1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mount.h> 26 #include <linux/async.h> 27 #include <linux/posix_acl.h> 28 29 /* 30 * This is needed for the following functions: 31 * - inode_has_buffers 32 * - invalidate_inode_buffers 33 * - invalidate_bdev 34 * 35 * FIXME: remove all knowledge of the buffer layer from this file 36 */ 37 #include <linux/buffer_head.h> 38 39 /* 40 * New inode.c implementation. 41 * 42 * This implementation has the basic premise of trying 43 * to be extremely low-overhead and SMP-safe, yet be 44 * simple enough to be "obviously correct". 45 * 46 * Famous last words. 47 */ 48 49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 50 51 /* #define INODE_PARANOIA 1 */ 52 /* #define INODE_DEBUG 1 */ 53 54 /* 55 * Inode lookup is no longer as critical as it used to be: 56 * most of the lookups are going to be through the dcache. 57 */ 58 #define I_HASHBITS i_hash_shift 59 #define I_HASHMASK i_hash_mask 60 61 static unsigned int i_hash_mask __read_mostly; 62 static unsigned int i_hash_shift __read_mostly; 63 64 /* 65 * Each inode can be on two separate lists. One is 66 * the hash list of the inode, used for lookups. The 67 * other linked list is the "type" list: 68 * "in_use" - valid inode, i_count > 0, i_nlink > 0 69 * "dirty" - as "in_use" but also dirty 70 * "unused" - valid inode, i_count = 0 71 * 72 * A "dirty" list is maintained for each super block, 73 * allowing for low-overhead inode sync() operations. 74 */ 75 76 LIST_HEAD(inode_in_use); 77 LIST_HEAD(inode_unused); 78 static struct hlist_head *inode_hashtable __read_mostly; 79 80 /* 81 * A simple spinlock to protect the list manipulations. 82 * 83 * NOTE! You also have to own the lock if you change 84 * the i_state of an inode while it is in use.. 85 */ 86 DEFINE_SPINLOCK(inode_lock); 87 88 /* 89 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 90 * icache shrinking path, and the umount path. Without this exclusion, 91 * by the time prune_icache calls iput for the inode whose pages it has 92 * been invalidating, or by the time it calls clear_inode & destroy_inode 93 * from its final dispose_list, the struct super_block they refer to 94 * (for inode->i_sb->s_op) may already have been freed and reused. 95 * 96 * We make this an rwsem because the fastpath is icache shrinking. In 97 * some cases a filesystem may be doing a significant amount of work in 98 * its inode reclaim code, so this should improve parallelism. 99 */ 100 static DECLARE_RWSEM(iprune_sem); 101 102 /* 103 * Statistics gathering.. 104 */ 105 struct inodes_stat_t inodes_stat; 106 107 static struct kmem_cache *inode_cachep __read_mostly; 108 109 static void wake_up_inode(struct inode *inode) 110 { 111 /* 112 * Prevent speculative execution through spin_unlock(&inode_lock); 113 */ 114 smp_mb(); 115 wake_up_bit(&inode->i_state, __I_NEW); 116 } 117 118 /** 119 * inode_init_always - perform inode structure intialisation 120 * @sb: superblock inode belongs to 121 * @inode: inode to initialise 122 * 123 * These are initializations that need to be done on every inode 124 * allocation as the fields are not initialised by slab allocation. 125 */ 126 int inode_init_always(struct super_block *sb, struct inode *inode) 127 { 128 static const struct address_space_operations empty_aops; 129 static const struct inode_operations empty_iops; 130 static const struct file_operations empty_fops; 131 struct address_space *const mapping = &inode->i_data; 132 133 inode->i_sb = sb; 134 inode->i_blkbits = sb->s_blocksize_bits; 135 inode->i_flags = 0; 136 atomic_set(&inode->i_count, 1); 137 inode->i_op = &empty_iops; 138 inode->i_fop = &empty_fops; 139 inode->i_nlink = 1; 140 inode->i_uid = 0; 141 inode->i_gid = 0; 142 atomic_set(&inode->i_writecount, 0); 143 inode->i_size = 0; 144 inode->i_blocks = 0; 145 inode->i_bytes = 0; 146 inode->i_generation = 0; 147 #ifdef CONFIG_QUOTA 148 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 149 #endif 150 inode->i_pipe = NULL; 151 inode->i_bdev = NULL; 152 inode->i_cdev = NULL; 153 inode->i_rdev = 0; 154 inode->dirtied_when = 0; 155 156 if (security_inode_alloc(inode)) 157 goto out; 158 spin_lock_init(&inode->i_lock); 159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 160 161 mutex_init(&inode->i_mutex); 162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 163 164 init_rwsem(&inode->i_alloc_sem); 165 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 166 167 mapping->a_ops = &empty_aops; 168 mapping->host = inode; 169 mapping->flags = 0; 170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 171 mapping->assoc_mapping = NULL; 172 mapping->backing_dev_info = &default_backing_dev_info; 173 mapping->writeback_index = 0; 174 175 /* 176 * If the block_device provides a backing_dev_info for client 177 * inodes then use that. Otherwise the inode share the bdev's 178 * backing_dev_info. 179 */ 180 if (sb->s_bdev) { 181 struct backing_dev_info *bdi; 182 183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 184 mapping->backing_dev_info = bdi; 185 } 186 inode->i_private = NULL; 187 inode->i_mapping = mapping; 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void __destroy_inode(struct inode *inode) 226 { 227 BUG_ON(inode_has_buffers(inode)); 228 security_inode_free(inode); 229 fsnotify_inode_delete(inode); 230 #ifdef CONFIG_FS_POSIX_ACL 231 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 232 posix_acl_release(inode->i_acl); 233 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 234 posix_acl_release(inode->i_default_acl); 235 #endif 236 } 237 EXPORT_SYMBOL(__destroy_inode); 238 239 void destroy_inode(struct inode *inode) 240 { 241 __destroy_inode(inode); 242 if (inode->i_sb->s_op->destroy_inode) 243 inode->i_sb->s_op->destroy_inode(inode); 244 else 245 kmem_cache_free(inode_cachep, (inode)); 246 } 247 248 /* 249 * These are initializations that only need to be done 250 * once, because the fields are idempotent across use 251 * of the inode, so let the slab aware of that. 252 */ 253 void inode_init_once(struct inode *inode) 254 { 255 memset(inode, 0, sizeof(*inode)); 256 INIT_HLIST_NODE(&inode->i_hash); 257 INIT_LIST_HEAD(&inode->i_dentry); 258 INIT_LIST_HEAD(&inode->i_devices); 259 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 260 spin_lock_init(&inode->i_data.tree_lock); 261 spin_lock_init(&inode->i_data.i_mmap_lock); 262 INIT_LIST_HEAD(&inode->i_data.private_list); 263 spin_lock_init(&inode->i_data.private_lock); 264 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 265 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 266 i_size_ordered_init(inode); 267 #ifdef CONFIG_INOTIFY 268 INIT_LIST_HEAD(&inode->inotify_watches); 269 mutex_init(&inode->inotify_mutex); 270 #endif 271 #ifdef CONFIG_FSNOTIFY 272 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 273 #endif 274 } 275 EXPORT_SYMBOL(inode_init_once); 276 277 static void init_once(void *foo) 278 { 279 struct inode *inode = (struct inode *) foo; 280 281 inode_init_once(inode); 282 } 283 284 /* 285 * inode_lock must be held 286 */ 287 void __iget(struct inode *inode) 288 { 289 if (atomic_read(&inode->i_count)) { 290 atomic_inc(&inode->i_count); 291 return; 292 } 293 atomic_inc(&inode->i_count); 294 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 295 list_move(&inode->i_list, &inode_in_use); 296 inodes_stat.nr_unused--; 297 } 298 299 /** 300 * clear_inode - clear an inode 301 * @inode: inode to clear 302 * 303 * This is called by the filesystem to tell us 304 * that the inode is no longer useful. We just 305 * terminate it with extreme prejudice. 306 */ 307 void clear_inode(struct inode *inode) 308 { 309 might_sleep(); 310 invalidate_inode_buffers(inode); 311 312 BUG_ON(inode->i_data.nrpages); 313 BUG_ON(!(inode->i_state & I_FREEING)); 314 BUG_ON(inode->i_state & I_CLEAR); 315 inode_sync_wait(inode); 316 if (inode->i_sb->s_op->clear_inode) 317 inode->i_sb->s_op->clear_inode(inode); 318 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 319 bd_forget(inode); 320 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 321 cd_forget(inode); 322 inode->i_state = I_CLEAR; 323 } 324 EXPORT_SYMBOL(clear_inode); 325 326 /* 327 * dispose_list - dispose of the contents of a local list 328 * @head: the head of the list to free 329 * 330 * Dispose-list gets a local list with local inodes in it, so it doesn't 331 * need to worry about list corruption and SMP locks. 332 */ 333 static void dispose_list(struct list_head *head) 334 { 335 int nr_disposed = 0; 336 337 while (!list_empty(head)) { 338 struct inode *inode; 339 340 inode = list_first_entry(head, struct inode, i_list); 341 list_del(&inode->i_list); 342 343 if (inode->i_data.nrpages) 344 truncate_inode_pages(&inode->i_data, 0); 345 clear_inode(inode); 346 347 spin_lock(&inode_lock); 348 hlist_del_init(&inode->i_hash); 349 list_del_init(&inode->i_sb_list); 350 spin_unlock(&inode_lock); 351 352 wake_up_inode(inode); 353 destroy_inode(inode); 354 nr_disposed++; 355 } 356 spin_lock(&inode_lock); 357 inodes_stat.nr_inodes -= nr_disposed; 358 spin_unlock(&inode_lock); 359 } 360 361 /* 362 * Invalidate all inodes for a device. 363 */ 364 static int invalidate_list(struct list_head *head, struct list_head *dispose) 365 { 366 struct list_head *next; 367 int busy = 0, count = 0; 368 369 next = head->next; 370 for (;;) { 371 struct list_head *tmp = next; 372 struct inode *inode; 373 374 /* 375 * We can reschedule here without worrying about the list's 376 * consistency because the per-sb list of inodes must not 377 * change during umount anymore, and because iprune_sem keeps 378 * shrink_icache_memory() away. 379 */ 380 cond_resched_lock(&inode_lock); 381 382 next = next->next; 383 if (tmp == head) 384 break; 385 inode = list_entry(tmp, struct inode, i_sb_list); 386 if (inode->i_state & I_NEW) 387 continue; 388 invalidate_inode_buffers(inode); 389 if (!atomic_read(&inode->i_count)) { 390 list_move(&inode->i_list, dispose); 391 WARN_ON(inode->i_state & I_NEW); 392 inode->i_state |= I_FREEING; 393 count++; 394 continue; 395 } 396 busy = 1; 397 } 398 /* only unused inodes may be cached with i_count zero */ 399 inodes_stat.nr_unused -= count; 400 return busy; 401 } 402 403 /** 404 * invalidate_inodes - discard the inodes on a device 405 * @sb: superblock 406 * 407 * Discard all of the inodes for a given superblock. If the discard 408 * fails because there are busy inodes then a non zero value is returned. 409 * If the discard is successful all the inodes have been discarded. 410 */ 411 int invalidate_inodes(struct super_block *sb) 412 { 413 int busy; 414 LIST_HEAD(throw_away); 415 416 down_write(&iprune_sem); 417 spin_lock(&inode_lock); 418 inotify_unmount_inodes(&sb->s_inodes); 419 fsnotify_unmount_inodes(&sb->s_inodes); 420 busy = invalidate_list(&sb->s_inodes, &throw_away); 421 spin_unlock(&inode_lock); 422 423 dispose_list(&throw_away); 424 up_write(&iprune_sem); 425 426 return busy; 427 } 428 EXPORT_SYMBOL(invalidate_inodes); 429 430 static int can_unuse(struct inode *inode) 431 { 432 if (inode->i_state) 433 return 0; 434 if (inode_has_buffers(inode)) 435 return 0; 436 if (atomic_read(&inode->i_count)) 437 return 0; 438 if (inode->i_data.nrpages) 439 return 0; 440 return 1; 441 } 442 443 /* 444 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 445 * a temporary list and then are freed outside inode_lock by dispose_list(). 446 * 447 * Any inodes which are pinned purely because of attached pagecache have their 448 * pagecache removed. We expect the final iput() on that inode to add it to 449 * the front of the inode_unused list. So look for it there and if the 450 * inode is still freeable, proceed. The right inode is found 99.9% of the 451 * time in testing on a 4-way. 452 * 453 * If the inode has metadata buffers attached to mapping->private_list then 454 * try to remove them. 455 */ 456 static void prune_icache(int nr_to_scan) 457 { 458 LIST_HEAD(freeable); 459 int nr_pruned = 0; 460 int nr_scanned; 461 unsigned long reap = 0; 462 463 down_read(&iprune_sem); 464 spin_lock(&inode_lock); 465 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 466 struct inode *inode; 467 468 if (list_empty(&inode_unused)) 469 break; 470 471 inode = list_entry(inode_unused.prev, struct inode, i_list); 472 473 if (inode->i_state || atomic_read(&inode->i_count)) { 474 list_move(&inode->i_list, &inode_unused); 475 continue; 476 } 477 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 478 __iget(inode); 479 spin_unlock(&inode_lock); 480 if (remove_inode_buffers(inode)) 481 reap += invalidate_mapping_pages(&inode->i_data, 482 0, -1); 483 iput(inode); 484 spin_lock(&inode_lock); 485 486 if (inode != list_entry(inode_unused.next, 487 struct inode, i_list)) 488 continue; /* wrong inode or list_empty */ 489 if (!can_unuse(inode)) 490 continue; 491 } 492 list_move(&inode->i_list, &freeable); 493 WARN_ON(inode->i_state & I_NEW); 494 inode->i_state |= I_FREEING; 495 nr_pruned++; 496 } 497 inodes_stat.nr_unused -= nr_pruned; 498 if (current_is_kswapd()) 499 __count_vm_events(KSWAPD_INODESTEAL, reap); 500 else 501 __count_vm_events(PGINODESTEAL, reap); 502 spin_unlock(&inode_lock); 503 504 dispose_list(&freeable); 505 up_read(&iprune_sem); 506 } 507 508 /* 509 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 510 * "unused" means that no dentries are referring to the inodes: the files are 511 * not open and the dcache references to those inodes have already been 512 * reclaimed. 513 * 514 * This function is passed the number of inodes to scan, and it returns the 515 * total number of remaining possibly-reclaimable inodes. 516 */ 517 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 518 { 519 if (nr) { 520 /* 521 * Nasty deadlock avoidance. We may hold various FS locks, 522 * and we don't want to recurse into the FS that called us 523 * in clear_inode() and friends.. 524 */ 525 if (!(gfp_mask & __GFP_FS)) 526 return -1; 527 prune_icache(nr); 528 } 529 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 530 } 531 532 static struct shrinker icache_shrinker = { 533 .shrink = shrink_icache_memory, 534 .seeks = DEFAULT_SEEKS, 535 }; 536 537 static void __wait_on_freeing_inode(struct inode *inode); 538 /* 539 * Called with the inode lock held. 540 * NOTE: we are not increasing the inode-refcount, you must call __iget() 541 * by hand after calling find_inode now! This simplifies iunique and won't 542 * add any additional branch in the common code. 543 */ 544 static struct inode *find_inode(struct super_block *sb, 545 struct hlist_head *head, 546 int (*test)(struct inode *, void *), 547 void *data) 548 { 549 struct hlist_node *node; 550 struct inode *inode = NULL; 551 552 repeat: 553 hlist_for_each_entry(inode, node, head, i_hash) { 554 if (inode->i_sb != sb) 555 continue; 556 if (!test(inode, data)) 557 continue; 558 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 559 __wait_on_freeing_inode(inode); 560 goto repeat; 561 } 562 break; 563 } 564 return node ? inode : NULL; 565 } 566 567 /* 568 * find_inode_fast is the fast path version of find_inode, see the comment at 569 * iget_locked for details. 570 */ 571 static struct inode *find_inode_fast(struct super_block *sb, 572 struct hlist_head *head, unsigned long ino) 573 { 574 struct hlist_node *node; 575 struct inode *inode = NULL; 576 577 repeat: 578 hlist_for_each_entry(inode, node, head, i_hash) { 579 if (inode->i_ino != ino) 580 continue; 581 if (inode->i_sb != sb) 582 continue; 583 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 584 __wait_on_freeing_inode(inode); 585 goto repeat; 586 } 587 break; 588 } 589 return node ? inode : NULL; 590 } 591 592 static unsigned long hash(struct super_block *sb, unsigned long hashval) 593 { 594 unsigned long tmp; 595 596 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 597 L1_CACHE_BYTES; 598 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 599 return tmp & I_HASHMASK; 600 } 601 602 static inline void 603 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 604 struct inode *inode) 605 { 606 inodes_stat.nr_inodes++; 607 list_add(&inode->i_list, &inode_in_use); 608 list_add(&inode->i_sb_list, &sb->s_inodes); 609 if (head) 610 hlist_add_head(&inode->i_hash, head); 611 } 612 613 /** 614 * inode_add_to_lists - add a new inode to relevant lists 615 * @sb: superblock inode belongs to 616 * @inode: inode to mark in use 617 * 618 * When an inode is allocated it needs to be accounted for, added to the in use 619 * list, the owning superblock and the inode hash. This needs to be done under 620 * the inode_lock, so export a function to do this rather than the inode lock 621 * itself. We calculate the hash list to add to here so it is all internal 622 * which requires the caller to have already set up the inode number in the 623 * inode to add. 624 */ 625 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 626 { 627 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 628 629 spin_lock(&inode_lock); 630 __inode_add_to_lists(sb, head, inode); 631 spin_unlock(&inode_lock); 632 } 633 EXPORT_SYMBOL_GPL(inode_add_to_lists); 634 635 /** 636 * new_inode - obtain an inode 637 * @sb: superblock 638 * 639 * Allocates a new inode for given superblock. The default gfp_mask 640 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 641 * If HIGHMEM pages are unsuitable or it is known that pages allocated 642 * for the page cache are not reclaimable or migratable, 643 * mapping_set_gfp_mask() must be called with suitable flags on the 644 * newly created inode's mapping 645 * 646 */ 647 struct inode *new_inode(struct super_block *sb) 648 { 649 /* 650 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 651 * error if st_ino won't fit in target struct field. Use 32bit counter 652 * here to attempt to avoid that. 653 */ 654 static unsigned int last_ino; 655 struct inode *inode; 656 657 spin_lock_prefetch(&inode_lock); 658 659 inode = alloc_inode(sb); 660 if (inode) { 661 spin_lock(&inode_lock); 662 __inode_add_to_lists(sb, NULL, inode); 663 inode->i_ino = ++last_ino; 664 inode->i_state = 0; 665 spin_unlock(&inode_lock); 666 } 667 return inode; 668 } 669 EXPORT_SYMBOL(new_inode); 670 671 void unlock_new_inode(struct inode *inode) 672 { 673 #ifdef CONFIG_DEBUG_LOCK_ALLOC 674 if (inode->i_mode & S_IFDIR) { 675 struct file_system_type *type = inode->i_sb->s_type; 676 677 /* Set new key only if filesystem hasn't already changed it */ 678 if (!lockdep_match_class(&inode->i_mutex, 679 &type->i_mutex_key)) { 680 /* 681 * ensure nobody is actually holding i_mutex 682 */ 683 mutex_destroy(&inode->i_mutex); 684 mutex_init(&inode->i_mutex); 685 lockdep_set_class(&inode->i_mutex, 686 &type->i_mutex_dir_key); 687 } 688 } 689 #endif 690 /* 691 * This is special! We do not need the spinlock when clearing I_NEW, 692 * because we're guaranteed that nobody else tries to do anything about 693 * the state of the inode when it is locked, as we just created it (so 694 * there can be no old holders that haven't tested I_NEW). 695 * However we must emit the memory barrier so that other CPUs reliably 696 * see the clearing of I_NEW after the other inode initialisation has 697 * completed. 698 */ 699 smp_mb(); 700 WARN_ON(!(inode->i_state & I_NEW)); 701 inode->i_state &= ~I_NEW; 702 wake_up_inode(inode); 703 } 704 EXPORT_SYMBOL(unlock_new_inode); 705 706 /* 707 * This is called without the inode lock held.. Be careful. 708 * 709 * We no longer cache the sb_flags in i_flags - see fs.h 710 * -- rmk@arm.uk.linux.org 711 */ 712 static struct inode *get_new_inode(struct super_block *sb, 713 struct hlist_head *head, 714 int (*test)(struct inode *, void *), 715 int (*set)(struct inode *, void *), 716 void *data) 717 { 718 struct inode *inode; 719 720 inode = alloc_inode(sb); 721 if (inode) { 722 struct inode *old; 723 724 spin_lock(&inode_lock); 725 /* We released the lock, so.. */ 726 old = find_inode(sb, head, test, data); 727 if (!old) { 728 if (set(inode, data)) 729 goto set_failed; 730 731 __inode_add_to_lists(sb, head, inode); 732 inode->i_state = I_NEW; 733 spin_unlock(&inode_lock); 734 735 /* Return the locked inode with I_NEW set, the 736 * caller is responsible for filling in the contents 737 */ 738 return inode; 739 } 740 741 /* 742 * Uhhuh, somebody else created the same inode under 743 * us. Use the old inode instead of the one we just 744 * allocated. 745 */ 746 __iget(old); 747 spin_unlock(&inode_lock); 748 destroy_inode(inode); 749 inode = old; 750 wait_on_inode(inode); 751 } 752 return inode; 753 754 set_failed: 755 spin_unlock(&inode_lock); 756 destroy_inode(inode); 757 return NULL; 758 } 759 760 /* 761 * get_new_inode_fast is the fast path version of get_new_inode, see the 762 * comment at iget_locked for details. 763 */ 764 static struct inode *get_new_inode_fast(struct super_block *sb, 765 struct hlist_head *head, unsigned long ino) 766 { 767 struct inode *inode; 768 769 inode = alloc_inode(sb); 770 if (inode) { 771 struct inode *old; 772 773 spin_lock(&inode_lock); 774 /* We released the lock, so.. */ 775 old = find_inode_fast(sb, head, ino); 776 if (!old) { 777 inode->i_ino = ino; 778 __inode_add_to_lists(sb, head, inode); 779 inode->i_state = I_NEW; 780 spin_unlock(&inode_lock); 781 782 /* Return the locked inode with I_NEW set, the 783 * caller is responsible for filling in the contents 784 */ 785 return inode; 786 } 787 788 /* 789 * Uhhuh, somebody else created the same inode under 790 * us. Use the old inode instead of the one we just 791 * allocated. 792 */ 793 __iget(old); 794 spin_unlock(&inode_lock); 795 destroy_inode(inode); 796 inode = old; 797 wait_on_inode(inode); 798 } 799 return inode; 800 } 801 802 /** 803 * iunique - get a unique inode number 804 * @sb: superblock 805 * @max_reserved: highest reserved inode number 806 * 807 * Obtain an inode number that is unique on the system for a given 808 * superblock. This is used by file systems that have no natural 809 * permanent inode numbering system. An inode number is returned that 810 * is higher than the reserved limit but unique. 811 * 812 * BUGS: 813 * With a large number of inodes live on the file system this function 814 * currently becomes quite slow. 815 */ 816 ino_t iunique(struct super_block *sb, ino_t max_reserved) 817 { 818 /* 819 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 820 * error if st_ino won't fit in target struct field. Use 32bit counter 821 * here to attempt to avoid that. 822 */ 823 static unsigned int counter; 824 struct inode *inode; 825 struct hlist_head *head; 826 ino_t res; 827 828 spin_lock(&inode_lock); 829 do { 830 if (counter <= max_reserved) 831 counter = max_reserved + 1; 832 res = counter++; 833 head = inode_hashtable + hash(sb, res); 834 inode = find_inode_fast(sb, head, res); 835 } while (inode != NULL); 836 spin_unlock(&inode_lock); 837 838 return res; 839 } 840 EXPORT_SYMBOL(iunique); 841 842 struct inode *igrab(struct inode *inode) 843 { 844 spin_lock(&inode_lock); 845 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 846 __iget(inode); 847 else 848 /* 849 * Handle the case where s_op->clear_inode is not been 850 * called yet, and somebody is calling igrab 851 * while the inode is getting freed. 852 */ 853 inode = NULL; 854 spin_unlock(&inode_lock); 855 return inode; 856 } 857 EXPORT_SYMBOL(igrab); 858 859 /** 860 * ifind - internal function, you want ilookup5() or iget5(). 861 * @sb: super block of file system to search 862 * @head: the head of the list to search 863 * @test: callback used for comparisons between inodes 864 * @data: opaque data pointer to pass to @test 865 * @wait: if true wait for the inode to be unlocked, if false do not 866 * 867 * ifind() searches for the inode specified by @data in the inode 868 * cache. This is a generalized version of ifind_fast() for file systems where 869 * the inode number is not sufficient for unique identification of an inode. 870 * 871 * If the inode is in the cache, the inode is returned with an incremented 872 * reference count. 873 * 874 * Otherwise NULL is returned. 875 * 876 * Note, @test is called with the inode_lock held, so can't sleep. 877 */ 878 static struct inode *ifind(struct super_block *sb, 879 struct hlist_head *head, int (*test)(struct inode *, void *), 880 void *data, const int wait) 881 { 882 struct inode *inode; 883 884 spin_lock(&inode_lock); 885 inode = find_inode(sb, head, test, data); 886 if (inode) { 887 __iget(inode); 888 spin_unlock(&inode_lock); 889 if (likely(wait)) 890 wait_on_inode(inode); 891 return inode; 892 } 893 spin_unlock(&inode_lock); 894 return NULL; 895 } 896 897 /** 898 * ifind_fast - internal function, you want ilookup() or iget(). 899 * @sb: super block of file system to search 900 * @head: head of the list to search 901 * @ino: inode number to search for 902 * 903 * ifind_fast() searches for the inode @ino in the inode cache. This is for 904 * file systems where the inode number is sufficient for unique identification 905 * of an inode. 906 * 907 * If the inode is in the cache, the inode is returned with an incremented 908 * reference count. 909 * 910 * Otherwise NULL is returned. 911 */ 912 static struct inode *ifind_fast(struct super_block *sb, 913 struct hlist_head *head, unsigned long ino) 914 { 915 struct inode *inode; 916 917 spin_lock(&inode_lock); 918 inode = find_inode_fast(sb, head, ino); 919 if (inode) { 920 __iget(inode); 921 spin_unlock(&inode_lock); 922 wait_on_inode(inode); 923 return inode; 924 } 925 spin_unlock(&inode_lock); 926 return NULL; 927 } 928 929 /** 930 * ilookup5_nowait - search for an inode in the inode cache 931 * @sb: super block of file system to search 932 * @hashval: hash value (usually inode number) to search for 933 * @test: callback used for comparisons between inodes 934 * @data: opaque data pointer to pass to @test 935 * 936 * ilookup5() uses ifind() to search for the inode specified by @hashval and 937 * @data in the inode cache. This is a generalized version of ilookup() for 938 * file systems where the inode number is not sufficient for unique 939 * identification of an inode. 940 * 941 * If the inode is in the cache, the inode is returned with an incremented 942 * reference count. Note, the inode lock is not waited upon so you have to be 943 * very careful what you do with the returned inode. You probably should be 944 * using ilookup5() instead. 945 * 946 * Otherwise NULL is returned. 947 * 948 * Note, @test is called with the inode_lock held, so can't sleep. 949 */ 950 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 951 int (*test)(struct inode *, void *), void *data) 952 { 953 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 954 955 return ifind(sb, head, test, data, 0); 956 } 957 EXPORT_SYMBOL(ilookup5_nowait); 958 959 /** 960 * ilookup5 - search for an inode in the inode cache 961 * @sb: super block of file system to search 962 * @hashval: hash value (usually inode number) to search for 963 * @test: callback used for comparisons between inodes 964 * @data: opaque data pointer to pass to @test 965 * 966 * ilookup5() uses ifind() to search for the inode specified by @hashval and 967 * @data in the inode cache. This is a generalized version of ilookup() for 968 * file systems where the inode number is not sufficient for unique 969 * identification of an inode. 970 * 971 * If the inode is in the cache, the inode lock is waited upon and the inode is 972 * returned with an incremented reference count. 973 * 974 * Otherwise NULL is returned. 975 * 976 * Note, @test is called with the inode_lock held, so can't sleep. 977 */ 978 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 979 int (*test)(struct inode *, void *), void *data) 980 { 981 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 982 983 return ifind(sb, head, test, data, 1); 984 } 985 EXPORT_SYMBOL(ilookup5); 986 987 /** 988 * ilookup - search for an inode in the inode cache 989 * @sb: super block of file system to search 990 * @ino: inode number to search for 991 * 992 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 993 * This is for file systems where the inode number is sufficient for unique 994 * identification of an inode. 995 * 996 * If the inode is in the cache, the inode is returned with an incremented 997 * reference count. 998 * 999 * Otherwise NULL is returned. 1000 */ 1001 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1002 { 1003 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1004 1005 return ifind_fast(sb, head, ino); 1006 } 1007 EXPORT_SYMBOL(ilookup); 1008 1009 /** 1010 * iget5_locked - obtain an inode from a mounted file system 1011 * @sb: super block of file system 1012 * @hashval: hash value (usually inode number) to get 1013 * @test: callback used for comparisons between inodes 1014 * @set: callback used to initialize a new struct inode 1015 * @data: opaque data pointer to pass to @test and @set 1016 * 1017 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1018 * and @data in the inode cache and if present it is returned with an increased 1019 * reference count. This is a generalized version of iget_locked() for file 1020 * systems where the inode number is not sufficient for unique identification 1021 * of an inode. 1022 * 1023 * If the inode is not in cache, get_new_inode() is called to allocate a new 1024 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1025 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1026 * 1027 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1028 */ 1029 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1030 int (*test)(struct inode *, void *), 1031 int (*set)(struct inode *, void *), void *data) 1032 { 1033 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1034 struct inode *inode; 1035 1036 inode = ifind(sb, head, test, data, 1); 1037 if (inode) 1038 return inode; 1039 /* 1040 * get_new_inode() will do the right thing, re-trying the search 1041 * in case it had to block at any point. 1042 */ 1043 return get_new_inode(sb, head, test, set, data); 1044 } 1045 EXPORT_SYMBOL(iget5_locked); 1046 1047 /** 1048 * iget_locked - obtain an inode from a mounted file system 1049 * @sb: super block of file system 1050 * @ino: inode number to get 1051 * 1052 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1053 * the inode cache and if present it is returned with an increased reference 1054 * count. This is for file systems where the inode number is sufficient for 1055 * unique identification of an inode. 1056 * 1057 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1058 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1059 * The file system gets to fill it in before unlocking it via 1060 * unlock_new_inode(). 1061 */ 1062 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1063 { 1064 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1065 struct inode *inode; 1066 1067 inode = ifind_fast(sb, head, ino); 1068 if (inode) 1069 return inode; 1070 /* 1071 * get_new_inode_fast() will do the right thing, re-trying the search 1072 * in case it had to block at any point. 1073 */ 1074 return get_new_inode_fast(sb, head, ino); 1075 } 1076 EXPORT_SYMBOL(iget_locked); 1077 1078 int insert_inode_locked(struct inode *inode) 1079 { 1080 struct super_block *sb = inode->i_sb; 1081 ino_t ino = inode->i_ino; 1082 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1083 1084 inode->i_state |= I_NEW; 1085 while (1) { 1086 struct hlist_node *node; 1087 struct inode *old = NULL; 1088 spin_lock(&inode_lock); 1089 hlist_for_each_entry(old, node, head, i_hash) { 1090 if (old->i_ino != ino) 1091 continue; 1092 if (old->i_sb != sb) 1093 continue; 1094 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1095 continue; 1096 break; 1097 } 1098 if (likely(!node)) { 1099 hlist_add_head(&inode->i_hash, head); 1100 spin_unlock(&inode_lock); 1101 return 0; 1102 } 1103 __iget(old); 1104 spin_unlock(&inode_lock); 1105 wait_on_inode(old); 1106 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1107 iput(old); 1108 return -EBUSY; 1109 } 1110 iput(old); 1111 } 1112 } 1113 EXPORT_SYMBOL(insert_inode_locked); 1114 1115 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1116 int (*test)(struct inode *, void *), void *data) 1117 { 1118 struct super_block *sb = inode->i_sb; 1119 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1120 1121 inode->i_state |= I_NEW; 1122 1123 while (1) { 1124 struct hlist_node *node; 1125 struct inode *old = NULL; 1126 1127 spin_lock(&inode_lock); 1128 hlist_for_each_entry(old, node, head, i_hash) { 1129 if (old->i_sb != sb) 1130 continue; 1131 if (!test(old, data)) 1132 continue; 1133 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1134 continue; 1135 break; 1136 } 1137 if (likely(!node)) { 1138 hlist_add_head(&inode->i_hash, head); 1139 spin_unlock(&inode_lock); 1140 return 0; 1141 } 1142 __iget(old); 1143 spin_unlock(&inode_lock); 1144 wait_on_inode(old); 1145 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1146 iput(old); 1147 return -EBUSY; 1148 } 1149 iput(old); 1150 } 1151 } 1152 EXPORT_SYMBOL(insert_inode_locked4); 1153 1154 /** 1155 * __insert_inode_hash - hash an inode 1156 * @inode: unhashed inode 1157 * @hashval: unsigned long value used to locate this object in the 1158 * inode_hashtable. 1159 * 1160 * Add an inode to the inode hash for this superblock. 1161 */ 1162 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1163 { 1164 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1165 spin_lock(&inode_lock); 1166 hlist_add_head(&inode->i_hash, head); 1167 spin_unlock(&inode_lock); 1168 } 1169 EXPORT_SYMBOL(__insert_inode_hash); 1170 1171 /** 1172 * remove_inode_hash - remove an inode from the hash 1173 * @inode: inode to unhash 1174 * 1175 * Remove an inode from the superblock. 1176 */ 1177 void remove_inode_hash(struct inode *inode) 1178 { 1179 spin_lock(&inode_lock); 1180 hlist_del_init(&inode->i_hash); 1181 spin_unlock(&inode_lock); 1182 } 1183 EXPORT_SYMBOL(remove_inode_hash); 1184 1185 /* 1186 * Tell the filesystem that this inode is no longer of any interest and should 1187 * be completely destroyed. 1188 * 1189 * We leave the inode in the inode hash table until *after* the filesystem's 1190 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1191 * instigate) will always find up-to-date information either in the hash or on 1192 * disk. 1193 * 1194 * I_FREEING is set so that no-one will take a new reference to the inode while 1195 * it is being deleted. 1196 */ 1197 void generic_delete_inode(struct inode *inode) 1198 { 1199 const struct super_operations *op = inode->i_sb->s_op; 1200 1201 list_del_init(&inode->i_list); 1202 list_del_init(&inode->i_sb_list); 1203 WARN_ON(inode->i_state & I_NEW); 1204 inode->i_state |= I_FREEING; 1205 inodes_stat.nr_inodes--; 1206 spin_unlock(&inode_lock); 1207 1208 security_inode_delete(inode); 1209 1210 if (op->delete_inode) { 1211 void (*delete)(struct inode *) = op->delete_inode; 1212 /* Filesystems implementing their own 1213 * s_op->delete_inode are required to call 1214 * truncate_inode_pages and clear_inode() 1215 * internally */ 1216 delete(inode); 1217 } else { 1218 truncate_inode_pages(&inode->i_data, 0); 1219 clear_inode(inode); 1220 } 1221 spin_lock(&inode_lock); 1222 hlist_del_init(&inode->i_hash); 1223 spin_unlock(&inode_lock); 1224 wake_up_inode(inode); 1225 BUG_ON(inode->i_state != I_CLEAR); 1226 destroy_inode(inode); 1227 } 1228 EXPORT_SYMBOL(generic_delete_inode); 1229 1230 /** 1231 * generic_detach_inode - remove inode from inode lists 1232 * @inode: inode to remove 1233 * 1234 * Remove inode from inode lists, write it if it's dirty. This is just an 1235 * internal VFS helper exported for hugetlbfs. Do not use! 1236 * 1237 * Returns 1 if inode should be completely destroyed. 1238 */ 1239 int generic_detach_inode(struct inode *inode) 1240 { 1241 struct super_block *sb = inode->i_sb; 1242 1243 if (!hlist_unhashed(&inode->i_hash)) { 1244 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1245 list_move(&inode->i_list, &inode_unused); 1246 inodes_stat.nr_unused++; 1247 if (sb->s_flags & MS_ACTIVE) { 1248 spin_unlock(&inode_lock); 1249 return 0; 1250 } 1251 WARN_ON(inode->i_state & I_NEW); 1252 inode->i_state |= I_WILL_FREE; 1253 spin_unlock(&inode_lock); 1254 write_inode_now(inode, 1); 1255 spin_lock(&inode_lock); 1256 WARN_ON(inode->i_state & I_NEW); 1257 inode->i_state &= ~I_WILL_FREE; 1258 inodes_stat.nr_unused--; 1259 hlist_del_init(&inode->i_hash); 1260 } 1261 list_del_init(&inode->i_list); 1262 list_del_init(&inode->i_sb_list); 1263 WARN_ON(inode->i_state & I_NEW); 1264 inode->i_state |= I_FREEING; 1265 inodes_stat.nr_inodes--; 1266 spin_unlock(&inode_lock); 1267 return 1; 1268 } 1269 EXPORT_SYMBOL_GPL(generic_detach_inode); 1270 1271 static void generic_forget_inode(struct inode *inode) 1272 { 1273 if (!generic_detach_inode(inode)) 1274 return; 1275 if (inode->i_data.nrpages) 1276 truncate_inode_pages(&inode->i_data, 0); 1277 clear_inode(inode); 1278 wake_up_inode(inode); 1279 destroy_inode(inode); 1280 } 1281 1282 /* 1283 * Normal UNIX filesystem behaviour: delete the 1284 * inode when the usage count drops to zero, and 1285 * i_nlink is zero. 1286 */ 1287 void generic_drop_inode(struct inode *inode) 1288 { 1289 if (!inode->i_nlink) 1290 generic_delete_inode(inode); 1291 else 1292 generic_forget_inode(inode); 1293 } 1294 EXPORT_SYMBOL_GPL(generic_drop_inode); 1295 1296 /* 1297 * Called when we're dropping the last reference 1298 * to an inode. 1299 * 1300 * Call the FS "drop()" function, defaulting to 1301 * the legacy UNIX filesystem behaviour.. 1302 * 1303 * NOTE! NOTE! NOTE! We're called with the inode lock 1304 * held, and the drop function is supposed to release 1305 * the lock! 1306 */ 1307 static inline void iput_final(struct inode *inode) 1308 { 1309 const struct super_operations *op = inode->i_sb->s_op; 1310 void (*drop)(struct inode *) = generic_drop_inode; 1311 1312 if (op && op->drop_inode) 1313 drop = op->drop_inode; 1314 drop(inode); 1315 } 1316 1317 /** 1318 * iput - put an inode 1319 * @inode: inode to put 1320 * 1321 * Puts an inode, dropping its usage count. If the inode use count hits 1322 * zero, the inode is then freed and may also be destroyed. 1323 * 1324 * Consequently, iput() can sleep. 1325 */ 1326 void iput(struct inode *inode) 1327 { 1328 if (inode) { 1329 BUG_ON(inode->i_state == I_CLEAR); 1330 1331 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1332 iput_final(inode); 1333 } 1334 } 1335 EXPORT_SYMBOL(iput); 1336 1337 /** 1338 * bmap - find a block number in a file 1339 * @inode: inode of file 1340 * @block: block to find 1341 * 1342 * Returns the block number on the device holding the inode that 1343 * is the disk block number for the block of the file requested. 1344 * That is, asked for block 4 of inode 1 the function will return the 1345 * disk block relative to the disk start that holds that block of the 1346 * file. 1347 */ 1348 sector_t bmap(struct inode *inode, sector_t block) 1349 { 1350 sector_t res = 0; 1351 if (inode->i_mapping->a_ops->bmap) 1352 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1353 return res; 1354 } 1355 EXPORT_SYMBOL(bmap); 1356 1357 /* 1358 * With relative atime, only update atime if the previous atime is 1359 * earlier than either the ctime or mtime or if at least a day has 1360 * passed since the last atime update. 1361 */ 1362 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1363 struct timespec now) 1364 { 1365 1366 if (!(mnt->mnt_flags & MNT_RELATIME)) 1367 return 1; 1368 /* 1369 * Is mtime younger than atime? If yes, update atime: 1370 */ 1371 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1372 return 1; 1373 /* 1374 * Is ctime younger than atime? If yes, update atime: 1375 */ 1376 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1377 return 1; 1378 1379 /* 1380 * Is the previous atime value older than a day? If yes, 1381 * update atime: 1382 */ 1383 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1384 return 1; 1385 /* 1386 * Good, we can skip the atime update: 1387 */ 1388 return 0; 1389 } 1390 1391 /** 1392 * touch_atime - update the access time 1393 * @mnt: mount the inode is accessed on 1394 * @dentry: dentry accessed 1395 * 1396 * Update the accessed time on an inode and mark it for writeback. 1397 * This function automatically handles read only file systems and media, 1398 * as well as the "noatime" flag and inode specific "noatime" markers. 1399 */ 1400 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1401 { 1402 struct inode *inode = dentry->d_inode; 1403 struct timespec now; 1404 1405 if (inode->i_flags & S_NOATIME) 1406 return; 1407 if (IS_NOATIME(inode)) 1408 return; 1409 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1410 return; 1411 1412 if (mnt->mnt_flags & MNT_NOATIME) 1413 return; 1414 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1415 return; 1416 1417 now = current_fs_time(inode->i_sb); 1418 1419 if (!relatime_need_update(mnt, inode, now)) 1420 return; 1421 1422 if (timespec_equal(&inode->i_atime, &now)) 1423 return; 1424 1425 if (mnt_want_write(mnt)) 1426 return; 1427 1428 inode->i_atime = now; 1429 mark_inode_dirty_sync(inode); 1430 mnt_drop_write(mnt); 1431 } 1432 EXPORT_SYMBOL(touch_atime); 1433 1434 /** 1435 * file_update_time - update mtime and ctime time 1436 * @file: file accessed 1437 * 1438 * Update the mtime and ctime members of an inode and mark the inode 1439 * for writeback. Note that this function is meant exclusively for 1440 * usage in the file write path of filesystems, and filesystems may 1441 * choose to explicitly ignore update via this function with the 1442 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1443 * timestamps are handled by the server. 1444 */ 1445 1446 void file_update_time(struct file *file) 1447 { 1448 struct inode *inode = file->f_path.dentry->d_inode; 1449 struct timespec now; 1450 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1451 1452 /* First try to exhaust all avenues to not sync */ 1453 if (IS_NOCMTIME(inode)) 1454 return; 1455 1456 now = current_fs_time(inode->i_sb); 1457 if (!timespec_equal(&inode->i_mtime, &now)) 1458 sync_it = S_MTIME; 1459 1460 if (!timespec_equal(&inode->i_ctime, &now)) 1461 sync_it |= S_CTIME; 1462 1463 if (IS_I_VERSION(inode)) 1464 sync_it |= S_VERSION; 1465 1466 if (!sync_it) 1467 return; 1468 1469 /* Finally allowed to write? Takes lock. */ 1470 if (mnt_want_write_file(file)) 1471 return; 1472 1473 /* Only change inode inside the lock region */ 1474 if (sync_it & S_VERSION) 1475 inode_inc_iversion(inode); 1476 if (sync_it & S_CTIME) 1477 inode->i_ctime = now; 1478 if (sync_it & S_MTIME) 1479 inode->i_mtime = now; 1480 mark_inode_dirty_sync(inode); 1481 mnt_drop_write(file->f_path.mnt); 1482 } 1483 EXPORT_SYMBOL(file_update_time); 1484 1485 int inode_needs_sync(struct inode *inode) 1486 { 1487 if (IS_SYNC(inode)) 1488 return 1; 1489 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1490 return 1; 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(inode_needs_sync); 1494 1495 int inode_wait(void *word) 1496 { 1497 schedule(); 1498 return 0; 1499 } 1500 EXPORT_SYMBOL(inode_wait); 1501 1502 /* 1503 * If we try to find an inode in the inode hash while it is being 1504 * deleted, we have to wait until the filesystem completes its 1505 * deletion before reporting that it isn't found. This function waits 1506 * until the deletion _might_ have completed. Callers are responsible 1507 * to recheck inode state. 1508 * 1509 * It doesn't matter if I_NEW is not set initially, a call to 1510 * wake_up_inode() after removing from the hash list will DTRT. 1511 * 1512 * This is called with inode_lock held. 1513 */ 1514 static void __wait_on_freeing_inode(struct inode *inode) 1515 { 1516 wait_queue_head_t *wq; 1517 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1518 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1519 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1520 spin_unlock(&inode_lock); 1521 schedule(); 1522 finish_wait(wq, &wait.wait); 1523 spin_lock(&inode_lock); 1524 } 1525 1526 static __initdata unsigned long ihash_entries; 1527 static int __init set_ihash_entries(char *str) 1528 { 1529 if (!str) 1530 return 0; 1531 ihash_entries = simple_strtoul(str, &str, 0); 1532 return 1; 1533 } 1534 __setup("ihash_entries=", set_ihash_entries); 1535 1536 /* 1537 * Initialize the waitqueues and inode hash table. 1538 */ 1539 void __init inode_init_early(void) 1540 { 1541 int loop; 1542 1543 /* If hashes are distributed across NUMA nodes, defer 1544 * hash allocation until vmalloc space is available. 1545 */ 1546 if (hashdist) 1547 return; 1548 1549 inode_hashtable = 1550 alloc_large_system_hash("Inode-cache", 1551 sizeof(struct hlist_head), 1552 ihash_entries, 1553 14, 1554 HASH_EARLY, 1555 &i_hash_shift, 1556 &i_hash_mask, 1557 0); 1558 1559 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1560 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1561 } 1562 1563 void __init inode_init(void) 1564 { 1565 int loop; 1566 1567 /* inode slab cache */ 1568 inode_cachep = kmem_cache_create("inode_cache", 1569 sizeof(struct inode), 1570 0, 1571 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1572 SLAB_MEM_SPREAD), 1573 init_once); 1574 register_shrinker(&icache_shrinker); 1575 1576 /* Hash may have been set up in inode_init_early */ 1577 if (!hashdist) 1578 return; 1579 1580 inode_hashtable = 1581 alloc_large_system_hash("Inode-cache", 1582 sizeof(struct hlist_head), 1583 ihash_entries, 1584 14, 1585 0, 1586 &i_hash_shift, 1587 &i_hash_mask, 1588 0); 1589 1590 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1591 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1592 } 1593 1594 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1595 { 1596 inode->i_mode = mode; 1597 if (S_ISCHR(mode)) { 1598 inode->i_fop = &def_chr_fops; 1599 inode->i_rdev = rdev; 1600 } else if (S_ISBLK(mode)) { 1601 inode->i_fop = &def_blk_fops; 1602 inode->i_rdev = rdev; 1603 } else if (S_ISFIFO(mode)) 1604 inode->i_fop = &def_fifo_fops; 1605 else if (S_ISSOCK(mode)) 1606 inode->i_fop = &bad_sock_fops; 1607 else 1608 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1609 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1610 inode->i_ino); 1611 } 1612 EXPORT_SYMBOL(init_special_inode); 1613