct super_block *sb) 1005 { 1006 struct inode *inode = alloc_inode(sb); 1007 1008 if (inode) { 1009 spin_lock(&inode->i_lock); 1010 inode->i_state = 0; 1011 spin_unlock(&inode->i_lock); 1012 } 1013 return inode; 1014 } 1015 1016 /** 1017 * new_inode - obtain an inode 1018 * @sb: superblock 1019 * 1020 * Allocates a new inode for given superblock. The default gfp_mask 1021 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1022 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1023 * for the page cache are not reclaimable or migratable, 1024 * mapping_set_gfp_mask() must be called with suitable flags on the 1025 * newly created inode's mapping 1026 * 1027 */ 1028 struct inode *new_inode(struct super_block *sb) 1029 { 1030 struct inode *inode; 1031 1032 inode = new_inode_pseudo(sb); 1033 if (inode) 1034 inode_sb_list_add(inode); 1035 return inode; 1036 } 1037 EXPORT_SYMBOL(new_inode); 1038 1039 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1040 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1041 { 1042 if (S_ISDIR(inode->i_mode)) { 1043 struct file_system_type *type = inode->i_sb->s_type; 1044 1045 /* Set new key only if filesystem hasn't already changed it */ 1046 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1047 /* 1048 * ensure nobody is actually holding i_mutex 1049 */ 1050 // mutex_destroy(&inode->i_mutex); 1051 init_rwsem(&inode->i_rwsem); 1052 lockdep_set_class(&inode->i_rwsem, 1053 &type->i_mutex_dir_key); 1054 } 1055 } 1056 } 1057 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1058 #endif 1059 1060 /** 1061 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1062 * @inode: new inode to unlock 1063 * 1064 * Called when the inode is fully initialised to clear the new state of the 1065 * inode and wake up anyone waiting for the inode to finish initialisation. 1066 */ 1067 void unlock_new_inode(struct inode *inode) 1068 { 1069 lockdep_annotate_inode_mutex_key(inode); 1070 spin_lock(&inode->i_lock); 1071 WARN_ON(!(inode->i_state & I_NEW)); 1072 inode->i_state &= ~I_NEW & ~I_CREATING; 1073 smp_mb(); 1074 wake_up_bit(&inode->i_state, __I_NEW); 1075 spin_unlock(&inode->i_lock); 1076 } 1077 EXPORT_SYMBOL(unlock_new_inode); 1078 1079 void discard_new_inode(struct inode *inode) 1080 { 1081 lockdep_annotate_inode_mutex_key(inode); 1082 spin_lock(&inode->i_lock); 1083 WARN_ON(!(inode->i_state & I_NEW)); 1084 inode->i_state &= ~I_NEW; 1085 smp_mb(); 1086 wake_up_bit(&inode->i_state, __I_NEW); 1087 spin_unlock(&inode->i_lock); 1088 iput(inode); 1089 } 1090 EXPORT_SYMBOL(discard_new_inode); 1091 1092 /** 1093 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1094 * 1095 * Lock any non-NULL argument. The caller must make sure that if he is passing 1096 * in two directories, one is not ancestor of the other. Zero, one or two 1097 * objects may be locked by this function. 1098 * 1099 * @inode1: first inode to lock 1100 * @inode2: second inode to lock 1101 * @subclass1: inode lock subclass for the first lock obtained 1102 * @subclass2: inode lock subclass for the second lock obtained 1103 */ 1104 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1105 unsigned subclass1, unsigned subclass2) 1106 { 1107 if (!inode1 || !inode2) { 1108 /* 1109 * Make sure @subclass1 will be used for the acquired lock. 1110 * This is not strictly necessary (no current caller cares) but 1111 * let's keep things consistent. 1112 */ 1113 if (!inode1) 1114 swap(inode1, inode2); 1115 goto lock; 1116 } 1117 1118 /* 1119 * If one object is directory and the other is not, we must make sure 1120 * to lock directory first as the other object may be its child. 1121 */ 1122 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1123 if (inode1 > inode2) 1124 swap(inode1, inode2); 1125 } else if (!S_ISDIR(inode1->i_mode)) 1126 swap(inode1, inode2); 1127 lock: 1128 if (inode1) 1129 inode_lock_nested(inode1, subclass1); 1130 if (inode2 && inode2 != inode1) 1131 inode_lock_nested(inode2, subclass2); 1132 } 1133 1134 /** 1135 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1136 * 1137 * Lock any non-NULL argument. Passed objects must not be directories. 1138 * Zero, one or two objects may be locked by this function. 1139 * 1140 * @inode1: first inode to lock 1141 * @inode2: second inode to lock 1142 */ 1143 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1144 { 1145 if (inode1) 1146 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1147 if (inode2) 1148 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1149 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1150 } 1151 EXPORT_SYMBOL(lock_two_nondirectories); 1152 1153 /** 1154 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1155 * @inode1: first inode to unlock 1156 * @inode2: second inode to unlock 1157 */ 1158 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1159 { 1160 if (inode1) { 1161 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1162 inode_unlock(inode1); 1163 } 1164 if (inode2 && inode2 != inode1) { 1165 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1166 inode_unlock(inode2); 1167 } 1168 } 1169 EXPORT_SYMBOL(unlock_two_nondirectories); 1170 1171 /** 1172 * inode_insert5 - obtain an inode from a mounted file system 1173 * @inode: pre-allocated inode to use for insert to cache 1174 * @hashval: hash value (usually inode number) to get 1175 * @test: callback used for comparisons between inodes 1176 * @set: callback used to initialize a new struct inode 1177 * @data: opaque data pointer to pass to @test and @set 1178 * 1179 * Search for the inode specified by @hashval and @data in the inode cache, 1180 * and if present it is return it with an increased reference count. This is 1181 * a variant of iget5_locked() for callers that don't want to fail on memory 1182 * allocation of inode. 1183 * 1184 * If the inode is not in cache, insert the pre-allocated inode to cache and 1185 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1186 * to fill it in before unlocking it via unlock_new_inode(). 1187 * 1188 * Note both @test and @set are called with the inode_hash_lock held, so can't 1189 * sleep. 1190 */ 1191 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1192 int (*test)(struct inode *, void *), 1193 int (*set)(struct inode *, void *), void *data) 1194 { 1195 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1196 struct inode *old; 1197 1198 again: 1199 spin_lock(&inode_hash_lock); 1200 old = find_inode(inode->i_sb, head, test, data); 1201 if (unlikely(old)) { 1202 /* 1203 * Uhhuh, somebody else created the same inode under us. 1204 * Use the old inode instead of the preallocated one. 1205 */ 1206 spin_unlock(&inode_hash_lock); 1207 if (IS_ERR(old)) 1208 return NULL; 1209 wait_on_inode(old); 1210 if (unlikely(inode_unhashed(old))) { 1211 iput(old); 1212 goto again; 1213 } 1214 return old; 1215 } 1216 1217 if (set && unlikely(set(inode, data))) { 1218 inode = NULL; 1219 goto unlock; 1220 } 1221 1222 /* 1223 * Return the locked inode with I_NEW set, the 1224 * caller is responsible for filling in the contents 1225 */ 1226 spin_lock(&inode->i_lock); 1227 inode->i_state |= I_NEW; 1228 hlist_add_head_rcu(&inode->i_hash, head); 1229 spin_unlock(&inode->i_lock); 1230 1231 /* 1232 * Add inode to the sb list if it's not already. It has I_NEW at this 1233 * point, so it should be safe to test i_sb_list locklessly. 1234 */ 1235 if (list_empty(&inode->i_sb_list)) 1236 inode_sb_list_add(inode); 1237 unlock: 1238 spin_unlock(&inode_hash_lock); 1239 1240 return inode; 1241 } 1242 EXPORT_SYMBOL(inode_insert5); 1243 1244 /** 1245 * iget5_locked - obtain an inode from a mounted file system 1246 * @sb: super block of file system 1247 * @hashval: hash value (usually inode number) to get 1248 * @test: callback used for comparisons between inodes 1249 * @set: callback used to initialize a new struct inode 1250 * @data: opaque data pointer to pass to @test and @set 1251 * 1252 * Search for the inode specified by @hashval and @data in the inode cache, 1253 * and if present it is return it with an increased reference count. This is 1254 * a generalized version of iget_locked() for file systems where the inode 1255 * number is not sufficient for unique identification of an inode. 1256 * 1257 * If the inode is not in cache, allocate a new inode and return it locked, 1258 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1259 * before unlocking it via unlock_new_inode(). 1260 * 1261 * Note both @test and @set are called with the inode_hash_lock held, so can't 1262 * sleep. 1263 */ 1264 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1265 int (*test)(struct inode *, void *), 1266 int (*set)(struct inode *, void *), void *data) 1267 { 1268 struct inode *inode = ilookup5(sb, hashval, test, data); 1269 1270 if (!inode) { 1271 struct inode *new = alloc_inode(sb); 1272 1273 if (new) { 1274 new->i_state = 0; 1275 inode = inode_insert5(new, hashval, test, set, data); 1276 if (unlikely(inode != new)) 1277 destroy_inode(new); 1278 } 1279 } 1280 return inode; 1281 } 1282 EXPORT_SYMBOL(iget5_locked); 1283 1284 /** 1285 * iget_locked - obtain an inode from a mounted file system 1286 * @sb: super block of file system 1287 * @ino: inode number to get 1288 * 1289 * Search for the inode specified by @ino in the inode cache and if present 1290 * return it with an increased reference count. This is for file systems 1291 * where the inode number is sufficient for unique identification of an inode. 1292 * 1293 * If the inode is not in cache, allocate a new inode and return it locked, 1294 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1295 * before unlocking it via unlock_new_inode(). 1296 */ 1297 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1298 { 1299 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1300 struct inode *inode; 1301 again: 1302 spin_lock(&inode_hash_lock); 1303 inode = find_inode_fast(sb, head, ino); 1304 spin_unlock(&inode_hash_lock); 1305 if (inode) { 1306 if (IS_ERR(inode)) 1307 return NULL; 1308 wait_on_inode(inode); 1309 if (unlikely(inode_unhashed(inode))) { 1310 iput(inode); 1311 goto again; 1312 } 1313 return inode; 1314 } 1315 1316 inode = alloc_inode(sb); 1317 if (inode) { 1318 struct inode *old; 1319 1320 spin_lock(&inode_hash_lock); 1321 /* We released the lock, so.. */ 1322 old = find_inode_fast(sb, head, ino); 1323 if (!old) { 1324 inode->i_ino = ino; 1325 spin_lock(&inode->i_lock); 1326 inode->i_state = I_NEW; 1327 hlist_add_head_rcu(&inode->i_hash, head); 1328 spin_unlock(&inode->i_lock); 1329 inode_sb_list_add(inode); 1330 spin_unlock(&inode_hash_lock); 1331 1332 /* Return the locked inode with I_NEW set, the 1333 * caller is responsible for filling in the contents 1334 */ 1335 return inode; 1336 } 1337 1338 /* 1339 * Uhhuh, somebody else created the same inode under 1340 * us. Use the old inode instead of the one we just 1341 * allocated. 1342 */ 1343 spin_unlock(&inode_hash_lock); 1344 destroy_inode(inode); 1345 if (IS_ERR(old)) 1346 return NULL; 1347 inode = old; 1348 wait_on_inode(inode); 1349 if (unlikely(inode_unhashed(inode))) { 1350 iput(inode); 1351 goto again; 1352 } 1353 } 1354 return inode; 1355 } 1356 EXPORT_SYMBOL(iget_locked); 1357 1358 /* 1359 * search the inode cache for a matching inode number. 1360 * If we find one, then the inode number we are trying to 1361 * allocate is not unique and so we should not use it. 1362 * 1363 * Returns 1 if the inode number is unique, 0 if it is not. 1364 */ 1365 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1366 { 1367 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1368 struct inode *inode; 1369 1370 hlist_for_each_entry_rcu(inode, b, i_hash) { 1371 if (inode->i_ino == ino && inode->i_sb == sb) 1372 return 0; 1373 } 1374 return 1; 1375 } 1376 1377 /** 1378 * iunique - get a unique inode number 1379 * @sb: superblock 1380 * @max_reserved: highest reserved inode number 1381 * 1382 * Obtain an inode number that is unique on the system for a given 1383 * superblock. This is used by file systems that have no natural 1384 * permanent inode numbering system. An inode number is returned that 1385 * is higher than the reserved limit but unique. 1386 * 1387 * BUGS: 1388 * With a large number of inodes live on the file system this function 1389 * currently becomes quite slow. 1390 */ 1391 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1392 { 1393 /* 1394 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1395 * error if st_ino won't fit in target struct field. Use 32bit counter 1396 * here to attempt to avoid that. 1397 */ 1398 static DEFINE_SPINLOCK(iunique_lock); 1399 static unsigned int counter; 1400 ino_t res; 1401 1402 rcu_read_lock(); 1403 spin_lock(&iunique_lock); 1404 do { 1405 if (counter <= max_reserved) 1406 counter = max_reserved + 1; 1407 res = counter++; 1408 } while (!test_inode_iunique(sb, res)); 1409 spin_unlock(&iunique_lock); 1410 rcu_read_unlock(); 1411 1412 return res; 1413 } 1414 EXPORT_SYMBOL(iunique); 1415 1416 struct inode *igrab(struct inode *inode) 1417 { 1418 spin_lock(&inode->i_lock); 1419 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1420 __iget(inode); 1421 spin_unlock(&inode->i_lock); 1422 } else { 1423 spin_unlock(&inode->i_lock); 1424 /* 1425 * Handle the case where s_op->clear_inode is not been 1426 * called yet, and somebody is calling igrab 1427 * while the inode is getting freed. 1428 */ 1429 inode = NULL; 1430 } 1431 return inode; 1432 } 1433 EXPORT_SYMBOL(igrab); 1434 1435 /** 1436 * ilookup5_nowait - search for an inode in the inode cache 1437 * @sb: super block of file system to search 1438 * @hashval: hash value (usually inode number) to search for 1439 * @test: callback used for comparisons between inodes 1440 * @data: opaque data pointer to pass to @test 1441 * 1442 * Search for the inode specified by @hashval and @data in the inode cache. 1443 * If the inode is in the cache, the inode is returned with an incremented 1444 * reference count. 1445 * 1446 * Note: I_NEW is not waited upon so you have to be very careful what you do 1447 * with the returned inode. You probably should be using ilookup5() instead. 1448 * 1449 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1450 */ 1451 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1452 int (*test)(struct inode *, void *), void *data) 1453 { 1454 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1455 struct inode *inode; 1456 1457 spin_lock(&inode_hash_lock); 1458 inode = find_inode(sb, head, test, data); 1459 spin_unlock(&inode_hash_lock); 1460 1461 return IS_ERR(inode) ? NULL : inode; 1462 } 1463 EXPORT_SYMBOL(ilookup5_nowait); 1464 1465 /** 1466 * ilookup5 - search for an inode in the inode cache 1467 * @sb: super block of file system to search 1468 * @hashval: hash value (usually inode number) to search for 1469 * @test: callback used for comparisons between inodes 1470 * @data: opaque data pointer to pass to @test 1471 * 1472 * Search for the inode specified by @hashval and @data in the inode cache, 1473 * and if the inode is in the cache, return the inode with an incremented 1474 * reference count. Waits on I_NEW before returning the inode. 1475 * returned with an incremented reference count. 1476 * 1477 * This is a generalized version of ilookup() for file systems where the 1478 * inode number is not sufficient for unique identification of an inode. 1479 * 1480 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1481 */ 1482 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1483 int (*test)(struct inode *, void *), void *data) 1484 { 1485 struct inode *inode; 1486 again: 1487 inode = ilookup5_nowait(sb, hashval, test, data); 1488 if (inode) { 1489 wait_on_inode(inode); 1490 if (unlikely(inode_unhashed(inode))) { 1491 iput(inode); 1492 goto again; 1493 } 1494 } 1495 return inode; 1496 } 1497 EXPORT_SYMBOL(ilookup5); 1498 1499 /** 1500 * ilookup - search for an inode in the inode cache 1501 * @sb: super block of file system to search 1502 * @ino: inode number to search for 1503 * 1504 * Search for the inode @ino in the inode cache, and if the inode is in the 1505 * cache, the inode is returned with an incremented reference count. 1506 */ 1507 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1508 { 1509 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1510 struct inode *inode; 1511 again: 1512 spin_lock(&inode_hash_lock); 1513 inode = find_inode_fast(sb, head, ino); 1514 spin_unlock(&inode_hash_lock); 1515 1516 if (inode) { 1517 if (IS_ERR(inode)) 1518 return NULL; 1519 wait_on_inode(inode); 1520 if (unlikely(inode_unhashed(inode))) { 1521 iput(inode); 1522 goto again; 1523 } 1524 } 1525 return inode; 1526 } 1527 EXPORT_SYMBOL(ilookup); 1528 1529 /** 1530 * find_inode_nowait - find an inode in the inode cache 1531 * @sb: super block of file system to search 1532 * @hashval: hash value (usually inode number) to search for 1533 * @match: callback used for comparisons between inodes 1534 * @data: opaque data pointer to pass to @match 1535 * 1536 * Search for the inode specified by @hashval and @data in the inode 1537 * cache, where the helper function @match will return 0 if the inode 1538 * does not match, 1 if the inode does match, and -1 if the search 1539 * should be stopped. The @match function must be responsible for 1540 * taking the i_lock spin_lock and checking i_state for an inode being 1541 * freed or being initialized, and incrementing the reference count 1542 * before returning 1. It also must not sleep, since it is called with 1543 * the inode_hash_lock spinlock held. 1544 * 1545 * This is a even more generalized version of ilookup5() when the 1546 * function must never block --- find_inode() can block in 1547 * __wait_on_freeing_inode() --- or when the caller can not increment 1548 * the reference count because the resulting iput() might cause an 1549 * inode eviction. The tradeoff is that the @match funtion must be 1550 * very carefully implemented. 1551 */ 1552 struct inode *find_inode_nowait(struct super_block *sb, 1553 unsigned long hashval, 1554 int (*match)(struct inode *, unsigned long, 1555 void *), 1556 void *data) 1557 { 1558 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1559 struct inode *inode, *ret_inode = NULL; 1560 int mval; 1561 1562 spin_lock(&inode_hash_lock); 1563 hlist_for_each_entry(inode, head, i_hash) { 1564 if (inode->i_sb != sb) 1565 continue; 1566 mval = match(inode, hashval, data); 1567 if (mval == 0) 1568 continue; 1569 if (mval == 1) 1570 ret_inode = inode; 1571 goto out; 1572 } 1573 out: 1574 spin_unlock(&inode_hash_lock); 1575 return ret_inode; 1576 } 1577 EXPORT_SYMBOL(find_inode_nowait); 1578 1579 /** 1580 * find_inode_rcu - find an inode in the inode cache 1581 * @sb: Super block of file system to search 1582 * @hashval: Key to hash 1583 * @test: Function to test match on an inode 1584 * @data: Data for test function 1585 * 1586 * Search for the inode specified by @hashval and @data in the inode cache, 1587 * where the helper function @test will return 0 if the inode does not match 1588 * and 1 if it does. The @test function must be responsible for taking the 1589 * i_lock spin_lock and checking i_state for an inode being freed or being 1590 * initialized. 1591 * 1592 * If successful, this will return the inode for which the @test function 1593 * returned 1 and NULL otherwise. 1594 * 1595 * The @test function is not permitted to take a ref on any inode presented. 1596 * It is also not permitted to sleep. 1597 * 1598 * The caller must hold the RCU read lock. 1599 */ 1600 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1601 int (*test)(struct inode *, void *), void *data) 1602 { 1603 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1604 struct inode *inode; 1605 1606 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1607 "suspicious find_inode_rcu() usage"); 1608 1609 hlist_for_each_entry_rcu(inode, head, i_hash) { 1610 if (inode->i_sb == sb && 1611 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1612 test(inode, data)) 1613 return inode; 1614 } 1615 return NULL; 1616 } 1617 EXPORT_SYMBOL(find_inode_rcu); 1618 1619 /** 1620 * find_inode_by_ino_rcu - Find an inode in the inode cache 1621 * @sb: Super block of file system to search 1622 * @ino: The inode number to match 1623 * 1624 * Search for the inode specified by @hashval and @data in the inode cache, 1625 * where the helper function @test will return 0 if the inode does not match 1626 * and 1 if it does. The @test function must be responsible for taking the 1627 * i_lock spin_lock and checking i_state for an inode being freed or being 1628 * initialized. 1629 * 1630 * If successful, this will return the inode for which the @test function 1631 * returned 1 and NULL otherwise. 1632 * 1633 * The @test function is not permitted to take a ref on any inode presented. 1634 * It is also not permitted to sleep. 1635 * 1636 * The caller must hold the RCU read lock. 1637 */ 1638 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1639 unsigned long ino) 1640 { 1641 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1642 struct inode *inode; 1643 1644 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1645 "suspicious find_inode_by_ino_rcu() usage"); 1646 1647 hlist_for_each_entry_rcu(inode, head, i_hash) { 1648 if (inode->i_ino == ino && 1649 inode->i_sb == sb && 1650 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1651 return inode; 1652 } 1653 return NULL; 1654 } 1655 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1656 1657 int insert_inode_locked(struct inode *inode) 1658 { 1659 struct super_block *sb = inode->i_sb; 1660 ino_t ino = inode->i_ino; 1661 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1662 1663 while (1) { 1664 struct inode *old = NULL; 1665 spin_lock(&inode_hash_lock); 1666 hlist_for_each_entry(old, head, i_hash) { 1667 if (old->i_ino != ino) 1668 continue; 1669 if (old->i_sb != sb) 1670 continue; 1671 spin_lock(&old->i_lock); 1672 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1673 spin_unlock(&old->i_lock); 1674 continue; 1675 } 1676 break; 1677 } 1678 if (likely(!old)) { 1679 spin_lock(&inode->i_lock); 1680 inode->i_state |= I_NEW | I_CREATING; 1681 hlist_add_head_rcu(&inode->i_hash, head); 1682 spin_unlock(&inode->i_lock); 1683 spin_unlock(&inode_hash_lock); 1684 return 0; 1685 } 1686 if (unlikely(old->i_state & I_CREATING)) { 1687 spin_unlock(&old->i_lock); 1688 spin_unlock(&inode_hash_lock); 1689 return -EBUSY; 1690 } 1691 __iget(old); 1692 spin_unlock(&old->i_lock); 1693 spin_unlock(&inode_hash_lock); 1694 wait_on_inode(old); 1695 if (unlikely(!inode_unhashed(old))) { 1696 iput(old); 1697 return -EBUSY; 1698 } 1699 iput(old); 1700 } 1701 } 1702 EXPORT_SYMBOL(insert_inode_locked); 1703 1704 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1705 int (*test)(struct inode *, void *), void *data) 1706 { 1707 struct inode *old; 1708 1709 inode->i_state |= I_CREATING; 1710 old = inode_insert5(inode, hashval, test, NULL, data); 1711 1712 if (old != inode) { 1713 iput(old); 1714 return -EBUSY; 1715 } 1716 return 0; 1717 } 1718 EXPORT_SYMBOL(insert_inode_locked4); 1719 1720 1721 int generic_delete_inode(struct inode *inode) 1722 { 1723 return 1; 1724 } 1725 EXPORT_SYMBOL(generic_delete_inode); 1726 1727 /* 1728 * Called when we're dropping the last reference 1729 * to an inode. 1730 * 1731 * Call the FS "drop_inode()" function, defaulting to 1732 * the legacy UNIX filesystem behaviour. If it tells 1733 * us to evict inode, do so. Otherwise, retain inode 1734 * in cache if fs is alive, sync and evict if fs is 1735 * shutting down. 1736 */ 1737 static void iput_final(struct inode *inode) 1738 { 1739 struct super_block *sb = inode->i_sb; 1740 const struct super_operations *op = inode->i_sb->s_op; 1741 unsigned long state; 1742 int drop; 1743 1744 WARN_ON(inode->i_state & I_NEW); 1745 1746 if (op->drop_inode) 1747 drop = op->drop_inode(inode); 1748 else 1749 drop = generic_drop_inode(inode); 1750 1751 if (!drop && 1752 !(inode->i_state & I_DONTCACHE) && 1753 (sb->s_flags & SB_ACTIVE)) { 1754 __inode_add_lru(inode, true); 1755 spin_unlock(&inode->i_lock); 1756 return; 1757 } 1758 1759 state = inode->i_state; 1760 if (!drop) { 1761 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1762 spin_unlock(&inode->i_lock); 1763 1764 write_inode_now(inode, 1); 1765 1766 spin_lock(&inode->i_lock); 1767 state = inode->i_state; 1768 WARN_ON(state & I_NEW); 1769 state &= ~I_WILL_FREE; 1770 } 1771 1772 WRITE_ONCE(inode->i_state, state | I_FREEING); 1773 if (!list_empty(&inode->i_lru)) 1774 inode_lru_list_del(inode); 1775 spin_unlock(&inode->i_lock); 1776 1777 evict(inode); 1778 } 1779 1780 /** 1781 * iput - put an inode 1782 * @inode: inode to put 1783 * 1784 * Puts an inode, dropping its usage count. If the inode use count hits 1785 * zero, the inode is then freed and may also be destroyed. 1786 * 1787 * Consequently, iput() can sleep. 1788 */ 1789 void iput(struct inode *inode) 1790 { 1791 if (!inode) 1792 return; 1793 BUG_ON(inode->i_state & I_CLEAR); 1794 retry: 1795 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1796 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1797 atomic_inc(&inode->i_count); 1798 spin_unlock(&inode->i_lock); 1799 trace_writeback_lazytime_iput(inode); 1800 mark_inode_dirty_sync(inode); 1801 goto retry; 1802 } 1803 iput_final(inode); 1804 } 1805 } 1806 EXPORT_SYMBOL(iput); 1807 1808 #ifdef CONFIG_BLOCK 1809 /** 1810 * bmap - find a block number in a file 1811 * @inode: inode owning the block number being requested 1812 * @block: pointer containing the block to find 1813 * 1814 * Replaces the value in ``*block`` with the block number on the device holding 1815 * corresponding to the requested block number in the file. 1816 * That is, asked for block 4 of inode 1 the function will replace the 1817 * 4 in ``*block``, with disk block relative to the disk start that holds that 1818 * block of the file. 1819 * 1820 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1821 * hole, returns 0 and ``*block`` is also set to 0. 1822 */ 1823 int bmap(struct inode *inode, sector_t *block) 1824 { 1825 if (!inode->i_mapping->a_ops->bmap) 1826 return -EINVAL; 1827 1828 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1829 return 0; 1830 } 1831 EXPORT_SYMBOL(bmap); 1832 #endif 1833 1834 /* 1835 * With relative atime, only update atime if the previous atime is 1836 * earlier than or equal to either the ctime or mtime, 1837 * or if at least a day has passed since the last atime update. 1838 */ 1839 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1840 struct timespec64 now) 1841 { 1842 struct timespec64 atime, mtime, ctime; 1843 1844 if (!(mnt->mnt_flags & MNT_RELATIME)) 1845 return 1; 1846 /* 1847 * Is mtime younger than or equal to atime? If yes, update atime: 1848 */ 1849 atime = inode_get_atime(inode); 1850 mtime = inode_get_mtime(inode); 1851 if (timespec64_compare(&mtime, &atime) >= 0) 1852 return 1; 1853 /* 1854 * Is ctime younger than or equal to atime? If yes, update atime: 1855 */ 1856 ctime = inode_get_ctime(inode); 1857 if (timespec64_compare(&ctime, &atime) >= 0) 1858 return 1; 1859 1860 /* 1861 * Is the previous atime value older than a day? If yes, 1862 * update atime: 1863 */ 1864 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1865 return 1; 1866 /* 1867 * Good, we can skip the atime update: 1868 */ 1869 return 0; 1870 } 1871 1872 /** 1873 * inode_update_timestamps - update the timestamps on the inode 1874 * @inode: inode to be updated 1875 * @flags: S_* flags that needed to be updated 1876 * 1877 * The update_time function is called when an inode's timestamps need to be 1878 * updated for a read or write operation. This function handles updating the 1879 * actual timestamps. It's up to the caller to ensure that the inode is marked 1880 * dirty appropriately. 1881 * 1882 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1883 * attempt to update all three of them. S_ATIME updates can be handled 1884 * independently of the rest. 1885 * 1886 * Returns a set of S_* flags indicating which values changed. 1887 */ 1888 int inode_update_timestamps(struct inode *inode, int flags) 1889 { 1890 int updated = 0; 1891 struct timespec64 now; 1892 1893 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1894 struct timespec64 ctime = inode_get_ctime(inode); 1895 struct timespec64 mtime = inode_get_mtime(inode); 1896 1897 now = inode_set_ctime_current(inode); 1898 if (!timespec64_equal(&now, &ctime)) 1899 updated |= S_CTIME; 1900 if (!timespec64_equal(&now, &mtime)) { 1901 inode_set_mtime_to_ts(inode, now); 1902 updated |= S_MTIME; 1903 } 1904 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1905 updated |= S_VERSION; 1906 } else { 1907 now = current_time(inode); 1908 } 1909 1910 if (flags & S_ATIME) { 1911 struct timespec64 atime = inode_get_atime(inode); 1912 1913 if (!timespec64_equal(&now, &atime)) { 1914 inode_set_atime_to_ts(inode, now); 1915 updated |= S_ATIME; 1916 } 1917 } 1918 return updated; 1919 } 1920 EXPORT_SYMBOL(inode_update_timestamps); 1921 1922 /** 1923 * generic_update_time - update the timestamps on the inode 1924 * @inode: inode to be updated 1925 * @flags: S_* flags that needed to be updated 1926 * 1927 * The update_time function is called when an inode's timestamps need to be 1928 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1929 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1930 * updates can be handled done independently of the rest. 1931 * 1932 * Returns a S_* mask indicating which fields were updated. 1933 */ 1934 int generic_update_time(struct inode *inode, int flags) 1935 { 1936 int updated = inode_update_timestamps(inode, flags); 1937 int dirty_flags = 0; 1938 1939 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1940 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1941 if (updated & S_VERSION) 1942 dirty_flags |= I_DIRTY_SYNC; 1943 __mark_inode_dirty(inode, dirty_flags); 1944 return updated; 1945 } 1946 EXPORT_SYMBOL(generic_update_time); 1947 1948 /* 1949 * This does the actual work of updating an inodes time or version. Must have 1950 * had called mnt_want_write() before calling this. 1951 */ 1952 int inode_update_time(struct inode *inode, int flags) 1953 { 1954 if (inode->i_op->update_time) 1955 return inode->i_op->update_time(inode, flags); 1956 generic_update_time(inode, flags); 1957 return 0; 1958 } 1959 EXPORT_SYMBOL(inode_update_time); 1960 1961 /** 1962 * atime_needs_update - update the access time 1963 * @path: the &struct path to update 1964 * @inode: inode to update 1965 * 1966 * Update the accessed time on an inode and mark it for writeback. 1967 * This function automatically handles read only file systems and media, 1968 * as well as the "noatime" flag and inode specific "noatime" markers. 1969 */ 1970 bool atime_needs_update(const struct path *path, struct inode *inode) 1971 { 1972 struct vfsmount *mnt = path->mnt; 1973 struct timespec64 now, atime; 1974 1975 if (inode->i_flags & S_NOATIME) 1976 return false; 1977 1978 /* Atime updates will likely cause i_uid and i_gid to be written 1979 * back improprely if their true value is unknown to the vfs. 1980 */ 1981 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1982 return false; 1983 1984 if (IS_NOATIME(inode)) 1985 return false; 1986 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1987 return false; 1988 1989 if (mnt->mnt_flags & MNT_NOATIME) 1990 return false; 1991 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1992 return false; 1993 1994 now = current_time(inode); 1995 1996 if (!relatime_need_update(mnt, inode, now)) 1997 return false; 1998 1999 atime = inode_get_atime(inode); 2000 if (timespec64_equal(&atime, &now)) 2001 return false; 2002 2003 return true; 2004 } 2005 2006 void touch_atime(const struct path *path) 2007 { 2008 struct vfsmount *mnt = path->mnt; 2009 struct inode *inode = d_inode(path->dentry); 2010 2011 if (!atime_needs_update(path, inode)) 2012 return; 2013 2014 if (!sb_start_write_trylock(inode->i_sb)) 2015 return; 2016 2017 if (mnt_get_write_access(mnt) != 0) 2018 goto skip_update; 2019 /* 2020 * File systems can error out when updating inodes if they need to 2021 * allocate new space to modify an inode (such is the case for 2022 * Btrfs), but since we touch atime while walking down the path we 2023 * really don't care if we failed to update the atime of the file, 2024 * so just ignore the return value. 2025 * We may also fail on filesystems that have the ability to make parts 2026 * of the fs read only, e.g. subvolumes in Btrfs. 2027 */ 2028 inode_update_time(inode, S_ATIME); 2029 mnt_put_write_access(mnt); 2030 skip_update: 2031 sb_end_write(inode->i_sb); 2032 } 2033 EXPORT_SYMBOL(touch_atime); 2034 2035 /* 2036 * Return mask of changes for notify_change() that need to be done as a 2037 * response to write or truncate. Return 0 if nothing has to be changed. 2038 * Negative value on error (change should be denied). 2039 */ 2040 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2041 struct dentry *dentry) 2042 { 2043 struct inode *inode = d_inode(dentry); 2044 int mask = 0; 2045 int ret; 2046 2047 if (IS_NOSEC(inode)) 2048 return 0; 2049 2050 mask = setattr_should_drop_suidgid(idmap, inode); 2051 ret = security_inode_need_killpriv(dentry); 2052 if (ret < 0) 2053 return ret; 2054 if (ret) 2055 mask |= ATTR_KILL_PRIV; 2056 return mask; 2057 } 2058 2059 static int __remove_privs(struct mnt_idmap *idmap, 2060 struct dentry *dentry, int kill) 2061 { 2062 struct iattr newattrs; 2063 2064 newattrs.ia_valid = ATTR_FORCE | kill; 2065 /* 2066 * Note we call this on write, so notify_change will not 2067 * encounter any conflicting delegations: 2068 */ 2069 return notify_change(idmap, dentry, &newattrs, NULL); 2070 } 2071 2072 static int __file_remove_privs(struct file *file, unsigned int flags) 2073 { 2074 struct dentry *dentry = file_dentry(file); 2075 struct inode *inode = file_inode(file); 2076 int error = 0; 2077 int kill; 2078 2079 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2080 return 0; 2081 2082 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2083 if (kill < 0) 2084 return kill; 2085 2086 if (kill) { 2087 if (flags & IOCB_NOWAIT) 2088 return -EAGAIN; 2089 2090 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2091 } 2092 2093 if (!error) 2094 inode_has_no_xattr(inode); 2095 return error; 2096 } 2097 2098 /** 2099 * file_remove_privs - remove special file privileges (suid, capabilities) 2100 * @file: file to remove privileges from 2101 * 2102 * When file is modified by a write or truncation ensure that special 2103 * file privileges are removed. 2104 * 2105 * Return: 0 on success, negative errno on failure. 2106 */ 2107 int file_remove_privs(struct file *file) 2108 { 2109 return __file_remove_privs(file, 0); 2110 } 2111 EXPORT_SYMBOL(file_remove_privs); 2112 2113 static int inode_needs_update_time(struct inode *inode) 2114 { 2115 int sync_it = 0; 2116 struct timespec64 now = current_time(inode); 2117 struct timespec64 ts; 2118 2119 /* First try to exhaust all avenues to not sync */ 2120 if (IS_NOCMTIME(inode)) 2121 return 0; 2122 2123 ts = inode_get_mtime(inode); 2124 if (!timespec64_equal(&ts, &now)) 2125 sync_it = S_MTIME; 2126 2127 ts = inode_get_ctime(inode); 2128 if (!timespec64_equal(&ts, &now)) 2129 sync_it |= S_CTIME; 2130 2131 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2132 sync_it |= S_VERSION; 2133 2134 return sync_it; 2135 } 2136 2137 static int __file_update_time(struct file *file, int sync_mode) 2138 { 2139 int ret = 0; 2140 struct inode *inode = file_inode(file); 2141 2142 /* try to update time settings */ 2143 if (!mnt_get_write_access_file(file)) { 2144 ret = inode_update_time(inode, sync_mode); 2145 mnt_put_write_access_file(file); 2146 } 2147 2148 return ret; 2149 } 2150 2151 /** 2152 * file_update_time - update mtime and ctime time 2153 * @file: file accessed 2154 * 2155 * Update the mtime and ctime members of an inode and mark the inode for 2156 * writeback. Note that this function is meant exclusively for usage in 2157 * the file write path of filesystems, and filesystems may choose to 2158 * explicitly ignore updates via this function with the _NOCMTIME inode 2159 * flag, e.g. for network filesystem where these imestamps are handled 2160 * by the server. This can return an error for file systems who need to 2161 * allocate space in order to update an inode. 2162 * 2163 * Return: 0 on success, negative errno on failure. 2164 */ 2165 int file_update_time(struct file *file) 2166 { 2167 int ret; 2168 struct inode *inode = file_inode(file); 2169 2170 ret = inode_needs_update_time(inode); 2171 if (ret <= 0) 2172 return ret; 2173 2174 return __file_update_time(file, ret); 2175 } 2176 EXPORT_SYMBOL(file_update_time); 2177 2178 /** 2179 * file_modified_flags - handle mandated vfs changes when modifying a file 2180 * @file: file that was modified 2181 * @flags: kiocb flags 2182 * 2183 * When file has been modified ensure that special 2184 * file privileges are removed and time settings are updated. 2185 * 2186 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2187 * time settings will not be updated. It will return -EAGAIN. 2188 * 2189 * Context: Caller must hold the file's inode lock. 2190 * 2191 * Return: 0 on success, negative errno on failure. 2192 */ 2193 static int file_modified_flags(struct file *file, int flags) 2194 { 2195 int ret; 2196 struct inode *inode = file_inode(file); 2197 2198 /* 2199 * Clear the security bits if the process is not being run by root. 2200 * This keeps people from modifying setuid and setgid binaries. 2201 */ 2202 ret = __file_remove_privs(file, flags); 2203 if (ret) 2204 return ret; 2205 2206 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2207 return 0; 2208 2209 ret = inode_needs_update_time(inode); 2210 if (ret <= 0) 2211 return ret; 2212 if (flags & IOCB_NOWAIT) 2213 return -EAGAIN; 2214 2215 return __file_update_time(file, ret); 2216 } 2217 2218 /** 2219 * file_modified - handle mandated vfs changes when modifying a file 2220 * @file: file that was modified 2221 * 2222 * When file has been modified ensure that special 2223 * file privileges are removed and time settings are updated. 2224 * 2225 * Context: Caller must hold the file's inode lock. 2226 * 2227 * Return: 0 on success, negative errno on failure. 2228 */ 2229 int file_modified(struct file *file) 2230 { 2231 return file_modified_flags(file, 0); 2232 } 2233 EXPORT_SYMBOL(file_modified); 2234 2235 /** 2236 * kiocb_modified - handle mandated vfs changes when modifying a file 2237 * @iocb: iocb that was modified 2238 * 2239 * When file has been modified ensure that special 2240 * file privileges are removed and time settings are updated. 2241 * 2242 * Context: Caller must hold the file's inode lock. 2243 * 2244 * Return: 0 on success, negative errno on failure. 2245 */ 2246 int kiocb_modified(struct kiocb *iocb) 2247 { 2248 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2249 } 2250 EXPORT_SYMBOL_GPL(kiocb_modified); 2251 2252 int inode_needs_sync(struct inode *inode) 2253 { 2254 if (IS_SYNC(inode)) 2255 return 1; 2256 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2257 return 1; 2258 return 0; 2259 } 2260 EXPORT_SYMBOL(inode_needs_sync); 2261 2262 /* 2263 * If we try to find an inode in the inode hash while it is being 2264 * deleted, we have to wait until the filesystem completes its 2265 * deletion before reporting that it isn't found. This function waits 2266 * until the deletion _might_ have completed. Callers are responsible 2267 * to recheck inode state. 2268 * 2269 * It doesn't matter if I_NEW is not set initially, a call to 2270 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2271 * will DTRT. 2272 */ 2273 static void __wait_on_freeing_inode(struct inode *inode) 2274 { 2275 wait_queue_head_t *wq; 2276 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2277 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2278 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2279 spin_unlock(&inode->i_lock); 2280 spin_unlock(&inode_hash_lock); 2281 schedule(); 2282 finish_wait(wq, &wait.wq_entry); 2283 spin_lock(&inode_hash_lock); 2284 } 2285 2286 static __initdata unsigned long ihash_entries; 2287 static int __init set_ihash_entries(char *str) 2288 { 2289 if (!str) 2290 return 0; 2291 ihash_entries = simple_strtoul(str, &str, 0); 2292 return 1; 2293 } 2294 __setup("ihash_entries=", set_ihash_entries); 2295 2296 /* 2297 * Initialize the waitqueues and inode hash table. 2298 */ 2299 void __init inode_init_early(void) 2300 { 2301 /* If hashes are distributed across NUMA nodes, defer 2302 * hash allocation until vmalloc space is available. 2303 */ 2304 if (hashdist) 2305 return; 2306 2307 inode_hashtable = 2308 alloc_large_system_hash("Inode-cache", 2309 sizeof(struct hlist_head), 2310 ihash_entries, 2311 14, 2312 HASH_EARLY | HASH_ZERO, 2313 &i_hash_shift, 2314 &i_hash_mask, 2315 0, 2316 0); 2317 } 2318 2319 void __init inode_init(void) 2320 { 2321 /* inode slab cache */ 2322 inode_cachep = kmem_cache_create("inode_cache", 2323 sizeof(struct inode), 2324 0, 2325 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2326 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2327 init_once); 2328 2329 /* Hash may have been set up in inode_init_early */ 2330 if (!hashdist) 2331 return; 2332 2333 inode_hashtable = 2334 alloc_large_system_hash("Inode-cache", 2335 sizeof(struct hlist_head), 2336 ihash_entries, 2337 14, 2338 HASH_ZERO, 2339 &i_hash_shift, 2340 &i_hash_mask, 2341 0, 2342 0); 2343 } 2344 2345 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2346 { 2347 inode->i_mode = mode; 2348 if (S_ISCHR(mode)) { 2349 inode->i_fop = &def_chr_fops; 2350 inode->i_rdev = rdev; 2351 } else if (S_ISBLK(mode)) { 2352 if (IS_ENABLED(CONFIG_BLOCK)) 2353 inode->i_fop = &def_blk_fops; 2354 inode->i_rdev = rdev; 2355 } else if (S_ISFIFO(mode)) 2356 inode->i_fop = &pipefifo_fops; 2357 else if (S_ISSOCK(mode)) 2358 ; /* leave it no_open_fops */ 2359 else 2360 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2361 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2362 inode->i_ino); 2363 } 2364 EXPORT_SYMBOL(init_special_inode); 2365 2366 /** 2367 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2368 * @idmap: idmap of the mount the inode was created from 2369 * @inode: New inode 2370 * @dir: Directory inode 2371 * @mode: mode of the new inode 2372 * 2373 * If the inode has been created through an idmapped mount the idmap of 2374 * the vfsmount must be passed through @idmap. This function will then take 2375 * care to map the inode according to @idmap before checking permissions 2376 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2377 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2378 */ 2379 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2380 const struct inode *dir, umode_t mode) 2381 { 2382 inode_fsuid_set(inode, idmap); 2383 if (dir && dir->i_mode & S_ISGID) { 2384 inode->i_gid = dir->i_gid; 2385 2386 /* Directories are special, and always inherit S_ISGID */ 2387 if (S_ISDIR(mode)) 2388 mode |= S_ISGID; 2389 } else 2390 inode_fsgid_set(inode, idmap); 2391 inode->i_mode = mode; 2392 } 2393 EXPORT_SYMBOL(inode_init_owner); 2394 2395 /** 2396 * inode_owner_or_capable - check current task permissions to inode 2397 * @idmap: idmap of the mount the inode was found from 2398 * @inode: inode being checked 2399 * 2400 * Return true if current either has CAP_FOWNER in a namespace with the 2401 * inode owner uid mapped, or owns the file. 2402 * 2403 * If the inode has been found through an idmapped mount the idmap of 2404 * the vfsmount must be passed through @idmap. This function will then take 2405 * care to map the inode according to @idmap before checking permissions. 2406 * On non-idmapped mounts or if permission checking is to be performed on the 2407 * raw inode simply passs @nop_mnt_idmap. 2408 */ 2409 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2410 const struct inode *inode) 2411 { 2412 vfsuid_t vfsuid; 2413 struct user_namespace *ns; 2414 2415 vfsuid = i_uid_into_vfsuid(idmap, inode); 2416 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2417 return true; 2418 2419 ns = current_user_ns(); 2420 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2421 return true; 2422 return false; 2423 } 2424 EXPORT_SYMBOL(inode_owner_or_capable); 2425 2426 /* 2427 * Direct i/o helper functions 2428 */ 2429 static void __inode_dio_wait(struct inode *inode) 2430 { 2431 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2432 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2433 2434 do { 2435 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2436 if (atomic_read(&inode->i_dio_count)) 2437 schedule(); 2438 } while (atomic_read(&inode->i_dio_count)); 2439 finish_wait(wq, &q.wq_entry); 2440 } 2441 2442 /** 2443 * inode_dio_wait - wait for outstanding DIO requests to finish 2444 * @inode: inode to wait for 2445 * 2446 * Waits for all pending direct I/O requests to finish so that we can 2447 * proceed with a truncate or equivalent operation. 2448 * 2449 * Must be called under a lock that serializes taking new references 2450 * to i_dio_count, usually by inode->i_mutex. 2451 */ 2452 void inode_dio_wait(struct inode *inode) 2453 { 2454 if (atomic_read(&inode->i_dio_count)) 2455 __inode_dio_wait(inode); 2456 } 2457 EXPORT_SYMBOL(inode_dio_wait); 2458 2459 /* 2460 * inode_set_flags - atomically set some inode flags 2461 * 2462 * Note: the caller should be holding i_mutex, or else be sure that 2463 * they have exclusive access to the inode structure (i.e., while the 2464 * inode is being instantiated). The reason for the cmpxchg() loop 2465 * --- which wouldn't be necessary if all code paths which modify 2466 * i_flags actually followed this rule, is that there is at least one 2467 * code path which doesn't today so we use cmpxchg() out of an abundance 2468 * of caution. 2469 * 2470 * In the long run, i_mutex is overkill, and we should probably look 2471 * at using the i_lock spinlock to protect i_flags, and then make sure 2472 * it is so documented in include/linux/fs.h and that all code follows 2473 * the locking convention!! 2474 */ 2475 void inode_set_flags(struct inode *inode, unsigned int flags, 2476 unsigned int mask) 2477 { 2478 WARN_ON_ONCE(flags & ~mask); 2479 set_mask_bits(&inode->i_flags, mask, flags); 2480 } 2481 EXPORT_SYMBOL(inode_set_flags); 2482 2483 void inode_nohighmem(struct inode *inode) 2484 { 2485 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2486 } 2487 EXPORT_SYMBOL(inode_nohighmem); 2488 2489 /** 2490 * timestamp_truncate - Truncate timespec to a granularity 2491 * @t: Timespec 2492 * @inode: inode being updated 2493 * 2494 * Truncate a timespec to the granularity supported by the fs 2495 * containing the inode. Always rounds down. gran must 2496 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2497 */ 2498 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2499 { 2500 struct super_block *sb = inode->i_sb; 2501 unsigned int gran = sb->s_time_gran; 2502 2503 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2504 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2505 t.tv_nsec = 0; 2506 2507 /* Avoid division in the common cases 1 ns and 1 s. */ 2508 if (gran == 1) 2509 ; /* nothing */ 2510 else if (gran == NSEC_PER_SEC) 2511 t.tv_nsec = 0; 2512 else if (gran > 1 && gran < NSEC_PER_SEC) 2513 t.tv_nsec -= t.tv_nsec % gran; 2514 else 2515 WARN(1, "invalid file time granularity: %u", gran); 2516 return t; 2517 } 2518 EXPORT_SYMBOL(timestamp_truncate); 2519 2520 /** 2521 * current_time - Return FS time 2522 * @inode: inode. 2523 * 2524 * Return the current time truncated to the time granularity supported by 2525 * the fs. 2526 * 2527 * Note that inode and inode->sb cannot be NULL. 2528 * Otherwise, the function warns and returns time without truncation. 2529 */ 2530 struct timespec64 current_time(struct inode *inode) 2531 { 2532 struct timespec64 now; 2533 2534 ktime_get_coarse_real_ts64(&now); 2535 return timestamp_truncate(now, inode); 2536 } 2537 EXPORT_SYMBOL(current_time); 2538 2539 /** 2540 * inode_set_ctime_current - set the ctime to current_time 2541 * @inode: inode 2542 * 2543 * Set the inode->i_ctime to the current value for the inode. Returns 2544 * the current value that was assigned to i_ctime. 2545 */ 2546 struct timespec64 inode_set_ctime_current(struct inode *inode) 2547 { 2548 struct timespec64 now = current_time(inode); 2549 2550 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2551 return now; 2552 } 2553 EXPORT_SYMBOL(inode_set_ctime_current); 2554 2555 /** 2556 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2557 * @idmap: idmap of the mount @inode was found from 2558 * @inode: inode to check 2559 * @vfsgid: the new/current vfsgid of @inode 2560 * 2561 * Check wether @vfsgid is in the caller's group list or if the caller is 2562 * privileged with CAP_FSETID over @inode. This can be used to determine 2563 * whether the setgid bit can be kept or must be dropped. 2564 * 2565 * Return: true if the caller is sufficiently privileged, false if not. 2566 */ 2567 bool in_group_or_capable(struct mnt_idmap *idmap, 2568 const struct inode *inode, vfsgid_t vfsgid) 2569 { 2570 if (vfsgid_in_group_p(vfsgid)) 2571 return true; 2572 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2573 return true; 2574 return false; 2575 } 2576 2577 /** 2578 * mode_strip_sgid - handle the sgid bit for non-directories 2579 * @idmap: idmap of the mount the inode was created from 2580 * @dir: parent directory inode 2581 * @mode: mode of the file to be created in @dir 2582 * 2583 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2584 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2585 * either in the group of the parent directory or they have CAP_FSETID 2586 * in their user namespace and are privileged over the parent directory. 2587 * In all other cases, strip the S_ISGID bit from @mode. 2588 * 2589 * Return: the new mode to use for the file 2590 */ 2591 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2592 const struct inode *dir, umode_t mode) 2593 { 2594 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2595 return mode; 2596 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2597 return mode; 2598 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2599 return mode; 2600 return mode & ~S_ISGID; 2601 } 2602 EXPORT_SYMBOL(mode_strip_sgid); 2603