xref: /linux/fs/inode.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 #include <linux/posix_acl.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_inode_buffers
33  *  - invalidate_bdev
34  *
35  * FIXME: remove all knowledge of the buffer layer from this file
36  */
37 #include <linux/buffer_head.h>
38 
39 /*
40  * New inode.c implementation.
41  *
42  * This implementation has the basic premise of trying
43  * to be extremely low-overhead and SMP-safe, yet be
44  * simple enough to be "obviously correct".
45  *
46  * Famous last words.
47  */
48 
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53 
54 /*
55  * Inode lookup is no longer as critical as it used to be:
56  * most of the lookups are going to be through the dcache.
57  */
58 #define I_HASHBITS	i_hash_shift
59 #define I_HASHMASK	i_hash_mask
60 
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63 
64 /*
65  * Each inode can be on two separate lists. One is
66  * the hash list of the inode, used for lookups. The
67  * other linked list is the "type" list:
68  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
69  *  "dirty"  - as "in_use" but also dirty
70  *  "unused" - valid inode, i_count = 0
71  *
72  * A "dirty" list is maintained for each super block,
73  * allowing for low-overhead inode sync() operations.
74  */
75 
76 LIST_HEAD(inode_in_use);
77 LIST_HEAD(inode_unused);
78 static struct hlist_head *inode_hashtable __read_mostly;
79 
80 /*
81  * A simple spinlock to protect the list manipulations.
82  *
83  * NOTE! You also have to own the lock if you change
84  * the i_state of an inode while it is in use..
85  */
86 DEFINE_SPINLOCK(inode_lock);
87 
88 /*
89  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
90  * icache shrinking path, and the umount path.  Without this exclusion,
91  * by the time prune_icache calls iput for the inode whose pages it has
92  * been invalidating, or by the time it calls clear_inode & destroy_inode
93  * from its final dispose_list, the struct super_block they refer to
94  * (for inode->i_sb->s_op) may already have been freed and reused.
95  *
96  * We make this an rwsem because the fastpath is icache shrinking. In
97  * some cases a filesystem may be doing a significant amount of work in
98  * its inode reclaim code, so this should improve parallelism.
99  */
100 static DECLARE_RWSEM(iprune_sem);
101 
102 /*
103  * Statistics gathering..
104  */
105 struct inodes_stat_t inodes_stat;
106 
107 static struct kmem_cache *inode_cachep __read_mostly;
108 
109 static void wake_up_inode(struct inode *inode)
110 {
111 	/*
112 	 * Prevent speculative execution through spin_unlock(&inode_lock);
113 	 */
114 	smp_mb();
115 	wake_up_bit(&inode->i_state, __I_NEW);
116 }
117 
118 /**
119  * inode_init_always - perform inode structure intialisation
120  * @sb: superblock inode belongs to
121  * @inode: inode to initialise
122  *
123  * These are initializations that need to be done on every inode
124  * allocation as the fields are not initialised by slab allocation.
125  */
126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 	static const struct address_space_operations empty_aops;
129 	static const struct inode_operations empty_iops;
130 	static const struct file_operations empty_fops;
131 	struct address_space *const mapping = &inode->i_data;
132 
133 	inode->i_sb = sb;
134 	inode->i_blkbits = sb->s_blocksize_bits;
135 	inode->i_flags = 0;
136 	atomic_set(&inode->i_count, 1);
137 	inode->i_op = &empty_iops;
138 	inode->i_fop = &empty_fops;
139 	inode->i_nlink = 1;
140 	inode->i_uid = 0;
141 	inode->i_gid = 0;
142 	atomic_set(&inode->i_writecount, 0);
143 	inode->i_size = 0;
144 	inode->i_blocks = 0;
145 	inode->i_bytes = 0;
146 	inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_rdev = 0;
154 	inode->dirtied_when = 0;
155 
156 	if (security_inode_alloc(inode))
157 		goto out;
158 	spin_lock_init(&inode->i_lock);
159 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160 
161 	mutex_init(&inode->i_mutex);
162 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163 
164 	init_rwsem(&inode->i_alloc_sem);
165 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
166 
167 	mapping->a_ops = &empty_aops;
168 	mapping->host = inode;
169 	mapping->flags = 0;
170 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 	mapping->assoc_mapping = NULL;
172 	mapping->backing_dev_info = &default_backing_dev_info;
173 	mapping->writeback_index = 0;
174 
175 	/*
176 	 * If the block_device provides a backing_dev_info for client
177 	 * inodes then use that.  Otherwise the inode share the bdev's
178 	 * backing_dev_info.
179 	 */
180 	if (sb->s_bdev) {
181 		struct backing_dev_info *bdi;
182 
183 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 		mapping->backing_dev_info = bdi;
185 	}
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 #ifdef CONFIG_FS_POSIX_ACL
189 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191 
192 #ifdef CONFIG_FSNOTIFY
193 	inode->i_fsnotify_mask = 0;
194 #endif
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void __destroy_inode(struct inode *inode)
226 {
227 	BUG_ON(inode_has_buffers(inode));
228 	security_inode_free(inode);
229 	fsnotify_inode_delete(inode);
230 #ifdef CONFIG_FS_POSIX_ACL
231 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
232 		posix_acl_release(inode->i_acl);
233 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
234 		posix_acl_release(inode->i_default_acl);
235 #endif
236 }
237 EXPORT_SYMBOL(__destroy_inode);
238 
239 void destroy_inode(struct inode *inode)
240 {
241 	__destroy_inode(inode);
242 	if (inode->i_sb->s_op->destroy_inode)
243 		inode->i_sb->s_op->destroy_inode(inode);
244 	else
245 		kmem_cache_free(inode_cachep, (inode));
246 }
247 
248 /*
249  * These are initializations that only need to be done
250  * once, because the fields are idempotent across use
251  * of the inode, so let the slab aware of that.
252  */
253 void inode_init_once(struct inode *inode)
254 {
255 	memset(inode, 0, sizeof(*inode));
256 	INIT_HLIST_NODE(&inode->i_hash);
257 	INIT_LIST_HEAD(&inode->i_dentry);
258 	INIT_LIST_HEAD(&inode->i_devices);
259 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
260 	spin_lock_init(&inode->i_data.tree_lock);
261 	spin_lock_init(&inode->i_data.i_mmap_lock);
262 	INIT_LIST_HEAD(&inode->i_data.private_list);
263 	spin_lock_init(&inode->i_data.private_lock);
264 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
265 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
266 	i_size_ordered_init(inode);
267 #ifdef CONFIG_INOTIFY
268 	INIT_LIST_HEAD(&inode->inotify_watches);
269 	mutex_init(&inode->inotify_mutex);
270 #endif
271 #ifdef CONFIG_FSNOTIFY
272 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
273 #endif
274 }
275 EXPORT_SYMBOL(inode_init_once);
276 
277 static void init_once(void *foo)
278 {
279 	struct inode *inode = (struct inode *) foo;
280 
281 	inode_init_once(inode);
282 }
283 
284 /*
285  * inode_lock must be held
286  */
287 void __iget(struct inode *inode)
288 {
289 	if (atomic_read(&inode->i_count)) {
290 		atomic_inc(&inode->i_count);
291 		return;
292 	}
293 	atomic_inc(&inode->i_count);
294 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
295 		list_move(&inode->i_list, &inode_in_use);
296 	inodes_stat.nr_unused--;
297 }
298 
299 /**
300  * clear_inode - clear an inode
301  * @inode: inode to clear
302  *
303  * This is called by the filesystem to tell us
304  * that the inode is no longer useful. We just
305  * terminate it with extreme prejudice.
306  */
307 void clear_inode(struct inode *inode)
308 {
309 	might_sleep();
310 	invalidate_inode_buffers(inode);
311 
312 	BUG_ON(inode->i_data.nrpages);
313 	BUG_ON(!(inode->i_state & I_FREEING));
314 	BUG_ON(inode->i_state & I_CLEAR);
315 	inode_sync_wait(inode);
316 	if (inode->i_sb->s_op->clear_inode)
317 		inode->i_sb->s_op->clear_inode(inode);
318 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
319 		bd_forget(inode);
320 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
321 		cd_forget(inode);
322 	inode->i_state = I_CLEAR;
323 }
324 EXPORT_SYMBOL(clear_inode);
325 
326 /*
327  * dispose_list - dispose of the contents of a local list
328  * @head: the head of the list to free
329  *
330  * Dispose-list gets a local list with local inodes in it, so it doesn't
331  * need to worry about list corruption and SMP locks.
332  */
333 static void dispose_list(struct list_head *head)
334 {
335 	int nr_disposed = 0;
336 
337 	while (!list_empty(head)) {
338 		struct inode *inode;
339 
340 		inode = list_first_entry(head, struct inode, i_list);
341 		list_del(&inode->i_list);
342 
343 		if (inode->i_data.nrpages)
344 			truncate_inode_pages(&inode->i_data, 0);
345 		clear_inode(inode);
346 
347 		spin_lock(&inode_lock);
348 		hlist_del_init(&inode->i_hash);
349 		list_del_init(&inode->i_sb_list);
350 		spin_unlock(&inode_lock);
351 
352 		wake_up_inode(inode);
353 		destroy_inode(inode);
354 		nr_disposed++;
355 	}
356 	spin_lock(&inode_lock);
357 	inodes_stat.nr_inodes -= nr_disposed;
358 	spin_unlock(&inode_lock);
359 }
360 
361 /*
362  * Invalidate all inodes for a device.
363  */
364 static int invalidate_list(struct list_head *head, struct list_head *dispose)
365 {
366 	struct list_head *next;
367 	int busy = 0, count = 0;
368 
369 	next = head->next;
370 	for (;;) {
371 		struct list_head *tmp = next;
372 		struct inode *inode;
373 
374 		/*
375 		 * We can reschedule here without worrying about the list's
376 		 * consistency because the per-sb list of inodes must not
377 		 * change during umount anymore, and because iprune_sem keeps
378 		 * shrink_icache_memory() away.
379 		 */
380 		cond_resched_lock(&inode_lock);
381 
382 		next = next->next;
383 		if (tmp == head)
384 			break;
385 		inode = list_entry(tmp, struct inode, i_sb_list);
386 		if (inode->i_state & I_NEW)
387 			continue;
388 		invalidate_inode_buffers(inode);
389 		if (!atomic_read(&inode->i_count)) {
390 			list_move(&inode->i_list, dispose);
391 			WARN_ON(inode->i_state & I_NEW);
392 			inode->i_state |= I_FREEING;
393 			count++;
394 			continue;
395 		}
396 		busy = 1;
397 	}
398 	/* only unused inodes may be cached with i_count zero */
399 	inodes_stat.nr_unused -= count;
400 	return busy;
401 }
402 
403 /**
404  *	invalidate_inodes	- discard the inodes on a device
405  *	@sb: superblock
406  *
407  *	Discard all of the inodes for a given superblock. If the discard
408  *	fails because there are busy inodes then a non zero value is returned.
409  *	If the discard is successful all the inodes have been discarded.
410  */
411 int invalidate_inodes(struct super_block *sb)
412 {
413 	int busy;
414 	LIST_HEAD(throw_away);
415 
416 	down_write(&iprune_sem);
417 	spin_lock(&inode_lock);
418 	inotify_unmount_inodes(&sb->s_inodes);
419 	fsnotify_unmount_inodes(&sb->s_inodes);
420 	busy = invalidate_list(&sb->s_inodes, &throw_away);
421 	spin_unlock(&inode_lock);
422 
423 	dispose_list(&throw_away);
424 	up_write(&iprune_sem);
425 
426 	return busy;
427 }
428 EXPORT_SYMBOL(invalidate_inodes);
429 
430 static int can_unuse(struct inode *inode)
431 {
432 	if (inode->i_state)
433 		return 0;
434 	if (inode_has_buffers(inode))
435 		return 0;
436 	if (atomic_read(&inode->i_count))
437 		return 0;
438 	if (inode->i_data.nrpages)
439 		return 0;
440 	return 1;
441 }
442 
443 /*
444  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
445  * a temporary list and then are freed outside inode_lock by dispose_list().
446  *
447  * Any inodes which are pinned purely because of attached pagecache have their
448  * pagecache removed.  We expect the final iput() on that inode to add it to
449  * the front of the inode_unused list.  So look for it there and if the
450  * inode is still freeable, proceed.  The right inode is found 99.9% of the
451  * time in testing on a 4-way.
452  *
453  * If the inode has metadata buffers attached to mapping->private_list then
454  * try to remove them.
455  */
456 static void prune_icache(int nr_to_scan)
457 {
458 	LIST_HEAD(freeable);
459 	int nr_pruned = 0;
460 	int nr_scanned;
461 	unsigned long reap = 0;
462 
463 	down_read(&iprune_sem);
464 	spin_lock(&inode_lock);
465 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
466 		struct inode *inode;
467 
468 		if (list_empty(&inode_unused))
469 			break;
470 
471 		inode = list_entry(inode_unused.prev, struct inode, i_list);
472 
473 		if (inode->i_state || atomic_read(&inode->i_count)) {
474 			list_move(&inode->i_list, &inode_unused);
475 			continue;
476 		}
477 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
478 			__iget(inode);
479 			spin_unlock(&inode_lock);
480 			if (remove_inode_buffers(inode))
481 				reap += invalidate_mapping_pages(&inode->i_data,
482 								0, -1);
483 			iput(inode);
484 			spin_lock(&inode_lock);
485 
486 			if (inode != list_entry(inode_unused.next,
487 						struct inode, i_list))
488 				continue;	/* wrong inode or list_empty */
489 			if (!can_unuse(inode))
490 				continue;
491 		}
492 		list_move(&inode->i_list, &freeable);
493 		WARN_ON(inode->i_state & I_NEW);
494 		inode->i_state |= I_FREEING;
495 		nr_pruned++;
496 	}
497 	inodes_stat.nr_unused -= nr_pruned;
498 	if (current_is_kswapd())
499 		__count_vm_events(KSWAPD_INODESTEAL, reap);
500 	else
501 		__count_vm_events(PGINODESTEAL, reap);
502 	spin_unlock(&inode_lock);
503 
504 	dispose_list(&freeable);
505 	up_read(&iprune_sem);
506 }
507 
508 /*
509  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
510  * "unused" means that no dentries are referring to the inodes: the files are
511  * not open and the dcache references to those inodes have already been
512  * reclaimed.
513  *
514  * This function is passed the number of inodes to scan, and it returns the
515  * total number of remaining possibly-reclaimable inodes.
516  */
517 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
518 {
519 	if (nr) {
520 		/*
521 		 * Nasty deadlock avoidance.  We may hold various FS locks,
522 		 * and we don't want to recurse into the FS that called us
523 		 * in clear_inode() and friends..
524 		 */
525 		if (!(gfp_mask & __GFP_FS))
526 			return -1;
527 		prune_icache(nr);
528 	}
529 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
530 }
531 
532 static struct shrinker icache_shrinker = {
533 	.shrink = shrink_icache_memory,
534 	.seeks = DEFAULT_SEEKS,
535 };
536 
537 static void __wait_on_freeing_inode(struct inode *inode);
538 /*
539  * Called with the inode lock held.
540  * NOTE: we are not increasing the inode-refcount, you must call __iget()
541  * by hand after calling find_inode now! This simplifies iunique and won't
542  * add any additional branch in the common code.
543  */
544 static struct inode *find_inode(struct super_block *sb,
545 				struct hlist_head *head,
546 				int (*test)(struct inode *, void *),
547 				void *data)
548 {
549 	struct hlist_node *node;
550 	struct inode *inode = NULL;
551 
552 repeat:
553 	hlist_for_each_entry(inode, node, head, i_hash) {
554 		if (inode->i_sb != sb)
555 			continue;
556 		if (!test(inode, data))
557 			continue;
558 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
559 			__wait_on_freeing_inode(inode);
560 			goto repeat;
561 		}
562 		break;
563 	}
564 	return node ? inode : NULL;
565 }
566 
567 /*
568  * find_inode_fast is the fast path version of find_inode, see the comment at
569  * iget_locked for details.
570  */
571 static struct inode *find_inode_fast(struct super_block *sb,
572 				struct hlist_head *head, unsigned long ino)
573 {
574 	struct hlist_node *node;
575 	struct inode *inode = NULL;
576 
577 repeat:
578 	hlist_for_each_entry(inode, node, head, i_hash) {
579 		if (inode->i_ino != ino)
580 			continue;
581 		if (inode->i_sb != sb)
582 			continue;
583 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
584 			__wait_on_freeing_inode(inode);
585 			goto repeat;
586 		}
587 		break;
588 	}
589 	return node ? inode : NULL;
590 }
591 
592 static unsigned long hash(struct super_block *sb, unsigned long hashval)
593 {
594 	unsigned long tmp;
595 
596 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
597 			L1_CACHE_BYTES;
598 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
599 	return tmp & I_HASHMASK;
600 }
601 
602 static inline void
603 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
604 			struct inode *inode)
605 {
606 	inodes_stat.nr_inodes++;
607 	list_add(&inode->i_list, &inode_in_use);
608 	list_add(&inode->i_sb_list, &sb->s_inodes);
609 	if (head)
610 		hlist_add_head(&inode->i_hash, head);
611 }
612 
613 /**
614  * inode_add_to_lists - add a new inode to relevant lists
615  * @sb: superblock inode belongs to
616  * @inode: inode to mark in use
617  *
618  * When an inode is allocated it needs to be accounted for, added to the in use
619  * list, the owning superblock and the inode hash. This needs to be done under
620  * the inode_lock, so export a function to do this rather than the inode lock
621  * itself. We calculate the hash list to add to here so it is all internal
622  * which requires the caller to have already set up the inode number in the
623  * inode to add.
624  */
625 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
626 {
627 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
628 
629 	spin_lock(&inode_lock);
630 	__inode_add_to_lists(sb, head, inode);
631 	spin_unlock(&inode_lock);
632 }
633 EXPORT_SYMBOL_GPL(inode_add_to_lists);
634 
635 /**
636  *	new_inode 	- obtain an inode
637  *	@sb: superblock
638  *
639  *	Allocates a new inode for given superblock. The default gfp_mask
640  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
641  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
642  *	for the page cache are not reclaimable or migratable,
643  *	mapping_set_gfp_mask() must be called with suitable flags on the
644  *	newly created inode's mapping
645  *
646  */
647 struct inode *new_inode(struct super_block *sb)
648 {
649 	/*
650 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
651 	 * error if st_ino won't fit in target struct field. Use 32bit counter
652 	 * here to attempt to avoid that.
653 	 */
654 	static unsigned int last_ino;
655 	struct inode *inode;
656 
657 	spin_lock_prefetch(&inode_lock);
658 
659 	inode = alloc_inode(sb);
660 	if (inode) {
661 		spin_lock(&inode_lock);
662 		__inode_add_to_lists(sb, NULL, inode);
663 		inode->i_ino = ++last_ino;
664 		inode->i_state = 0;
665 		spin_unlock(&inode_lock);
666 	}
667 	return inode;
668 }
669 EXPORT_SYMBOL(new_inode);
670 
671 void unlock_new_inode(struct inode *inode)
672 {
673 #ifdef CONFIG_DEBUG_LOCK_ALLOC
674 	if (inode->i_mode & S_IFDIR) {
675 		struct file_system_type *type = inode->i_sb->s_type;
676 
677 		/* Set new key only if filesystem hasn't already changed it */
678 		if (!lockdep_match_class(&inode->i_mutex,
679 		    &type->i_mutex_key)) {
680 			/*
681 			 * ensure nobody is actually holding i_mutex
682 			 */
683 			mutex_destroy(&inode->i_mutex);
684 			mutex_init(&inode->i_mutex);
685 			lockdep_set_class(&inode->i_mutex,
686 					  &type->i_mutex_dir_key);
687 		}
688 	}
689 #endif
690 	/*
691 	 * This is special!  We do not need the spinlock when clearing I_NEW,
692 	 * because we're guaranteed that nobody else tries to do anything about
693 	 * the state of the inode when it is locked, as we just created it (so
694 	 * there can be no old holders that haven't tested I_NEW).
695 	 * However we must emit the memory barrier so that other CPUs reliably
696 	 * see the clearing of I_NEW after the other inode initialisation has
697 	 * completed.
698 	 */
699 	smp_mb();
700 	WARN_ON(!(inode->i_state & I_NEW));
701 	inode->i_state &= ~I_NEW;
702 	wake_up_inode(inode);
703 }
704 EXPORT_SYMBOL(unlock_new_inode);
705 
706 /*
707  * This is called without the inode lock held.. Be careful.
708  *
709  * We no longer cache the sb_flags in i_flags - see fs.h
710  *	-- rmk@arm.uk.linux.org
711  */
712 static struct inode *get_new_inode(struct super_block *sb,
713 				struct hlist_head *head,
714 				int (*test)(struct inode *, void *),
715 				int (*set)(struct inode *, void *),
716 				void *data)
717 {
718 	struct inode *inode;
719 
720 	inode = alloc_inode(sb);
721 	if (inode) {
722 		struct inode *old;
723 
724 		spin_lock(&inode_lock);
725 		/* We released the lock, so.. */
726 		old = find_inode(sb, head, test, data);
727 		if (!old) {
728 			if (set(inode, data))
729 				goto set_failed;
730 
731 			__inode_add_to_lists(sb, head, inode);
732 			inode->i_state = I_NEW;
733 			spin_unlock(&inode_lock);
734 
735 			/* Return the locked inode with I_NEW set, the
736 			 * caller is responsible for filling in the contents
737 			 */
738 			return inode;
739 		}
740 
741 		/*
742 		 * Uhhuh, somebody else created the same inode under
743 		 * us. Use the old inode instead of the one we just
744 		 * allocated.
745 		 */
746 		__iget(old);
747 		spin_unlock(&inode_lock);
748 		destroy_inode(inode);
749 		inode = old;
750 		wait_on_inode(inode);
751 	}
752 	return inode;
753 
754 set_failed:
755 	spin_unlock(&inode_lock);
756 	destroy_inode(inode);
757 	return NULL;
758 }
759 
760 /*
761  * get_new_inode_fast is the fast path version of get_new_inode, see the
762  * comment at iget_locked for details.
763  */
764 static struct inode *get_new_inode_fast(struct super_block *sb,
765 				struct hlist_head *head, unsigned long ino)
766 {
767 	struct inode *inode;
768 
769 	inode = alloc_inode(sb);
770 	if (inode) {
771 		struct inode *old;
772 
773 		spin_lock(&inode_lock);
774 		/* We released the lock, so.. */
775 		old = find_inode_fast(sb, head, ino);
776 		if (!old) {
777 			inode->i_ino = ino;
778 			__inode_add_to_lists(sb, head, inode);
779 			inode->i_state = I_NEW;
780 			spin_unlock(&inode_lock);
781 
782 			/* Return the locked inode with I_NEW set, the
783 			 * caller is responsible for filling in the contents
784 			 */
785 			return inode;
786 		}
787 
788 		/*
789 		 * Uhhuh, somebody else created the same inode under
790 		 * us. Use the old inode instead of the one we just
791 		 * allocated.
792 		 */
793 		__iget(old);
794 		spin_unlock(&inode_lock);
795 		destroy_inode(inode);
796 		inode = old;
797 		wait_on_inode(inode);
798 	}
799 	return inode;
800 }
801 
802 /**
803  *	iunique - get a unique inode number
804  *	@sb: superblock
805  *	@max_reserved: highest reserved inode number
806  *
807  *	Obtain an inode number that is unique on the system for a given
808  *	superblock. This is used by file systems that have no natural
809  *	permanent inode numbering system. An inode number is returned that
810  *	is higher than the reserved limit but unique.
811  *
812  *	BUGS:
813  *	With a large number of inodes live on the file system this function
814  *	currently becomes quite slow.
815  */
816 ino_t iunique(struct super_block *sb, ino_t max_reserved)
817 {
818 	/*
819 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
820 	 * error if st_ino won't fit in target struct field. Use 32bit counter
821 	 * here to attempt to avoid that.
822 	 */
823 	static unsigned int counter;
824 	struct inode *inode;
825 	struct hlist_head *head;
826 	ino_t res;
827 
828 	spin_lock(&inode_lock);
829 	do {
830 		if (counter <= max_reserved)
831 			counter = max_reserved + 1;
832 		res = counter++;
833 		head = inode_hashtable + hash(sb, res);
834 		inode = find_inode_fast(sb, head, res);
835 	} while (inode != NULL);
836 	spin_unlock(&inode_lock);
837 
838 	return res;
839 }
840 EXPORT_SYMBOL(iunique);
841 
842 struct inode *igrab(struct inode *inode)
843 {
844 	spin_lock(&inode_lock);
845 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
846 		__iget(inode);
847 	else
848 		/*
849 		 * Handle the case where s_op->clear_inode is not been
850 		 * called yet, and somebody is calling igrab
851 		 * while the inode is getting freed.
852 		 */
853 		inode = NULL;
854 	spin_unlock(&inode_lock);
855 	return inode;
856 }
857 EXPORT_SYMBOL(igrab);
858 
859 /**
860  * ifind - internal function, you want ilookup5() or iget5().
861  * @sb:		super block of file system to search
862  * @head:       the head of the list to search
863  * @test:	callback used for comparisons between inodes
864  * @data:	opaque data pointer to pass to @test
865  * @wait:	if true wait for the inode to be unlocked, if false do not
866  *
867  * ifind() searches for the inode specified by @data in the inode
868  * cache. This is a generalized version of ifind_fast() for file systems where
869  * the inode number is not sufficient for unique identification of an inode.
870  *
871  * If the inode is in the cache, the inode is returned with an incremented
872  * reference count.
873  *
874  * Otherwise NULL is returned.
875  *
876  * Note, @test is called with the inode_lock held, so can't sleep.
877  */
878 static struct inode *ifind(struct super_block *sb,
879 		struct hlist_head *head, int (*test)(struct inode *, void *),
880 		void *data, const int wait)
881 {
882 	struct inode *inode;
883 
884 	spin_lock(&inode_lock);
885 	inode = find_inode(sb, head, test, data);
886 	if (inode) {
887 		__iget(inode);
888 		spin_unlock(&inode_lock);
889 		if (likely(wait))
890 			wait_on_inode(inode);
891 		return inode;
892 	}
893 	spin_unlock(&inode_lock);
894 	return NULL;
895 }
896 
897 /**
898  * ifind_fast - internal function, you want ilookup() or iget().
899  * @sb:		super block of file system to search
900  * @head:       head of the list to search
901  * @ino:	inode number to search for
902  *
903  * ifind_fast() searches for the inode @ino in the inode cache. This is for
904  * file systems where the inode number is sufficient for unique identification
905  * of an inode.
906  *
907  * If the inode is in the cache, the inode is returned with an incremented
908  * reference count.
909  *
910  * Otherwise NULL is returned.
911  */
912 static struct inode *ifind_fast(struct super_block *sb,
913 		struct hlist_head *head, unsigned long ino)
914 {
915 	struct inode *inode;
916 
917 	spin_lock(&inode_lock);
918 	inode = find_inode_fast(sb, head, ino);
919 	if (inode) {
920 		__iget(inode);
921 		spin_unlock(&inode_lock);
922 		wait_on_inode(inode);
923 		return inode;
924 	}
925 	spin_unlock(&inode_lock);
926 	return NULL;
927 }
928 
929 /**
930  * ilookup5_nowait - search for an inode in the inode cache
931  * @sb:		super block of file system to search
932  * @hashval:	hash value (usually inode number) to search for
933  * @test:	callback used for comparisons between inodes
934  * @data:	opaque data pointer to pass to @test
935  *
936  * ilookup5() uses ifind() to search for the inode specified by @hashval and
937  * @data in the inode cache. This is a generalized version of ilookup() for
938  * file systems where the inode number is not sufficient for unique
939  * identification of an inode.
940  *
941  * If the inode is in the cache, the inode is returned with an incremented
942  * reference count.  Note, the inode lock is not waited upon so you have to be
943  * very careful what you do with the returned inode.  You probably should be
944  * using ilookup5() instead.
945  *
946  * Otherwise NULL is returned.
947  *
948  * Note, @test is called with the inode_lock held, so can't sleep.
949  */
950 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
951 		int (*test)(struct inode *, void *), void *data)
952 {
953 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
954 
955 	return ifind(sb, head, test, data, 0);
956 }
957 EXPORT_SYMBOL(ilookup5_nowait);
958 
959 /**
960  * ilookup5 - search for an inode in the inode cache
961  * @sb:		super block of file system to search
962  * @hashval:	hash value (usually inode number) to search for
963  * @test:	callback used for comparisons between inodes
964  * @data:	opaque data pointer to pass to @test
965  *
966  * ilookup5() uses ifind() to search for the inode specified by @hashval and
967  * @data in the inode cache. This is a generalized version of ilookup() for
968  * file systems where the inode number is not sufficient for unique
969  * identification of an inode.
970  *
971  * If the inode is in the cache, the inode lock is waited upon and the inode is
972  * returned with an incremented reference count.
973  *
974  * Otherwise NULL is returned.
975  *
976  * Note, @test is called with the inode_lock held, so can't sleep.
977  */
978 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
979 		int (*test)(struct inode *, void *), void *data)
980 {
981 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
982 
983 	return ifind(sb, head, test, data, 1);
984 }
985 EXPORT_SYMBOL(ilookup5);
986 
987 /**
988  * ilookup - search for an inode in the inode cache
989  * @sb:		super block of file system to search
990  * @ino:	inode number to search for
991  *
992  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
993  * This is for file systems where the inode number is sufficient for unique
994  * identification of an inode.
995  *
996  * If the inode is in the cache, the inode is returned with an incremented
997  * reference count.
998  *
999  * Otherwise NULL is returned.
1000  */
1001 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1002 {
1003 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1004 
1005 	return ifind_fast(sb, head, ino);
1006 }
1007 EXPORT_SYMBOL(ilookup);
1008 
1009 /**
1010  * iget5_locked - obtain an inode from a mounted file system
1011  * @sb:		super block of file system
1012  * @hashval:	hash value (usually inode number) to get
1013  * @test:	callback used for comparisons between inodes
1014  * @set:	callback used to initialize a new struct inode
1015  * @data:	opaque data pointer to pass to @test and @set
1016  *
1017  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1018  * and @data in the inode cache and if present it is returned with an increased
1019  * reference count. This is a generalized version of iget_locked() for file
1020  * systems where the inode number is not sufficient for unique identification
1021  * of an inode.
1022  *
1023  * If the inode is not in cache, get_new_inode() is called to allocate a new
1024  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1025  * file system gets to fill it in before unlocking it via unlock_new_inode().
1026  *
1027  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1028  */
1029 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1030 		int (*test)(struct inode *, void *),
1031 		int (*set)(struct inode *, void *), void *data)
1032 {
1033 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1034 	struct inode *inode;
1035 
1036 	inode = ifind(sb, head, test, data, 1);
1037 	if (inode)
1038 		return inode;
1039 	/*
1040 	 * get_new_inode() will do the right thing, re-trying the search
1041 	 * in case it had to block at any point.
1042 	 */
1043 	return get_new_inode(sb, head, test, set, data);
1044 }
1045 EXPORT_SYMBOL(iget5_locked);
1046 
1047 /**
1048  * iget_locked - obtain an inode from a mounted file system
1049  * @sb:		super block of file system
1050  * @ino:	inode number to get
1051  *
1052  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1053  * the inode cache and if present it is returned with an increased reference
1054  * count. This is for file systems where the inode number is sufficient for
1055  * unique identification of an inode.
1056  *
1057  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1058  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1059  * The file system gets to fill it in before unlocking it via
1060  * unlock_new_inode().
1061  */
1062 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1063 {
1064 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1065 	struct inode *inode;
1066 
1067 	inode = ifind_fast(sb, head, ino);
1068 	if (inode)
1069 		return inode;
1070 	/*
1071 	 * get_new_inode_fast() will do the right thing, re-trying the search
1072 	 * in case it had to block at any point.
1073 	 */
1074 	return get_new_inode_fast(sb, head, ino);
1075 }
1076 EXPORT_SYMBOL(iget_locked);
1077 
1078 int insert_inode_locked(struct inode *inode)
1079 {
1080 	struct super_block *sb = inode->i_sb;
1081 	ino_t ino = inode->i_ino;
1082 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1083 
1084 	inode->i_state |= I_NEW;
1085 	while (1) {
1086 		struct hlist_node *node;
1087 		struct inode *old = NULL;
1088 		spin_lock(&inode_lock);
1089 		hlist_for_each_entry(old, node, head, i_hash) {
1090 			if (old->i_ino != ino)
1091 				continue;
1092 			if (old->i_sb != sb)
1093 				continue;
1094 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1095 				continue;
1096 			break;
1097 		}
1098 		if (likely(!node)) {
1099 			hlist_add_head(&inode->i_hash, head);
1100 			spin_unlock(&inode_lock);
1101 			return 0;
1102 		}
1103 		__iget(old);
1104 		spin_unlock(&inode_lock);
1105 		wait_on_inode(old);
1106 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1107 			iput(old);
1108 			return -EBUSY;
1109 		}
1110 		iput(old);
1111 	}
1112 }
1113 EXPORT_SYMBOL(insert_inode_locked);
1114 
1115 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1116 		int (*test)(struct inode *, void *), void *data)
1117 {
1118 	struct super_block *sb = inode->i_sb;
1119 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1120 
1121 	inode->i_state |= I_NEW;
1122 
1123 	while (1) {
1124 		struct hlist_node *node;
1125 		struct inode *old = NULL;
1126 
1127 		spin_lock(&inode_lock);
1128 		hlist_for_each_entry(old, node, head, i_hash) {
1129 			if (old->i_sb != sb)
1130 				continue;
1131 			if (!test(old, data))
1132 				continue;
1133 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1134 				continue;
1135 			break;
1136 		}
1137 		if (likely(!node)) {
1138 			hlist_add_head(&inode->i_hash, head);
1139 			spin_unlock(&inode_lock);
1140 			return 0;
1141 		}
1142 		__iget(old);
1143 		spin_unlock(&inode_lock);
1144 		wait_on_inode(old);
1145 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1146 			iput(old);
1147 			return -EBUSY;
1148 		}
1149 		iput(old);
1150 	}
1151 }
1152 EXPORT_SYMBOL(insert_inode_locked4);
1153 
1154 /**
1155  *	__insert_inode_hash - hash an inode
1156  *	@inode: unhashed inode
1157  *	@hashval: unsigned long value used to locate this object in the
1158  *		inode_hashtable.
1159  *
1160  *	Add an inode to the inode hash for this superblock.
1161  */
1162 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1163 {
1164 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1165 	spin_lock(&inode_lock);
1166 	hlist_add_head(&inode->i_hash, head);
1167 	spin_unlock(&inode_lock);
1168 }
1169 EXPORT_SYMBOL(__insert_inode_hash);
1170 
1171 /**
1172  *	remove_inode_hash - remove an inode from the hash
1173  *	@inode: inode to unhash
1174  *
1175  *	Remove an inode from the superblock.
1176  */
1177 void remove_inode_hash(struct inode *inode)
1178 {
1179 	spin_lock(&inode_lock);
1180 	hlist_del_init(&inode->i_hash);
1181 	spin_unlock(&inode_lock);
1182 }
1183 EXPORT_SYMBOL(remove_inode_hash);
1184 
1185 /*
1186  * Tell the filesystem that this inode is no longer of any interest and should
1187  * be completely destroyed.
1188  *
1189  * We leave the inode in the inode hash table until *after* the filesystem's
1190  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1191  * instigate) will always find up-to-date information either in the hash or on
1192  * disk.
1193  *
1194  * I_FREEING is set so that no-one will take a new reference to the inode while
1195  * it is being deleted.
1196  */
1197 void generic_delete_inode(struct inode *inode)
1198 {
1199 	const struct super_operations *op = inode->i_sb->s_op;
1200 
1201 	list_del_init(&inode->i_list);
1202 	list_del_init(&inode->i_sb_list);
1203 	WARN_ON(inode->i_state & I_NEW);
1204 	inode->i_state |= I_FREEING;
1205 	inodes_stat.nr_inodes--;
1206 	spin_unlock(&inode_lock);
1207 
1208 	security_inode_delete(inode);
1209 
1210 	if (op->delete_inode) {
1211 		void (*delete)(struct inode *) = op->delete_inode;
1212 		/* Filesystems implementing their own
1213 		 * s_op->delete_inode are required to call
1214 		 * truncate_inode_pages and clear_inode()
1215 		 * internally */
1216 		delete(inode);
1217 	} else {
1218 		truncate_inode_pages(&inode->i_data, 0);
1219 		clear_inode(inode);
1220 	}
1221 	spin_lock(&inode_lock);
1222 	hlist_del_init(&inode->i_hash);
1223 	spin_unlock(&inode_lock);
1224 	wake_up_inode(inode);
1225 	BUG_ON(inode->i_state != I_CLEAR);
1226 	destroy_inode(inode);
1227 }
1228 EXPORT_SYMBOL(generic_delete_inode);
1229 
1230 /**
1231  *	generic_detach_inode - remove inode from inode lists
1232  *	@inode: inode to remove
1233  *
1234  *	Remove inode from inode lists, write it if it's dirty. This is just an
1235  *	internal VFS helper exported for hugetlbfs. Do not use!
1236  *
1237  *	Returns 1 if inode should be completely destroyed.
1238  */
1239 int generic_detach_inode(struct inode *inode)
1240 {
1241 	struct super_block *sb = inode->i_sb;
1242 
1243 	if (!hlist_unhashed(&inode->i_hash)) {
1244 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1245 			list_move(&inode->i_list, &inode_unused);
1246 		inodes_stat.nr_unused++;
1247 		if (sb->s_flags & MS_ACTIVE) {
1248 			spin_unlock(&inode_lock);
1249 			return 0;
1250 		}
1251 		WARN_ON(inode->i_state & I_NEW);
1252 		inode->i_state |= I_WILL_FREE;
1253 		spin_unlock(&inode_lock);
1254 		write_inode_now(inode, 1);
1255 		spin_lock(&inode_lock);
1256 		WARN_ON(inode->i_state & I_NEW);
1257 		inode->i_state &= ~I_WILL_FREE;
1258 		inodes_stat.nr_unused--;
1259 		hlist_del_init(&inode->i_hash);
1260 	}
1261 	list_del_init(&inode->i_list);
1262 	list_del_init(&inode->i_sb_list);
1263 	WARN_ON(inode->i_state & I_NEW);
1264 	inode->i_state |= I_FREEING;
1265 	inodes_stat.nr_inodes--;
1266 	spin_unlock(&inode_lock);
1267 	return 1;
1268 }
1269 EXPORT_SYMBOL_GPL(generic_detach_inode);
1270 
1271 static void generic_forget_inode(struct inode *inode)
1272 {
1273 	if (!generic_detach_inode(inode))
1274 		return;
1275 	if (inode->i_data.nrpages)
1276 		truncate_inode_pages(&inode->i_data, 0);
1277 	clear_inode(inode);
1278 	wake_up_inode(inode);
1279 	destroy_inode(inode);
1280 }
1281 
1282 /*
1283  * Normal UNIX filesystem behaviour: delete the
1284  * inode when the usage count drops to zero, and
1285  * i_nlink is zero.
1286  */
1287 void generic_drop_inode(struct inode *inode)
1288 {
1289 	if (!inode->i_nlink)
1290 		generic_delete_inode(inode);
1291 	else
1292 		generic_forget_inode(inode);
1293 }
1294 EXPORT_SYMBOL_GPL(generic_drop_inode);
1295 
1296 /*
1297  * Called when we're dropping the last reference
1298  * to an inode.
1299  *
1300  * Call the FS "drop()" function, defaulting to
1301  * the legacy UNIX filesystem behaviour..
1302  *
1303  * NOTE! NOTE! NOTE! We're called with the inode lock
1304  * held, and the drop function is supposed to release
1305  * the lock!
1306  */
1307 static inline void iput_final(struct inode *inode)
1308 {
1309 	const struct super_operations *op = inode->i_sb->s_op;
1310 	void (*drop)(struct inode *) = generic_drop_inode;
1311 
1312 	if (op && op->drop_inode)
1313 		drop = op->drop_inode;
1314 	drop(inode);
1315 }
1316 
1317 /**
1318  *	iput	- put an inode
1319  *	@inode: inode to put
1320  *
1321  *	Puts an inode, dropping its usage count. If the inode use count hits
1322  *	zero, the inode is then freed and may also be destroyed.
1323  *
1324  *	Consequently, iput() can sleep.
1325  */
1326 void iput(struct inode *inode)
1327 {
1328 	if (inode) {
1329 		BUG_ON(inode->i_state == I_CLEAR);
1330 
1331 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1332 			iput_final(inode);
1333 	}
1334 }
1335 EXPORT_SYMBOL(iput);
1336 
1337 /**
1338  *	bmap	- find a block number in a file
1339  *	@inode: inode of file
1340  *	@block: block to find
1341  *
1342  *	Returns the block number on the device holding the inode that
1343  *	is the disk block number for the block of the file requested.
1344  *	That is, asked for block 4 of inode 1 the function will return the
1345  *	disk block relative to the disk start that holds that block of the
1346  *	file.
1347  */
1348 sector_t bmap(struct inode *inode, sector_t block)
1349 {
1350 	sector_t res = 0;
1351 	if (inode->i_mapping->a_ops->bmap)
1352 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1353 	return res;
1354 }
1355 EXPORT_SYMBOL(bmap);
1356 
1357 /*
1358  * With relative atime, only update atime if the previous atime is
1359  * earlier than either the ctime or mtime or if at least a day has
1360  * passed since the last atime update.
1361  */
1362 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1363 			     struct timespec now)
1364 {
1365 
1366 	if (!(mnt->mnt_flags & MNT_RELATIME))
1367 		return 1;
1368 	/*
1369 	 * Is mtime younger than atime? If yes, update atime:
1370 	 */
1371 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1372 		return 1;
1373 	/*
1374 	 * Is ctime younger than atime? If yes, update atime:
1375 	 */
1376 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1377 		return 1;
1378 
1379 	/*
1380 	 * Is the previous atime value older than a day? If yes,
1381 	 * update atime:
1382 	 */
1383 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1384 		return 1;
1385 	/*
1386 	 * Good, we can skip the atime update:
1387 	 */
1388 	return 0;
1389 }
1390 
1391 /**
1392  *	touch_atime	-	update the access time
1393  *	@mnt: mount the inode is accessed on
1394  *	@dentry: dentry accessed
1395  *
1396  *	Update the accessed time on an inode and mark it for writeback.
1397  *	This function automatically handles read only file systems and media,
1398  *	as well as the "noatime" flag and inode specific "noatime" markers.
1399  */
1400 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1401 {
1402 	struct inode *inode = dentry->d_inode;
1403 	struct timespec now;
1404 
1405 	if (inode->i_flags & S_NOATIME)
1406 		return;
1407 	if (IS_NOATIME(inode))
1408 		return;
1409 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1410 		return;
1411 
1412 	if (mnt->mnt_flags & MNT_NOATIME)
1413 		return;
1414 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1415 		return;
1416 
1417 	now = current_fs_time(inode->i_sb);
1418 
1419 	if (!relatime_need_update(mnt, inode, now))
1420 		return;
1421 
1422 	if (timespec_equal(&inode->i_atime, &now))
1423 		return;
1424 
1425 	if (mnt_want_write(mnt))
1426 		return;
1427 
1428 	inode->i_atime = now;
1429 	mark_inode_dirty_sync(inode);
1430 	mnt_drop_write(mnt);
1431 }
1432 EXPORT_SYMBOL(touch_atime);
1433 
1434 /**
1435  *	file_update_time	-	update mtime and ctime time
1436  *	@file: file accessed
1437  *
1438  *	Update the mtime and ctime members of an inode and mark the inode
1439  *	for writeback.  Note that this function is meant exclusively for
1440  *	usage in the file write path of filesystems, and filesystems may
1441  *	choose to explicitly ignore update via this function with the
1442  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1443  *	timestamps are handled by the server.
1444  */
1445 
1446 void file_update_time(struct file *file)
1447 {
1448 	struct inode *inode = file->f_path.dentry->d_inode;
1449 	struct timespec now;
1450 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1451 
1452 	/* First try to exhaust all avenues to not sync */
1453 	if (IS_NOCMTIME(inode))
1454 		return;
1455 
1456 	now = current_fs_time(inode->i_sb);
1457 	if (!timespec_equal(&inode->i_mtime, &now))
1458 		sync_it = S_MTIME;
1459 
1460 	if (!timespec_equal(&inode->i_ctime, &now))
1461 		sync_it |= S_CTIME;
1462 
1463 	if (IS_I_VERSION(inode))
1464 		sync_it |= S_VERSION;
1465 
1466 	if (!sync_it)
1467 		return;
1468 
1469 	/* Finally allowed to write? Takes lock. */
1470 	if (mnt_want_write_file(file))
1471 		return;
1472 
1473 	/* Only change inode inside the lock region */
1474 	if (sync_it & S_VERSION)
1475 		inode_inc_iversion(inode);
1476 	if (sync_it & S_CTIME)
1477 		inode->i_ctime = now;
1478 	if (sync_it & S_MTIME)
1479 		inode->i_mtime = now;
1480 	mark_inode_dirty_sync(inode);
1481 	mnt_drop_write(file->f_path.mnt);
1482 }
1483 EXPORT_SYMBOL(file_update_time);
1484 
1485 int inode_needs_sync(struct inode *inode)
1486 {
1487 	if (IS_SYNC(inode))
1488 		return 1;
1489 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1490 		return 1;
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(inode_needs_sync);
1494 
1495 int inode_wait(void *word)
1496 {
1497 	schedule();
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL(inode_wait);
1501 
1502 /*
1503  * If we try to find an inode in the inode hash while it is being
1504  * deleted, we have to wait until the filesystem completes its
1505  * deletion before reporting that it isn't found.  This function waits
1506  * until the deletion _might_ have completed.  Callers are responsible
1507  * to recheck inode state.
1508  *
1509  * It doesn't matter if I_NEW is not set initially, a call to
1510  * wake_up_inode() after removing from the hash list will DTRT.
1511  *
1512  * This is called with inode_lock held.
1513  */
1514 static void __wait_on_freeing_inode(struct inode *inode)
1515 {
1516 	wait_queue_head_t *wq;
1517 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1518 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1519 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1520 	spin_unlock(&inode_lock);
1521 	schedule();
1522 	finish_wait(wq, &wait.wait);
1523 	spin_lock(&inode_lock);
1524 }
1525 
1526 static __initdata unsigned long ihash_entries;
1527 static int __init set_ihash_entries(char *str)
1528 {
1529 	if (!str)
1530 		return 0;
1531 	ihash_entries = simple_strtoul(str, &str, 0);
1532 	return 1;
1533 }
1534 __setup("ihash_entries=", set_ihash_entries);
1535 
1536 /*
1537  * Initialize the waitqueues and inode hash table.
1538  */
1539 void __init inode_init_early(void)
1540 {
1541 	int loop;
1542 
1543 	/* If hashes are distributed across NUMA nodes, defer
1544 	 * hash allocation until vmalloc space is available.
1545 	 */
1546 	if (hashdist)
1547 		return;
1548 
1549 	inode_hashtable =
1550 		alloc_large_system_hash("Inode-cache",
1551 					sizeof(struct hlist_head),
1552 					ihash_entries,
1553 					14,
1554 					HASH_EARLY,
1555 					&i_hash_shift,
1556 					&i_hash_mask,
1557 					0);
1558 
1559 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1560 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1561 }
1562 
1563 void __init inode_init(void)
1564 {
1565 	int loop;
1566 
1567 	/* inode slab cache */
1568 	inode_cachep = kmem_cache_create("inode_cache",
1569 					 sizeof(struct inode),
1570 					 0,
1571 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1572 					 SLAB_MEM_SPREAD),
1573 					 init_once);
1574 	register_shrinker(&icache_shrinker);
1575 
1576 	/* Hash may have been set up in inode_init_early */
1577 	if (!hashdist)
1578 		return;
1579 
1580 	inode_hashtable =
1581 		alloc_large_system_hash("Inode-cache",
1582 					sizeof(struct hlist_head),
1583 					ihash_entries,
1584 					14,
1585 					0,
1586 					&i_hash_shift,
1587 					&i_hash_mask,
1588 					0);
1589 
1590 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1591 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1592 }
1593 
1594 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1595 {
1596 	inode->i_mode = mode;
1597 	if (S_ISCHR(mode)) {
1598 		inode->i_fop = &def_chr_fops;
1599 		inode->i_rdev = rdev;
1600 	} else if (S_ISBLK(mode)) {
1601 		inode->i_fop = &def_blk_fops;
1602 		inode->i_rdev = rdev;
1603 	} else if (S_ISFIFO(mode))
1604 		inode->i_fop = &def_fifo_fops;
1605 	else if (S_ISSOCK(mode))
1606 		inode->i_fop = &bad_sock_fops;
1607 	else
1608 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1609 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1610 				  inode->i_ino);
1611 }
1612 EXPORT_SYMBOL(init_special_inode);
1613