xref: /linux/fs/inode.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_sem provides exclusion between the icache shrinking and the
88  * umount path.
89  *
90  * We don't actually need it to protect anything in the umount path,
91  * but only need to cycle through it to make sure any inode that
92  * prune_icache took off the LRU list has been fully torn down by the
93  * time we are past evict_inodes.
94  */
95 static DECLARE_RWSEM(iprune_sem);
96 
97 /*
98  * Statistics gathering..
99  */
100 struct inodes_stat_t inodes_stat;
101 
102 static DEFINE_PER_CPU(unsigned int, nr_inodes);
103 
104 static struct kmem_cache *inode_cachep __read_mostly;
105 
106 static int get_nr_inodes(void)
107 {
108 	int i;
109 	int sum = 0;
110 	for_each_possible_cpu(i)
111 		sum += per_cpu(nr_inodes, i);
112 	return sum < 0 ? 0 : sum;
113 }
114 
115 static inline int get_nr_inodes_unused(void)
116 {
117 	return inodes_stat.nr_unused;
118 }
119 
120 int get_nr_dirty_inodes(void)
121 {
122 	/* not actually dirty inodes, but a wild approximation */
123 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
124 	return nr_dirty > 0 ? nr_dirty : 0;
125 }
126 
127 /*
128  * Handle nr_inode sysctl
129  */
130 #ifdef CONFIG_SYSCTL
131 int proc_nr_inodes(ctl_table *table, int write,
132 		   void __user *buffer, size_t *lenp, loff_t *ppos)
133 {
134 	inodes_stat.nr_inodes = get_nr_inodes();
135 	return proc_dointvec(table, write, buffer, lenp, ppos);
136 }
137 #endif
138 
139 static void wake_up_inode(struct inode *inode)
140 {
141 	/*
142 	 * Prevent speculative execution through spin_unlock(&inode_lock);
143 	 */
144 	smp_mb();
145 	wake_up_bit(&inode->i_state, __I_NEW);
146 }
147 
148 /**
149  * inode_init_always - perform inode structure intialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct address_space_operations empty_aops;
159 	static const struct inode_operations empty_iops;
160 	static const struct file_operations empty_fops;
161 	struct address_space *const mapping = &inode->i_data;
162 
163 	inode->i_sb = sb;
164 	inode->i_blkbits = sb->s_blocksize_bits;
165 	inode->i_flags = 0;
166 	atomic_set(&inode->i_count, 1);
167 	inode->i_op = &empty_iops;
168 	inode->i_fop = &empty_fops;
169 	inode->i_nlink = 1;
170 	inode->i_uid = 0;
171 	inode->i_gid = 0;
172 	atomic_set(&inode->i_writecount, 0);
173 	inode->i_size = 0;
174 	inode->i_blocks = 0;
175 	inode->i_bytes = 0;
176 	inode->i_generation = 0;
177 #ifdef CONFIG_QUOTA
178 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
179 #endif
180 	inode->i_pipe = NULL;
181 	inode->i_bdev = NULL;
182 	inode->i_cdev = NULL;
183 	inode->i_rdev = 0;
184 	inode->dirtied_when = 0;
185 
186 	if (security_inode_alloc(inode))
187 		goto out;
188 	spin_lock_init(&inode->i_lock);
189 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
190 
191 	mutex_init(&inode->i_mutex);
192 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
193 
194 	init_rwsem(&inode->i_alloc_sem);
195 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
196 
197 	mapping->a_ops = &empty_aops;
198 	mapping->host = inode;
199 	mapping->flags = 0;
200 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
201 	mapping->assoc_mapping = NULL;
202 	mapping->backing_dev_info = &default_backing_dev_info;
203 	mapping->writeback_index = 0;
204 
205 	/*
206 	 * If the block_device provides a backing_dev_info for client
207 	 * inodes then use that.  Otherwise the inode share the bdev's
208 	 * backing_dev_info.
209 	 */
210 	if (sb->s_bdev) {
211 		struct backing_dev_info *bdi;
212 
213 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
214 		mapping->backing_dev_info = bdi;
215 	}
216 	inode->i_private = NULL;
217 	inode->i_mapping = mapping;
218 #ifdef CONFIG_FS_POSIX_ACL
219 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
220 #endif
221 
222 #ifdef CONFIG_FSNOTIFY
223 	inode->i_fsnotify_mask = 0;
224 #endif
225 
226 	this_cpu_inc(nr_inodes);
227 
228 	return 0;
229 out:
230 	return -ENOMEM;
231 }
232 EXPORT_SYMBOL(inode_init_always);
233 
234 static struct inode *alloc_inode(struct super_block *sb)
235 {
236 	struct inode *inode;
237 
238 	if (sb->s_op->alloc_inode)
239 		inode = sb->s_op->alloc_inode(sb);
240 	else
241 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
242 
243 	if (!inode)
244 		return NULL;
245 
246 	if (unlikely(inode_init_always(sb, inode))) {
247 		if (inode->i_sb->s_op->destroy_inode)
248 			inode->i_sb->s_op->destroy_inode(inode);
249 		else
250 			kmem_cache_free(inode_cachep, inode);
251 		return NULL;
252 	}
253 
254 	return inode;
255 }
256 
257 void free_inode_nonrcu(struct inode *inode)
258 {
259 	kmem_cache_free(inode_cachep, inode);
260 }
261 EXPORT_SYMBOL(free_inode_nonrcu);
262 
263 void __destroy_inode(struct inode *inode)
264 {
265 	BUG_ON(inode_has_buffers(inode));
266 	security_inode_free(inode);
267 	fsnotify_inode_delete(inode);
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
278 static void i_callback(struct rcu_head *head)
279 {
280 	struct inode *inode = container_of(head, struct inode, i_rcu);
281 	INIT_LIST_HEAD(&inode->i_dentry);
282 	kmem_cache_free(inode_cachep, inode);
283 }
284 
285 static void destroy_inode(struct inode *inode)
286 {
287 	BUG_ON(!list_empty(&inode->i_lru));
288 	__destroy_inode(inode);
289 	if (inode->i_sb->s_op->destroy_inode)
290 		inode->i_sb->s_op->destroy_inode(inode);
291 	else
292 		call_rcu(&inode->i_rcu, i_callback);
293 }
294 
295 void address_space_init_once(struct address_space *mapping)
296 {
297 	memset(mapping, 0, sizeof(*mapping));
298 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
299 	spin_lock_init(&mapping->tree_lock);
300 	spin_lock_init(&mapping->i_mmap_lock);
301 	INIT_LIST_HEAD(&mapping->private_list);
302 	spin_lock_init(&mapping->private_lock);
303 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
304 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
305 	mutex_init(&mapping->unmap_mutex);
306 }
307 EXPORT_SYMBOL(address_space_init_once);
308 
309 /*
310  * These are initializations that only need to be done
311  * once, because the fields are idempotent across use
312  * of the inode, so let the slab aware of that.
313  */
314 void inode_init_once(struct inode *inode)
315 {
316 	memset(inode, 0, sizeof(*inode));
317 	INIT_HLIST_NODE(&inode->i_hash);
318 	INIT_LIST_HEAD(&inode->i_dentry);
319 	INIT_LIST_HEAD(&inode->i_devices);
320 	INIT_LIST_HEAD(&inode->i_wb_list);
321 	INIT_LIST_HEAD(&inode->i_lru);
322 	address_space_init_once(&inode->i_data);
323 	i_size_ordered_init(inode);
324 #ifdef CONFIG_FSNOTIFY
325 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
326 #endif
327 }
328 EXPORT_SYMBOL(inode_init_once);
329 
330 static void init_once(void *foo)
331 {
332 	struct inode *inode = (struct inode *) foo;
333 
334 	inode_init_once(inode);
335 }
336 
337 /*
338  * inode_lock must be held
339  */
340 void __iget(struct inode *inode)
341 {
342 	atomic_inc(&inode->i_count);
343 }
344 
345 /*
346  * get additional reference to inode; caller must already hold one.
347  */
348 void ihold(struct inode *inode)
349 {
350 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
351 }
352 EXPORT_SYMBOL(ihold);
353 
354 static void inode_lru_list_add(struct inode *inode)
355 {
356 	if (list_empty(&inode->i_lru)) {
357 		list_add(&inode->i_lru, &inode_lru);
358 		inodes_stat.nr_unused++;
359 	}
360 }
361 
362 static void inode_lru_list_del(struct inode *inode)
363 {
364 	if (!list_empty(&inode->i_lru)) {
365 		list_del_init(&inode->i_lru);
366 		inodes_stat.nr_unused--;
367 	}
368 }
369 
370 static inline void __inode_sb_list_add(struct inode *inode)
371 {
372 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
373 }
374 
375 /**
376  * inode_sb_list_add - add inode to the superblock list of inodes
377  * @inode: inode to add
378  */
379 void inode_sb_list_add(struct inode *inode)
380 {
381 	spin_lock(&inode_lock);
382 	__inode_sb_list_add(inode);
383 	spin_unlock(&inode_lock);
384 }
385 EXPORT_SYMBOL_GPL(inode_sb_list_add);
386 
387 static inline void __inode_sb_list_del(struct inode *inode)
388 {
389 	list_del_init(&inode->i_sb_list);
390 }
391 
392 static unsigned long hash(struct super_block *sb, unsigned long hashval)
393 {
394 	unsigned long tmp;
395 
396 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
397 			L1_CACHE_BYTES;
398 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
399 	return tmp & I_HASHMASK;
400 }
401 
402 /**
403  *	__insert_inode_hash - hash an inode
404  *	@inode: unhashed inode
405  *	@hashval: unsigned long value used to locate this object in the
406  *		inode_hashtable.
407  *
408  *	Add an inode to the inode hash for this superblock.
409  */
410 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
411 {
412 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
413 
414 	spin_lock(&inode_lock);
415 	hlist_add_head(&inode->i_hash, b);
416 	spin_unlock(&inode_lock);
417 }
418 EXPORT_SYMBOL(__insert_inode_hash);
419 
420 /**
421  *	__remove_inode_hash - remove an inode from the hash
422  *	@inode: inode to unhash
423  *
424  *	Remove an inode from the superblock.
425  */
426 static void __remove_inode_hash(struct inode *inode)
427 {
428 	hlist_del_init(&inode->i_hash);
429 }
430 
431 /**
432  *	remove_inode_hash - remove an inode from the hash
433  *	@inode: inode to unhash
434  *
435  *	Remove an inode from the superblock.
436  */
437 void remove_inode_hash(struct inode *inode)
438 {
439 	spin_lock(&inode_lock);
440 	hlist_del_init(&inode->i_hash);
441 	spin_unlock(&inode_lock);
442 }
443 EXPORT_SYMBOL(remove_inode_hash);
444 
445 void end_writeback(struct inode *inode)
446 {
447 	might_sleep();
448 	BUG_ON(inode->i_data.nrpages);
449 	BUG_ON(!list_empty(&inode->i_data.private_list));
450 	BUG_ON(!(inode->i_state & I_FREEING));
451 	BUG_ON(inode->i_state & I_CLEAR);
452 	inode_sync_wait(inode);
453 	/* don't need i_lock here, no concurrent mods to i_state */
454 	inode->i_state = I_FREEING | I_CLEAR;
455 }
456 EXPORT_SYMBOL(end_writeback);
457 
458 static void evict(struct inode *inode)
459 {
460 	const struct super_operations *op = inode->i_sb->s_op;
461 
462 	if (op->evict_inode) {
463 		op->evict_inode(inode);
464 	} else {
465 		if (inode->i_data.nrpages)
466 			truncate_inode_pages(&inode->i_data, 0);
467 		end_writeback(inode);
468 	}
469 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
470 		bd_forget(inode);
471 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
472 		cd_forget(inode);
473 }
474 
475 /*
476  * dispose_list - dispose of the contents of a local list
477  * @head: the head of the list to free
478  *
479  * Dispose-list gets a local list with local inodes in it, so it doesn't
480  * need to worry about list corruption and SMP locks.
481  */
482 static void dispose_list(struct list_head *head)
483 {
484 	while (!list_empty(head)) {
485 		struct inode *inode;
486 
487 		inode = list_first_entry(head, struct inode, i_lru);
488 		list_del_init(&inode->i_lru);
489 
490 		evict(inode);
491 
492 		spin_lock(&inode_lock);
493 		__remove_inode_hash(inode);
494 		__inode_sb_list_del(inode);
495 		spin_unlock(&inode_lock);
496 
497 		wake_up_inode(inode);
498 		destroy_inode(inode);
499 	}
500 }
501 
502 /**
503  * evict_inodes	- evict all evictable inodes for a superblock
504  * @sb:		superblock to operate on
505  *
506  * Make sure that no inodes with zero refcount are retained.  This is
507  * called by superblock shutdown after having MS_ACTIVE flag removed,
508  * so any inode reaching zero refcount during or after that call will
509  * be immediately evicted.
510  */
511 void evict_inodes(struct super_block *sb)
512 {
513 	struct inode *inode, *next;
514 	LIST_HEAD(dispose);
515 
516 	spin_lock(&inode_lock);
517 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
518 		if (atomic_read(&inode->i_count))
519 			continue;
520 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
521 			continue;
522 
523 		inode->i_state |= I_FREEING;
524 
525 		/*
526 		 * Move the inode off the IO lists and LRU once I_FREEING is
527 		 * set so that it won't get moved back on there if it is dirty.
528 		 */
529 		list_move(&inode->i_lru, &dispose);
530 		list_del_init(&inode->i_wb_list);
531 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
532 			inodes_stat.nr_unused--;
533 	}
534 	spin_unlock(&inode_lock);
535 
536 	dispose_list(&dispose);
537 
538 	/*
539 	 * Cycle through iprune_sem to make sure any inode that prune_icache
540 	 * moved off the list before we took the lock has been fully torn
541 	 * down.
542 	 */
543 	down_write(&iprune_sem);
544 	up_write(&iprune_sem);
545 }
546 
547 /**
548  * invalidate_inodes	- attempt to free all inodes on a superblock
549  * @sb:		superblock to operate on
550  * @kill_dirty: flag to guide handling of dirty inodes
551  *
552  * Attempts to free all inodes for a given superblock.  If there were any
553  * busy inodes return a non-zero value, else zero.
554  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
555  * them as busy.
556  */
557 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
558 {
559 	int busy = 0;
560 	struct inode *inode, *next;
561 	LIST_HEAD(dispose);
562 
563 	spin_lock(&inode_lock);
564 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
565 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
566 			continue;
567 		if (inode->i_state & I_DIRTY && !kill_dirty) {
568 			busy = 1;
569 			continue;
570 		}
571 		if (atomic_read(&inode->i_count)) {
572 			busy = 1;
573 			continue;
574 		}
575 
576 		inode->i_state |= I_FREEING;
577 
578 		/*
579 		 * Move the inode off the IO lists and LRU once I_FREEING is
580 		 * set so that it won't get moved back on there if it is dirty.
581 		 */
582 		list_move(&inode->i_lru, &dispose);
583 		list_del_init(&inode->i_wb_list);
584 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
585 			inodes_stat.nr_unused--;
586 	}
587 	spin_unlock(&inode_lock);
588 
589 	dispose_list(&dispose);
590 
591 	return busy;
592 }
593 
594 static int can_unuse(struct inode *inode)
595 {
596 	if (inode->i_state & ~I_REFERENCED)
597 		return 0;
598 	if (inode_has_buffers(inode))
599 		return 0;
600 	if (atomic_read(&inode->i_count))
601 		return 0;
602 	if (inode->i_data.nrpages)
603 		return 0;
604 	return 1;
605 }
606 
607 /*
608  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
609  * temporary list and then are freed outside inode_lock by dispose_list().
610  *
611  * Any inodes which are pinned purely because of attached pagecache have their
612  * pagecache removed.  If the inode has metadata buffers attached to
613  * mapping->private_list then try to remove them.
614  *
615  * If the inode has the I_REFERENCED flag set, then it means that it has been
616  * used recently - the flag is set in iput_final(). When we encounter such an
617  * inode, clear the flag and move it to the back of the LRU so it gets another
618  * pass through the LRU before it gets reclaimed. This is necessary because of
619  * the fact we are doing lazy LRU updates to minimise lock contention so the
620  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
621  * with this flag set because they are the inodes that are out of order.
622  */
623 static void prune_icache(int nr_to_scan)
624 {
625 	LIST_HEAD(freeable);
626 	int nr_scanned;
627 	unsigned long reap = 0;
628 
629 	down_read(&iprune_sem);
630 	spin_lock(&inode_lock);
631 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
632 		struct inode *inode;
633 
634 		if (list_empty(&inode_lru))
635 			break;
636 
637 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
638 
639 		/*
640 		 * Referenced or dirty inodes are still in use. Give them
641 		 * another pass through the LRU as we canot reclaim them now.
642 		 */
643 		if (atomic_read(&inode->i_count) ||
644 		    (inode->i_state & ~I_REFERENCED)) {
645 			list_del_init(&inode->i_lru);
646 			inodes_stat.nr_unused--;
647 			continue;
648 		}
649 
650 		/* recently referenced inodes get one more pass */
651 		if (inode->i_state & I_REFERENCED) {
652 			list_move(&inode->i_lru, &inode_lru);
653 			inode->i_state &= ~I_REFERENCED;
654 			continue;
655 		}
656 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
657 			__iget(inode);
658 			spin_unlock(&inode_lock);
659 			if (remove_inode_buffers(inode))
660 				reap += invalidate_mapping_pages(&inode->i_data,
661 								0, -1);
662 			iput(inode);
663 			spin_lock(&inode_lock);
664 
665 			if (inode != list_entry(inode_lru.next,
666 						struct inode, i_lru))
667 				continue;	/* wrong inode or list_empty */
668 			if (!can_unuse(inode))
669 				continue;
670 		}
671 		WARN_ON(inode->i_state & I_NEW);
672 		inode->i_state |= I_FREEING;
673 
674 		/*
675 		 * Move the inode off the IO lists and LRU once I_FREEING is
676 		 * set so that it won't get moved back on there if it is dirty.
677 		 */
678 		list_move(&inode->i_lru, &freeable);
679 		list_del_init(&inode->i_wb_list);
680 		inodes_stat.nr_unused--;
681 	}
682 	if (current_is_kswapd())
683 		__count_vm_events(KSWAPD_INODESTEAL, reap);
684 	else
685 		__count_vm_events(PGINODESTEAL, reap);
686 	spin_unlock(&inode_lock);
687 
688 	dispose_list(&freeable);
689 	up_read(&iprune_sem);
690 }
691 
692 /*
693  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
694  * "unused" means that no dentries are referring to the inodes: the files are
695  * not open and the dcache references to those inodes have already been
696  * reclaimed.
697  *
698  * This function is passed the number of inodes to scan, and it returns the
699  * total number of remaining possibly-reclaimable inodes.
700  */
701 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
702 {
703 	if (nr) {
704 		/*
705 		 * Nasty deadlock avoidance.  We may hold various FS locks,
706 		 * and we don't want to recurse into the FS that called us
707 		 * in clear_inode() and friends..
708 		 */
709 		if (!(gfp_mask & __GFP_FS))
710 			return -1;
711 		prune_icache(nr);
712 	}
713 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
714 }
715 
716 static struct shrinker icache_shrinker = {
717 	.shrink = shrink_icache_memory,
718 	.seeks = DEFAULT_SEEKS,
719 };
720 
721 static void __wait_on_freeing_inode(struct inode *inode);
722 /*
723  * Called with the inode lock held.
724  */
725 static struct inode *find_inode(struct super_block *sb,
726 				struct hlist_head *head,
727 				int (*test)(struct inode *, void *),
728 				void *data)
729 {
730 	struct hlist_node *node;
731 	struct inode *inode = NULL;
732 
733 repeat:
734 	hlist_for_each_entry(inode, node, head, i_hash) {
735 		if (inode->i_sb != sb)
736 			continue;
737 		if (!test(inode, data))
738 			continue;
739 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
740 			__wait_on_freeing_inode(inode);
741 			goto repeat;
742 		}
743 		__iget(inode);
744 		return inode;
745 	}
746 	return NULL;
747 }
748 
749 /*
750  * find_inode_fast is the fast path version of find_inode, see the comment at
751  * iget_locked for details.
752  */
753 static struct inode *find_inode_fast(struct super_block *sb,
754 				struct hlist_head *head, unsigned long ino)
755 {
756 	struct hlist_node *node;
757 	struct inode *inode = NULL;
758 
759 repeat:
760 	hlist_for_each_entry(inode, node, head, i_hash) {
761 		if (inode->i_ino != ino)
762 			continue;
763 		if (inode->i_sb != sb)
764 			continue;
765 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
766 			__wait_on_freeing_inode(inode);
767 			goto repeat;
768 		}
769 		__iget(inode);
770 		return inode;
771 	}
772 	return NULL;
773 }
774 
775 /*
776  * Each cpu owns a range of LAST_INO_BATCH numbers.
777  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
778  * to renew the exhausted range.
779  *
780  * This does not significantly increase overflow rate because every CPU can
781  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
782  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
783  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
784  * overflow rate by 2x, which does not seem too significant.
785  *
786  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
787  * error if st_ino won't fit in target struct field. Use 32bit counter
788  * here to attempt to avoid that.
789  */
790 #define LAST_INO_BATCH 1024
791 static DEFINE_PER_CPU(unsigned int, last_ino);
792 
793 unsigned int get_next_ino(void)
794 {
795 	unsigned int *p = &get_cpu_var(last_ino);
796 	unsigned int res = *p;
797 
798 #ifdef CONFIG_SMP
799 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
800 		static atomic_t shared_last_ino;
801 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
802 
803 		res = next - LAST_INO_BATCH;
804 	}
805 #endif
806 
807 	*p = ++res;
808 	put_cpu_var(last_ino);
809 	return res;
810 }
811 EXPORT_SYMBOL(get_next_ino);
812 
813 /**
814  *	new_inode 	- obtain an inode
815  *	@sb: superblock
816  *
817  *	Allocates a new inode for given superblock. The default gfp_mask
818  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
819  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
820  *	for the page cache are not reclaimable or migratable,
821  *	mapping_set_gfp_mask() must be called with suitable flags on the
822  *	newly created inode's mapping
823  *
824  */
825 struct inode *new_inode(struct super_block *sb)
826 {
827 	struct inode *inode;
828 
829 	spin_lock_prefetch(&inode_lock);
830 
831 	inode = alloc_inode(sb);
832 	if (inode) {
833 		spin_lock(&inode_lock);
834 		__inode_sb_list_add(inode);
835 		inode->i_state = 0;
836 		spin_unlock(&inode_lock);
837 	}
838 	return inode;
839 }
840 EXPORT_SYMBOL(new_inode);
841 
842 void unlock_new_inode(struct inode *inode)
843 {
844 #ifdef CONFIG_DEBUG_LOCK_ALLOC
845 	if (S_ISDIR(inode->i_mode)) {
846 		struct file_system_type *type = inode->i_sb->s_type;
847 
848 		/* Set new key only if filesystem hasn't already changed it */
849 		if (!lockdep_match_class(&inode->i_mutex,
850 		    &type->i_mutex_key)) {
851 			/*
852 			 * ensure nobody is actually holding i_mutex
853 			 */
854 			mutex_destroy(&inode->i_mutex);
855 			mutex_init(&inode->i_mutex);
856 			lockdep_set_class(&inode->i_mutex,
857 					  &type->i_mutex_dir_key);
858 		}
859 	}
860 #endif
861 	/*
862 	 * This is special!  We do not need the spinlock when clearing I_NEW,
863 	 * because we're guaranteed that nobody else tries to do anything about
864 	 * the state of the inode when it is locked, as we just created it (so
865 	 * there can be no old holders that haven't tested I_NEW).
866 	 * However we must emit the memory barrier so that other CPUs reliably
867 	 * see the clearing of I_NEW after the other inode initialisation has
868 	 * completed.
869 	 */
870 	smp_mb();
871 	WARN_ON(!(inode->i_state & I_NEW));
872 	inode->i_state &= ~I_NEW;
873 	wake_up_inode(inode);
874 }
875 EXPORT_SYMBOL(unlock_new_inode);
876 
877 /*
878  * This is called without the inode lock held.. Be careful.
879  *
880  * We no longer cache the sb_flags in i_flags - see fs.h
881  *	-- rmk@arm.uk.linux.org
882  */
883 static struct inode *get_new_inode(struct super_block *sb,
884 				struct hlist_head *head,
885 				int (*test)(struct inode *, void *),
886 				int (*set)(struct inode *, void *),
887 				void *data)
888 {
889 	struct inode *inode;
890 
891 	inode = alloc_inode(sb);
892 	if (inode) {
893 		struct inode *old;
894 
895 		spin_lock(&inode_lock);
896 		/* We released the lock, so.. */
897 		old = find_inode(sb, head, test, data);
898 		if (!old) {
899 			if (set(inode, data))
900 				goto set_failed;
901 
902 			hlist_add_head(&inode->i_hash, head);
903 			__inode_sb_list_add(inode);
904 			inode->i_state = I_NEW;
905 			spin_unlock(&inode_lock);
906 
907 			/* Return the locked inode with I_NEW set, the
908 			 * caller is responsible for filling in the contents
909 			 */
910 			return inode;
911 		}
912 
913 		/*
914 		 * Uhhuh, somebody else created the same inode under
915 		 * us. Use the old inode instead of the one we just
916 		 * allocated.
917 		 */
918 		spin_unlock(&inode_lock);
919 		destroy_inode(inode);
920 		inode = old;
921 		wait_on_inode(inode);
922 	}
923 	return inode;
924 
925 set_failed:
926 	spin_unlock(&inode_lock);
927 	destroy_inode(inode);
928 	return NULL;
929 }
930 
931 /*
932  * get_new_inode_fast is the fast path version of get_new_inode, see the
933  * comment at iget_locked for details.
934  */
935 static struct inode *get_new_inode_fast(struct super_block *sb,
936 				struct hlist_head *head, unsigned long ino)
937 {
938 	struct inode *inode;
939 
940 	inode = alloc_inode(sb);
941 	if (inode) {
942 		struct inode *old;
943 
944 		spin_lock(&inode_lock);
945 		/* We released the lock, so.. */
946 		old = find_inode_fast(sb, head, ino);
947 		if (!old) {
948 			inode->i_ino = ino;
949 			hlist_add_head(&inode->i_hash, head);
950 			__inode_sb_list_add(inode);
951 			inode->i_state = I_NEW;
952 			spin_unlock(&inode_lock);
953 
954 			/* Return the locked inode with I_NEW set, the
955 			 * caller is responsible for filling in the contents
956 			 */
957 			return inode;
958 		}
959 
960 		/*
961 		 * Uhhuh, somebody else created the same inode under
962 		 * us. Use the old inode instead of the one we just
963 		 * allocated.
964 		 */
965 		spin_unlock(&inode_lock);
966 		destroy_inode(inode);
967 		inode = old;
968 		wait_on_inode(inode);
969 	}
970 	return inode;
971 }
972 
973 /*
974  * search the inode cache for a matching inode number.
975  * If we find one, then the inode number we are trying to
976  * allocate is not unique and so we should not use it.
977  *
978  * Returns 1 if the inode number is unique, 0 if it is not.
979  */
980 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
981 {
982 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
983 	struct hlist_node *node;
984 	struct inode *inode;
985 
986 	hlist_for_each_entry(inode, node, b, i_hash) {
987 		if (inode->i_ino == ino && inode->i_sb == sb)
988 			return 0;
989 	}
990 
991 	return 1;
992 }
993 
994 /**
995  *	iunique - get a unique inode number
996  *	@sb: superblock
997  *	@max_reserved: highest reserved inode number
998  *
999  *	Obtain an inode number that is unique on the system for a given
1000  *	superblock. This is used by file systems that have no natural
1001  *	permanent inode numbering system. An inode number is returned that
1002  *	is higher than the reserved limit but unique.
1003  *
1004  *	BUGS:
1005  *	With a large number of inodes live on the file system this function
1006  *	currently becomes quite slow.
1007  */
1008 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1009 {
1010 	/*
1011 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1012 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1013 	 * here to attempt to avoid that.
1014 	 */
1015 	static DEFINE_SPINLOCK(iunique_lock);
1016 	static unsigned int counter;
1017 	ino_t res;
1018 
1019 	spin_lock(&inode_lock);
1020 	spin_lock(&iunique_lock);
1021 	do {
1022 		if (counter <= max_reserved)
1023 			counter = max_reserved + 1;
1024 		res = counter++;
1025 	} while (!test_inode_iunique(sb, res));
1026 	spin_unlock(&iunique_lock);
1027 	spin_unlock(&inode_lock);
1028 
1029 	return res;
1030 }
1031 EXPORT_SYMBOL(iunique);
1032 
1033 struct inode *igrab(struct inode *inode)
1034 {
1035 	spin_lock(&inode_lock);
1036 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1037 		__iget(inode);
1038 	else
1039 		/*
1040 		 * Handle the case where s_op->clear_inode is not been
1041 		 * called yet, and somebody is calling igrab
1042 		 * while the inode is getting freed.
1043 		 */
1044 		inode = NULL;
1045 	spin_unlock(&inode_lock);
1046 	return inode;
1047 }
1048 EXPORT_SYMBOL(igrab);
1049 
1050 /**
1051  * ifind - internal function, you want ilookup5() or iget5().
1052  * @sb:		super block of file system to search
1053  * @head:       the head of the list to search
1054  * @test:	callback used for comparisons between inodes
1055  * @data:	opaque data pointer to pass to @test
1056  * @wait:	if true wait for the inode to be unlocked, if false do not
1057  *
1058  * ifind() searches for the inode specified by @data in the inode
1059  * cache. This is a generalized version of ifind_fast() for file systems where
1060  * the inode number is not sufficient for unique identification of an inode.
1061  *
1062  * If the inode is in the cache, the inode is returned with an incremented
1063  * reference count.
1064  *
1065  * Otherwise NULL is returned.
1066  *
1067  * Note, @test is called with the inode_lock held, so can't sleep.
1068  */
1069 static struct inode *ifind(struct super_block *sb,
1070 		struct hlist_head *head, int (*test)(struct inode *, void *),
1071 		void *data, const int wait)
1072 {
1073 	struct inode *inode;
1074 
1075 	spin_lock(&inode_lock);
1076 	inode = find_inode(sb, head, test, data);
1077 	if (inode) {
1078 		spin_unlock(&inode_lock);
1079 		if (likely(wait))
1080 			wait_on_inode(inode);
1081 		return inode;
1082 	}
1083 	spin_unlock(&inode_lock);
1084 	return NULL;
1085 }
1086 
1087 /**
1088  * ifind_fast - internal function, you want ilookup() or iget().
1089  * @sb:		super block of file system to search
1090  * @head:       head of the list to search
1091  * @ino:	inode number to search for
1092  *
1093  * ifind_fast() searches for the inode @ino in the inode cache. This is for
1094  * file systems where the inode number is sufficient for unique identification
1095  * of an inode.
1096  *
1097  * If the inode is in the cache, the inode is returned with an incremented
1098  * reference count.
1099  *
1100  * Otherwise NULL is returned.
1101  */
1102 static struct inode *ifind_fast(struct super_block *sb,
1103 		struct hlist_head *head, unsigned long ino)
1104 {
1105 	struct inode *inode;
1106 
1107 	spin_lock(&inode_lock);
1108 	inode = find_inode_fast(sb, head, ino);
1109 	if (inode) {
1110 		spin_unlock(&inode_lock);
1111 		wait_on_inode(inode);
1112 		return inode;
1113 	}
1114 	spin_unlock(&inode_lock);
1115 	return NULL;
1116 }
1117 
1118 /**
1119  * ilookup5_nowait - search for an inode in the inode cache
1120  * @sb:		super block of file system to search
1121  * @hashval:	hash value (usually inode number) to search for
1122  * @test:	callback used for comparisons between inodes
1123  * @data:	opaque data pointer to pass to @test
1124  *
1125  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1126  * @data in the inode cache. This is a generalized version of ilookup() for
1127  * file systems where the inode number is not sufficient for unique
1128  * identification of an inode.
1129  *
1130  * If the inode is in the cache, the inode is returned with an incremented
1131  * reference count.  Note, the inode lock is not waited upon so you have to be
1132  * very careful what you do with the returned inode.  You probably should be
1133  * using ilookup5() instead.
1134  *
1135  * Otherwise NULL is returned.
1136  *
1137  * Note, @test is called with the inode_lock held, so can't sleep.
1138  */
1139 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1140 		int (*test)(struct inode *, void *), void *data)
1141 {
1142 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1143 
1144 	return ifind(sb, head, test, data, 0);
1145 }
1146 EXPORT_SYMBOL(ilookup5_nowait);
1147 
1148 /**
1149  * ilookup5 - search for an inode in the inode cache
1150  * @sb:		super block of file system to search
1151  * @hashval:	hash value (usually inode number) to search for
1152  * @test:	callback used for comparisons between inodes
1153  * @data:	opaque data pointer to pass to @test
1154  *
1155  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1156  * @data in the inode cache. This is a generalized version of ilookup() for
1157  * file systems where the inode number is not sufficient for unique
1158  * identification of an inode.
1159  *
1160  * If the inode is in the cache, the inode lock is waited upon and the inode is
1161  * returned with an incremented reference count.
1162  *
1163  * Otherwise NULL is returned.
1164  *
1165  * Note, @test is called with the inode_lock held, so can't sleep.
1166  */
1167 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1168 		int (*test)(struct inode *, void *), void *data)
1169 {
1170 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1171 
1172 	return ifind(sb, head, test, data, 1);
1173 }
1174 EXPORT_SYMBOL(ilookup5);
1175 
1176 /**
1177  * ilookup - search for an inode in the inode cache
1178  * @sb:		super block of file system to search
1179  * @ino:	inode number to search for
1180  *
1181  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1182  * This is for file systems where the inode number is sufficient for unique
1183  * identification of an inode.
1184  *
1185  * If the inode is in the cache, the inode is returned with an incremented
1186  * reference count.
1187  *
1188  * Otherwise NULL is returned.
1189  */
1190 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1191 {
1192 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1193 
1194 	return ifind_fast(sb, head, ino);
1195 }
1196 EXPORT_SYMBOL(ilookup);
1197 
1198 /**
1199  * iget5_locked - obtain an inode from a mounted file system
1200  * @sb:		super block of file system
1201  * @hashval:	hash value (usually inode number) to get
1202  * @test:	callback used for comparisons between inodes
1203  * @set:	callback used to initialize a new struct inode
1204  * @data:	opaque data pointer to pass to @test and @set
1205  *
1206  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1207  * and @data in the inode cache and if present it is returned with an increased
1208  * reference count. This is a generalized version of iget_locked() for file
1209  * systems where the inode number is not sufficient for unique identification
1210  * of an inode.
1211  *
1212  * If the inode is not in cache, get_new_inode() is called to allocate a new
1213  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1214  * file system gets to fill it in before unlocking it via unlock_new_inode().
1215  *
1216  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1217  */
1218 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1219 		int (*test)(struct inode *, void *),
1220 		int (*set)(struct inode *, void *), void *data)
1221 {
1222 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1223 	struct inode *inode;
1224 
1225 	inode = ifind(sb, head, test, data, 1);
1226 	if (inode)
1227 		return inode;
1228 	/*
1229 	 * get_new_inode() will do the right thing, re-trying the search
1230 	 * in case it had to block at any point.
1231 	 */
1232 	return get_new_inode(sb, head, test, set, data);
1233 }
1234 EXPORT_SYMBOL(iget5_locked);
1235 
1236 /**
1237  * iget_locked - obtain an inode from a mounted file system
1238  * @sb:		super block of file system
1239  * @ino:	inode number to get
1240  *
1241  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1242  * the inode cache and if present it is returned with an increased reference
1243  * count. This is for file systems where the inode number is sufficient for
1244  * unique identification of an inode.
1245  *
1246  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1247  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1248  * The file system gets to fill it in before unlocking it via
1249  * unlock_new_inode().
1250  */
1251 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1252 {
1253 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1254 	struct inode *inode;
1255 
1256 	inode = ifind_fast(sb, head, ino);
1257 	if (inode)
1258 		return inode;
1259 	/*
1260 	 * get_new_inode_fast() will do the right thing, re-trying the search
1261 	 * in case it had to block at any point.
1262 	 */
1263 	return get_new_inode_fast(sb, head, ino);
1264 }
1265 EXPORT_SYMBOL(iget_locked);
1266 
1267 int insert_inode_locked(struct inode *inode)
1268 {
1269 	struct super_block *sb = inode->i_sb;
1270 	ino_t ino = inode->i_ino;
1271 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1272 
1273 	inode->i_state |= I_NEW;
1274 	while (1) {
1275 		struct hlist_node *node;
1276 		struct inode *old = NULL;
1277 		spin_lock(&inode_lock);
1278 		hlist_for_each_entry(old, node, head, i_hash) {
1279 			if (old->i_ino != ino)
1280 				continue;
1281 			if (old->i_sb != sb)
1282 				continue;
1283 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1284 				continue;
1285 			break;
1286 		}
1287 		if (likely(!node)) {
1288 			hlist_add_head(&inode->i_hash, head);
1289 			spin_unlock(&inode_lock);
1290 			return 0;
1291 		}
1292 		__iget(old);
1293 		spin_unlock(&inode_lock);
1294 		wait_on_inode(old);
1295 		if (unlikely(!inode_unhashed(old))) {
1296 			iput(old);
1297 			return -EBUSY;
1298 		}
1299 		iput(old);
1300 	}
1301 }
1302 EXPORT_SYMBOL(insert_inode_locked);
1303 
1304 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1305 		int (*test)(struct inode *, void *), void *data)
1306 {
1307 	struct super_block *sb = inode->i_sb;
1308 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1309 
1310 	inode->i_state |= I_NEW;
1311 
1312 	while (1) {
1313 		struct hlist_node *node;
1314 		struct inode *old = NULL;
1315 
1316 		spin_lock(&inode_lock);
1317 		hlist_for_each_entry(old, node, head, i_hash) {
1318 			if (old->i_sb != sb)
1319 				continue;
1320 			if (!test(old, data))
1321 				continue;
1322 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1323 				continue;
1324 			break;
1325 		}
1326 		if (likely(!node)) {
1327 			hlist_add_head(&inode->i_hash, head);
1328 			spin_unlock(&inode_lock);
1329 			return 0;
1330 		}
1331 		__iget(old);
1332 		spin_unlock(&inode_lock);
1333 		wait_on_inode(old);
1334 		if (unlikely(!inode_unhashed(old))) {
1335 			iput(old);
1336 			return -EBUSY;
1337 		}
1338 		iput(old);
1339 	}
1340 }
1341 EXPORT_SYMBOL(insert_inode_locked4);
1342 
1343 
1344 int generic_delete_inode(struct inode *inode)
1345 {
1346 	return 1;
1347 }
1348 EXPORT_SYMBOL(generic_delete_inode);
1349 
1350 /*
1351  * Normal UNIX filesystem behaviour: delete the
1352  * inode when the usage count drops to zero, and
1353  * i_nlink is zero.
1354  */
1355 int generic_drop_inode(struct inode *inode)
1356 {
1357 	return !inode->i_nlink || inode_unhashed(inode);
1358 }
1359 EXPORT_SYMBOL_GPL(generic_drop_inode);
1360 
1361 /*
1362  * Called when we're dropping the last reference
1363  * to an inode.
1364  *
1365  * Call the FS "drop_inode()" function, defaulting to
1366  * the legacy UNIX filesystem behaviour.  If it tells
1367  * us to evict inode, do so.  Otherwise, retain inode
1368  * in cache if fs is alive, sync and evict if fs is
1369  * shutting down.
1370  */
1371 static void iput_final(struct inode *inode)
1372 {
1373 	struct super_block *sb = inode->i_sb;
1374 	const struct super_operations *op = inode->i_sb->s_op;
1375 	int drop;
1376 
1377 	if (op && op->drop_inode)
1378 		drop = op->drop_inode(inode);
1379 	else
1380 		drop = generic_drop_inode(inode);
1381 
1382 	if (!drop) {
1383 		if (sb->s_flags & MS_ACTIVE) {
1384 			inode->i_state |= I_REFERENCED;
1385 			if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1386 				inode_lru_list_add(inode);
1387 			}
1388 			spin_unlock(&inode_lock);
1389 			return;
1390 		}
1391 		WARN_ON(inode->i_state & I_NEW);
1392 		inode->i_state |= I_WILL_FREE;
1393 		spin_unlock(&inode_lock);
1394 		write_inode_now(inode, 1);
1395 		spin_lock(&inode_lock);
1396 		WARN_ON(inode->i_state & I_NEW);
1397 		inode->i_state &= ~I_WILL_FREE;
1398 		__remove_inode_hash(inode);
1399 	}
1400 
1401 	WARN_ON(inode->i_state & I_NEW);
1402 	inode->i_state |= I_FREEING;
1403 
1404 	/*
1405 	 * Move the inode off the IO lists and LRU once I_FREEING is
1406 	 * set so that it won't get moved back on there if it is dirty.
1407 	 */
1408 	inode_lru_list_del(inode);
1409 	list_del_init(&inode->i_wb_list);
1410 
1411 	__inode_sb_list_del(inode);
1412 	spin_unlock(&inode_lock);
1413 	evict(inode);
1414 	remove_inode_hash(inode);
1415 	wake_up_inode(inode);
1416 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1417 	destroy_inode(inode);
1418 }
1419 
1420 /**
1421  *	iput	- put an inode
1422  *	@inode: inode to put
1423  *
1424  *	Puts an inode, dropping its usage count. If the inode use count hits
1425  *	zero, the inode is then freed and may also be destroyed.
1426  *
1427  *	Consequently, iput() can sleep.
1428  */
1429 void iput(struct inode *inode)
1430 {
1431 	if (inode) {
1432 		BUG_ON(inode->i_state & I_CLEAR);
1433 
1434 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1435 			iput_final(inode);
1436 	}
1437 }
1438 EXPORT_SYMBOL(iput);
1439 
1440 /**
1441  *	bmap	- find a block number in a file
1442  *	@inode: inode of file
1443  *	@block: block to find
1444  *
1445  *	Returns the block number on the device holding the inode that
1446  *	is the disk block number for the block of the file requested.
1447  *	That is, asked for block 4 of inode 1 the function will return the
1448  *	disk block relative to the disk start that holds that block of the
1449  *	file.
1450  */
1451 sector_t bmap(struct inode *inode, sector_t block)
1452 {
1453 	sector_t res = 0;
1454 	if (inode->i_mapping->a_ops->bmap)
1455 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1456 	return res;
1457 }
1458 EXPORT_SYMBOL(bmap);
1459 
1460 /*
1461  * With relative atime, only update atime if the previous atime is
1462  * earlier than either the ctime or mtime or if at least a day has
1463  * passed since the last atime update.
1464  */
1465 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1466 			     struct timespec now)
1467 {
1468 
1469 	if (!(mnt->mnt_flags & MNT_RELATIME))
1470 		return 1;
1471 	/*
1472 	 * Is mtime younger than atime? If yes, update atime:
1473 	 */
1474 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1475 		return 1;
1476 	/*
1477 	 * Is ctime younger than atime? If yes, update atime:
1478 	 */
1479 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1480 		return 1;
1481 
1482 	/*
1483 	 * Is the previous atime value older than a day? If yes,
1484 	 * update atime:
1485 	 */
1486 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1487 		return 1;
1488 	/*
1489 	 * Good, we can skip the atime update:
1490 	 */
1491 	return 0;
1492 }
1493 
1494 /**
1495  *	touch_atime	-	update the access time
1496  *	@mnt: mount the inode is accessed on
1497  *	@dentry: dentry accessed
1498  *
1499  *	Update the accessed time on an inode and mark it for writeback.
1500  *	This function automatically handles read only file systems and media,
1501  *	as well as the "noatime" flag and inode specific "noatime" markers.
1502  */
1503 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1504 {
1505 	struct inode *inode = dentry->d_inode;
1506 	struct timespec now;
1507 
1508 	if (inode->i_flags & S_NOATIME)
1509 		return;
1510 	if (IS_NOATIME(inode))
1511 		return;
1512 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1513 		return;
1514 
1515 	if (mnt->mnt_flags & MNT_NOATIME)
1516 		return;
1517 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1518 		return;
1519 
1520 	now = current_fs_time(inode->i_sb);
1521 
1522 	if (!relatime_need_update(mnt, inode, now))
1523 		return;
1524 
1525 	if (timespec_equal(&inode->i_atime, &now))
1526 		return;
1527 
1528 	if (mnt_want_write(mnt))
1529 		return;
1530 
1531 	inode->i_atime = now;
1532 	mark_inode_dirty_sync(inode);
1533 	mnt_drop_write(mnt);
1534 }
1535 EXPORT_SYMBOL(touch_atime);
1536 
1537 /**
1538  *	file_update_time	-	update mtime and ctime time
1539  *	@file: file accessed
1540  *
1541  *	Update the mtime and ctime members of an inode and mark the inode
1542  *	for writeback.  Note that this function is meant exclusively for
1543  *	usage in the file write path of filesystems, and filesystems may
1544  *	choose to explicitly ignore update via this function with the
1545  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1546  *	timestamps are handled by the server.
1547  */
1548 
1549 void file_update_time(struct file *file)
1550 {
1551 	struct inode *inode = file->f_path.dentry->d_inode;
1552 	struct timespec now;
1553 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1554 
1555 	/* First try to exhaust all avenues to not sync */
1556 	if (IS_NOCMTIME(inode))
1557 		return;
1558 
1559 	now = current_fs_time(inode->i_sb);
1560 	if (!timespec_equal(&inode->i_mtime, &now))
1561 		sync_it = S_MTIME;
1562 
1563 	if (!timespec_equal(&inode->i_ctime, &now))
1564 		sync_it |= S_CTIME;
1565 
1566 	if (IS_I_VERSION(inode))
1567 		sync_it |= S_VERSION;
1568 
1569 	if (!sync_it)
1570 		return;
1571 
1572 	/* Finally allowed to write? Takes lock. */
1573 	if (mnt_want_write_file(file))
1574 		return;
1575 
1576 	/* Only change inode inside the lock region */
1577 	if (sync_it & S_VERSION)
1578 		inode_inc_iversion(inode);
1579 	if (sync_it & S_CTIME)
1580 		inode->i_ctime = now;
1581 	if (sync_it & S_MTIME)
1582 		inode->i_mtime = now;
1583 	mark_inode_dirty_sync(inode);
1584 	mnt_drop_write(file->f_path.mnt);
1585 }
1586 EXPORT_SYMBOL(file_update_time);
1587 
1588 int inode_needs_sync(struct inode *inode)
1589 {
1590 	if (IS_SYNC(inode))
1591 		return 1;
1592 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1593 		return 1;
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(inode_needs_sync);
1597 
1598 int inode_wait(void *word)
1599 {
1600 	schedule();
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL(inode_wait);
1604 
1605 /*
1606  * If we try to find an inode in the inode hash while it is being
1607  * deleted, we have to wait until the filesystem completes its
1608  * deletion before reporting that it isn't found.  This function waits
1609  * until the deletion _might_ have completed.  Callers are responsible
1610  * to recheck inode state.
1611  *
1612  * It doesn't matter if I_NEW is not set initially, a call to
1613  * wake_up_inode() after removing from the hash list will DTRT.
1614  *
1615  * This is called with inode_lock held.
1616  */
1617 static void __wait_on_freeing_inode(struct inode *inode)
1618 {
1619 	wait_queue_head_t *wq;
1620 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1621 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1622 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1623 	spin_unlock(&inode_lock);
1624 	schedule();
1625 	finish_wait(wq, &wait.wait);
1626 	spin_lock(&inode_lock);
1627 }
1628 
1629 static __initdata unsigned long ihash_entries;
1630 static int __init set_ihash_entries(char *str)
1631 {
1632 	if (!str)
1633 		return 0;
1634 	ihash_entries = simple_strtoul(str, &str, 0);
1635 	return 1;
1636 }
1637 __setup("ihash_entries=", set_ihash_entries);
1638 
1639 /*
1640  * Initialize the waitqueues and inode hash table.
1641  */
1642 void __init inode_init_early(void)
1643 {
1644 	int loop;
1645 
1646 	/* If hashes are distributed across NUMA nodes, defer
1647 	 * hash allocation until vmalloc space is available.
1648 	 */
1649 	if (hashdist)
1650 		return;
1651 
1652 	inode_hashtable =
1653 		alloc_large_system_hash("Inode-cache",
1654 					sizeof(struct hlist_head),
1655 					ihash_entries,
1656 					14,
1657 					HASH_EARLY,
1658 					&i_hash_shift,
1659 					&i_hash_mask,
1660 					0);
1661 
1662 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1663 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1664 }
1665 
1666 void __init inode_init(void)
1667 {
1668 	int loop;
1669 
1670 	/* inode slab cache */
1671 	inode_cachep = kmem_cache_create("inode_cache",
1672 					 sizeof(struct inode),
1673 					 0,
1674 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1675 					 SLAB_MEM_SPREAD),
1676 					 init_once);
1677 	register_shrinker(&icache_shrinker);
1678 
1679 	/* Hash may have been set up in inode_init_early */
1680 	if (!hashdist)
1681 		return;
1682 
1683 	inode_hashtable =
1684 		alloc_large_system_hash("Inode-cache",
1685 					sizeof(struct hlist_head),
1686 					ihash_entries,
1687 					14,
1688 					0,
1689 					&i_hash_shift,
1690 					&i_hash_mask,
1691 					0);
1692 
1693 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1694 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1695 }
1696 
1697 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1698 {
1699 	inode->i_mode = mode;
1700 	if (S_ISCHR(mode)) {
1701 		inode->i_fop = &def_chr_fops;
1702 		inode->i_rdev = rdev;
1703 	} else if (S_ISBLK(mode)) {
1704 		inode->i_fop = &def_blk_fops;
1705 		inode->i_rdev = rdev;
1706 	} else if (S_ISFIFO(mode))
1707 		inode->i_fop = &def_fifo_fops;
1708 	else if (S_ISSOCK(mode))
1709 		inode->i_fop = &bad_sock_fops;
1710 	else
1711 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1712 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1713 				  inode->i_ino);
1714 }
1715 EXPORT_SYMBOL(init_special_inode);
1716 
1717 /**
1718  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1719  * @inode: New inode
1720  * @dir: Directory inode
1721  * @mode: mode of the new inode
1722  */
1723 void inode_init_owner(struct inode *inode, const struct inode *dir,
1724 			mode_t mode)
1725 {
1726 	inode->i_uid = current_fsuid();
1727 	if (dir && dir->i_mode & S_ISGID) {
1728 		inode->i_gid = dir->i_gid;
1729 		if (S_ISDIR(mode))
1730 			mode |= S_ISGID;
1731 	} else
1732 		inode->i_gid = current_fsgid();
1733 	inode->i_mode = mode;
1734 }
1735 EXPORT_SYMBOL(inode_init_owner);
1736