1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 #include <linux/posix_acl.h> 27 #include <linux/ima.h> 28 29 /* 30 * This is needed for the following functions: 31 * - inode_has_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 static LIST_HEAD(inode_lru); 76 static struct hlist_head *inode_hashtable __read_mostly; 77 78 /* 79 * A simple spinlock to protect the list manipulations. 80 * 81 * NOTE! You also have to own the lock if you change 82 * the i_state of an inode while it is in use.. 83 */ 84 DEFINE_SPINLOCK(inode_lock); 85 86 /* 87 * iprune_sem provides exclusion between the icache shrinking and the 88 * umount path. 89 * 90 * We don't actually need it to protect anything in the umount path, 91 * but only need to cycle through it to make sure any inode that 92 * prune_icache took off the LRU list has been fully torn down by the 93 * time we are past evict_inodes. 94 */ 95 static DECLARE_RWSEM(iprune_sem); 96 97 /* 98 * Statistics gathering.. 99 */ 100 struct inodes_stat_t inodes_stat; 101 102 static DEFINE_PER_CPU(unsigned int, nr_inodes); 103 104 static struct kmem_cache *inode_cachep __read_mostly; 105 106 static int get_nr_inodes(void) 107 { 108 int i; 109 int sum = 0; 110 for_each_possible_cpu(i) 111 sum += per_cpu(nr_inodes, i); 112 return sum < 0 ? 0 : sum; 113 } 114 115 static inline int get_nr_inodes_unused(void) 116 { 117 return inodes_stat.nr_unused; 118 } 119 120 int get_nr_dirty_inodes(void) 121 { 122 /* not actually dirty inodes, but a wild approximation */ 123 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 124 return nr_dirty > 0 ? nr_dirty : 0; 125 } 126 127 /* 128 * Handle nr_inode sysctl 129 */ 130 #ifdef CONFIG_SYSCTL 131 int proc_nr_inodes(ctl_table *table, int write, 132 void __user *buffer, size_t *lenp, loff_t *ppos) 133 { 134 inodes_stat.nr_inodes = get_nr_inodes(); 135 return proc_dointvec(table, write, buffer, lenp, ppos); 136 } 137 #endif 138 139 static void wake_up_inode(struct inode *inode) 140 { 141 /* 142 * Prevent speculative execution through spin_unlock(&inode_lock); 143 */ 144 smp_mb(); 145 wake_up_bit(&inode->i_state, __I_NEW); 146 } 147 148 /** 149 * inode_init_always - perform inode structure intialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct address_space_operations empty_aops; 159 static const struct inode_operations empty_iops; 160 static const struct file_operations empty_fops; 161 struct address_space *const mapping = &inode->i_data; 162 163 inode->i_sb = sb; 164 inode->i_blkbits = sb->s_blocksize_bits; 165 inode->i_flags = 0; 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &empty_fops; 169 inode->i_nlink = 1; 170 inode->i_uid = 0; 171 inode->i_gid = 0; 172 atomic_set(&inode->i_writecount, 0); 173 inode->i_size = 0; 174 inode->i_blocks = 0; 175 inode->i_bytes = 0; 176 inode->i_generation = 0; 177 #ifdef CONFIG_QUOTA 178 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 179 #endif 180 inode->i_pipe = NULL; 181 inode->i_bdev = NULL; 182 inode->i_cdev = NULL; 183 inode->i_rdev = 0; 184 inode->dirtied_when = 0; 185 186 if (security_inode_alloc(inode)) 187 goto out; 188 spin_lock_init(&inode->i_lock); 189 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 190 191 mutex_init(&inode->i_mutex); 192 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 193 194 init_rwsem(&inode->i_alloc_sem); 195 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 196 197 mapping->a_ops = &empty_aops; 198 mapping->host = inode; 199 mapping->flags = 0; 200 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 201 mapping->assoc_mapping = NULL; 202 mapping->backing_dev_info = &default_backing_dev_info; 203 mapping->writeback_index = 0; 204 205 /* 206 * If the block_device provides a backing_dev_info for client 207 * inodes then use that. Otherwise the inode share the bdev's 208 * backing_dev_info. 209 */ 210 if (sb->s_bdev) { 211 struct backing_dev_info *bdi; 212 213 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 214 mapping->backing_dev_info = bdi; 215 } 216 inode->i_private = NULL; 217 inode->i_mapping = mapping; 218 #ifdef CONFIG_FS_POSIX_ACL 219 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 220 #endif 221 222 #ifdef CONFIG_FSNOTIFY 223 inode->i_fsnotify_mask = 0; 224 #endif 225 226 this_cpu_inc(nr_inodes); 227 228 return 0; 229 out: 230 return -ENOMEM; 231 } 232 EXPORT_SYMBOL(inode_init_always); 233 234 static struct inode *alloc_inode(struct super_block *sb) 235 { 236 struct inode *inode; 237 238 if (sb->s_op->alloc_inode) 239 inode = sb->s_op->alloc_inode(sb); 240 else 241 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 242 243 if (!inode) 244 return NULL; 245 246 if (unlikely(inode_init_always(sb, inode))) { 247 if (inode->i_sb->s_op->destroy_inode) 248 inode->i_sb->s_op->destroy_inode(inode); 249 else 250 kmem_cache_free(inode_cachep, inode); 251 return NULL; 252 } 253 254 return inode; 255 } 256 257 void free_inode_nonrcu(struct inode *inode) 258 { 259 kmem_cache_free(inode_cachep, inode); 260 } 261 EXPORT_SYMBOL(free_inode_nonrcu); 262 263 void __destroy_inode(struct inode *inode) 264 { 265 BUG_ON(inode_has_buffers(inode)); 266 security_inode_free(inode); 267 fsnotify_inode_delete(inode); 268 #ifdef CONFIG_FS_POSIX_ACL 269 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 270 posix_acl_release(inode->i_acl); 271 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 272 posix_acl_release(inode->i_default_acl); 273 #endif 274 this_cpu_dec(nr_inodes); 275 } 276 EXPORT_SYMBOL(__destroy_inode); 277 278 static void i_callback(struct rcu_head *head) 279 { 280 struct inode *inode = container_of(head, struct inode, i_rcu); 281 INIT_LIST_HEAD(&inode->i_dentry); 282 kmem_cache_free(inode_cachep, inode); 283 } 284 285 static void destroy_inode(struct inode *inode) 286 { 287 BUG_ON(!list_empty(&inode->i_lru)); 288 __destroy_inode(inode); 289 if (inode->i_sb->s_op->destroy_inode) 290 inode->i_sb->s_op->destroy_inode(inode); 291 else 292 call_rcu(&inode->i_rcu, i_callback); 293 } 294 295 void address_space_init_once(struct address_space *mapping) 296 { 297 memset(mapping, 0, sizeof(*mapping)); 298 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 299 spin_lock_init(&mapping->tree_lock); 300 spin_lock_init(&mapping->i_mmap_lock); 301 INIT_LIST_HEAD(&mapping->private_list); 302 spin_lock_init(&mapping->private_lock); 303 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 304 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 305 mutex_init(&mapping->unmap_mutex); 306 } 307 EXPORT_SYMBOL(address_space_init_once); 308 309 /* 310 * These are initializations that only need to be done 311 * once, because the fields are idempotent across use 312 * of the inode, so let the slab aware of that. 313 */ 314 void inode_init_once(struct inode *inode) 315 { 316 memset(inode, 0, sizeof(*inode)); 317 INIT_HLIST_NODE(&inode->i_hash); 318 INIT_LIST_HEAD(&inode->i_dentry); 319 INIT_LIST_HEAD(&inode->i_devices); 320 INIT_LIST_HEAD(&inode->i_wb_list); 321 INIT_LIST_HEAD(&inode->i_lru); 322 address_space_init_once(&inode->i_data); 323 i_size_ordered_init(inode); 324 #ifdef CONFIG_FSNOTIFY 325 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 326 #endif 327 } 328 EXPORT_SYMBOL(inode_init_once); 329 330 static void init_once(void *foo) 331 { 332 struct inode *inode = (struct inode *) foo; 333 334 inode_init_once(inode); 335 } 336 337 /* 338 * inode_lock must be held 339 */ 340 void __iget(struct inode *inode) 341 { 342 atomic_inc(&inode->i_count); 343 } 344 345 /* 346 * get additional reference to inode; caller must already hold one. 347 */ 348 void ihold(struct inode *inode) 349 { 350 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 351 } 352 EXPORT_SYMBOL(ihold); 353 354 static void inode_lru_list_add(struct inode *inode) 355 { 356 if (list_empty(&inode->i_lru)) { 357 list_add(&inode->i_lru, &inode_lru); 358 inodes_stat.nr_unused++; 359 } 360 } 361 362 static void inode_lru_list_del(struct inode *inode) 363 { 364 if (!list_empty(&inode->i_lru)) { 365 list_del_init(&inode->i_lru); 366 inodes_stat.nr_unused--; 367 } 368 } 369 370 static inline void __inode_sb_list_add(struct inode *inode) 371 { 372 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 373 } 374 375 /** 376 * inode_sb_list_add - add inode to the superblock list of inodes 377 * @inode: inode to add 378 */ 379 void inode_sb_list_add(struct inode *inode) 380 { 381 spin_lock(&inode_lock); 382 __inode_sb_list_add(inode); 383 spin_unlock(&inode_lock); 384 } 385 EXPORT_SYMBOL_GPL(inode_sb_list_add); 386 387 static inline void __inode_sb_list_del(struct inode *inode) 388 { 389 list_del_init(&inode->i_sb_list); 390 } 391 392 static unsigned long hash(struct super_block *sb, unsigned long hashval) 393 { 394 unsigned long tmp; 395 396 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 397 L1_CACHE_BYTES; 398 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 399 return tmp & I_HASHMASK; 400 } 401 402 /** 403 * __insert_inode_hash - hash an inode 404 * @inode: unhashed inode 405 * @hashval: unsigned long value used to locate this object in the 406 * inode_hashtable. 407 * 408 * Add an inode to the inode hash for this superblock. 409 */ 410 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 411 { 412 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 413 414 spin_lock(&inode_lock); 415 hlist_add_head(&inode->i_hash, b); 416 spin_unlock(&inode_lock); 417 } 418 EXPORT_SYMBOL(__insert_inode_hash); 419 420 /** 421 * __remove_inode_hash - remove an inode from the hash 422 * @inode: inode to unhash 423 * 424 * Remove an inode from the superblock. 425 */ 426 static void __remove_inode_hash(struct inode *inode) 427 { 428 hlist_del_init(&inode->i_hash); 429 } 430 431 /** 432 * remove_inode_hash - remove an inode from the hash 433 * @inode: inode to unhash 434 * 435 * Remove an inode from the superblock. 436 */ 437 void remove_inode_hash(struct inode *inode) 438 { 439 spin_lock(&inode_lock); 440 hlist_del_init(&inode->i_hash); 441 spin_unlock(&inode_lock); 442 } 443 EXPORT_SYMBOL(remove_inode_hash); 444 445 void end_writeback(struct inode *inode) 446 { 447 might_sleep(); 448 BUG_ON(inode->i_data.nrpages); 449 BUG_ON(!list_empty(&inode->i_data.private_list)); 450 BUG_ON(!(inode->i_state & I_FREEING)); 451 BUG_ON(inode->i_state & I_CLEAR); 452 inode_sync_wait(inode); 453 /* don't need i_lock here, no concurrent mods to i_state */ 454 inode->i_state = I_FREEING | I_CLEAR; 455 } 456 EXPORT_SYMBOL(end_writeback); 457 458 static void evict(struct inode *inode) 459 { 460 const struct super_operations *op = inode->i_sb->s_op; 461 462 if (op->evict_inode) { 463 op->evict_inode(inode); 464 } else { 465 if (inode->i_data.nrpages) 466 truncate_inode_pages(&inode->i_data, 0); 467 end_writeback(inode); 468 } 469 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 470 bd_forget(inode); 471 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 472 cd_forget(inode); 473 } 474 475 /* 476 * dispose_list - dispose of the contents of a local list 477 * @head: the head of the list to free 478 * 479 * Dispose-list gets a local list with local inodes in it, so it doesn't 480 * need to worry about list corruption and SMP locks. 481 */ 482 static void dispose_list(struct list_head *head) 483 { 484 while (!list_empty(head)) { 485 struct inode *inode; 486 487 inode = list_first_entry(head, struct inode, i_lru); 488 list_del_init(&inode->i_lru); 489 490 evict(inode); 491 492 spin_lock(&inode_lock); 493 __remove_inode_hash(inode); 494 __inode_sb_list_del(inode); 495 spin_unlock(&inode_lock); 496 497 wake_up_inode(inode); 498 destroy_inode(inode); 499 } 500 } 501 502 /** 503 * evict_inodes - evict all evictable inodes for a superblock 504 * @sb: superblock to operate on 505 * 506 * Make sure that no inodes with zero refcount are retained. This is 507 * called by superblock shutdown after having MS_ACTIVE flag removed, 508 * so any inode reaching zero refcount during or after that call will 509 * be immediately evicted. 510 */ 511 void evict_inodes(struct super_block *sb) 512 { 513 struct inode *inode, *next; 514 LIST_HEAD(dispose); 515 516 spin_lock(&inode_lock); 517 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 518 if (atomic_read(&inode->i_count)) 519 continue; 520 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) 521 continue; 522 523 inode->i_state |= I_FREEING; 524 525 /* 526 * Move the inode off the IO lists and LRU once I_FREEING is 527 * set so that it won't get moved back on there if it is dirty. 528 */ 529 list_move(&inode->i_lru, &dispose); 530 list_del_init(&inode->i_wb_list); 531 if (!(inode->i_state & (I_DIRTY | I_SYNC))) 532 inodes_stat.nr_unused--; 533 } 534 spin_unlock(&inode_lock); 535 536 dispose_list(&dispose); 537 538 /* 539 * Cycle through iprune_sem to make sure any inode that prune_icache 540 * moved off the list before we took the lock has been fully torn 541 * down. 542 */ 543 down_write(&iprune_sem); 544 up_write(&iprune_sem); 545 } 546 547 /** 548 * invalidate_inodes - attempt to free all inodes on a superblock 549 * @sb: superblock to operate on 550 * @kill_dirty: flag to guide handling of dirty inodes 551 * 552 * Attempts to free all inodes for a given superblock. If there were any 553 * busy inodes return a non-zero value, else zero. 554 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 555 * them as busy. 556 */ 557 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 558 { 559 int busy = 0; 560 struct inode *inode, *next; 561 LIST_HEAD(dispose); 562 563 spin_lock(&inode_lock); 564 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 565 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) 566 continue; 567 if (inode->i_state & I_DIRTY && !kill_dirty) { 568 busy = 1; 569 continue; 570 } 571 if (atomic_read(&inode->i_count)) { 572 busy = 1; 573 continue; 574 } 575 576 inode->i_state |= I_FREEING; 577 578 /* 579 * Move the inode off the IO lists and LRU once I_FREEING is 580 * set so that it won't get moved back on there if it is dirty. 581 */ 582 list_move(&inode->i_lru, &dispose); 583 list_del_init(&inode->i_wb_list); 584 if (!(inode->i_state & (I_DIRTY | I_SYNC))) 585 inodes_stat.nr_unused--; 586 } 587 spin_unlock(&inode_lock); 588 589 dispose_list(&dispose); 590 591 return busy; 592 } 593 594 static int can_unuse(struct inode *inode) 595 { 596 if (inode->i_state & ~I_REFERENCED) 597 return 0; 598 if (inode_has_buffers(inode)) 599 return 0; 600 if (atomic_read(&inode->i_count)) 601 return 0; 602 if (inode->i_data.nrpages) 603 return 0; 604 return 1; 605 } 606 607 /* 608 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a 609 * temporary list and then are freed outside inode_lock by dispose_list(). 610 * 611 * Any inodes which are pinned purely because of attached pagecache have their 612 * pagecache removed. If the inode has metadata buffers attached to 613 * mapping->private_list then try to remove them. 614 * 615 * If the inode has the I_REFERENCED flag set, then it means that it has been 616 * used recently - the flag is set in iput_final(). When we encounter such an 617 * inode, clear the flag and move it to the back of the LRU so it gets another 618 * pass through the LRU before it gets reclaimed. This is necessary because of 619 * the fact we are doing lazy LRU updates to minimise lock contention so the 620 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 621 * with this flag set because they are the inodes that are out of order. 622 */ 623 static void prune_icache(int nr_to_scan) 624 { 625 LIST_HEAD(freeable); 626 int nr_scanned; 627 unsigned long reap = 0; 628 629 down_read(&iprune_sem); 630 spin_lock(&inode_lock); 631 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 632 struct inode *inode; 633 634 if (list_empty(&inode_lru)) 635 break; 636 637 inode = list_entry(inode_lru.prev, struct inode, i_lru); 638 639 /* 640 * Referenced or dirty inodes are still in use. Give them 641 * another pass through the LRU as we canot reclaim them now. 642 */ 643 if (atomic_read(&inode->i_count) || 644 (inode->i_state & ~I_REFERENCED)) { 645 list_del_init(&inode->i_lru); 646 inodes_stat.nr_unused--; 647 continue; 648 } 649 650 /* recently referenced inodes get one more pass */ 651 if (inode->i_state & I_REFERENCED) { 652 list_move(&inode->i_lru, &inode_lru); 653 inode->i_state &= ~I_REFERENCED; 654 continue; 655 } 656 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 657 __iget(inode); 658 spin_unlock(&inode_lock); 659 if (remove_inode_buffers(inode)) 660 reap += invalidate_mapping_pages(&inode->i_data, 661 0, -1); 662 iput(inode); 663 spin_lock(&inode_lock); 664 665 if (inode != list_entry(inode_lru.next, 666 struct inode, i_lru)) 667 continue; /* wrong inode or list_empty */ 668 if (!can_unuse(inode)) 669 continue; 670 } 671 WARN_ON(inode->i_state & I_NEW); 672 inode->i_state |= I_FREEING; 673 674 /* 675 * Move the inode off the IO lists and LRU once I_FREEING is 676 * set so that it won't get moved back on there if it is dirty. 677 */ 678 list_move(&inode->i_lru, &freeable); 679 list_del_init(&inode->i_wb_list); 680 inodes_stat.nr_unused--; 681 } 682 if (current_is_kswapd()) 683 __count_vm_events(KSWAPD_INODESTEAL, reap); 684 else 685 __count_vm_events(PGINODESTEAL, reap); 686 spin_unlock(&inode_lock); 687 688 dispose_list(&freeable); 689 up_read(&iprune_sem); 690 } 691 692 /* 693 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 694 * "unused" means that no dentries are referring to the inodes: the files are 695 * not open and the dcache references to those inodes have already been 696 * reclaimed. 697 * 698 * This function is passed the number of inodes to scan, and it returns the 699 * total number of remaining possibly-reclaimable inodes. 700 */ 701 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 702 { 703 if (nr) { 704 /* 705 * Nasty deadlock avoidance. We may hold various FS locks, 706 * and we don't want to recurse into the FS that called us 707 * in clear_inode() and friends.. 708 */ 709 if (!(gfp_mask & __GFP_FS)) 710 return -1; 711 prune_icache(nr); 712 } 713 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; 714 } 715 716 static struct shrinker icache_shrinker = { 717 .shrink = shrink_icache_memory, 718 .seeks = DEFAULT_SEEKS, 719 }; 720 721 static void __wait_on_freeing_inode(struct inode *inode); 722 /* 723 * Called with the inode lock held. 724 */ 725 static struct inode *find_inode(struct super_block *sb, 726 struct hlist_head *head, 727 int (*test)(struct inode *, void *), 728 void *data) 729 { 730 struct hlist_node *node; 731 struct inode *inode = NULL; 732 733 repeat: 734 hlist_for_each_entry(inode, node, head, i_hash) { 735 if (inode->i_sb != sb) 736 continue; 737 if (!test(inode, data)) 738 continue; 739 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 740 __wait_on_freeing_inode(inode); 741 goto repeat; 742 } 743 __iget(inode); 744 return inode; 745 } 746 return NULL; 747 } 748 749 /* 750 * find_inode_fast is the fast path version of find_inode, see the comment at 751 * iget_locked for details. 752 */ 753 static struct inode *find_inode_fast(struct super_block *sb, 754 struct hlist_head *head, unsigned long ino) 755 { 756 struct hlist_node *node; 757 struct inode *inode = NULL; 758 759 repeat: 760 hlist_for_each_entry(inode, node, head, i_hash) { 761 if (inode->i_ino != ino) 762 continue; 763 if (inode->i_sb != sb) 764 continue; 765 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 766 __wait_on_freeing_inode(inode); 767 goto repeat; 768 } 769 __iget(inode); 770 return inode; 771 } 772 return NULL; 773 } 774 775 /* 776 * Each cpu owns a range of LAST_INO_BATCH numbers. 777 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 778 * to renew the exhausted range. 779 * 780 * This does not significantly increase overflow rate because every CPU can 781 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 782 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 783 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 784 * overflow rate by 2x, which does not seem too significant. 785 * 786 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 787 * error if st_ino won't fit in target struct field. Use 32bit counter 788 * here to attempt to avoid that. 789 */ 790 #define LAST_INO_BATCH 1024 791 static DEFINE_PER_CPU(unsigned int, last_ino); 792 793 unsigned int get_next_ino(void) 794 { 795 unsigned int *p = &get_cpu_var(last_ino); 796 unsigned int res = *p; 797 798 #ifdef CONFIG_SMP 799 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 800 static atomic_t shared_last_ino; 801 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 802 803 res = next - LAST_INO_BATCH; 804 } 805 #endif 806 807 *p = ++res; 808 put_cpu_var(last_ino); 809 return res; 810 } 811 EXPORT_SYMBOL(get_next_ino); 812 813 /** 814 * new_inode - obtain an inode 815 * @sb: superblock 816 * 817 * Allocates a new inode for given superblock. The default gfp_mask 818 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 819 * If HIGHMEM pages are unsuitable or it is known that pages allocated 820 * for the page cache are not reclaimable or migratable, 821 * mapping_set_gfp_mask() must be called with suitable flags on the 822 * newly created inode's mapping 823 * 824 */ 825 struct inode *new_inode(struct super_block *sb) 826 { 827 struct inode *inode; 828 829 spin_lock_prefetch(&inode_lock); 830 831 inode = alloc_inode(sb); 832 if (inode) { 833 spin_lock(&inode_lock); 834 __inode_sb_list_add(inode); 835 inode->i_state = 0; 836 spin_unlock(&inode_lock); 837 } 838 return inode; 839 } 840 EXPORT_SYMBOL(new_inode); 841 842 void unlock_new_inode(struct inode *inode) 843 { 844 #ifdef CONFIG_DEBUG_LOCK_ALLOC 845 if (S_ISDIR(inode->i_mode)) { 846 struct file_system_type *type = inode->i_sb->s_type; 847 848 /* Set new key only if filesystem hasn't already changed it */ 849 if (!lockdep_match_class(&inode->i_mutex, 850 &type->i_mutex_key)) { 851 /* 852 * ensure nobody is actually holding i_mutex 853 */ 854 mutex_destroy(&inode->i_mutex); 855 mutex_init(&inode->i_mutex); 856 lockdep_set_class(&inode->i_mutex, 857 &type->i_mutex_dir_key); 858 } 859 } 860 #endif 861 /* 862 * This is special! We do not need the spinlock when clearing I_NEW, 863 * because we're guaranteed that nobody else tries to do anything about 864 * the state of the inode when it is locked, as we just created it (so 865 * there can be no old holders that haven't tested I_NEW). 866 * However we must emit the memory barrier so that other CPUs reliably 867 * see the clearing of I_NEW after the other inode initialisation has 868 * completed. 869 */ 870 smp_mb(); 871 WARN_ON(!(inode->i_state & I_NEW)); 872 inode->i_state &= ~I_NEW; 873 wake_up_inode(inode); 874 } 875 EXPORT_SYMBOL(unlock_new_inode); 876 877 /* 878 * This is called without the inode lock held.. Be careful. 879 * 880 * We no longer cache the sb_flags in i_flags - see fs.h 881 * -- rmk@arm.uk.linux.org 882 */ 883 static struct inode *get_new_inode(struct super_block *sb, 884 struct hlist_head *head, 885 int (*test)(struct inode *, void *), 886 int (*set)(struct inode *, void *), 887 void *data) 888 { 889 struct inode *inode; 890 891 inode = alloc_inode(sb); 892 if (inode) { 893 struct inode *old; 894 895 spin_lock(&inode_lock); 896 /* We released the lock, so.. */ 897 old = find_inode(sb, head, test, data); 898 if (!old) { 899 if (set(inode, data)) 900 goto set_failed; 901 902 hlist_add_head(&inode->i_hash, head); 903 __inode_sb_list_add(inode); 904 inode->i_state = I_NEW; 905 spin_unlock(&inode_lock); 906 907 /* Return the locked inode with I_NEW set, the 908 * caller is responsible for filling in the contents 909 */ 910 return inode; 911 } 912 913 /* 914 * Uhhuh, somebody else created the same inode under 915 * us. Use the old inode instead of the one we just 916 * allocated. 917 */ 918 spin_unlock(&inode_lock); 919 destroy_inode(inode); 920 inode = old; 921 wait_on_inode(inode); 922 } 923 return inode; 924 925 set_failed: 926 spin_unlock(&inode_lock); 927 destroy_inode(inode); 928 return NULL; 929 } 930 931 /* 932 * get_new_inode_fast is the fast path version of get_new_inode, see the 933 * comment at iget_locked for details. 934 */ 935 static struct inode *get_new_inode_fast(struct super_block *sb, 936 struct hlist_head *head, unsigned long ino) 937 { 938 struct inode *inode; 939 940 inode = alloc_inode(sb); 941 if (inode) { 942 struct inode *old; 943 944 spin_lock(&inode_lock); 945 /* We released the lock, so.. */ 946 old = find_inode_fast(sb, head, ino); 947 if (!old) { 948 inode->i_ino = ino; 949 hlist_add_head(&inode->i_hash, head); 950 __inode_sb_list_add(inode); 951 inode->i_state = I_NEW; 952 spin_unlock(&inode_lock); 953 954 /* Return the locked inode with I_NEW set, the 955 * caller is responsible for filling in the contents 956 */ 957 return inode; 958 } 959 960 /* 961 * Uhhuh, somebody else created the same inode under 962 * us. Use the old inode instead of the one we just 963 * allocated. 964 */ 965 spin_unlock(&inode_lock); 966 destroy_inode(inode); 967 inode = old; 968 wait_on_inode(inode); 969 } 970 return inode; 971 } 972 973 /* 974 * search the inode cache for a matching inode number. 975 * If we find one, then the inode number we are trying to 976 * allocate is not unique and so we should not use it. 977 * 978 * Returns 1 if the inode number is unique, 0 if it is not. 979 */ 980 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 981 { 982 struct hlist_head *b = inode_hashtable + hash(sb, ino); 983 struct hlist_node *node; 984 struct inode *inode; 985 986 hlist_for_each_entry(inode, node, b, i_hash) { 987 if (inode->i_ino == ino && inode->i_sb == sb) 988 return 0; 989 } 990 991 return 1; 992 } 993 994 /** 995 * iunique - get a unique inode number 996 * @sb: superblock 997 * @max_reserved: highest reserved inode number 998 * 999 * Obtain an inode number that is unique on the system for a given 1000 * superblock. This is used by file systems that have no natural 1001 * permanent inode numbering system. An inode number is returned that 1002 * is higher than the reserved limit but unique. 1003 * 1004 * BUGS: 1005 * With a large number of inodes live on the file system this function 1006 * currently becomes quite slow. 1007 */ 1008 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1009 { 1010 /* 1011 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1012 * error if st_ino won't fit in target struct field. Use 32bit counter 1013 * here to attempt to avoid that. 1014 */ 1015 static DEFINE_SPINLOCK(iunique_lock); 1016 static unsigned int counter; 1017 ino_t res; 1018 1019 spin_lock(&inode_lock); 1020 spin_lock(&iunique_lock); 1021 do { 1022 if (counter <= max_reserved) 1023 counter = max_reserved + 1; 1024 res = counter++; 1025 } while (!test_inode_iunique(sb, res)); 1026 spin_unlock(&iunique_lock); 1027 spin_unlock(&inode_lock); 1028 1029 return res; 1030 } 1031 EXPORT_SYMBOL(iunique); 1032 1033 struct inode *igrab(struct inode *inode) 1034 { 1035 spin_lock(&inode_lock); 1036 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 1037 __iget(inode); 1038 else 1039 /* 1040 * Handle the case where s_op->clear_inode is not been 1041 * called yet, and somebody is calling igrab 1042 * while the inode is getting freed. 1043 */ 1044 inode = NULL; 1045 spin_unlock(&inode_lock); 1046 return inode; 1047 } 1048 EXPORT_SYMBOL(igrab); 1049 1050 /** 1051 * ifind - internal function, you want ilookup5() or iget5(). 1052 * @sb: super block of file system to search 1053 * @head: the head of the list to search 1054 * @test: callback used for comparisons between inodes 1055 * @data: opaque data pointer to pass to @test 1056 * @wait: if true wait for the inode to be unlocked, if false do not 1057 * 1058 * ifind() searches for the inode specified by @data in the inode 1059 * cache. This is a generalized version of ifind_fast() for file systems where 1060 * the inode number is not sufficient for unique identification of an inode. 1061 * 1062 * If the inode is in the cache, the inode is returned with an incremented 1063 * reference count. 1064 * 1065 * Otherwise NULL is returned. 1066 * 1067 * Note, @test is called with the inode_lock held, so can't sleep. 1068 */ 1069 static struct inode *ifind(struct super_block *sb, 1070 struct hlist_head *head, int (*test)(struct inode *, void *), 1071 void *data, const int wait) 1072 { 1073 struct inode *inode; 1074 1075 spin_lock(&inode_lock); 1076 inode = find_inode(sb, head, test, data); 1077 if (inode) { 1078 spin_unlock(&inode_lock); 1079 if (likely(wait)) 1080 wait_on_inode(inode); 1081 return inode; 1082 } 1083 spin_unlock(&inode_lock); 1084 return NULL; 1085 } 1086 1087 /** 1088 * ifind_fast - internal function, you want ilookup() or iget(). 1089 * @sb: super block of file system to search 1090 * @head: head of the list to search 1091 * @ino: inode number to search for 1092 * 1093 * ifind_fast() searches for the inode @ino in the inode cache. This is for 1094 * file systems where the inode number is sufficient for unique identification 1095 * of an inode. 1096 * 1097 * If the inode is in the cache, the inode is returned with an incremented 1098 * reference count. 1099 * 1100 * Otherwise NULL is returned. 1101 */ 1102 static struct inode *ifind_fast(struct super_block *sb, 1103 struct hlist_head *head, unsigned long ino) 1104 { 1105 struct inode *inode; 1106 1107 spin_lock(&inode_lock); 1108 inode = find_inode_fast(sb, head, ino); 1109 if (inode) { 1110 spin_unlock(&inode_lock); 1111 wait_on_inode(inode); 1112 return inode; 1113 } 1114 spin_unlock(&inode_lock); 1115 return NULL; 1116 } 1117 1118 /** 1119 * ilookup5_nowait - search for an inode in the inode cache 1120 * @sb: super block of file system to search 1121 * @hashval: hash value (usually inode number) to search for 1122 * @test: callback used for comparisons between inodes 1123 * @data: opaque data pointer to pass to @test 1124 * 1125 * ilookup5() uses ifind() to search for the inode specified by @hashval and 1126 * @data in the inode cache. This is a generalized version of ilookup() for 1127 * file systems where the inode number is not sufficient for unique 1128 * identification of an inode. 1129 * 1130 * If the inode is in the cache, the inode is returned with an incremented 1131 * reference count. Note, the inode lock is not waited upon so you have to be 1132 * very careful what you do with the returned inode. You probably should be 1133 * using ilookup5() instead. 1134 * 1135 * Otherwise NULL is returned. 1136 * 1137 * Note, @test is called with the inode_lock held, so can't sleep. 1138 */ 1139 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1140 int (*test)(struct inode *, void *), void *data) 1141 { 1142 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1143 1144 return ifind(sb, head, test, data, 0); 1145 } 1146 EXPORT_SYMBOL(ilookup5_nowait); 1147 1148 /** 1149 * ilookup5 - search for an inode in the inode cache 1150 * @sb: super block of file system to search 1151 * @hashval: hash value (usually inode number) to search for 1152 * @test: callback used for comparisons between inodes 1153 * @data: opaque data pointer to pass to @test 1154 * 1155 * ilookup5() uses ifind() to search for the inode specified by @hashval and 1156 * @data in the inode cache. This is a generalized version of ilookup() for 1157 * file systems where the inode number is not sufficient for unique 1158 * identification of an inode. 1159 * 1160 * If the inode is in the cache, the inode lock is waited upon and the inode is 1161 * returned with an incremented reference count. 1162 * 1163 * Otherwise NULL is returned. 1164 * 1165 * Note, @test is called with the inode_lock held, so can't sleep. 1166 */ 1167 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1168 int (*test)(struct inode *, void *), void *data) 1169 { 1170 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1171 1172 return ifind(sb, head, test, data, 1); 1173 } 1174 EXPORT_SYMBOL(ilookup5); 1175 1176 /** 1177 * ilookup - search for an inode in the inode cache 1178 * @sb: super block of file system to search 1179 * @ino: inode number to search for 1180 * 1181 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 1182 * This is for file systems where the inode number is sufficient for unique 1183 * identification of an inode. 1184 * 1185 * If the inode is in the cache, the inode is returned with an incremented 1186 * reference count. 1187 * 1188 * Otherwise NULL is returned. 1189 */ 1190 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1191 { 1192 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1193 1194 return ifind_fast(sb, head, ino); 1195 } 1196 EXPORT_SYMBOL(ilookup); 1197 1198 /** 1199 * iget5_locked - obtain an inode from a mounted file system 1200 * @sb: super block of file system 1201 * @hashval: hash value (usually inode number) to get 1202 * @test: callback used for comparisons between inodes 1203 * @set: callback used to initialize a new struct inode 1204 * @data: opaque data pointer to pass to @test and @set 1205 * 1206 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1207 * and @data in the inode cache and if present it is returned with an increased 1208 * reference count. This is a generalized version of iget_locked() for file 1209 * systems where the inode number is not sufficient for unique identification 1210 * of an inode. 1211 * 1212 * If the inode is not in cache, get_new_inode() is called to allocate a new 1213 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1214 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1215 * 1216 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1217 */ 1218 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1219 int (*test)(struct inode *, void *), 1220 int (*set)(struct inode *, void *), void *data) 1221 { 1222 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1223 struct inode *inode; 1224 1225 inode = ifind(sb, head, test, data, 1); 1226 if (inode) 1227 return inode; 1228 /* 1229 * get_new_inode() will do the right thing, re-trying the search 1230 * in case it had to block at any point. 1231 */ 1232 return get_new_inode(sb, head, test, set, data); 1233 } 1234 EXPORT_SYMBOL(iget5_locked); 1235 1236 /** 1237 * iget_locked - obtain an inode from a mounted file system 1238 * @sb: super block of file system 1239 * @ino: inode number to get 1240 * 1241 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1242 * the inode cache and if present it is returned with an increased reference 1243 * count. This is for file systems where the inode number is sufficient for 1244 * unique identification of an inode. 1245 * 1246 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1247 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1248 * The file system gets to fill it in before unlocking it via 1249 * unlock_new_inode(). 1250 */ 1251 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1252 { 1253 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1254 struct inode *inode; 1255 1256 inode = ifind_fast(sb, head, ino); 1257 if (inode) 1258 return inode; 1259 /* 1260 * get_new_inode_fast() will do the right thing, re-trying the search 1261 * in case it had to block at any point. 1262 */ 1263 return get_new_inode_fast(sb, head, ino); 1264 } 1265 EXPORT_SYMBOL(iget_locked); 1266 1267 int insert_inode_locked(struct inode *inode) 1268 { 1269 struct super_block *sb = inode->i_sb; 1270 ino_t ino = inode->i_ino; 1271 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1272 1273 inode->i_state |= I_NEW; 1274 while (1) { 1275 struct hlist_node *node; 1276 struct inode *old = NULL; 1277 spin_lock(&inode_lock); 1278 hlist_for_each_entry(old, node, head, i_hash) { 1279 if (old->i_ino != ino) 1280 continue; 1281 if (old->i_sb != sb) 1282 continue; 1283 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1284 continue; 1285 break; 1286 } 1287 if (likely(!node)) { 1288 hlist_add_head(&inode->i_hash, head); 1289 spin_unlock(&inode_lock); 1290 return 0; 1291 } 1292 __iget(old); 1293 spin_unlock(&inode_lock); 1294 wait_on_inode(old); 1295 if (unlikely(!inode_unhashed(old))) { 1296 iput(old); 1297 return -EBUSY; 1298 } 1299 iput(old); 1300 } 1301 } 1302 EXPORT_SYMBOL(insert_inode_locked); 1303 1304 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1305 int (*test)(struct inode *, void *), void *data) 1306 { 1307 struct super_block *sb = inode->i_sb; 1308 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1309 1310 inode->i_state |= I_NEW; 1311 1312 while (1) { 1313 struct hlist_node *node; 1314 struct inode *old = NULL; 1315 1316 spin_lock(&inode_lock); 1317 hlist_for_each_entry(old, node, head, i_hash) { 1318 if (old->i_sb != sb) 1319 continue; 1320 if (!test(old, data)) 1321 continue; 1322 if (old->i_state & (I_FREEING|I_WILL_FREE)) 1323 continue; 1324 break; 1325 } 1326 if (likely(!node)) { 1327 hlist_add_head(&inode->i_hash, head); 1328 spin_unlock(&inode_lock); 1329 return 0; 1330 } 1331 __iget(old); 1332 spin_unlock(&inode_lock); 1333 wait_on_inode(old); 1334 if (unlikely(!inode_unhashed(old))) { 1335 iput(old); 1336 return -EBUSY; 1337 } 1338 iput(old); 1339 } 1340 } 1341 EXPORT_SYMBOL(insert_inode_locked4); 1342 1343 1344 int generic_delete_inode(struct inode *inode) 1345 { 1346 return 1; 1347 } 1348 EXPORT_SYMBOL(generic_delete_inode); 1349 1350 /* 1351 * Normal UNIX filesystem behaviour: delete the 1352 * inode when the usage count drops to zero, and 1353 * i_nlink is zero. 1354 */ 1355 int generic_drop_inode(struct inode *inode) 1356 { 1357 return !inode->i_nlink || inode_unhashed(inode); 1358 } 1359 EXPORT_SYMBOL_GPL(generic_drop_inode); 1360 1361 /* 1362 * Called when we're dropping the last reference 1363 * to an inode. 1364 * 1365 * Call the FS "drop_inode()" function, defaulting to 1366 * the legacy UNIX filesystem behaviour. If it tells 1367 * us to evict inode, do so. Otherwise, retain inode 1368 * in cache if fs is alive, sync and evict if fs is 1369 * shutting down. 1370 */ 1371 static void iput_final(struct inode *inode) 1372 { 1373 struct super_block *sb = inode->i_sb; 1374 const struct super_operations *op = inode->i_sb->s_op; 1375 int drop; 1376 1377 if (op && op->drop_inode) 1378 drop = op->drop_inode(inode); 1379 else 1380 drop = generic_drop_inode(inode); 1381 1382 if (!drop) { 1383 if (sb->s_flags & MS_ACTIVE) { 1384 inode->i_state |= I_REFERENCED; 1385 if (!(inode->i_state & (I_DIRTY|I_SYNC))) { 1386 inode_lru_list_add(inode); 1387 } 1388 spin_unlock(&inode_lock); 1389 return; 1390 } 1391 WARN_ON(inode->i_state & I_NEW); 1392 inode->i_state |= I_WILL_FREE; 1393 spin_unlock(&inode_lock); 1394 write_inode_now(inode, 1); 1395 spin_lock(&inode_lock); 1396 WARN_ON(inode->i_state & I_NEW); 1397 inode->i_state &= ~I_WILL_FREE; 1398 __remove_inode_hash(inode); 1399 } 1400 1401 WARN_ON(inode->i_state & I_NEW); 1402 inode->i_state |= I_FREEING; 1403 1404 /* 1405 * Move the inode off the IO lists and LRU once I_FREEING is 1406 * set so that it won't get moved back on there if it is dirty. 1407 */ 1408 inode_lru_list_del(inode); 1409 list_del_init(&inode->i_wb_list); 1410 1411 __inode_sb_list_del(inode); 1412 spin_unlock(&inode_lock); 1413 evict(inode); 1414 remove_inode_hash(inode); 1415 wake_up_inode(inode); 1416 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 1417 destroy_inode(inode); 1418 } 1419 1420 /** 1421 * iput - put an inode 1422 * @inode: inode to put 1423 * 1424 * Puts an inode, dropping its usage count. If the inode use count hits 1425 * zero, the inode is then freed and may also be destroyed. 1426 * 1427 * Consequently, iput() can sleep. 1428 */ 1429 void iput(struct inode *inode) 1430 { 1431 if (inode) { 1432 BUG_ON(inode->i_state & I_CLEAR); 1433 1434 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1435 iput_final(inode); 1436 } 1437 } 1438 EXPORT_SYMBOL(iput); 1439 1440 /** 1441 * bmap - find a block number in a file 1442 * @inode: inode of file 1443 * @block: block to find 1444 * 1445 * Returns the block number on the device holding the inode that 1446 * is the disk block number for the block of the file requested. 1447 * That is, asked for block 4 of inode 1 the function will return the 1448 * disk block relative to the disk start that holds that block of the 1449 * file. 1450 */ 1451 sector_t bmap(struct inode *inode, sector_t block) 1452 { 1453 sector_t res = 0; 1454 if (inode->i_mapping->a_ops->bmap) 1455 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1456 return res; 1457 } 1458 EXPORT_SYMBOL(bmap); 1459 1460 /* 1461 * With relative atime, only update atime if the previous atime is 1462 * earlier than either the ctime or mtime or if at least a day has 1463 * passed since the last atime update. 1464 */ 1465 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1466 struct timespec now) 1467 { 1468 1469 if (!(mnt->mnt_flags & MNT_RELATIME)) 1470 return 1; 1471 /* 1472 * Is mtime younger than atime? If yes, update atime: 1473 */ 1474 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1475 return 1; 1476 /* 1477 * Is ctime younger than atime? If yes, update atime: 1478 */ 1479 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1480 return 1; 1481 1482 /* 1483 * Is the previous atime value older than a day? If yes, 1484 * update atime: 1485 */ 1486 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1487 return 1; 1488 /* 1489 * Good, we can skip the atime update: 1490 */ 1491 return 0; 1492 } 1493 1494 /** 1495 * touch_atime - update the access time 1496 * @mnt: mount the inode is accessed on 1497 * @dentry: dentry accessed 1498 * 1499 * Update the accessed time on an inode and mark it for writeback. 1500 * This function automatically handles read only file systems and media, 1501 * as well as the "noatime" flag and inode specific "noatime" markers. 1502 */ 1503 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1504 { 1505 struct inode *inode = dentry->d_inode; 1506 struct timespec now; 1507 1508 if (inode->i_flags & S_NOATIME) 1509 return; 1510 if (IS_NOATIME(inode)) 1511 return; 1512 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1513 return; 1514 1515 if (mnt->mnt_flags & MNT_NOATIME) 1516 return; 1517 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1518 return; 1519 1520 now = current_fs_time(inode->i_sb); 1521 1522 if (!relatime_need_update(mnt, inode, now)) 1523 return; 1524 1525 if (timespec_equal(&inode->i_atime, &now)) 1526 return; 1527 1528 if (mnt_want_write(mnt)) 1529 return; 1530 1531 inode->i_atime = now; 1532 mark_inode_dirty_sync(inode); 1533 mnt_drop_write(mnt); 1534 } 1535 EXPORT_SYMBOL(touch_atime); 1536 1537 /** 1538 * file_update_time - update mtime and ctime time 1539 * @file: file accessed 1540 * 1541 * Update the mtime and ctime members of an inode and mark the inode 1542 * for writeback. Note that this function is meant exclusively for 1543 * usage in the file write path of filesystems, and filesystems may 1544 * choose to explicitly ignore update via this function with the 1545 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1546 * timestamps are handled by the server. 1547 */ 1548 1549 void file_update_time(struct file *file) 1550 { 1551 struct inode *inode = file->f_path.dentry->d_inode; 1552 struct timespec now; 1553 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1554 1555 /* First try to exhaust all avenues to not sync */ 1556 if (IS_NOCMTIME(inode)) 1557 return; 1558 1559 now = current_fs_time(inode->i_sb); 1560 if (!timespec_equal(&inode->i_mtime, &now)) 1561 sync_it = S_MTIME; 1562 1563 if (!timespec_equal(&inode->i_ctime, &now)) 1564 sync_it |= S_CTIME; 1565 1566 if (IS_I_VERSION(inode)) 1567 sync_it |= S_VERSION; 1568 1569 if (!sync_it) 1570 return; 1571 1572 /* Finally allowed to write? Takes lock. */ 1573 if (mnt_want_write_file(file)) 1574 return; 1575 1576 /* Only change inode inside the lock region */ 1577 if (sync_it & S_VERSION) 1578 inode_inc_iversion(inode); 1579 if (sync_it & S_CTIME) 1580 inode->i_ctime = now; 1581 if (sync_it & S_MTIME) 1582 inode->i_mtime = now; 1583 mark_inode_dirty_sync(inode); 1584 mnt_drop_write(file->f_path.mnt); 1585 } 1586 EXPORT_SYMBOL(file_update_time); 1587 1588 int inode_needs_sync(struct inode *inode) 1589 { 1590 if (IS_SYNC(inode)) 1591 return 1; 1592 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1593 return 1; 1594 return 0; 1595 } 1596 EXPORT_SYMBOL(inode_needs_sync); 1597 1598 int inode_wait(void *word) 1599 { 1600 schedule(); 1601 return 0; 1602 } 1603 EXPORT_SYMBOL(inode_wait); 1604 1605 /* 1606 * If we try to find an inode in the inode hash while it is being 1607 * deleted, we have to wait until the filesystem completes its 1608 * deletion before reporting that it isn't found. This function waits 1609 * until the deletion _might_ have completed. Callers are responsible 1610 * to recheck inode state. 1611 * 1612 * It doesn't matter if I_NEW is not set initially, a call to 1613 * wake_up_inode() after removing from the hash list will DTRT. 1614 * 1615 * This is called with inode_lock held. 1616 */ 1617 static void __wait_on_freeing_inode(struct inode *inode) 1618 { 1619 wait_queue_head_t *wq; 1620 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1621 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1622 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1623 spin_unlock(&inode_lock); 1624 schedule(); 1625 finish_wait(wq, &wait.wait); 1626 spin_lock(&inode_lock); 1627 } 1628 1629 static __initdata unsigned long ihash_entries; 1630 static int __init set_ihash_entries(char *str) 1631 { 1632 if (!str) 1633 return 0; 1634 ihash_entries = simple_strtoul(str, &str, 0); 1635 return 1; 1636 } 1637 __setup("ihash_entries=", set_ihash_entries); 1638 1639 /* 1640 * Initialize the waitqueues and inode hash table. 1641 */ 1642 void __init inode_init_early(void) 1643 { 1644 int loop; 1645 1646 /* If hashes are distributed across NUMA nodes, defer 1647 * hash allocation until vmalloc space is available. 1648 */ 1649 if (hashdist) 1650 return; 1651 1652 inode_hashtable = 1653 alloc_large_system_hash("Inode-cache", 1654 sizeof(struct hlist_head), 1655 ihash_entries, 1656 14, 1657 HASH_EARLY, 1658 &i_hash_shift, 1659 &i_hash_mask, 1660 0); 1661 1662 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1663 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1664 } 1665 1666 void __init inode_init(void) 1667 { 1668 int loop; 1669 1670 /* inode slab cache */ 1671 inode_cachep = kmem_cache_create("inode_cache", 1672 sizeof(struct inode), 1673 0, 1674 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1675 SLAB_MEM_SPREAD), 1676 init_once); 1677 register_shrinker(&icache_shrinker); 1678 1679 /* Hash may have been set up in inode_init_early */ 1680 if (!hashdist) 1681 return; 1682 1683 inode_hashtable = 1684 alloc_large_system_hash("Inode-cache", 1685 sizeof(struct hlist_head), 1686 ihash_entries, 1687 14, 1688 0, 1689 &i_hash_shift, 1690 &i_hash_mask, 1691 0); 1692 1693 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1694 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1695 } 1696 1697 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1698 { 1699 inode->i_mode = mode; 1700 if (S_ISCHR(mode)) { 1701 inode->i_fop = &def_chr_fops; 1702 inode->i_rdev = rdev; 1703 } else if (S_ISBLK(mode)) { 1704 inode->i_fop = &def_blk_fops; 1705 inode->i_rdev = rdev; 1706 } else if (S_ISFIFO(mode)) 1707 inode->i_fop = &def_fifo_fops; 1708 else if (S_ISSOCK(mode)) 1709 inode->i_fop = &bad_sock_fops; 1710 else 1711 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1712 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1713 inode->i_ino); 1714 } 1715 EXPORT_SYMBOL(init_special_inode); 1716 1717 /** 1718 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1719 * @inode: New inode 1720 * @dir: Directory inode 1721 * @mode: mode of the new inode 1722 */ 1723 void inode_init_owner(struct inode *inode, const struct inode *dir, 1724 mode_t mode) 1725 { 1726 inode->i_uid = current_fsuid(); 1727 if (dir && dir->i_mode & S_ISGID) { 1728 inode->i_gid = dir->i_gid; 1729 if (S_ISDIR(mode)) 1730 mode |= S_ISGID; 1731 } else 1732 inode->i_gid = current_fsgid(); 1733 inode->i_mode = mode; 1734 } 1735 EXPORT_SYMBOL(inode_init_owner); 1736