xref: /linux/fs/inode.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->i_ino = 0;
146 	inode->__i_nlink = 1;
147 	inode->i_opflags = 0;
148 	if (sb->s_xattr)
149 		inode->i_opflags |= IOP_XATTR;
150 	i_uid_write(inode, 0);
151 	i_gid_write(inode, 0);
152 	atomic_set(&inode->i_writecount, 0);
153 	inode->i_size = 0;
154 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 	inode->i_blocks = 0;
156 	inode->i_bytes = 0;
157 	inode->i_generation = 0;
158 	inode->i_pipe = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	init_rwsem(&inode->i_rwsem);
177 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 
179 	atomic_set(&inode->i_dio_count, 0);
180 
181 	mapping->a_ops = &empty_aops;
182 	mapping->host = inode;
183 	mapping->flags = 0;
184 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
185 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
186 	mapping->wb_err = 0;
187 	atomic_set(&mapping->i_mmap_writable, 0);
188 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
189 	atomic_set(&mapping->nr_thps, 0);
190 #endif
191 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
192 	mapping->private_data = NULL;
193 	mapping->writeback_index = 0;
194 	inode->i_private = NULL;
195 	inode->i_mapping = mapping;
196 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
197 #ifdef CONFIG_FS_POSIX_ACL
198 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
199 #endif
200 
201 #ifdef CONFIG_FSNOTIFY
202 	inode->i_fsnotify_mask = 0;
203 #endif
204 	inode->i_flctx = NULL;
205 	this_cpu_inc(nr_inodes);
206 
207 	return 0;
208 out:
209 	return -ENOMEM;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212 
213 void free_inode_nonrcu(struct inode *inode)
214 {
215 	kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218 
219 static void i_callback(struct rcu_head *head)
220 {
221 	struct inode *inode = container_of(head, struct inode, i_rcu);
222 	if (inode->free_inode)
223 		inode->free_inode(inode);
224 	else
225 		free_inode_nonrcu(inode);
226 }
227 
228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 	const struct super_operations *ops = sb->s_op;
231 	struct inode *inode;
232 
233 	if (ops->alloc_inode)
234 		inode = ops->alloc_inode(sb);
235 	else
236 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237 
238 	if (!inode)
239 		return NULL;
240 
241 	if (unlikely(inode_init_always(sb, inode))) {
242 		if (ops->destroy_inode) {
243 			ops->destroy_inode(inode);
244 			if (!ops->free_inode)
245 				return NULL;
246 		}
247 		inode->free_inode = ops->free_inode;
248 		i_callback(&inode->i_rcu);
249 		return NULL;
250 	}
251 
252 	return inode;
253 }
254 
255 void __destroy_inode(struct inode *inode)
256 {
257 	BUG_ON(inode_has_buffers(inode));
258 	inode_detach_wb(inode);
259 	security_inode_free(inode);
260 	fsnotify_inode_delete(inode);
261 	locks_free_lock_context(inode);
262 	if (!inode->i_nlink) {
263 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
264 		atomic_long_dec(&inode->i_sb->s_remove_count);
265 	}
266 
267 #ifdef CONFIG_FS_POSIX_ACL
268 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
269 		posix_acl_release(inode->i_acl);
270 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
271 		posix_acl_release(inode->i_default_acl);
272 #endif
273 	this_cpu_dec(nr_inodes);
274 }
275 EXPORT_SYMBOL(__destroy_inode);
276 
277 static void destroy_inode(struct inode *inode)
278 {
279 	const struct super_operations *ops = inode->i_sb->s_op;
280 
281 	BUG_ON(!list_empty(&inode->i_lru));
282 	__destroy_inode(inode);
283 	if (ops->destroy_inode) {
284 		ops->destroy_inode(inode);
285 		if (!ops->free_inode)
286 			return;
287 	}
288 	inode->free_inode = ops->free_inode;
289 	call_rcu(&inode->i_rcu, i_callback);
290 }
291 
292 /**
293  * drop_nlink - directly drop an inode's link count
294  * @inode: inode
295  *
296  * This is a low-level filesystem helper to replace any
297  * direct filesystem manipulation of i_nlink.  In cases
298  * where we are attempting to track writes to the
299  * filesystem, a decrement to zero means an imminent
300  * write when the file is truncated and actually unlinked
301  * on the filesystem.
302  */
303 void drop_nlink(struct inode *inode)
304 {
305 	WARN_ON(inode->i_nlink == 0);
306 	inode->__i_nlink--;
307 	if (!inode->i_nlink)
308 		atomic_long_inc(&inode->i_sb->s_remove_count);
309 }
310 EXPORT_SYMBOL(drop_nlink);
311 
312 /**
313  * clear_nlink - directly zero an inode's link count
314  * @inode: inode
315  *
316  * This is a low-level filesystem helper to replace any
317  * direct filesystem manipulation of i_nlink.  See
318  * drop_nlink() for why we care about i_nlink hitting zero.
319  */
320 void clear_nlink(struct inode *inode)
321 {
322 	if (inode->i_nlink) {
323 		inode->__i_nlink = 0;
324 		atomic_long_inc(&inode->i_sb->s_remove_count);
325 	}
326 }
327 EXPORT_SYMBOL(clear_nlink);
328 
329 /**
330  * set_nlink - directly set an inode's link count
331  * @inode: inode
332  * @nlink: new nlink (should be non-zero)
333  *
334  * This is a low-level filesystem helper to replace any
335  * direct filesystem manipulation of i_nlink.
336  */
337 void set_nlink(struct inode *inode, unsigned int nlink)
338 {
339 	if (!nlink) {
340 		clear_nlink(inode);
341 	} else {
342 		/* Yes, some filesystems do change nlink from zero to one */
343 		if (inode->i_nlink == 0)
344 			atomic_long_dec(&inode->i_sb->s_remove_count);
345 
346 		inode->__i_nlink = nlink;
347 	}
348 }
349 EXPORT_SYMBOL(set_nlink);
350 
351 /**
352  * inc_nlink - directly increment an inode's link count
353  * @inode: inode
354  *
355  * This is a low-level filesystem helper to replace any
356  * direct filesystem manipulation of i_nlink.  Currently,
357  * it is only here for parity with dec_nlink().
358  */
359 void inc_nlink(struct inode *inode)
360 {
361 	if (unlikely(inode->i_nlink == 0)) {
362 		WARN_ON(!(inode->i_state & I_LINKABLE));
363 		atomic_long_dec(&inode->i_sb->s_remove_count);
364 	}
365 
366 	inode->__i_nlink++;
367 }
368 EXPORT_SYMBOL(inc_nlink);
369 
370 static void __address_space_init_once(struct address_space *mapping)
371 {
372 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
373 	init_rwsem(&mapping->i_mmap_rwsem);
374 	INIT_LIST_HEAD(&mapping->private_list);
375 	spin_lock_init(&mapping->private_lock);
376 	mapping->i_mmap = RB_ROOT_CACHED;
377 }
378 
379 void address_space_init_once(struct address_space *mapping)
380 {
381 	memset(mapping, 0, sizeof(*mapping));
382 	__address_space_init_once(mapping);
383 }
384 EXPORT_SYMBOL(address_space_init_once);
385 
386 /*
387  * These are initializations that only need to be done
388  * once, because the fields are idempotent across use
389  * of the inode, so let the slab aware of that.
390  */
391 void inode_init_once(struct inode *inode)
392 {
393 	memset(inode, 0, sizeof(*inode));
394 	INIT_HLIST_NODE(&inode->i_hash);
395 	INIT_LIST_HEAD(&inode->i_devices);
396 	INIT_LIST_HEAD(&inode->i_io_list);
397 	INIT_LIST_HEAD(&inode->i_wb_list);
398 	INIT_LIST_HEAD(&inode->i_lru);
399 	__address_space_init_once(&inode->i_data);
400 	i_size_ordered_init(inode);
401 }
402 EXPORT_SYMBOL(inode_init_once);
403 
404 static void init_once(void *foo)
405 {
406 	struct inode *inode = (struct inode *) foo;
407 
408 	inode_init_once(inode);
409 }
410 
411 /*
412  * inode->i_lock must be held
413  */
414 void __iget(struct inode *inode)
415 {
416 	atomic_inc(&inode->i_count);
417 }
418 
419 /*
420  * get additional reference to inode; caller must already hold one.
421  */
422 void ihold(struct inode *inode)
423 {
424 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
425 }
426 EXPORT_SYMBOL(ihold);
427 
428 static void inode_lru_list_add(struct inode *inode)
429 {
430 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
431 		this_cpu_inc(nr_unused);
432 	else
433 		inode->i_state |= I_REFERENCED;
434 }
435 
436 /*
437  * Add inode to LRU if needed (inode is unused and clean).
438  *
439  * Needs inode->i_lock held.
440  */
441 void inode_add_lru(struct inode *inode)
442 {
443 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
444 				I_FREEING | I_WILL_FREE)) &&
445 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
446 		inode_lru_list_add(inode);
447 }
448 
449 
450 static void inode_lru_list_del(struct inode *inode)
451 {
452 
453 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
454 		this_cpu_dec(nr_unused);
455 }
456 
457 /**
458  * inode_sb_list_add - add inode to the superblock list of inodes
459  * @inode: inode to add
460  */
461 void inode_sb_list_add(struct inode *inode)
462 {
463 	spin_lock(&inode->i_sb->s_inode_list_lock);
464 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
465 	spin_unlock(&inode->i_sb->s_inode_list_lock);
466 }
467 EXPORT_SYMBOL_GPL(inode_sb_list_add);
468 
469 static inline void inode_sb_list_del(struct inode *inode)
470 {
471 	if (!list_empty(&inode->i_sb_list)) {
472 		spin_lock(&inode->i_sb->s_inode_list_lock);
473 		list_del_init(&inode->i_sb_list);
474 		spin_unlock(&inode->i_sb->s_inode_list_lock);
475 	}
476 }
477 
478 static unsigned long hash(struct super_block *sb, unsigned long hashval)
479 {
480 	unsigned long tmp;
481 
482 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
483 			L1_CACHE_BYTES;
484 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
485 	return tmp & i_hash_mask;
486 }
487 
488 /**
489  *	__insert_inode_hash - hash an inode
490  *	@inode: unhashed inode
491  *	@hashval: unsigned long value used to locate this object in the
492  *		inode_hashtable.
493  *
494  *	Add an inode to the inode hash for this superblock.
495  */
496 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
497 {
498 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
499 
500 	spin_lock(&inode_hash_lock);
501 	spin_lock(&inode->i_lock);
502 	hlist_add_head_rcu(&inode->i_hash, b);
503 	spin_unlock(&inode->i_lock);
504 	spin_unlock(&inode_hash_lock);
505 }
506 EXPORT_SYMBOL(__insert_inode_hash);
507 
508 /**
509  *	__remove_inode_hash - remove an inode from the hash
510  *	@inode: inode to unhash
511  *
512  *	Remove an inode from the superblock.
513  */
514 void __remove_inode_hash(struct inode *inode)
515 {
516 	spin_lock(&inode_hash_lock);
517 	spin_lock(&inode->i_lock);
518 	hlist_del_init_rcu(&inode->i_hash);
519 	spin_unlock(&inode->i_lock);
520 	spin_unlock(&inode_hash_lock);
521 }
522 EXPORT_SYMBOL(__remove_inode_hash);
523 
524 void clear_inode(struct inode *inode)
525 {
526 	/*
527 	 * We have to cycle the i_pages lock here because reclaim can be in the
528 	 * process of removing the last page (in __delete_from_page_cache())
529 	 * and we must not free the mapping under it.
530 	 */
531 	xa_lock_irq(&inode->i_data.i_pages);
532 	BUG_ON(inode->i_data.nrpages);
533 	BUG_ON(inode->i_data.nrexceptional);
534 	xa_unlock_irq(&inode->i_data.i_pages);
535 	BUG_ON(!list_empty(&inode->i_data.private_list));
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(inode->i_state & I_CLEAR);
538 	BUG_ON(!list_empty(&inode->i_wb_list));
539 	/* don't need i_lock here, no concurrent mods to i_state */
540 	inode->i_state = I_FREEING | I_CLEAR;
541 }
542 EXPORT_SYMBOL(clear_inode);
543 
544 /*
545  * Free the inode passed in, removing it from the lists it is still connected
546  * to. We remove any pages still attached to the inode and wait for any IO that
547  * is still in progress before finally destroying the inode.
548  *
549  * An inode must already be marked I_FREEING so that we avoid the inode being
550  * moved back onto lists if we race with other code that manipulates the lists
551  * (e.g. writeback_single_inode). The caller is responsible for setting this.
552  *
553  * An inode must already be removed from the LRU list before being evicted from
554  * the cache. This should occur atomically with setting the I_FREEING state
555  * flag, so no inodes here should ever be on the LRU when being evicted.
556  */
557 static void evict(struct inode *inode)
558 {
559 	const struct super_operations *op = inode->i_sb->s_op;
560 
561 	BUG_ON(!(inode->i_state & I_FREEING));
562 	BUG_ON(!list_empty(&inode->i_lru));
563 
564 	if (!list_empty(&inode->i_io_list))
565 		inode_io_list_del(inode);
566 
567 	inode_sb_list_del(inode);
568 
569 	/*
570 	 * Wait for flusher thread to be done with the inode so that filesystem
571 	 * does not start destroying it while writeback is still running. Since
572 	 * the inode has I_FREEING set, flusher thread won't start new work on
573 	 * the inode.  We just have to wait for running writeback to finish.
574 	 */
575 	inode_wait_for_writeback(inode);
576 
577 	if (op->evict_inode) {
578 		op->evict_inode(inode);
579 	} else {
580 		truncate_inode_pages_final(&inode->i_data);
581 		clear_inode(inode);
582 	}
583 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
584 		cd_forget(inode);
585 
586 	remove_inode_hash(inode);
587 
588 	spin_lock(&inode->i_lock);
589 	wake_up_bit(&inode->i_state, __I_NEW);
590 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
591 	spin_unlock(&inode->i_lock);
592 
593 	destroy_inode(inode);
594 }
595 
596 /*
597  * dispose_list - dispose of the contents of a local list
598  * @head: the head of the list to free
599  *
600  * Dispose-list gets a local list with local inodes in it, so it doesn't
601  * need to worry about list corruption and SMP locks.
602  */
603 static void dispose_list(struct list_head *head)
604 {
605 	while (!list_empty(head)) {
606 		struct inode *inode;
607 
608 		inode = list_first_entry(head, struct inode, i_lru);
609 		list_del_init(&inode->i_lru);
610 
611 		evict(inode);
612 		cond_resched();
613 	}
614 }
615 
616 /**
617  * evict_inodes	- evict all evictable inodes for a superblock
618  * @sb:		superblock to operate on
619  *
620  * Make sure that no inodes with zero refcount are retained.  This is
621  * called by superblock shutdown after having SB_ACTIVE flag removed,
622  * so any inode reaching zero refcount during or after that call will
623  * be immediately evicted.
624  */
625 void evict_inodes(struct super_block *sb)
626 {
627 	struct inode *inode, *next;
628 	LIST_HEAD(dispose);
629 
630 again:
631 	spin_lock(&sb->s_inode_list_lock);
632 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
633 		if (atomic_read(&inode->i_count))
634 			continue;
635 
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			continue;
640 		}
641 
642 		inode->i_state |= I_FREEING;
643 		inode_lru_list_del(inode);
644 		spin_unlock(&inode->i_lock);
645 		list_add(&inode->i_lru, &dispose);
646 
647 		/*
648 		 * We can have a ton of inodes to evict at unmount time given
649 		 * enough memory, check to see if we need to go to sleep for a
650 		 * bit so we don't livelock.
651 		 */
652 		if (need_resched()) {
653 			spin_unlock(&sb->s_inode_list_lock);
654 			cond_resched();
655 			dispose_list(&dispose);
656 			goto again;
657 		}
658 	}
659 	spin_unlock(&sb->s_inode_list_lock);
660 
661 	dispose_list(&dispose);
662 }
663 EXPORT_SYMBOL_GPL(evict_inodes);
664 
665 /**
666  * invalidate_inodes	- attempt to free all inodes on a superblock
667  * @sb:		superblock to operate on
668  * @kill_dirty: flag to guide handling of dirty inodes
669  *
670  * Attempts to free all inodes for a given superblock.  If there were any
671  * busy inodes return a non-zero value, else zero.
672  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
673  * them as busy.
674  */
675 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
676 {
677 	int busy = 0;
678 	struct inode *inode, *next;
679 	LIST_HEAD(dispose);
680 
681 again:
682 	spin_lock(&sb->s_inode_list_lock);
683 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
684 		spin_lock(&inode->i_lock);
685 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 			spin_unlock(&inode->i_lock);
687 			continue;
688 		}
689 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
690 			spin_unlock(&inode->i_lock);
691 			busy = 1;
692 			continue;
693 		}
694 		if (atomic_read(&inode->i_count)) {
695 			spin_unlock(&inode->i_lock);
696 			busy = 1;
697 			continue;
698 		}
699 
700 		inode->i_state |= I_FREEING;
701 		inode_lru_list_del(inode);
702 		spin_unlock(&inode->i_lock);
703 		list_add(&inode->i_lru, &dispose);
704 		if (need_resched()) {
705 			spin_unlock(&sb->s_inode_list_lock);
706 			cond_resched();
707 			dispose_list(&dispose);
708 			goto again;
709 		}
710 	}
711 	spin_unlock(&sb->s_inode_list_lock);
712 
713 	dispose_list(&dispose);
714 
715 	return busy;
716 }
717 
718 /*
719  * Isolate the inode from the LRU in preparation for freeing it.
720  *
721  * Any inodes which are pinned purely because of attached pagecache have their
722  * pagecache removed.  If the inode has metadata buffers attached to
723  * mapping->private_list then try to remove them.
724  *
725  * If the inode has the I_REFERENCED flag set, then it means that it has been
726  * used recently - the flag is set in iput_final(). When we encounter such an
727  * inode, clear the flag and move it to the back of the LRU so it gets another
728  * pass through the LRU before it gets reclaimed. This is necessary because of
729  * the fact we are doing lazy LRU updates to minimise lock contention so the
730  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
731  * with this flag set because they are the inodes that are out of order.
732  */
733 static enum lru_status inode_lru_isolate(struct list_head *item,
734 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735 {
736 	struct list_head *freeable = arg;
737 	struct inode	*inode = container_of(item, struct inode, i_lru);
738 
739 	/*
740 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
741 	 * If we fail to get the lock, just skip it.
742 	 */
743 	if (!spin_trylock(&inode->i_lock))
744 		return LRU_SKIP;
745 
746 	/*
747 	 * Referenced or dirty inodes are still in use. Give them another pass
748 	 * through the LRU as we canot reclaim them now.
749 	 */
750 	if (atomic_read(&inode->i_count) ||
751 	    (inode->i_state & ~I_REFERENCED)) {
752 		list_lru_isolate(lru, &inode->i_lru);
753 		spin_unlock(&inode->i_lock);
754 		this_cpu_dec(nr_unused);
755 		return LRU_REMOVED;
756 	}
757 
758 	/* recently referenced inodes get one more pass */
759 	if (inode->i_state & I_REFERENCED) {
760 		inode->i_state &= ~I_REFERENCED;
761 		spin_unlock(&inode->i_lock);
762 		return LRU_ROTATE;
763 	}
764 
765 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 		__iget(inode);
767 		spin_unlock(&inode->i_lock);
768 		spin_unlock(lru_lock);
769 		if (remove_inode_buffers(inode)) {
770 			unsigned long reap;
771 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
772 			if (current_is_kswapd())
773 				__count_vm_events(KSWAPD_INODESTEAL, reap);
774 			else
775 				__count_vm_events(PGINODESTEAL, reap);
776 			if (current->reclaim_state)
777 				current->reclaim_state->reclaimed_slab += reap;
778 		}
779 		iput(inode);
780 		spin_lock(lru_lock);
781 		return LRU_RETRY;
782 	}
783 
784 	WARN_ON(inode->i_state & I_NEW);
785 	inode->i_state |= I_FREEING;
786 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
787 	spin_unlock(&inode->i_lock);
788 
789 	this_cpu_dec(nr_unused);
790 	return LRU_REMOVED;
791 }
792 
793 /*
794  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
795  * This is called from the superblock shrinker function with a number of inodes
796  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
797  * then are freed outside inode_lock by dispose_list().
798  */
799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
800 {
801 	LIST_HEAD(freeable);
802 	long freed;
803 
804 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
805 				     inode_lru_isolate, &freeable);
806 	dispose_list(&freeable);
807 	return freed;
808 }
809 
810 static void __wait_on_freeing_inode(struct inode *inode);
811 /*
812  * Called with the inode lock held.
813  */
814 static struct inode *find_inode(struct super_block *sb,
815 				struct hlist_head *head,
816 				int (*test)(struct inode *, void *),
817 				void *data)
818 {
819 	struct inode *inode = NULL;
820 
821 repeat:
822 	hlist_for_each_entry(inode, head, i_hash) {
823 		if (inode->i_sb != sb)
824 			continue;
825 		if (!test(inode, data))
826 			continue;
827 		spin_lock(&inode->i_lock);
828 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
829 			__wait_on_freeing_inode(inode);
830 			goto repeat;
831 		}
832 		if (unlikely(inode->i_state & I_CREATING)) {
833 			spin_unlock(&inode->i_lock);
834 			return ERR_PTR(-ESTALE);
835 		}
836 		__iget(inode);
837 		spin_unlock(&inode->i_lock);
838 		return inode;
839 	}
840 	return NULL;
841 }
842 
843 /*
844  * find_inode_fast is the fast path version of find_inode, see the comment at
845  * iget_locked for details.
846  */
847 static struct inode *find_inode_fast(struct super_block *sb,
848 				struct hlist_head *head, unsigned long ino)
849 {
850 	struct inode *inode = NULL;
851 
852 repeat:
853 	hlist_for_each_entry(inode, head, i_hash) {
854 		if (inode->i_ino != ino)
855 			continue;
856 		if (inode->i_sb != sb)
857 			continue;
858 		spin_lock(&inode->i_lock);
859 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
860 			__wait_on_freeing_inode(inode);
861 			goto repeat;
862 		}
863 		if (unlikely(inode->i_state & I_CREATING)) {
864 			spin_unlock(&inode->i_lock);
865 			return ERR_PTR(-ESTALE);
866 		}
867 		__iget(inode);
868 		spin_unlock(&inode->i_lock);
869 		return inode;
870 	}
871 	return NULL;
872 }
873 
874 /*
875  * Each cpu owns a range of LAST_INO_BATCH numbers.
876  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
877  * to renew the exhausted range.
878  *
879  * This does not significantly increase overflow rate because every CPU can
880  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
881  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
882  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
883  * overflow rate by 2x, which does not seem too significant.
884  *
885  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
886  * error if st_ino won't fit in target struct field. Use 32bit counter
887  * here to attempt to avoid that.
888  */
889 #define LAST_INO_BATCH 1024
890 static DEFINE_PER_CPU(unsigned int, last_ino);
891 
892 unsigned int get_next_ino(void)
893 {
894 	unsigned int *p = &get_cpu_var(last_ino);
895 	unsigned int res = *p;
896 
897 #ifdef CONFIG_SMP
898 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
899 		static atomic_t shared_last_ino;
900 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901 
902 		res = next - LAST_INO_BATCH;
903 	}
904 #endif
905 
906 	res++;
907 	/* get_next_ino should not provide a 0 inode number */
908 	if (unlikely(!res))
909 		res++;
910 	*p = res;
911 	put_cpu_var(last_ino);
912 	return res;
913 }
914 EXPORT_SYMBOL(get_next_ino);
915 
916 /**
917  *	new_inode_pseudo 	- obtain an inode
918  *	@sb: superblock
919  *
920  *	Allocates a new inode for given superblock.
921  *	Inode wont be chained in superblock s_inodes list
922  *	This means :
923  *	- fs can't be unmount
924  *	- quotas, fsnotify, writeback can't work
925  */
926 struct inode *new_inode_pseudo(struct super_block *sb)
927 {
928 	struct inode *inode = alloc_inode(sb);
929 
930 	if (inode) {
931 		spin_lock(&inode->i_lock);
932 		inode->i_state = 0;
933 		spin_unlock(&inode->i_lock);
934 		INIT_LIST_HEAD(&inode->i_sb_list);
935 	}
936 	return inode;
937 }
938 
939 /**
940  *	new_inode 	- obtain an inode
941  *	@sb: superblock
942  *
943  *	Allocates a new inode for given superblock. The default gfp_mask
944  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
945  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
946  *	for the page cache are not reclaimable or migratable,
947  *	mapping_set_gfp_mask() must be called with suitable flags on the
948  *	newly created inode's mapping
949  *
950  */
951 struct inode *new_inode(struct super_block *sb)
952 {
953 	struct inode *inode;
954 
955 	spin_lock_prefetch(&sb->s_inode_list_lock);
956 
957 	inode = new_inode_pseudo(sb);
958 	if (inode)
959 		inode_sb_list_add(inode);
960 	return inode;
961 }
962 EXPORT_SYMBOL(new_inode);
963 
964 #ifdef CONFIG_DEBUG_LOCK_ALLOC
965 void lockdep_annotate_inode_mutex_key(struct inode *inode)
966 {
967 	if (S_ISDIR(inode->i_mode)) {
968 		struct file_system_type *type = inode->i_sb->s_type;
969 
970 		/* Set new key only if filesystem hasn't already changed it */
971 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 			/*
973 			 * ensure nobody is actually holding i_mutex
974 			 */
975 			// mutex_destroy(&inode->i_mutex);
976 			init_rwsem(&inode->i_rwsem);
977 			lockdep_set_class(&inode->i_rwsem,
978 					  &type->i_mutex_dir_key);
979 		}
980 	}
981 }
982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
983 #endif
984 
985 /**
986  * unlock_new_inode - clear the I_NEW state and wake up any waiters
987  * @inode:	new inode to unlock
988  *
989  * Called when the inode is fully initialised to clear the new state of the
990  * inode and wake up anyone waiting for the inode to finish initialisation.
991  */
992 void unlock_new_inode(struct inode *inode)
993 {
994 	lockdep_annotate_inode_mutex_key(inode);
995 	spin_lock(&inode->i_lock);
996 	WARN_ON(!(inode->i_state & I_NEW));
997 	inode->i_state &= ~I_NEW & ~I_CREATING;
998 	smp_mb();
999 	wake_up_bit(&inode->i_state, __I_NEW);
1000 	spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(unlock_new_inode);
1003 
1004 void discard_new_inode(struct inode *inode)
1005 {
1006 	lockdep_annotate_inode_mutex_key(inode);
1007 	spin_lock(&inode->i_lock);
1008 	WARN_ON(!(inode->i_state & I_NEW));
1009 	inode->i_state &= ~I_NEW;
1010 	smp_mb();
1011 	wake_up_bit(&inode->i_state, __I_NEW);
1012 	spin_unlock(&inode->i_lock);
1013 	iput(inode);
1014 }
1015 EXPORT_SYMBOL(discard_new_inode);
1016 
1017 /**
1018  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019  *
1020  * Lock any non-NULL argument that is not a directory.
1021  * Zero, one or two objects may be locked by this function.
1022  *
1023  * @inode1: first inode to lock
1024  * @inode2: second inode to lock
1025  */
1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 {
1028 	if (inode1 > inode2)
1029 		swap(inode1, inode2);
1030 
1031 	if (inode1 && !S_ISDIR(inode1->i_mode))
1032 		inode_lock(inode1);
1033 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035 }
1036 EXPORT_SYMBOL(lock_two_nondirectories);
1037 
1038 /**
1039  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040  * @inode1: first inode to unlock
1041  * @inode2: second inode to unlock
1042  */
1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044 {
1045 	if (inode1 && !S_ISDIR(inode1->i_mode))
1046 		inode_unlock(inode1);
1047 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048 		inode_unlock(inode2);
1049 }
1050 EXPORT_SYMBOL(unlock_two_nondirectories);
1051 
1052 /**
1053  * inode_insert5 - obtain an inode from a mounted file system
1054  * @inode:	pre-allocated inode to use for insert to cache
1055  * @hashval:	hash value (usually inode number) to get
1056  * @test:	callback used for comparisons between inodes
1057  * @set:	callback used to initialize a new struct inode
1058  * @data:	opaque data pointer to pass to @test and @set
1059  *
1060  * Search for the inode specified by @hashval and @data in the inode cache,
1061  * and if present it is return it with an increased reference count. This is
1062  * a variant of iget5_locked() for callers that don't want to fail on memory
1063  * allocation of inode.
1064  *
1065  * If the inode is not in cache, insert the pre-allocated inode to cache and
1066  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067  * to fill it in before unlocking it via unlock_new_inode().
1068  *
1069  * Note both @test and @set are called with the inode_hash_lock held, so can't
1070  * sleep.
1071  */
1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073 			    int (*test)(struct inode *, void *),
1074 			    int (*set)(struct inode *, void *), void *data)
1075 {
1076 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 	struct inode *old;
1078 	bool creating = inode->i_state & I_CREATING;
1079 
1080 again:
1081 	spin_lock(&inode_hash_lock);
1082 	old = find_inode(inode->i_sb, head, test, data);
1083 	if (unlikely(old)) {
1084 		/*
1085 		 * Uhhuh, somebody else created the same inode under us.
1086 		 * Use the old inode instead of the preallocated one.
1087 		 */
1088 		spin_unlock(&inode_hash_lock);
1089 		if (IS_ERR(old))
1090 			return NULL;
1091 		wait_on_inode(old);
1092 		if (unlikely(inode_unhashed(old))) {
1093 			iput(old);
1094 			goto again;
1095 		}
1096 		return old;
1097 	}
1098 
1099 	if (set && unlikely(set(inode, data))) {
1100 		inode = NULL;
1101 		goto unlock;
1102 	}
1103 
1104 	/*
1105 	 * Return the locked inode with I_NEW set, the
1106 	 * caller is responsible for filling in the contents
1107 	 */
1108 	spin_lock(&inode->i_lock);
1109 	inode->i_state |= I_NEW;
1110 	hlist_add_head_rcu(&inode->i_hash, head);
1111 	spin_unlock(&inode->i_lock);
1112 	if (!creating)
1113 		inode_sb_list_add(inode);
1114 unlock:
1115 	spin_unlock(&inode_hash_lock);
1116 
1117 	return inode;
1118 }
1119 EXPORT_SYMBOL(inode_insert5);
1120 
1121 /**
1122  * iget5_locked - obtain an inode from a mounted file system
1123  * @sb:		super block of file system
1124  * @hashval:	hash value (usually inode number) to get
1125  * @test:	callback used for comparisons between inodes
1126  * @set:	callback used to initialize a new struct inode
1127  * @data:	opaque data pointer to pass to @test and @set
1128  *
1129  * Search for the inode specified by @hashval and @data in the inode cache,
1130  * and if present it is return it with an increased reference count. This is
1131  * a generalized version of iget_locked() for file systems where the inode
1132  * number is not sufficient for unique identification of an inode.
1133  *
1134  * If the inode is not in cache, allocate a new inode and return it locked,
1135  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136  * before unlocking it via unlock_new_inode().
1137  *
1138  * Note both @test and @set are called with the inode_hash_lock held, so can't
1139  * sleep.
1140  */
1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142 		int (*test)(struct inode *, void *),
1143 		int (*set)(struct inode *, void *), void *data)
1144 {
1145 	struct inode *inode = ilookup5(sb, hashval, test, data);
1146 
1147 	if (!inode) {
1148 		struct inode *new = alloc_inode(sb);
1149 
1150 		if (new) {
1151 			new->i_state = 0;
1152 			inode = inode_insert5(new, hashval, test, set, data);
1153 			if (unlikely(inode != new))
1154 				destroy_inode(new);
1155 		}
1156 	}
1157 	return inode;
1158 }
1159 EXPORT_SYMBOL(iget5_locked);
1160 
1161 /**
1162  * iget_locked - obtain an inode from a mounted file system
1163  * @sb:		super block of file system
1164  * @ino:	inode number to get
1165  *
1166  * Search for the inode specified by @ino in the inode cache and if present
1167  * return it with an increased reference count. This is for file systems
1168  * where the inode number is sufficient for unique identification of an inode.
1169  *
1170  * If the inode is not in cache, allocate a new inode and return it locked,
1171  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1172  * before unlocking it via unlock_new_inode().
1173  */
1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175 {
1176 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177 	struct inode *inode;
1178 again:
1179 	spin_lock(&inode_hash_lock);
1180 	inode = find_inode_fast(sb, head, ino);
1181 	spin_unlock(&inode_hash_lock);
1182 	if (inode) {
1183 		if (IS_ERR(inode))
1184 			return NULL;
1185 		wait_on_inode(inode);
1186 		if (unlikely(inode_unhashed(inode))) {
1187 			iput(inode);
1188 			goto again;
1189 		}
1190 		return inode;
1191 	}
1192 
1193 	inode = alloc_inode(sb);
1194 	if (inode) {
1195 		struct inode *old;
1196 
1197 		spin_lock(&inode_hash_lock);
1198 		/* We released the lock, so.. */
1199 		old = find_inode_fast(sb, head, ino);
1200 		if (!old) {
1201 			inode->i_ino = ino;
1202 			spin_lock(&inode->i_lock);
1203 			inode->i_state = I_NEW;
1204 			hlist_add_head_rcu(&inode->i_hash, head);
1205 			spin_unlock(&inode->i_lock);
1206 			inode_sb_list_add(inode);
1207 			spin_unlock(&inode_hash_lock);
1208 
1209 			/* Return the locked inode with I_NEW set, the
1210 			 * caller is responsible for filling in the contents
1211 			 */
1212 			return inode;
1213 		}
1214 
1215 		/*
1216 		 * Uhhuh, somebody else created the same inode under
1217 		 * us. Use the old inode instead of the one we just
1218 		 * allocated.
1219 		 */
1220 		spin_unlock(&inode_hash_lock);
1221 		destroy_inode(inode);
1222 		if (IS_ERR(old))
1223 			return NULL;
1224 		inode = old;
1225 		wait_on_inode(inode);
1226 		if (unlikely(inode_unhashed(inode))) {
1227 			iput(inode);
1228 			goto again;
1229 		}
1230 	}
1231 	return inode;
1232 }
1233 EXPORT_SYMBOL(iget_locked);
1234 
1235 /*
1236  * search the inode cache for a matching inode number.
1237  * If we find one, then the inode number we are trying to
1238  * allocate is not unique and so we should not use it.
1239  *
1240  * Returns 1 if the inode number is unique, 0 if it is not.
1241  */
1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243 {
1244 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245 	struct inode *inode;
1246 
1247 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1248 		if (inode->i_ino == ino && inode->i_sb == sb)
1249 			return 0;
1250 	}
1251 	return 1;
1252 }
1253 
1254 /**
1255  *	iunique - get a unique inode number
1256  *	@sb: superblock
1257  *	@max_reserved: highest reserved inode number
1258  *
1259  *	Obtain an inode number that is unique on the system for a given
1260  *	superblock. This is used by file systems that have no natural
1261  *	permanent inode numbering system. An inode number is returned that
1262  *	is higher than the reserved limit but unique.
1263  *
1264  *	BUGS:
1265  *	With a large number of inodes live on the file system this function
1266  *	currently becomes quite slow.
1267  */
1268 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269 {
1270 	/*
1271 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1273 	 * here to attempt to avoid that.
1274 	 */
1275 	static DEFINE_SPINLOCK(iunique_lock);
1276 	static unsigned int counter;
1277 	ino_t res;
1278 
1279 	rcu_read_lock();
1280 	spin_lock(&iunique_lock);
1281 	do {
1282 		if (counter <= max_reserved)
1283 			counter = max_reserved + 1;
1284 		res = counter++;
1285 	} while (!test_inode_iunique(sb, res));
1286 	spin_unlock(&iunique_lock);
1287 	rcu_read_unlock();
1288 
1289 	return res;
1290 }
1291 EXPORT_SYMBOL(iunique);
1292 
1293 struct inode *igrab(struct inode *inode)
1294 {
1295 	spin_lock(&inode->i_lock);
1296 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297 		__iget(inode);
1298 		spin_unlock(&inode->i_lock);
1299 	} else {
1300 		spin_unlock(&inode->i_lock);
1301 		/*
1302 		 * Handle the case where s_op->clear_inode is not been
1303 		 * called yet, and somebody is calling igrab
1304 		 * while the inode is getting freed.
1305 		 */
1306 		inode = NULL;
1307 	}
1308 	return inode;
1309 }
1310 EXPORT_SYMBOL(igrab);
1311 
1312 /**
1313  * ilookup5_nowait - search for an inode in the inode cache
1314  * @sb:		super block of file system to search
1315  * @hashval:	hash value (usually inode number) to search for
1316  * @test:	callback used for comparisons between inodes
1317  * @data:	opaque data pointer to pass to @test
1318  *
1319  * Search for the inode specified by @hashval and @data in the inode cache.
1320  * If the inode is in the cache, the inode is returned with an incremented
1321  * reference count.
1322  *
1323  * Note: I_NEW is not waited upon so you have to be very careful what you do
1324  * with the returned inode.  You probably should be using ilookup5() instead.
1325  *
1326  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327  */
1328 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329 		int (*test)(struct inode *, void *), void *data)
1330 {
1331 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 	struct inode *inode;
1333 
1334 	spin_lock(&inode_hash_lock);
1335 	inode = find_inode(sb, head, test, data);
1336 	spin_unlock(&inode_hash_lock);
1337 
1338 	return IS_ERR(inode) ? NULL : inode;
1339 }
1340 EXPORT_SYMBOL(ilookup5_nowait);
1341 
1342 /**
1343  * ilookup5 - search for an inode in the inode cache
1344  * @sb:		super block of file system to search
1345  * @hashval:	hash value (usually inode number) to search for
1346  * @test:	callback used for comparisons between inodes
1347  * @data:	opaque data pointer to pass to @test
1348  *
1349  * Search for the inode specified by @hashval and @data in the inode cache,
1350  * and if the inode is in the cache, return the inode with an incremented
1351  * reference count.  Waits on I_NEW before returning the inode.
1352  * returned with an incremented reference count.
1353  *
1354  * This is a generalized version of ilookup() for file systems where the
1355  * inode number is not sufficient for unique identification of an inode.
1356  *
1357  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358  */
1359 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360 		int (*test)(struct inode *, void *), void *data)
1361 {
1362 	struct inode *inode;
1363 again:
1364 	inode = ilookup5_nowait(sb, hashval, test, data);
1365 	if (inode) {
1366 		wait_on_inode(inode);
1367 		if (unlikely(inode_unhashed(inode))) {
1368 			iput(inode);
1369 			goto again;
1370 		}
1371 	}
1372 	return inode;
1373 }
1374 EXPORT_SYMBOL(ilookup5);
1375 
1376 /**
1377  * ilookup - search for an inode in the inode cache
1378  * @sb:		super block of file system to search
1379  * @ino:	inode number to search for
1380  *
1381  * Search for the inode @ino in the inode cache, and if the inode is in the
1382  * cache, the inode is returned with an incremented reference count.
1383  */
1384 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385 {
1386 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387 	struct inode *inode;
1388 again:
1389 	spin_lock(&inode_hash_lock);
1390 	inode = find_inode_fast(sb, head, ino);
1391 	spin_unlock(&inode_hash_lock);
1392 
1393 	if (inode) {
1394 		if (IS_ERR(inode))
1395 			return NULL;
1396 		wait_on_inode(inode);
1397 		if (unlikely(inode_unhashed(inode))) {
1398 			iput(inode);
1399 			goto again;
1400 		}
1401 	}
1402 	return inode;
1403 }
1404 EXPORT_SYMBOL(ilookup);
1405 
1406 /**
1407  * find_inode_nowait - find an inode in the inode cache
1408  * @sb:		super block of file system to search
1409  * @hashval:	hash value (usually inode number) to search for
1410  * @match:	callback used for comparisons between inodes
1411  * @data:	opaque data pointer to pass to @match
1412  *
1413  * Search for the inode specified by @hashval and @data in the inode
1414  * cache, where the helper function @match will return 0 if the inode
1415  * does not match, 1 if the inode does match, and -1 if the search
1416  * should be stopped.  The @match function must be responsible for
1417  * taking the i_lock spin_lock and checking i_state for an inode being
1418  * freed or being initialized, and incrementing the reference count
1419  * before returning 1.  It also must not sleep, since it is called with
1420  * the inode_hash_lock spinlock held.
1421  *
1422  * This is a even more generalized version of ilookup5() when the
1423  * function must never block --- find_inode() can block in
1424  * __wait_on_freeing_inode() --- or when the caller can not increment
1425  * the reference count because the resulting iput() might cause an
1426  * inode eviction.  The tradeoff is that the @match funtion must be
1427  * very carefully implemented.
1428  */
1429 struct inode *find_inode_nowait(struct super_block *sb,
1430 				unsigned long hashval,
1431 				int (*match)(struct inode *, unsigned long,
1432 					     void *),
1433 				void *data)
1434 {
1435 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436 	struct inode *inode, *ret_inode = NULL;
1437 	int mval;
1438 
1439 	spin_lock(&inode_hash_lock);
1440 	hlist_for_each_entry(inode, head, i_hash) {
1441 		if (inode->i_sb != sb)
1442 			continue;
1443 		mval = match(inode, hashval, data);
1444 		if (mval == 0)
1445 			continue;
1446 		if (mval == 1)
1447 			ret_inode = inode;
1448 		goto out;
1449 	}
1450 out:
1451 	spin_unlock(&inode_hash_lock);
1452 	return ret_inode;
1453 }
1454 EXPORT_SYMBOL(find_inode_nowait);
1455 
1456 /**
1457  * find_inode_rcu - find an inode in the inode cache
1458  * @sb:		Super block of file system to search
1459  * @hashval:	Key to hash
1460  * @test:	Function to test match on an inode
1461  * @data:	Data for test function
1462  *
1463  * Search for the inode specified by @hashval and @data in the inode cache,
1464  * where the helper function @test will return 0 if the inode does not match
1465  * and 1 if it does.  The @test function must be responsible for taking the
1466  * i_lock spin_lock and checking i_state for an inode being freed or being
1467  * initialized.
1468  *
1469  * If successful, this will return the inode for which the @test function
1470  * returned 1 and NULL otherwise.
1471  *
1472  * The @test function is not permitted to take a ref on any inode presented.
1473  * It is also not permitted to sleep.
1474  *
1475  * The caller must hold the RCU read lock.
1476  */
1477 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478 			     int (*test)(struct inode *, void *), void *data)
1479 {
1480 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 	struct inode *inode;
1482 
1483 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484 			 "suspicious find_inode_rcu() usage");
1485 
1486 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1487 		if (inode->i_sb == sb &&
1488 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489 		    test(inode, data))
1490 			return inode;
1491 	}
1492 	return NULL;
1493 }
1494 EXPORT_SYMBOL(find_inode_rcu);
1495 
1496 /**
1497  * find_inode_by_ino_rcu - Find an inode in the inode cache
1498  * @sb:		Super block of file system to search
1499  * @ino:	The inode number to match
1500  *
1501  * Search for the inode specified by @hashval and @data in the inode cache,
1502  * where the helper function @test will return 0 if the inode does not match
1503  * and 1 if it does.  The @test function must be responsible for taking the
1504  * i_lock spin_lock and checking i_state for an inode being freed or being
1505  * initialized.
1506  *
1507  * If successful, this will return the inode for which the @test function
1508  * returned 1 and NULL otherwise.
1509  *
1510  * The @test function is not permitted to take a ref on any inode presented.
1511  * It is also not permitted to sleep.
1512  *
1513  * The caller must hold the RCU read lock.
1514  */
1515 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516 				    unsigned long ino)
1517 {
1518 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519 	struct inode *inode;
1520 
1521 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522 			 "suspicious find_inode_by_ino_rcu() usage");
1523 
1524 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1525 		if (inode->i_ino == ino &&
1526 		    inode->i_sb == sb &&
1527 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528 		    return inode;
1529 	}
1530 	return NULL;
1531 }
1532 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533 
1534 int insert_inode_locked(struct inode *inode)
1535 {
1536 	struct super_block *sb = inode->i_sb;
1537 	ino_t ino = inode->i_ino;
1538 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539 
1540 	while (1) {
1541 		struct inode *old = NULL;
1542 		spin_lock(&inode_hash_lock);
1543 		hlist_for_each_entry(old, head, i_hash) {
1544 			if (old->i_ino != ino)
1545 				continue;
1546 			if (old->i_sb != sb)
1547 				continue;
1548 			spin_lock(&old->i_lock);
1549 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550 				spin_unlock(&old->i_lock);
1551 				continue;
1552 			}
1553 			break;
1554 		}
1555 		if (likely(!old)) {
1556 			spin_lock(&inode->i_lock);
1557 			inode->i_state |= I_NEW | I_CREATING;
1558 			hlist_add_head_rcu(&inode->i_hash, head);
1559 			spin_unlock(&inode->i_lock);
1560 			spin_unlock(&inode_hash_lock);
1561 			return 0;
1562 		}
1563 		if (unlikely(old->i_state & I_CREATING)) {
1564 			spin_unlock(&old->i_lock);
1565 			spin_unlock(&inode_hash_lock);
1566 			return -EBUSY;
1567 		}
1568 		__iget(old);
1569 		spin_unlock(&old->i_lock);
1570 		spin_unlock(&inode_hash_lock);
1571 		wait_on_inode(old);
1572 		if (unlikely(!inode_unhashed(old))) {
1573 			iput(old);
1574 			return -EBUSY;
1575 		}
1576 		iput(old);
1577 	}
1578 }
1579 EXPORT_SYMBOL(insert_inode_locked);
1580 
1581 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582 		int (*test)(struct inode *, void *), void *data)
1583 {
1584 	struct inode *old;
1585 
1586 	inode->i_state |= I_CREATING;
1587 	old = inode_insert5(inode, hashval, test, NULL, data);
1588 
1589 	if (old != inode) {
1590 		iput(old);
1591 		return -EBUSY;
1592 	}
1593 	return 0;
1594 }
1595 EXPORT_SYMBOL(insert_inode_locked4);
1596 
1597 
1598 int generic_delete_inode(struct inode *inode)
1599 {
1600 	return 1;
1601 }
1602 EXPORT_SYMBOL(generic_delete_inode);
1603 
1604 /*
1605  * Called when we're dropping the last reference
1606  * to an inode.
1607  *
1608  * Call the FS "drop_inode()" function, defaulting to
1609  * the legacy UNIX filesystem behaviour.  If it tells
1610  * us to evict inode, do so.  Otherwise, retain inode
1611  * in cache if fs is alive, sync and evict if fs is
1612  * shutting down.
1613  */
1614 static void iput_final(struct inode *inode)
1615 {
1616 	struct super_block *sb = inode->i_sb;
1617 	const struct super_operations *op = inode->i_sb->s_op;
1618 	unsigned long state;
1619 	int drop;
1620 
1621 	WARN_ON(inode->i_state & I_NEW);
1622 
1623 	if (op->drop_inode)
1624 		drop = op->drop_inode(inode);
1625 	else
1626 		drop = generic_drop_inode(inode);
1627 
1628 	if (!drop &&
1629 	    !(inode->i_state & I_DONTCACHE) &&
1630 	    (sb->s_flags & SB_ACTIVE)) {
1631 		inode_add_lru(inode);
1632 		spin_unlock(&inode->i_lock);
1633 		return;
1634 	}
1635 
1636 	state = inode->i_state;
1637 	if (!drop) {
1638 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1639 		spin_unlock(&inode->i_lock);
1640 
1641 		write_inode_now(inode, 1);
1642 
1643 		spin_lock(&inode->i_lock);
1644 		state = inode->i_state;
1645 		WARN_ON(state & I_NEW);
1646 		state &= ~I_WILL_FREE;
1647 	}
1648 
1649 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1650 	if (!list_empty(&inode->i_lru))
1651 		inode_lru_list_del(inode);
1652 	spin_unlock(&inode->i_lock);
1653 
1654 	evict(inode);
1655 }
1656 
1657 /**
1658  *	iput	- put an inode
1659  *	@inode: inode to put
1660  *
1661  *	Puts an inode, dropping its usage count. If the inode use count hits
1662  *	zero, the inode is then freed and may also be destroyed.
1663  *
1664  *	Consequently, iput() can sleep.
1665  */
1666 void iput(struct inode *inode)
1667 {
1668 	if (!inode)
1669 		return;
1670 	BUG_ON(inode->i_state & I_CLEAR);
1671 retry:
1672 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1673 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1674 			atomic_inc(&inode->i_count);
1675 			spin_unlock(&inode->i_lock);
1676 			trace_writeback_lazytime_iput(inode);
1677 			mark_inode_dirty_sync(inode);
1678 			goto retry;
1679 		}
1680 		iput_final(inode);
1681 	}
1682 }
1683 EXPORT_SYMBOL(iput);
1684 
1685 #ifdef CONFIG_BLOCK
1686 /**
1687  *	bmap	- find a block number in a file
1688  *	@inode:  inode owning the block number being requested
1689  *	@block: pointer containing the block to find
1690  *
1691  *	Replaces the value in ``*block`` with the block number on the device holding
1692  *	corresponding to the requested block number in the file.
1693  *	That is, asked for block 4 of inode 1 the function will replace the
1694  *	4 in ``*block``, with disk block relative to the disk start that holds that
1695  *	block of the file.
1696  *
1697  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1698  *	hole, returns 0 and ``*block`` is also set to 0.
1699  */
1700 int bmap(struct inode *inode, sector_t *block)
1701 {
1702 	if (!inode->i_mapping->a_ops->bmap)
1703 		return -EINVAL;
1704 
1705 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(bmap);
1709 #endif
1710 
1711 /*
1712  * With relative atime, only update atime if the previous atime is
1713  * earlier than either the ctime or mtime or if at least a day has
1714  * passed since the last atime update.
1715  */
1716 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1717 			     struct timespec64 now)
1718 {
1719 
1720 	if (!(mnt->mnt_flags & MNT_RELATIME))
1721 		return 1;
1722 	/*
1723 	 * Is mtime younger than atime? If yes, update atime:
1724 	 */
1725 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1726 		return 1;
1727 	/*
1728 	 * Is ctime younger than atime? If yes, update atime:
1729 	 */
1730 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1731 		return 1;
1732 
1733 	/*
1734 	 * Is the previous atime value older than a day? If yes,
1735 	 * update atime:
1736 	 */
1737 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1738 		return 1;
1739 	/*
1740 	 * Good, we can skip the atime update:
1741 	 */
1742 	return 0;
1743 }
1744 
1745 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1746 {
1747 	int dirty_flags = 0;
1748 
1749 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1750 		if (flags & S_ATIME)
1751 			inode->i_atime = *time;
1752 		if (flags & S_CTIME)
1753 			inode->i_ctime = *time;
1754 		if (flags & S_MTIME)
1755 			inode->i_mtime = *time;
1756 
1757 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1758 			dirty_flags |= I_DIRTY_TIME;
1759 		else
1760 			dirty_flags |= I_DIRTY_SYNC;
1761 	}
1762 
1763 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1764 		dirty_flags |= I_DIRTY_SYNC;
1765 
1766 	__mark_inode_dirty(inode, dirty_flags);
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(generic_update_time);
1770 
1771 /*
1772  * This does the actual work of updating an inodes time or version.  Must have
1773  * had called mnt_want_write() before calling this.
1774  */
1775 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1776 {
1777 	if (inode->i_op->update_time)
1778 		return inode->i_op->update_time(inode, time, flags);
1779 	return generic_update_time(inode, time, flags);
1780 }
1781 
1782 /**
1783  *	atime_needs_update	-	update the access time
1784  *	@path: the &struct path to update
1785  *	@inode: inode to update
1786  *
1787  *	Update the accessed time on an inode and mark it for writeback.
1788  *	This function automatically handles read only file systems and media,
1789  *	as well as the "noatime" flag and inode specific "noatime" markers.
1790  */
1791 bool atime_needs_update(const struct path *path, struct inode *inode)
1792 {
1793 	struct vfsmount *mnt = path->mnt;
1794 	struct timespec64 now;
1795 
1796 	if (inode->i_flags & S_NOATIME)
1797 		return false;
1798 
1799 	/* Atime updates will likely cause i_uid and i_gid to be written
1800 	 * back improprely if their true value is unknown to the vfs.
1801 	 */
1802 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1803 		return false;
1804 
1805 	if (IS_NOATIME(inode))
1806 		return false;
1807 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1808 		return false;
1809 
1810 	if (mnt->mnt_flags & MNT_NOATIME)
1811 		return false;
1812 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1813 		return false;
1814 
1815 	now = current_time(inode);
1816 
1817 	if (!relatime_need_update(mnt, inode, now))
1818 		return false;
1819 
1820 	if (timespec64_equal(&inode->i_atime, &now))
1821 		return false;
1822 
1823 	return true;
1824 }
1825 
1826 void touch_atime(const struct path *path)
1827 {
1828 	struct vfsmount *mnt = path->mnt;
1829 	struct inode *inode = d_inode(path->dentry);
1830 	struct timespec64 now;
1831 
1832 	if (!atime_needs_update(path, inode))
1833 		return;
1834 
1835 	if (!sb_start_write_trylock(inode->i_sb))
1836 		return;
1837 
1838 	if (__mnt_want_write(mnt) != 0)
1839 		goto skip_update;
1840 	/*
1841 	 * File systems can error out when updating inodes if they need to
1842 	 * allocate new space to modify an inode (such is the case for
1843 	 * Btrfs), but since we touch atime while walking down the path we
1844 	 * really don't care if we failed to update the atime of the file,
1845 	 * so just ignore the return value.
1846 	 * We may also fail on filesystems that have the ability to make parts
1847 	 * of the fs read only, e.g. subvolumes in Btrfs.
1848 	 */
1849 	now = current_time(inode);
1850 	update_time(inode, &now, S_ATIME);
1851 	__mnt_drop_write(mnt);
1852 skip_update:
1853 	sb_end_write(inode->i_sb);
1854 }
1855 EXPORT_SYMBOL(touch_atime);
1856 
1857 /*
1858  * The logic we want is
1859  *
1860  *	if suid or (sgid and xgrp)
1861  *		remove privs
1862  */
1863 int should_remove_suid(struct dentry *dentry)
1864 {
1865 	umode_t mode = d_inode(dentry)->i_mode;
1866 	int kill = 0;
1867 
1868 	/* suid always must be killed */
1869 	if (unlikely(mode & S_ISUID))
1870 		kill = ATTR_KILL_SUID;
1871 
1872 	/*
1873 	 * sgid without any exec bits is just a mandatory locking mark; leave
1874 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1875 	 */
1876 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1877 		kill |= ATTR_KILL_SGID;
1878 
1879 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1880 		return kill;
1881 
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL(should_remove_suid);
1885 
1886 /*
1887  * Return mask of changes for notify_change() that need to be done as a
1888  * response to write or truncate. Return 0 if nothing has to be changed.
1889  * Negative value on error (change should be denied).
1890  */
1891 int dentry_needs_remove_privs(struct dentry *dentry)
1892 {
1893 	struct inode *inode = d_inode(dentry);
1894 	int mask = 0;
1895 	int ret;
1896 
1897 	if (IS_NOSEC(inode))
1898 		return 0;
1899 
1900 	mask = should_remove_suid(dentry);
1901 	ret = security_inode_need_killpriv(dentry);
1902 	if (ret < 0)
1903 		return ret;
1904 	if (ret)
1905 		mask |= ATTR_KILL_PRIV;
1906 	return mask;
1907 }
1908 
1909 static int __remove_privs(struct user_namespace *mnt_userns,
1910 			  struct dentry *dentry, int kill)
1911 {
1912 	struct iattr newattrs;
1913 
1914 	newattrs.ia_valid = ATTR_FORCE | kill;
1915 	/*
1916 	 * Note we call this on write, so notify_change will not
1917 	 * encounter any conflicting delegations:
1918 	 */
1919 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1920 }
1921 
1922 /*
1923  * Remove special file priviledges (suid, capabilities) when file is written
1924  * to or truncated.
1925  */
1926 int file_remove_privs(struct file *file)
1927 {
1928 	struct dentry *dentry = file_dentry(file);
1929 	struct inode *inode = file_inode(file);
1930 	int kill;
1931 	int error = 0;
1932 
1933 	/*
1934 	 * Fast path for nothing security related.
1935 	 * As well for non-regular files, e.g. blkdev inodes.
1936 	 * For example, blkdev_write_iter() might get here
1937 	 * trying to remove privs which it is not allowed to.
1938 	 */
1939 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1940 		return 0;
1941 
1942 	kill = dentry_needs_remove_privs(dentry);
1943 	if (kill < 0)
1944 		return kill;
1945 	if (kill)
1946 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1947 	if (!error)
1948 		inode_has_no_xattr(inode);
1949 
1950 	return error;
1951 }
1952 EXPORT_SYMBOL(file_remove_privs);
1953 
1954 /**
1955  *	file_update_time	-	update mtime and ctime time
1956  *	@file: file accessed
1957  *
1958  *	Update the mtime and ctime members of an inode and mark the inode
1959  *	for writeback.  Note that this function is meant exclusively for
1960  *	usage in the file write path of filesystems, and filesystems may
1961  *	choose to explicitly ignore update via this function with the
1962  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1963  *	timestamps are handled by the server.  This can return an error for
1964  *	file systems who need to allocate space in order to update an inode.
1965  */
1966 
1967 int file_update_time(struct file *file)
1968 {
1969 	struct inode *inode = file_inode(file);
1970 	struct timespec64 now;
1971 	int sync_it = 0;
1972 	int ret;
1973 
1974 	/* First try to exhaust all avenues to not sync */
1975 	if (IS_NOCMTIME(inode))
1976 		return 0;
1977 
1978 	now = current_time(inode);
1979 	if (!timespec64_equal(&inode->i_mtime, &now))
1980 		sync_it = S_MTIME;
1981 
1982 	if (!timespec64_equal(&inode->i_ctime, &now))
1983 		sync_it |= S_CTIME;
1984 
1985 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1986 		sync_it |= S_VERSION;
1987 
1988 	if (!sync_it)
1989 		return 0;
1990 
1991 	/* Finally allowed to write? Takes lock. */
1992 	if (__mnt_want_write_file(file))
1993 		return 0;
1994 
1995 	ret = update_time(inode, &now, sync_it);
1996 	__mnt_drop_write_file(file);
1997 
1998 	return ret;
1999 }
2000 EXPORT_SYMBOL(file_update_time);
2001 
2002 /* Caller must hold the file's inode lock */
2003 int file_modified(struct file *file)
2004 {
2005 	int err;
2006 
2007 	/*
2008 	 * Clear the security bits if the process is not being run by root.
2009 	 * This keeps people from modifying setuid and setgid binaries.
2010 	 */
2011 	err = file_remove_privs(file);
2012 	if (err)
2013 		return err;
2014 
2015 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2016 		return 0;
2017 
2018 	return file_update_time(file);
2019 }
2020 EXPORT_SYMBOL(file_modified);
2021 
2022 int inode_needs_sync(struct inode *inode)
2023 {
2024 	if (IS_SYNC(inode))
2025 		return 1;
2026 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2027 		return 1;
2028 	return 0;
2029 }
2030 EXPORT_SYMBOL(inode_needs_sync);
2031 
2032 /*
2033  * If we try to find an inode in the inode hash while it is being
2034  * deleted, we have to wait until the filesystem completes its
2035  * deletion before reporting that it isn't found.  This function waits
2036  * until the deletion _might_ have completed.  Callers are responsible
2037  * to recheck inode state.
2038  *
2039  * It doesn't matter if I_NEW is not set initially, a call to
2040  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2041  * will DTRT.
2042  */
2043 static void __wait_on_freeing_inode(struct inode *inode)
2044 {
2045 	wait_queue_head_t *wq;
2046 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2047 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2048 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2049 	spin_unlock(&inode->i_lock);
2050 	spin_unlock(&inode_hash_lock);
2051 	schedule();
2052 	finish_wait(wq, &wait.wq_entry);
2053 	spin_lock(&inode_hash_lock);
2054 }
2055 
2056 static __initdata unsigned long ihash_entries;
2057 static int __init set_ihash_entries(char *str)
2058 {
2059 	if (!str)
2060 		return 0;
2061 	ihash_entries = simple_strtoul(str, &str, 0);
2062 	return 1;
2063 }
2064 __setup("ihash_entries=", set_ihash_entries);
2065 
2066 /*
2067  * Initialize the waitqueues and inode hash table.
2068  */
2069 void __init inode_init_early(void)
2070 {
2071 	/* If hashes are distributed across NUMA nodes, defer
2072 	 * hash allocation until vmalloc space is available.
2073 	 */
2074 	if (hashdist)
2075 		return;
2076 
2077 	inode_hashtable =
2078 		alloc_large_system_hash("Inode-cache",
2079 					sizeof(struct hlist_head),
2080 					ihash_entries,
2081 					14,
2082 					HASH_EARLY | HASH_ZERO,
2083 					&i_hash_shift,
2084 					&i_hash_mask,
2085 					0,
2086 					0);
2087 }
2088 
2089 void __init inode_init(void)
2090 {
2091 	/* inode slab cache */
2092 	inode_cachep = kmem_cache_create("inode_cache",
2093 					 sizeof(struct inode),
2094 					 0,
2095 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2096 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2097 					 init_once);
2098 
2099 	/* Hash may have been set up in inode_init_early */
2100 	if (!hashdist)
2101 		return;
2102 
2103 	inode_hashtable =
2104 		alloc_large_system_hash("Inode-cache",
2105 					sizeof(struct hlist_head),
2106 					ihash_entries,
2107 					14,
2108 					HASH_ZERO,
2109 					&i_hash_shift,
2110 					&i_hash_mask,
2111 					0,
2112 					0);
2113 }
2114 
2115 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2116 {
2117 	inode->i_mode = mode;
2118 	if (S_ISCHR(mode)) {
2119 		inode->i_fop = &def_chr_fops;
2120 		inode->i_rdev = rdev;
2121 	} else if (S_ISBLK(mode)) {
2122 		inode->i_fop = &def_blk_fops;
2123 		inode->i_rdev = rdev;
2124 	} else if (S_ISFIFO(mode))
2125 		inode->i_fop = &pipefifo_fops;
2126 	else if (S_ISSOCK(mode))
2127 		;	/* leave it no_open_fops */
2128 	else
2129 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2130 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2131 				  inode->i_ino);
2132 }
2133 EXPORT_SYMBOL(init_special_inode);
2134 
2135 /**
2136  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2137  * @mnt_userns:	User namespace of the mount the inode was created from
2138  * @inode: New inode
2139  * @dir: Directory inode
2140  * @mode: mode of the new inode
2141  *
2142  * If the inode has been created through an idmapped mount the user namespace of
2143  * the vfsmount must be passed through @mnt_userns. This function will then take
2144  * care to map the inode according to @mnt_userns before checking permissions
2145  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2146  * checking is to be performed on the raw inode simply passs init_user_ns.
2147  */
2148 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2149 		      const struct inode *dir, umode_t mode)
2150 {
2151 	inode->i_uid = fsuid_into_mnt(mnt_userns);
2152 	if (dir && dir->i_mode & S_ISGID) {
2153 		inode->i_gid = dir->i_gid;
2154 
2155 		/* Directories are special, and always inherit S_ISGID */
2156 		if (S_ISDIR(mode))
2157 			mode |= S_ISGID;
2158 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2159 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2160 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2161 			mode &= ~S_ISGID;
2162 	} else
2163 		inode->i_gid = fsgid_into_mnt(mnt_userns);
2164 	inode->i_mode = mode;
2165 }
2166 EXPORT_SYMBOL(inode_init_owner);
2167 
2168 /**
2169  * inode_owner_or_capable - check current task permissions to inode
2170  * @mnt_userns:	user namespace of the mount the inode was found from
2171  * @inode: inode being checked
2172  *
2173  * Return true if current either has CAP_FOWNER in a namespace with the
2174  * inode owner uid mapped, or owns the file.
2175  *
2176  * If the inode has been found through an idmapped mount the user namespace of
2177  * the vfsmount must be passed through @mnt_userns. This function will then take
2178  * care to map the inode according to @mnt_userns before checking permissions.
2179  * On non-idmapped mounts or if permission checking is to be performed on the
2180  * raw inode simply passs init_user_ns.
2181  */
2182 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2183 			    const struct inode *inode)
2184 {
2185 	kuid_t i_uid;
2186 	struct user_namespace *ns;
2187 
2188 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2189 	if (uid_eq(current_fsuid(), i_uid))
2190 		return true;
2191 
2192 	ns = current_user_ns();
2193 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2194 		return true;
2195 	return false;
2196 }
2197 EXPORT_SYMBOL(inode_owner_or_capable);
2198 
2199 /*
2200  * Direct i/o helper functions
2201  */
2202 static void __inode_dio_wait(struct inode *inode)
2203 {
2204 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2205 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2206 
2207 	do {
2208 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2209 		if (atomic_read(&inode->i_dio_count))
2210 			schedule();
2211 	} while (atomic_read(&inode->i_dio_count));
2212 	finish_wait(wq, &q.wq_entry);
2213 }
2214 
2215 /**
2216  * inode_dio_wait - wait for outstanding DIO requests to finish
2217  * @inode: inode to wait for
2218  *
2219  * Waits for all pending direct I/O requests to finish so that we can
2220  * proceed with a truncate or equivalent operation.
2221  *
2222  * Must be called under a lock that serializes taking new references
2223  * to i_dio_count, usually by inode->i_mutex.
2224  */
2225 void inode_dio_wait(struct inode *inode)
2226 {
2227 	if (atomic_read(&inode->i_dio_count))
2228 		__inode_dio_wait(inode);
2229 }
2230 EXPORT_SYMBOL(inode_dio_wait);
2231 
2232 /*
2233  * inode_set_flags - atomically set some inode flags
2234  *
2235  * Note: the caller should be holding i_mutex, or else be sure that
2236  * they have exclusive access to the inode structure (i.e., while the
2237  * inode is being instantiated).  The reason for the cmpxchg() loop
2238  * --- which wouldn't be necessary if all code paths which modify
2239  * i_flags actually followed this rule, is that there is at least one
2240  * code path which doesn't today so we use cmpxchg() out of an abundance
2241  * of caution.
2242  *
2243  * In the long run, i_mutex is overkill, and we should probably look
2244  * at using the i_lock spinlock to protect i_flags, and then make sure
2245  * it is so documented in include/linux/fs.h and that all code follows
2246  * the locking convention!!
2247  */
2248 void inode_set_flags(struct inode *inode, unsigned int flags,
2249 		     unsigned int mask)
2250 {
2251 	WARN_ON_ONCE(flags & ~mask);
2252 	set_mask_bits(&inode->i_flags, mask, flags);
2253 }
2254 EXPORT_SYMBOL(inode_set_flags);
2255 
2256 void inode_nohighmem(struct inode *inode)
2257 {
2258 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2259 }
2260 EXPORT_SYMBOL(inode_nohighmem);
2261 
2262 /**
2263  * timestamp_truncate - Truncate timespec to a granularity
2264  * @t: Timespec
2265  * @inode: inode being updated
2266  *
2267  * Truncate a timespec to the granularity supported by the fs
2268  * containing the inode. Always rounds down. gran must
2269  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2270  */
2271 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2272 {
2273 	struct super_block *sb = inode->i_sb;
2274 	unsigned int gran = sb->s_time_gran;
2275 
2276 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2277 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2278 		t.tv_nsec = 0;
2279 
2280 	/* Avoid division in the common cases 1 ns and 1 s. */
2281 	if (gran == 1)
2282 		; /* nothing */
2283 	else if (gran == NSEC_PER_SEC)
2284 		t.tv_nsec = 0;
2285 	else if (gran > 1 && gran < NSEC_PER_SEC)
2286 		t.tv_nsec -= t.tv_nsec % gran;
2287 	else
2288 		WARN(1, "invalid file time granularity: %u", gran);
2289 	return t;
2290 }
2291 EXPORT_SYMBOL(timestamp_truncate);
2292 
2293 /**
2294  * current_time - Return FS time
2295  * @inode: inode.
2296  *
2297  * Return the current time truncated to the time granularity supported by
2298  * the fs.
2299  *
2300  * Note that inode and inode->sb cannot be NULL.
2301  * Otherwise, the function warns and returns time without truncation.
2302  */
2303 struct timespec64 current_time(struct inode *inode)
2304 {
2305 	struct timespec64 now;
2306 
2307 	ktime_get_coarse_real_ts64(&now);
2308 
2309 	if (unlikely(!inode->i_sb)) {
2310 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2311 		return now;
2312 	}
2313 
2314 	return timestamp_truncate(now, inode);
2315 }
2316 EXPORT_SYMBOL(current_time);
2317 
2318 /*
2319  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2320  * configurations.
2321  *
2322  * Note: the caller should be holding i_mutex, or else be sure that they have
2323  * exclusive access to the inode structure.
2324  */
2325 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2326 			     unsigned int flags)
2327 {
2328 	/*
2329 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2330 	 * the relevant capability.
2331 	 *
2332 	 * This test looks nicer. Thanks to Pauline Middelink
2333 	 */
2334 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2335 	    !capable(CAP_LINUX_IMMUTABLE))
2336 		return -EPERM;
2337 
2338 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2339 }
2340 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2341 
2342 /*
2343  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2344  * configurations.
2345  *
2346  * Note: the caller should be holding i_mutex, or else be sure that they have
2347  * exclusive access to the inode structure.
2348  */
2349 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2350 			     struct fsxattr *fa)
2351 {
2352 	/*
2353 	 * Can't modify an immutable/append-only file unless we have
2354 	 * appropriate permission.
2355 	 */
2356 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2357 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2358 	    !capable(CAP_LINUX_IMMUTABLE))
2359 		return -EPERM;
2360 
2361 	/*
2362 	 * Project Quota ID state is only allowed to change from within the init
2363 	 * namespace. Enforce that restriction only if we are trying to change
2364 	 * the quota ID state. Everything else is allowed in user namespaces.
2365 	 */
2366 	if (current_user_ns() != &init_user_ns) {
2367 		if (old_fa->fsx_projid != fa->fsx_projid)
2368 			return -EINVAL;
2369 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2370 				FS_XFLAG_PROJINHERIT)
2371 			return -EINVAL;
2372 	}
2373 
2374 	/* Check extent size hints. */
2375 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2376 		return -EINVAL;
2377 
2378 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2379 			!S_ISDIR(inode->i_mode))
2380 		return -EINVAL;
2381 
2382 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2383 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2384 		return -EINVAL;
2385 
2386 	/*
2387 	 * It is only valid to set the DAX flag on regular files and
2388 	 * directories on filesystems.
2389 	 */
2390 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2391 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2392 		return -EINVAL;
2393 
2394 	/* Extent size hints of zero turn off the flags. */
2395 	if (fa->fsx_extsize == 0)
2396 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2397 	if (fa->fsx_cowextsize == 0)
2398 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2399 
2400 	return 0;
2401 }
2402 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2403