xref: /linux/fs/inode.c (revision a1ce39288e6fbefdd8d607021d02384eb4a20b99)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21 
22 /*
23  * Inode locking rules:
24  *
25  * inode->i_lock protects:
26  *   inode->i_state, inode->i_hash, __iget()
27  * inode->i_sb->s_inode_lru_lock protects:
28  *   inode->i_sb->s_inode_lru, inode->i_lru
29  * inode_sb_list_lock protects:
30  *   sb->s_inodes, inode->i_sb_list
31  * bdi->wb.list_lock protects:
32  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33  * inode_hash_lock protects:
34  *   inode_hashtable, inode->i_hash
35  *
36  * Lock ordering:
37  *
38  * inode_sb_list_lock
39  *   inode->i_lock
40  *     inode->i_sb->s_inode_lru_lock
41  *
42  * bdi->wb.list_lock
43  *   inode->i_lock
44  *
45  * inode_hash_lock
46  *   inode_sb_list_lock
47  *   inode->i_lock
48  *
49  * iunique_lock
50  *   inode_hash_lock
51  */
52 
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57 
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static int get_nr_inodes(void)
79 {
80 	int i;
81 	int sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline int get_nr_inodes_unused(void)
88 {
89 	int i;
90 	int sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 int get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 /**
117  * inode_init_always - perform inode structure intialisation
118  * @sb: superblock inode belongs to
119  * @inode: inode to initialise
120  *
121  * These are initializations that need to be done on every inode
122  * allocation as the fields are not initialised by slab allocation.
123  */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 	static const struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->__i_nlink = 1;
137 	inode->i_opflags = 0;
138 	i_uid_write(inode, 0);
139 	i_gid_write(inode, 0);
140 	atomic_set(&inode->i_writecount, 0);
141 	inode->i_size = 0;
142 	inode->i_blocks = 0;
143 	inode->i_bytes = 0;
144 	inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 	inode->i_pipe = NULL;
149 	inode->i_bdev = NULL;
150 	inode->i_cdev = NULL;
151 	inode->i_rdev = 0;
152 	inode->dirtied_when = 0;
153 
154 	if (security_inode_alloc(inode))
155 		goto out;
156 	spin_lock_init(&inode->i_lock);
157 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158 
159 	mutex_init(&inode->i_mutex);
160 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161 
162 	atomic_set(&inode->i_dio_count, 0);
163 
164 	mapping->a_ops = &empty_aops;
165 	mapping->host = inode;
166 	mapping->flags = 0;
167 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 	mapping->assoc_mapping = NULL;
169 	mapping->backing_dev_info = &default_backing_dev_info;
170 	mapping->writeback_index = 0;
171 
172 	/*
173 	 * If the block_device provides a backing_dev_info for client
174 	 * inodes then use that.  Otherwise the inode share the bdev's
175 	 * backing_dev_info.
176 	 */
177 	if (sb->s_bdev) {
178 		struct backing_dev_info *bdi;
179 
180 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 		mapping->backing_dev_info = bdi;
182 	}
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	security_inode_free(inode);
235 	fsnotify_inode_delete(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
334 void inc_nlink(struct inode *inode)
335 {
336 	if (WARN_ON(inode->i_nlink == 0))
337 		atomic_long_dec(&inode->i_sb->s_remove_count);
338 
339 	inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342 
343 void address_space_init_once(struct address_space *mapping)
344 {
345 	memset(mapping, 0, sizeof(*mapping));
346 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 	spin_lock_init(&mapping->tree_lock);
348 	mutex_init(&mapping->i_mmap_mutex);
349 	INIT_LIST_HEAD(&mapping->private_list);
350 	spin_lock_init(&mapping->private_lock);
351 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
352 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355 
356 /*
357  * These are initializations that only need to be done
358  * once, because the fields are idempotent across use
359  * of the inode, so let the slab aware of that.
360  */
361 void inode_init_once(struct inode *inode)
362 {
363 	memset(inode, 0, sizeof(*inode));
364 	INIT_HLIST_NODE(&inode->i_hash);
365 	INIT_LIST_HEAD(&inode->i_devices);
366 	INIT_LIST_HEAD(&inode->i_wb_list);
367 	INIT_LIST_HEAD(&inode->i_lru);
368 	address_space_init_once(&inode->i_data);
369 	i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375 
376 static void init_once(void *foo)
377 {
378 	struct inode *inode = (struct inode *) foo;
379 
380 	inode_init_once(inode);
381 }
382 
383 /*
384  * inode->i_lock must be held
385  */
386 void __iget(struct inode *inode)
387 {
388 	atomic_inc(&inode->i_count);
389 }
390 
391 /*
392  * get additional reference to inode; caller must already hold one.
393  */
394 void ihold(struct inode *inode)
395 {
396 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399 
400 static void inode_lru_list_add(struct inode *inode)
401 {
402 	spin_lock(&inode->i_sb->s_inode_lru_lock);
403 	if (list_empty(&inode->i_lru)) {
404 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 		inode->i_sb->s_nr_inodes_unused++;
406 		this_cpu_inc(nr_unused);
407 	}
408 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410 
411 static void inode_lru_list_del(struct inode *inode)
412 {
413 	spin_lock(&inode->i_sb->s_inode_lru_lock);
414 	if (!list_empty(&inode->i_lru)) {
415 		list_del_init(&inode->i_lru);
416 		inode->i_sb->s_nr_inodes_unused--;
417 		this_cpu_dec(nr_unused);
418 	}
419 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
420 }
421 
422 /**
423  * inode_sb_list_add - add inode to the superblock list of inodes
424  * @inode: inode to add
425  */
426 void inode_sb_list_add(struct inode *inode)
427 {
428 	spin_lock(&inode_sb_list_lock);
429 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 	spin_unlock(&inode_sb_list_lock);
431 }
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
433 
434 static inline void inode_sb_list_del(struct inode *inode)
435 {
436 	if (!list_empty(&inode->i_sb_list)) {
437 		spin_lock(&inode_sb_list_lock);
438 		list_del_init(&inode->i_sb_list);
439 		spin_unlock(&inode_sb_list_lock);
440 	}
441 }
442 
443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
444 {
445 	unsigned long tmp;
446 
447 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 			L1_CACHE_BYTES;
449 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 	return tmp & i_hash_mask;
451 }
452 
453 /**
454  *	__insert_inode_hash - hash an inode
455  *	@inode: unhashed inode
456  *	@hashval: unsigned long value used to locate this object in the
457  *		inode_hashtable.
458  *
459  *	Add an inode to the inode hash for this superblock.
460  */
461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462 {
463 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464 
465 	spin_lock(&inode_hash_lock);
466 	spin_lock(&inode->i_lock);
467 	hlist_add_head(&inode->i_hash, b);
468 	spin_unlock(&inode->i_lock);
469 	spin_unlock(&inode_hash_lock);
470 }
471 EXPORT_SYMBOL(__insert_inode_hash);
472 
473 /**
474  *	__remove_inode_hash - remove an inode from the hash
475  *	@inode: inode to unhash
476  *
477  *	Remove an inode from the superblock.
478  */
479 void __remove_inode_hash(struct inode *inode)
480 {
481 	spin_lock(&inode_hash_lock);
482 	spin_lock(&inode->i_lock);
483 	hlist_del_init(&inode->i_hash);
484 	spin_unlock(&inode->i_lock);
485 	spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__remove_inode_hash);
488 
489 void clear_inode(struct inode *inode)
490 {
491 	might_sleep();
492 	/*
493 	 * We have to cycle tree_lock here because reclaim can be still in the
494 	 * process of removing the last page (in __delete_from_page_cache())
495 	 * and we must not free mapping under it.
496 	 */
497 	spin_lock_irq(&inode->i_data.tree_lock);
498 	BUG_ON(inode->i_data.nrpages);
499 	spin_unlock_irq(&inode->i_data.tree_lock);
500 	BUG_ON(!list_empty(&inode->i_data.private_list));
501 	BUG_ON(!(inode->i_state & I_FREEING));
502 	BUG_ON(inode->i_state & I_CLEAR);
503 	/* don't need i_lock here, no concurrent mods to i_state */
504 	inode->i_state = I_FREEING | I_CLEAR;
505 }
506 EXPORT_SYMBOL(clear_inode);
507 
508 /*
509  * Free the inode passed in, removing it from the lists it is still connected
510  * to. We remove any pages still attached to the inode and wait for any IO that
511  * is still in progress before finally destroying the inode.
512  *
513  * An inode must already be marked I_FREEING so that we avoid the inode being
514  * moved back onto lists if we race with other code that manipulates the lists
515  * (e.g. writeback_single_inode). The caller is responsible for setting this.
516  *
517  * An inode must already be removed from the LRU list before being evicted from
518  * the cache. This should occur atomically with setting the I_FREEING state
519  * flag, so no inodes here should ever be on the LRU when being evicted.
520  */
521 static void evict(struct inode *inode)
522 {
523 	const struct super_operations *op = inode->i_sb->s_op;
524 
525 	BUG_ON(!(inode->i_state & I_FREEING));
526 	BUG_ON(!list_empty(&inode->i_lru));
527 
528 	if (!list_empty(&inode->i_wb_list))
529 		inode_wb_list_del(inode);
530 
531 	inode_sb_list_del(inode);
532 
533 	/*
534 	 * Wait for flusher thread to be done with the inode so that filesystem
535 	 * does not start destroying it while writeback is still running. Since
536 	 * the inode has I_FREEING set, flusher thread won't start new work on
537 	 * the inode.  We just have to wait for running writeback to finish.
538 	 */
539 	inode_wait_for_writeback(inode);
540 
541 	if (op->evict_inode) {
542 		op->evict_inode(inode);
543 	} else {
544 		if (inode->i_data.nrpages)
545 			truncate_inode_pages(&inode->i_data, 0);
546 		clear_inode(inode);
547 	}
548 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
549 		bd_forget(inode);
550 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
551 		cd_forget(inode);
552 
553 	remove_inode_hash(inode);
554 
555 	spin_lock(&inode->i_lock);
556 	wake_up_bit(&inode->i_state, __I_NEW);
557 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
558 	spin_unlock(&inode->i_lock);
559 
560 	destroy_inode(inode);
561 }
562 
563 /*
564  * dispose_list - dispose of the contents of a local list
565  * @head: the head of the list to free
566  *
567  * Dispose-list gets a local list with local inodes in it, so it doesn't
568  * need to worry about list corruption and SMP locks.
569  */
570 static void dispose_list(struct list_head *head)
571 {
572 	while (!list_empty(head)) {
573 		struct inode *inode;
574 
575 		inode = list_first_entry(head, struct inode, i_lru);
576 		list_del_init(&inode->i_lru);
577 
578 		evict(inode);
579 	}
580 }
581 
582 /**
583  * evict_inodes	- evict all evictable inodes for a superblock
584  * @sb:		superblock to operate on
585  *
586  * Make sure that no inodes with zero refcount are retained.  This is
587  * called by superblock shutdown after having MS_ACTIVE flag removed,
588  * so any inode reaching zero refcount during or after that call will
589  * be immediately evicted.
590  */
591 void evict_inodes(struct super_block *sb)
592 {
593 	struct inode *inode, *next;
594 	LIST_HEAD(dispose);
595 
596 	spin_lock(&inode_sb_list_lock);
597 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 		if (atomic_read(&inode->i_count))
599 			continue;
600 
601 		spin_lock(&inode->i_lock);
602 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
603 			spin_unlock(&inode->i_lock);
604 			continue;
605 		}
606 
607 		inode->i_state |= I_FREEING;
608 		inode_lru_list_del(inode);
609 		spin_unlock(&inode->i_lock);
610 		list_add(&inode->i_lru, &dispose);
611 	}
612 	spin_unlock(&inode_sb_list_lock);
613 
614 	dispose_list(&dispose);
615 }
616 
617 /**
618  * invalidate_inodes	- attempt to free all inodes on a superblock
619  * @sb:		superblock to operate on
620  * @kill_dirty: flag to guide handling of dirty inodes
621  *
622  * Attempts to free all inodes for a given superblock.  If there were any
623  * busy inodes return a non-zero value, else zero.
624  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
625  * them as busy.
626  */
627 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
628 {
629 	int busy = 0;
630 	struct inode *inode, *next;
631 	LIST_HEAD(dispose);
632 
633 	spin_lock(&inode_sb_list_lock);
634 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 		spin_lock(&inode->i_lock);
636 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 			spin_unlock(&inode->i_lock);
638 			continue;
639 		}
640 		if (inode->i_state & I_DIRTY && !kill_dirty) {
641 			spin_unlock(&inode->i_lock);
642 			busy = 1;
643 			continue;
644 		}
645 		if (atomic_read(&inode->i_count)) {
646 			spin_unlock(&inode->i_lock);
647 			busy = 1;
648 			continue;
649 		}
650 
651 		inode->i_state |= I_FREEING;
652 		inode_lru_list_del(inode);
653 		spin_unlock(&inode->i_lock);
654 		list_add(&inode->i_lru, &dispose);
655 	}
656 	spin_unlock(&inode_sb_list_lock);
657 
658 	dispose_list(&dispose);
659 
660 	return busy;
661 }
662 
663 static int can_unuse(struct inode *inode)
664 {
665 	if (inode->i_state & ~I_REFERENCED)
666 		return 0;
667 	if (inode_has_buffers(inode))
668 		return 0;
669 	if (atomic_read(&inode->i_count))
670 		return 0;
671 	if (inode->i_data.nrpages)
672 		return 0;
673 	return 1;
674 }
675 
676 /*
677  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
678  * This is called from the superblock shrinker function with a number of inodes
679  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
680  * then are freed outside inode_lock by dispose_list().
681  *
682  * Any inodes which are pinned purely because of attached pagecache have their
683  * pagecache removed.  If the inode has metadata buffers attached to
684  * mapping->private_list then try to remove them.
685  *
686  * If the inode has the I_REFERENCED flag set, then it means that it has been
687  * used recently - the flag is set in iput_final(). When we encounter such an
688  * inode, clear the flag and move it to the back of the LRU so it gets another
689  * pass through the LRU before it gets reclaimed. This is necessary because of
690  * the fact we are doing lazy LRU updates to minimise lock contention so the
691  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
692  * with this flag set because they are the inodes that are out of order.
693  */
694 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
695 {
696 	LIST_HEAD(freeable);
697 	int nr_scanned;
698 	unsigned long reap = 0;
699 
700 	spin_lock(&sb->s_inode_lru_lock);
701 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
702 		struct inode *inode;
703 
704 		if (list_empty(&sb->s_inode_lru))
705 			break;
706 
707 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
708 
709 		/*
710 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
711 		 * so use a trylock. If we fail to get the lock, just move the
712 		 * inode to the back of the list so we don't spin on it.
713 		 */
714 		if (!spin_trylock(&inode->i_lock)) {
715 			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
716 			continue;
717 		}
718 
719 		/*
720 		 * Referenced or dirty inodes are still in use. Give them
721 		 * another pass through the LRU as we canot reclaim them now.
722 		 */
723 		if (atomic_read(&inode->i_count) ||
724 		    (inode->i_state & ~I_REFERENCED)) {
725 			list_del_init(&inode->i_lru);
726 			spin_unlock(&inode->i_lock);
727 			sb->s_nr_inodes_unused--;
728 			this_cpu_dec(nr_unused);
729 			continue;
730 		}
731 
732 		/* recently referenced inodes get one more pass */
733 		if (inode->i_state & I_REFERENCED) {
734 			inode->i_state &= ~I_REFERENCED;
735 			list_move(&inode->i_lru, &sb->s_inode_lru);
736 			spin_unlock(&inode->i_lock);
737 			continue;
738 		}
739 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
740 			__iget(inode);
741 			spin_unlock(&inode->i_lock);
742 			spin_unlock(&sb->s_inode_lru_lock);
743 			if (remove_inode_buffers(inode))
744 				reap += invalidate_mapping_pages(&inode->i_data,
745 								0, -1);
746 			iput(inode);
747 			spin_lock(&sb->s_inode_lru_lock);
748 
749 			if (inode != list_entry(sb->s_inode_lru.next,
750 						struct inode, i_lru))
751 				continue;	/* wrong inode or list_empty */
752 			/* avoid lock inversions with trylock */
753 			if (!spin_trylock(&inode->i_lock))
754 				continue;
755 			if (!can_unuse(inode)) {
756 				spin_unlock(&inode->i_lock);
757 				continue;
758 			}
759 		}
760 		WARN_ON(inode->i_state & I_NEW);
761 		inode->i_state |= I_FREEING;
762 		spin_unlock(&inode->i_lock);
763 
764 		list_move(&inode->i_lru, &freeable);
765 		sb->s_nr_inodes_unused--;
766 		this_cpu_dec(nr_unused);
767 	}
768 	if (current_is_kswapd())
769 		__count_vm_events(KSWAPD_INODESTEAL, reap);
770 	else
771 		__count_vm_events(PGINODESTEAL, reap);
772 	spin_unlock(&sb->s_inode_lru_lock);
773 	if (current->reclaim_state)
774 		current->reclaim_state->reclaimed_slab += reap;
775 
776 	dispose_list(&freeable);
777 }
778 
779 static void __wait_on_freeing_inode(struct inode *inode);
780 /*
781  * Called with the inode lock held.
782  */
783 static struct inode *find_inode(struct super_block *sb,
784 				struct hlist_head *head,
785 				int (*test)(struct inode *, void *),
786 				void *data)
787 {
788 	struct hlist_node *node;
789 	struct inode *inode = NULL;
790 
791 repeat:
792 	hlist_for_each_entry(inode, node, head, i_hash) {
793 		spin_lock(&inode->i_lock);
794 		if (inode->i_sb != sb) {
795 			spin_unlock(&inode->i_lock);
796 			continue;
797 		}
798 		if (!test(inode, data)) {
799 			spin_unlock(&inode->i_lock);
800 			continue;
801 		}
802 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
803 			__wait_on_freeing_inode(inode);
804 			goto repeat;
805 		}
806 		__iget(inode);
807 		spin_unlock(&inode->i_lock);
808 		return inode;
809 	}
810 	return NULL;
811 }
812 
813 /*
814  * find_inode_fast is the fast path version of find_inode, see the comment at
815  * iget_locked for details.
816  */
817 static struct inode *find_inode_fast(struct super_block *sb,
818 				struct hlist_head *head, unsigned long ino)
819 {
820 	struct hlist_node *node;
821 	struct inode *inode = NULL;
822 
823 repeat:
824 	hlist_for_each_entry(inode, node, head, i_hash) {
825 		spin_lock(&inode->i_lock);
826 		if (inode->i_ino != ino) {
827 			spin_unlock(&inode->i_lock);
828 			continue;
829 		}
830 		if (inode->i_sb != sb) {
831 			spin_unlock(&inode->i_lock);
832 			continue;
833 		}
834 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 			__wait_on_freeing_inode(inode);
836 			goto repeat;
837 		}
838 		__iget(inode);
839 		spin_unlock(&inode->i_lock);
840 		return inode;
841 	}
842 	return NULL;
843 }
844 
845 /*
846  * Each cpu owns a range of LAST_INO_BATCH numbers.
847  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848  * to renew the exhausted range.
849  *
850  * This does not significantly increase overflow rate because every CPU can
851  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854  * overflow rate by 2x, which does not seem too significant.
855  *
856  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857  * error if st_ino won't fit in target struct field. Use 32bit counter
858  * here to attempt to avoid that.
859  */
860 #define LAST_INO_BATCH 1024
861 static DEFINE_PER_CPU(unsigned int, last_ino);
862 
863 unsigned int get_next_ino(void)
864 {
865 	unsigned int *p = &get_cpu_var(last_ino);
866 	unsigned int res = *p;
867 
868 #ifdef CONFIG_SMP
869 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
870 		static atomic_t shared_last_ino;
871 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
872 
873 		res = next - LAST_INO_BATCH;
874 	}
875 #endif
876 
877 	*p = ++res;
878 	put_cpu_var(last_ino);
879 	return res;
880 }
881 EXPORT_SYMBOL(get_next_ino);
882 
883 /**
884  *	new_inode_pseudo 	- obtain an inode
885  *	@sb: superblock
886  *
887  *	Allocates a new inode for given superblock.
888  *	Inode wont be chained in superblock s_inodes list
889  *	This means :
890  *	- fs can't be unmount
891  *	- quotas, fsnotify, writeback can't work
892  */
893 struct inode *new_inode_pseudo(struct super_block *sb)
894 {
895 	struct inode *inode = alloc_inode(sb);
896 
897 	if (inode) {
898 		spin_lock(&inode->i_lock);
899 		inode->i_state = 0;
900 		spin_unlock(&inode->i_lock);
901 		INIT_LIST_HEAD(&inode->i_sb_list);
902 	}
903 	return inode;
904 }
905 
906 /**
907  *	new_inode 	- obtain an inode
908  *	@sb: superblock
909  *
910  *	Allocates a new inode for given superblock. The default gfp_mask
911  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
913  *	for the page cache are not reclaimable or migratable,
914  *	mapping_set_gfp_mask() must be called with suitable flags on the
915  *	newly created inode's mapping
916  *
917  */
918 struct inode *new_inode(struct super_block *sb)
919 {
920 	struct inode *inode;
921 
922 	spin_lock_prefetch(&inode_sb_list_lock);
923 
924 	inode = new_inode_pseudo(sb);
925 	if (inode)
926 		inode_sb_list_add(inode);
927 	return inode;
928 }
929 EXPORT_SYMBOL(new_inode);
930 
931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
932 void lockdep_annotate_inode_mutex_key(struct inode *inode)
933 {
934 	if (S_ISDIR(inode->i_mode)) {
935 		struct file_system_type *type = inode->i_sb->s_type;
936 
937 		/* Set new key only if filesystem hasn't already changed it */
938 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
939 			/*
940 			 * ensure nobody is actually holding i_mutex
941 			 */
942 			mutex_destroy(&inode->i_mutex);
943 			mutex_init(&inode->i_mutex);
944 			lockdep_set_class(&inode->i_mutex,
945 					  &type->i_mutex_dir_key);
946 		}
947 	}
948 }
949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950 #endif
951 
952 /**
953  * unlock_new_inode - clear the I_NEW state and wake up any waiters
954  * @inode:	new inode to unlock
955  *
956  * Called when the inode is fully initialised to clear the new state of the
957  * inode and wake up anyone waiting for the inode to finish initialisation.
958  */
959 void unlock_new_inode(struct inode *inode)
960 {
961 	lockdep_annotate_inode_mutex_key(inode);
962 	spin_lock(&inode->i_lock);
963 	WARN_ON(!(inode->i_state & I_NEW));
964 	inode->i_state &= ~I_NEW;
965 	smp_mb();
966 	wake_up_bit(&inode->i_state, __I_NEW);
967 	spin_unlock(&inode->i_lock);
968 }
969 EXPORT_SYMBOL(unlock_new_inode);
970 
971 /**
972  * iget5_locked - obtain an inode from a mounted file system
973  * @sb:		super block of file system
974  * @hashval:	hash value (usually inode number) to get
975  * @test:	callback used for comparisons between inodes
976  * @set:	callback used to initialize a new struct inode
977  * @data:	opaque data pointer to pass to @test and @set
978  *
979  * Search for the inode specified by @hashval and @data in the inode cache,
980  * and if present it is return it with an increased reference count. This is
981  * a generalized version of iget_locked() for file systems where the inode
982  * number is not sufficient for unique identification of an inode.
983  *
984  * If the inode is not in cache, allocate a new inode and return it locked,
985  * hashed, and with the I_NEW flag set. The file system gets to fill it in
986  * before unlocking it via unlock_new_inode().
987  *
988  * Note both @test and @set are called with the inode_hash_lock held, so can't
989  * sleep.
990  */
991 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
992 		int (*test)(struct inode *, void *),
993 		int (*set)(struct inode *, void *), void *data)
994 {
995 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
996 	struct inode *inode;
997 
998 	spin_lock(&inode_hash_lock);
999 	inode = find_inode(sb, head, test, data);
1000 	spin_unlock(&inode_hash_lock);
1001 
1002 	if (inode) {
1003 		wait_on_inode(inode);
1004 		return inode;
1005 	}
1006 
1007 	inode = alloc_inode(sb);
1008 	if (inode) {
1009 		struct inode *old;
1010 
1011 		spin_lock(&inode_hash_lock);
1012 		/* We released the lock, so.. */
1013 		old = find_inode(sb, head, test, data);
1014 		if (!old) {
1015 			if (set(inode, data))
1016 				goto set_failed;
1017 
1018 			spin_lock(&inode->i_lock);
1019 			inode->i_state = I_NEW;
1020 			hlist_add_head(&inode->i_hash, head);
1021 			spin_unlock(&inode->i_lock);
1022 			inode_sb_list_add(inode);
1023 			spin_unlock(&inode_hash_lock);
1024 
1025 			/* Return the locked inode with I_NEW set, the
1026 			 * caller is responsible for filling in the contents
1027 			 */
1028 			return inode;
1029 		}
1030 
1031 		/*
1032 		 * Uhhuh, somebody else created the same inode under
1033 		 * us. Use the old inode instead of the one we just
1034 		 * allocated.
1035 		 */
1036 		spin_unlock(&inode_hash_lock);
1037 		destroy_inode(inode);
1038 		inode = old;
1039 		wait_on_inode(inode);
1040 	}
1041 	return inode;
1042 
1043 set_failed:
1044 	spin_unlock(&inode_hash_lock);
1045 	destroy_inode(inode);
1046 	return NULL;
1047 }
1048 EXPORT_SYMBOL(iget5_locked);
1049 
1050 /**
1051  * iget_locked - obtain an inode from a mounted file system
1052  * @sb:		super block of file system
1053  * @ino:	inode number to get
1054  *
1055  * Search for the inode specified by @ino in the inode cache and if present
1056  * return it with an increased reference count. This is for file systems
1057  * where the inode number is sufficient for unique identification of an inode.
1058  *
1059  * If the inode is not in cache, allocate a new inode and return it locked,
1060  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1061  * before unlocking it via unlock_new_inode().
1062  */
1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064 {
1065 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066 	struct inode *inode;
1067 
1068 	spin_lock(&inode_hash_lock);
1069 	inode = find_inode_fast(sb, head, ino);
1070 	spin_unlock(&inode_hash_lock);
1071 	if (inode) {
1072 		wait_on_inode(inode);
1073 		return inode;
1074 	}
1075 
1076 	inode = alloc_inode(sb);
1077 	if (inode) {
1078 		struct inode *old;
1079 
1080 		spin_lock(&inode_hash_lock);
1081 		/* We released the lock, so.. */
1082 		old = find_inode_fast(sb, head, ino);
1083 		if (!old) {
1084 			inode->i_ino = ino;
1085 			spin_lock(&inode->i_lock);
1086 			inode->i_state = I_NEW;
1087 			hlist_add_head(&inode->i_hash, head);
1088 			spin_unlock(&inode->i_lock);
1089 			inode_sb_list_add(inode);
1090 			spin_unlock(&inode_hash_lock);
1091 
1092 			/* Return the locked inode with I_NEW set, the
1093 			 * caller is responsible for filling in the contents
1094 			 */
1095 			return inode;
1096 		}
1097 
1098 		/*
1099 		 * Uhhuh, somebody else created the same inode under
1100 		 * us. Use the old inode instead of the one we just
1101 		 * allocated.
1102 		 */
1103 		spin_unlock(&inode_hash_lock);
1104 		destroy_inode(inode);
1105 		inode = old;
1106 		wait_on_inode(inode);
1107 	}
1108 	return inode;
1109 }
1110 EXPORT_SYMBOL(iget_locked);
1111 
1112 /*
1113  * search the inode cache for a matching inode number.
1114  * If we find one, then the inode number we are trying to
1115  * allocate is not unique and so we should not use it.
1116  *
1117  * Returns 1 if the inode number is unique, 0 if it is not.
1118  */
1119 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120 {
1121 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122 	struct hlist_node *node;
1123 	struct inode *inode;
1124 
1125 	spin_lock(&inode_hash_lock);
1126 	hlist_for_each_entry(inode, node, b, i_hash) {
1127 		if (inode->i_ino == ino && inode->i_sb == sb) {
1128 			spin_unlock(&inode_hash_lock);
1129 			return 0;
1130 		}
1131 	}
1132 	spin_unlock(&inode_hash_lock);
1133 
1134 	return 1;
1135 }
1136 
1137 /**
1138  *	iunique - get a unique inode number
1139  *	@sb: superblock
1140  *	@max_reserved: highest reserved inode number
1141  *
1142  *	Obtain an inode number that is unique on the system for a given
1143  *	superblock. This is used by file systems that have no natural
1144  *	permanent inode numbering system. An inode number is returned that
1145  *	is higher than the reserved limit but unique.
1146  *
1147  *	BUGS:
1148  *	With a large number of inodes live on the file system this function
1149  *	currently becomes quite slow.
1150  */
1151 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152 {
1153 	/*
1154 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 	 * here to attempt to avoid that.
1157 	 */
1158 	static DEFINE_SPINLOCK(iunique_lock);
1159 	static unsigned int counter;
1160 	ino_t res;
1161 
1162 	spin_lock(&iunique_lock);
1163 	do {
1164 		if (counter <= max_reserved)
1165 			counter = max_reserved + 1;
1166 		res = counter++;
1167 	} while (!test_inode_iunique(sb, res));
1168 	spin_unlock(&iunique_lock);
1169 
1170 	return res;
1171 }
1172 EXPORT_SYMBOL(iunique);
1173 
1174 struct inode *igrab(struct inode *inode)
1175 {
1176 	spin_lock(&inode->i_lock);
1177 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178 		__iget(inode);
1179 		spin_unlock(&inode->i_lock);
1180 	} else {
1181 		spin_unlock(&inode->i_lock);
1182 		/*
1183 		 * Handle the case where s_op->clear_inode is not been
1184 		 * called yet, and somebody is calling igrab
1185 		 * while the inode is getting freed.
1186 		 */
1187 		inode = NULL;
1188 	}
1189 	return inode;
1190 }
1191 EXPORT_SYMBOL(igrab);
1192 
1193 /**
1194  * ilookup5_nowait - search for an inode in the inode cache
1195  * @sb:		super block of file system to search
1196  * @hashval:	hash value (usually inode number) to search for
1197  * @test:	callback used for comparisons between inodes
1198  * @data:	opaque data pointer to pass to @test
1199  *
1200  * Search for the inode specified by @hashval and @data in the inode cache.
1201  * If the inode is in the cache, the inode is returned with an incremented
1202  * reference count.
1203  *
1204  * Note: I_NEW is not waited upon so you have to be very careful what you do
1205  * with the returned inode.  You probably should be using ilookup5() instead.
1206  *
1207  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208  */
1209 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210 		int (*test)(struct inode *, void *), void *data)
1211 {
1212 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 	struct inode *inode;
1214 
1215 	spin_lock(&inode_hash_lock);
1216 	inode = find_inode(sb, head, test, data);
1217 	spin_unlock(&inode_hash_lock);
1218 
1219 	return inode;
1220 }
1221 EXPORT_SYMBOL(ilookup5_nowait);
1222 
1223 /**
1224  * ilookup5 - search for an inode in the inode cache
1225  * @sb:		super block of file system to search
1226  * @hashval:	hash value (usually inode number) to search for
1227  * @test:	callback used for comparisons between inodes
1228  * @data:	opaque data pointer to pass to @test
1229  *
1230  * Search for the inode specified by @hashval and @data in the inode cache,
1231  * and if the inode is in the cache, return the inode with an incremented
1232  * reference count.  Waits on I_NEW before returning the inode.
1233  * returned with an incremented reference count.
1234  *
1235  * This is a generalized version of ilookup() for file systems where the
1236  * inode number is not sufficient for unique identification of an inode.
1237  *
1238  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239  */
1240 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241 		int (*test)(struct inode *, void *), void *data)
1242 {
1243 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244 
1245 	if (inode)
1246 		wait_on_inode(inode);
1247 	return inode;
1248 }
1249 EXPORT_SYMBOL(ilookup5);
1250 
1251 /**
1252  * ilookup - search for an inode in the inode cache
1253  * @sb:		super block of file system to search
1254  * @ino:	inode number to search for
1255  *
1256  * Search for the inode @ino in the inode cache, and if the inode is in the
1257  * cache, the inode is returned with an incremented reference count.
1258  */
1259 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260 {
1261 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 	struct inode *inode;
1263 
1264 	spin_lock(&inode_hash_lock);
1265 	inode = find_inode_fast(sb, head, ino);
1266 	spin_unlock(&inode_hash_lock);
1267 
1268 	if (inode)
1269 		wait_on_inode(inode);
1270 	return inode;
1271 }
1272 EXPORT_SYMBOL(ilookup);
1273 
1274 int insert_inode_locked(struct inode *inode)
1275 {
1276 	struct super_block *sb = inode->i_sb;
1277 	ino_t ino = inode->i_ino;
1278 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279 
1280 	while (1) {
1281 		struct hlist_node *node;
1282 		struct inode *old = NULL;
1283 		spin_lock(&inode_hash_lock);
1284 		hlist_for_each_entry(old, node, head, i_hash) {
1285 			if (old->i_ino != ino)
1286 				continue;
1287 			if (old->i_sb != sb)
1288 				continue;
1289 			spin_lock(&old->i_lock);
1290 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1291 				spin_unlock(&old->i_lock);
1292 				continue;
1293 			}
1294 			break;
1295 		}
1296 		if (likely(!node)) {
1297 			spin_lock(&inode->i_lock);
1298 			inode->i_state |= I_NEW;
1299 			hlist_add_head(&inode->i_hash, head);
1300 			spin_unlock(&inode->i_lock);
1301 			spin_unlock(&inode_hash_lock);
1302 			return 0;
1303 		}
1304 		__iget(old);
1305 		spin_unlock(&old->i_lock);
1306 		spin_unlock(&inode_hash_lock);
1307 		wait_on_inode(old);
1308 		if (unlikely(!inode_unhashed(old))) {
1309 			iput(old);
1310 			return -EBUSY;
1311 		}
1312 		iput(old);
1313 	}
1314 }
1315 EXPORT_SYMBOL(insert_inode_locked);
1316 
1317 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1318 		int (*test)(struct inode *, void *), void *data)
1319 {
1320 	struct super_block *sb = inode->i_sb;
1321 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322 
1323 	while (1) {
1324 		struct hlist_node *node;
1325 		struct inode *old = NULL;
1326 
1327 		spin_lock(&inode_hash_lock);
1328 		hlist_for_each_entry(old, node, head, i_hash) {
1329 			if (old->i_sb != sb)
1330 				continue;
1331 			if (!test(old, data))
1332 				continue;
1333 			spin_lock(&old->i_lock);
1334 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335 				spin_unlock(&old->i_lock);
1336 				continue;
1337 			}
1338 			break;
1339 		}
1340 		if (likely(!node)) {
1341 			spin_lock(&inode->i_lock);
1342 			inode->i_state |= I_NEW;
1343 			hlist_add_head(&inode->i_hash, head);
1344 			spin_unlock(&inode->i_lock);
1345 			spin_unlock(&inode_hash_lock);
1346 			return 0;
1347 		}
1348 		__iget(old);
1349 		spin_unlock(&old->i_lock);
1350 		spin_unlock(&inode_hash_lock);
1351 		wait_on_inode(old);
1352 		if (unlikely(!inode_unhashed(old))) {
1353 			iput(old);
1354 			return -EBUSY;
1355 		}
1356 		iput(old);
1357 	}
1358 }
1359 EXPORT_SYMBOL(insert_inode_locked4);
1360 
1361 
1362 int generic_delete_inode(struct inode *inode)
1363 {
1364 	return 1;
1365 }
1366 EXPORT_SYMBOL(generic_delete_inode);
1367 
1368 /*
1369  * Called when we're dropping the last reference
1370  * to an inode.
1371  *
1372  * Call the FS "drop_inode()" function, defaulting to
1373  * the legacy UNIX filesystem behaviour.  If it tells
1374  * us to evict inode, do so.  Otherwise, retain inode
1375  * in cache if fs is alive, sync and evict if fs is
1376  * shutting down.
1377  */
1378 static void iput_final(struct inode *inode)
1379 {
1380 	struct super_block *sb = inode->i_sb;
1381 	const struct super_operations *op = inode->i_sb->s_op;
1382 	int drop;
1383 
1384 	WARN_ON(inode->i_state & I_NEW);
1385 
1386 	if (op->drop_inode)
1387 		drop = op->drop_inode(inode);
1388 	else
1389 		drop = generic_drop_inode(inode);
1390 
1391 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1392 		inode->i_state |= I_REFERENCED;
1393 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1394 			inode_lru_list_add(inode);
1395 		spin_unlock(&inode->i_lock);
1396 		return;
1397 	}
1398 
1399 	if (!drop) {
1400 		inode->i_state |= I_WILL_FREE;
1401 		spin_unlock(&inode->i_lock);
1402 		write_inode_now(inode, 1);
1403 		spin_lock(&inode->i_lock);
1404 		WARN_ON(inode->i_state & I_NEW);
1405 		inode->i_state &= ~I_WILL_FREE;
1406 	}
1407 
1408 	inode->i_state |= I_FREEING;
1409 	if (!list_empty(&inode->i_lru))
1410 		inode_lru_list_del(inode);
1411 	spin_unlock(&inode->i_lock);
1412 
1413 	evict(inode);
1414 }
1415 
1416 /**
1417  *	iput	- put an inode
1418  *	@inode: inode to put
1419  *
1420  *	Puts an inode, dropping its usage count. If the inode use count hits
1421  *	zero, the inode is then freed and may also be destroyed.
1422  *
1423  *	Consequently, iput() can sleep.
1424  */
1425 void iput(struct inode *inode)
1426 {
1427 	if (inode) {
1428 		BUG_ON(inode->i_state & I_CLEAR);
1429 
1430 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1431 			iput_final(inode);
1432 	}
1433 }
1434 EXPORT_SYMBOL(iput);
1435 
1436 /**
1437  *	bmap	- find a block number in a file
1438  *	@inode: inode of file
1439  *	@block: block to find
1440  *
1441  *	Returns the block number on the device holding the inode that
1442  *	is the disk block number for the block of the file requested.
1443  *	That is, asked for block 4 of inode 1 the function will return the
1444  *	disk block relative to the disk start that holds that block of the
1445  *	file.
1446  */
1447 sector_t bmap(struct inode *inode, sector_t block)
1448 {
1449 	sector_t res = 0;
1450 	if (inode->i_mapping->a_ops->bmap)
1451 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1452 	return res;
1453 }
1454 EXPORT_SYMBOL(bmap);
1455 
1456 /*
1457  * With relative atime, only update atime if the previous atime is
1458  * earlier than either the ctime or mtime or if at least a day has
1459  * passed since the last atime update.
1460  */
1461 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1462 			     struct timespec now)
1463 {
1464 
1465 	if (!(mnt->mnt_flags & MNT_RELATIME))
1466 		return 1;
1467 	/*
1468 	 * Is mtime younger than atime? If yes, update atime:
1469 	 */
1470 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1471 		return 1;
1472 	/*
1473 	 * Is ctime younger than atime? If yes, update atime:
1474 	 */
1475 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1476 		return 1;
1477 
1478 	/*
1479 	 * Is the previous atime value older than a day? If yes,
1480 	 * update atime:
1481 	 */
1482 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1483 		return 1;
1484 	/*
1485 	 * Good, we can skip the atime update:
1486 	 */
1487 	return 0;
1488 }
1489 
1490 /*
1491  * This does the actual work of updating an inodes time or version.  Must have
1492  * had called mnt_want_write() before calling this.
1493  */
1494 static int update_time(struct inode *inode, struct timespec *time, int flags)
1495 {
1496 	if (inode->i_op->update_time)
1497 		return inode->i_op->update_time(inode, time, flags);
1498 
1499 	if (flags & S_ATIME)
1500 		inode->i_atime = *time;
1501 	if (flags & S_VERSION)
1502 		inode_inc_iversion(inode);
1503 	if (flags & S_CTIME)
1504 		inode->i_ctime = *time;
1505 	if (flags & S_MTIME)
1506 		inode->i_mtime = *time;
1507 	mark_inode_dirty_sync(inode);
1508 	return 0;
1509 }
1510 
1511 /**
1512  *	touch_atime	-	update the access time
1513  *	@path: the &struct path to update
1514  *
1515  *	Update the accessed time on an inode and mark it for writeback.
1516  *	This function automatically handles read only file systems and media,
1517  *	as well as the "noatime" flag and inode specific "noatime" markers.
1518  */
1519 void touch_atime(struct path *path)
1520 {
1521 	struct vfsmount *mnt = path->mnt;
1522 	struct inode *inode = path->dentry->d_inode;
1523 	struct timespec now;
1524 
1525 	if (inode->i_flags & S_NOATIME)
1526 		return;
1527 	if (IS_NOATIME(inode))
1528 		return;
1529 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1530 		return;
1531 
1532 	if (mnt->mnt_flags & MNT_NOATIME)
1533 		return;
1534 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1535 		return;
1536 
1537 	now = current_fs_time(inode->i_sb);
1538 
1539 	if (!relatime_need_update(mnt, inode, now))
1540 		return;
1541 
1542 	if (timespec_equal(&inode->i_atime, &now))
1543 		return;
1544 
1545 	if (!sb_start_write_trylock(inode->i_sb))
1546 		return;
1547 
1548 	if (__mnt_want_write(mnt))
1549 		goto skip_update;
1550 	/*
1551 	 * File systems can error out when updating inodes if they need to
1552 	 * allocate new space to modify an inode (such is the case for
1553 	 * Btrfs), but since we touch atime while walking down the path we
1554 	 * really don't care if we failed to update the atime of the file,
1555 	 * so just ignore the return value.
1556 	 * We may also fail on filesystems that have the ability to make parts
1557 	 * of the fs read only, e.g. subvolumes in Btrfs.
1558 	 */
1559 	update_time(inode, &now, S_ATIME);
1560 	__mnt_drop_write(mnt);
1561 skip_update:
1562 	sb_end_write(inode->i_sb);
1563 }
1564 EXPORT_SYMBOL(touch_atime);
1565 
1566 /*
1567  * The logic we want is
1568  *
1569  *	if suid or (sgid and xgrp)
1570  *		remove privs
1571  */
1572 int should_remove_suid(struct dentry *dentry)
1573 {
1574 	umode_t mode = dentry->d_inode->i_mode;
1575 	int kill = 0;
1576 
1577 	/* suid always must be killed */
1578 	if (unlikely(mode & S_ISUID))
1579 		kill = ATTR_KILL_SUID;
1580 
1581 	/*
1582 	 * sgid without any exec bits is just a mandatory locking mark; leave
1583 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1584 	 */
1585 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1586 		kill |= ATTR_KILL_SGID;
1587 
1588 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1589 		return kill;
1590 
1591 	return 0;
1592 }
1593 EXPORT_SYMBOL(should_remove_suid);
1594 
1595 static int __remove_suid(struct dentry *dentry, int kill)
1596 {
1597 	struct iattr newattrs;
1598 
1599 	newattrs.ia_valid = ATTR_FORCE | kill;
1600 	return notify_change(dentry, &newattrs);
1601 }
1602 
1603 int file_remove_suid(struct file *file)
1604 {
1605 	struct dentry *dentry = file->f_path.dentry;
1606 	struct inode *inode = dentry->d_inode;
1607 	int killsuid;
1608 	int killpriv;
1609 	int error = 0;
1610 
1611 	/* Fast path for nothing security related */
1612 	if (IS_NOSEC(inode))
1613 		return 0;
1614 
1615 	killsuid = should_remove_suid(dentry);
1616 	killpriv = security_inode_need_killpriv(dentry);
1617 
1618 	if (killpriv < 0)
1619 		return killpriv;
1620 	if (killpriv)
1621 		error = security_inode_killpriv(dentry);
1622 	if (!error && killsuid)
1623 		error = __remove_suid(dentry, killsuid);
1624 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1625 		inode->i_flags |= S_NOSEC;
1626 
1627 	return error;
1628 }
1629 EXPORT_SYMBOL(file_remove_suid);
1630 
1631 /**
1632  *	file_update_time	-	update mtime and ctime time
1633  *	@file: file accessed
1634  *
1635  *	Update the mtime and ctime members of an inode and mark the inode
1636  *	for writeback.  Note that this function is meant exclusively for
1637  *	usage in the file write path of filesystems, and filesystems may
1638  *	choose to explicitly ignore update via this function with the
1639  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1640  *	timestamps are handled by the server.  This can return an error for
1641  *	file systems who need to allocate space in order to update an inode.
1642  */
1643 
1644 int file_update_time(struct file *file)
1645 {
1646 	struct inode *inode = file->f_path.dentry->d_inode;
1647 	struct timespec now;
1648 	int sync_it = 0;
1649 	int ret;
1650 
1651 	/* First try to exhaust all avenues to not sync */
1652 	if (IS_NOCMTIME(inode))
1653 		return 0;
1654 
1655 	now = current_fs_time(inode->i_sb);
1656 	if (!timespec_equal(&inode->i_mtime, &now))
1657 		sync_it = S_MTIME;
1658 
1659 	if (!timespec_equal(&inode->i_ctime, &now))
1660 		sync_it |= S_CTIME;
1661 
1662 	if (IS_I_VERSION(inode))
1663 		sync_it |= S_VERSION;
1664 
1665 	if (!sync_it)
1666 		return 0;
1667 
1668 	/* Finally allowed to write? Takes lock. */
1669 	if (__mnt_want_write_file(file))
1670 		return 0;
1671 
1672 	ret = update_time(inode, &now, sync_it);
1673 	__mnt_drop_write_file(file);
1674 
1675 	return ret;
1676 }
1677 EXPORT_SYMBOL(file_update_time);
1678 
1679 int inode_needs_sync(struct inode *inode)
1680 {
1681 	if (IS_SYNC(inode))
1682 		return 1;
1683 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1684 		return 1;
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL(inode_needs_sync);
1688 
1689 int inode_wait(void *word)
1690 {
1691 	schedule();
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(inode_wait);
1695 
1696 /*
1697  * If we try to find an inode in the inode hash while it is being
1698  * deleted, we have to wait until the filesystem completes its
1699  * deletion before reporting that it isn't found.  This function waits
1700  * until the deletion _might_ have completed.  Callers are responsible
1701  * to recheck inode state.
1702  *
1703  * It doesn't matter if I_NEW is not set initially, a call to
1704  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1705  * will DTRT.
1706  */
1707 static void __wait_on_freeing_inode(struct inode *inode)
1708 {
1709 	wait_queue_head_t *wq;
1710 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1711 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1712 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1713 	spin_unlock(&inode->i_lock);
1714 	spin_unlock(&inode_hash_lock);
1715 	schedule();
1716 	finish_wait(wq, &wait.wait);
1717 	spin_lock(&inode_hash_lock);
1718 }
1719 
1720 static __initdata unsigned long ihash_entries;
1721 static int __init set_ihash_entries(char *str)
1722 {
1723 	if (!str)
1724 		return 0;
1725 	ihash_entries = simple_strtoul(str, &str, 0);
1726 	return 1;
1727 }
1728 __setup("ihash_entries=", set_ihash_entries);
1729 
1730 /*
1731  * Initialize the waitqueues and inode hash table.
1732  */
1733 void __init inode_init_early(void)
1734 {
1735 	unsigned int loop;
1736 
1737 	/* If hashes are distributed across NUMA nodes, defer
1738 	 * hash allocation until vmalloc space is available.
1739 	 */
1740 	if (hashdist)
1741 		return;
1742 
1743 	inode_hashtable =
1744 		alloc_large_system_hash("Inode-cache",
1745 					sizeof(struct hlist_head),
1746 					ihash_entries,
1747 					14,
1748 					HASH_EARLY,
1749 					&i_hash_shift,
1750 					&i_hash_mask,
1751 					0,
1752 					0);
1753 
1754 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1755 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1756 }
1757 
1758 void __init inode_init(void)
1759 {
1760 	unsigned int loop;
1761 
1762 	/* inode slab cache */
1763 	inode_cachep = kmem_cache_create("inode_cache",
1764 					 sizeof(struct inode),
1765 					 0,
1766 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1767 					 SLAB_MEM_SPREAD),
1768 					 init_once);
1769 
1770 	/* Hash may have been set up in inode_init_early */
1771 	if (!hashdist)
1772 		return;
1773 
1774 	inode_hashtable =
1775 		alloc_large_system_hash("Inode-cache",
1776 					sizeof(struct hlist_head),
1777 					ihash_entries,
1778 					14,
1779 					0,
1780 					&i_hash_shift,
1781 					&i_hash_mask,
1782 					0,
1783 					0);
1784 
1785 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1786 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1787 }
1788 
1789 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1790 {
1791 	inode->i_mode = mode;
1792 	if (S_ISCHR(mode)) {
1793 		inode->i_fop = &def_chr_fops;
1794 		inode->i_rdev = rdev;
1795 	} else if (S_ISBLK(mode)) {
1796 		inode->i_fop = &def_blk_fops;
1797 		inode->i_rdev = rdev;
1798 	} else if (S_ISFIFO(mode))
1799 		inode->i_fop = &def_fifo_fops;
1800 	else if (S_ISSOCK(mode))
1801 		inode->i_fop = &bad_sock_fops;
1802 	else
1803 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1804 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1805 				  inode->i_ino);
1806 }
1807 EXPORT_SYMBOL(init_special_inode);
1808 
1809 /**
1810  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1811  * @inode: New inode
1812  * @dir: Directory inode
1813  * @mode: mode of the new inode
1814  */
1815 void inode_init_owner(struct inode *inode, const struct inode *dir,
1816 			umode_t mode)
1817 {
1818 	inode->i_uid = current_fsuid();
1819 	if (dir && dir->i_mode & S_ISGID) {
1820 		inode->i_gid = dir->i_gid;
1821 		if (S_ISDIR(mode))
1822 			mode |= S_ISGID;
1823 	} else
1824 		inode->i_gid = current_fsgid();
1825 	inode->i_mode = mode;
1826 }
1827 EXPORT_SYMBOL(inode_init_owner);
1828 
1829 /**
1830  * inode_owner_or_capable - check current task permissions to inode
1831  * @inode: inode being checked
1832  *
1833  * Return true if current either has CAP_FOWNER to the inode, or
1834  * owns the file.
1835  */
1836 bool inode_owner_or_capable(const struct inode *inode)
1837 {
1838 	if (uid_eq(current_fsuid(), inode->i_uid))
1839 		return true;
1840 	if (inode_capable(inode, CAP_FOWNER))
1841 		return true;
1842 	return false;
1843 }
1844 EXPORT_SYMBOL(inode_owner_or_capable);
1845 
1846 /*
1847  * Direct i/o helper functions
1848  */
1849 static void __inode_dio_wait(struct inode *inode)
1850 {
1851 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1852 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1853 
1854 	do {
1855 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1856 		if (atomic_read(&inode->i_dio_count))
1857 			schedule();
1858 	} while (atomic_read(&inode->i_dio_count));
1859 	finish_wait(wq, &q.wait);
1860 }
1861 
1862 /**
1863  * inode_dio_wait - wait for outstanding DIO requests to finish
1864  * @inode: inode to wait for
1865  *
1866  * Waits for all pending direct I/O requests to finish so that we can
1867  * proceed with a truncate or equivalent operation.
1868  *
1869  * Must be called under a lock that serializes taking new references
1870  * to i_dio_count, usually by inode->i_mutex.
1871  */
1872 void inode_dio_wait(struct inode *inode)
1873 {
1874 	if (atomic_read(&inode->i_dio_count))
1875 		__inode_dio_wait(inode);
1876 }
1877 EXPORT_SYMBOL(inode_dio_wait);
1878 
1879 /*
1880  * inode_dio_done - signal finish of a direct I/O requests
1881  * @inode: inode the direct I/O happens on
1882  *
1883  * This is called once we've finished processing a direct I/O request,
1884  * and is used to wake up callers waiting for direct I/O to be quiesced.
1885  */
1886 void inode_dio_done(struct inode *inode)
1887 {
1888 	if (atomic_dec_and_test(&inode->i_dio_count))
1889 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1890 }
1891 EXPORT_SYMBOL(inode_dio_done);
1892