1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/dcache.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/writeback.h> 11 #include <linux/module.h> 12 #include <linux/backing-dev.h> 13 #include <linux/wait.h> 14 #include <linux/rwsem.h> 15 #include <linux/hash.h> 16 #include <linux/swap.h> 17 #include <linux/security.h> 18 #include <linux/pagemap.h> 19 #include <linux/cdev.h> 20 #include <linux/bootmem.h> 21 #include <linux/fsnotify.h> 22 #include <linux/mount.h> 23 #include <linux/async.h> 24 #include <linux/posix_acl.h> 25 #include <linux/prefetch.h> 26 #include <linux/ima.h> 27 #include <linux/cred.h> 28 #include <linux/buffer_head.h> /* for inode_has_buffers */ 29 #include <linux/ratelimit.h> 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget() 37 * inode->i_sb->s_inode_lru_lock protects: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode_sb_list_lock protects: 40 * sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode_sb_list_lock 49 * inode->i_lock 50 * inode->i_sb->s_inode_lru_lock 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode_sb_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __read_mostly; 64 static unsigned int i_hash_shift __read_mostly; 65 static struct hlist_head *inode_hashtable __read_mostly; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 69 70 /* 71 * Empty aops. Can be used for the cases where the user does not 72 * define any of the address_space operations. 73 */ 74 const struct address_space_operations empty_aops = { 75 }; 76 EXPORT_SYMBOL(empty_aops); 77 78 /* 79 * Statistics gathering.. 80 */ 81 struct inodes_stat_t inodes_stat; 82 83 static DEFINE_PER_CPU(unsigned int, nr_inodes); 84 static DEFINE_PER_CPU(unsigned int, nr_unused); 85 86 static struct kmem_cache *inode_cachep __read_mostly; 87 88 static int get_nr_inodes(void) 89 { 90 int i; 91 int sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_inodes, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 static inline int get_nr_inodes_unused(void) 98 { 99 int i; 100 int sum = 0; 101 for_each_possible_cpu(i) 102 sum += per_cpu(nr_unused, i); 103 return sum < 0 ? 0 : sum; 104 } 105 106 int get_nr_dirty_inodes(void) 107 { 108 /* not actually dirty inodes, but a wild approximation */ 109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 110 return nr_dirty > 0 ? nr_dirty : 0; 111 } 112 113 /* 114 * Handle nr_inode sysctl 115 */ 116 #ifdef CONFIG_SYSCTL 117 int proc_nr_inodes(ctl_table *table, int write, 118 void __user *buffer, size_t *lenp, loff_t *ppos) 119 { 120 inodes_stat.nr_inodes = get_nr_inodes(); 121 inodes_stat.nr_unused = get_nr_inodes_unused(); 122 return proc_dointvec(table, write, buffer, lenp, ppos); 123 } 124 #endif 125 126 /** 127 * inode_init_always - perform inode structure intialisation 128 * @sb: superblock inode belongs to 129 * @inode: inode to initialise 130 * 131 * These are initializations that need to be done on every inode 132 * allocation as the fields are not initialised by slab allocation. 133 */ 134 int inode_init_always(struct super_block *sb, struct inode *inode) 135 { 136 static const struct inode_operations empty_iops; 137 static const struct file_operations empty_fops; 138 struct address_space *const mapping = &inode->i_data; 139 140 inode->i_sb = sb; 141 inode->i_blkbits = sb->s_blocksize_bits; 142 inode->i_flags = 0; 143 atomic_set(&inode->i_count, 1); 144 inode->i_op = &empty_iops; 145 inode->i_fop = &empty_fops; 146 inode->__i_nlink = 1; 147 inode->i_opflags = 0; 148 inode->i_uid = 0; 149 inode->i_gid = 0; 150 atomic_set(&inode->i_writecount, 0); 151 inode->i_size = 0; 152 inode->i_blocks = 0; 153 inode->i_bytes = 0; 154 inode->i_generation = 0; 155 #ifdef CONFIG_QUOTA 156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 157 #endif 158 inode->i_pipe = NULL; 159 inode->i_bdev = NULL; 160 inode->i_cdev = NULL; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 if (security_inode_alloc(inode)) 165 goto out; 166 spin_lock_init(&inode->i_lock); 167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 168 169 mutex_init(&inode->i_mutex); 170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 171 172 atomic_set(&inode->i_dio_count, 0); 173 174 mapping->a_ops = &empty_aops; 175 mapping->host = inode; 176 mapping->flags = 0; 177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 178 mapping->assoc_mapping = NULL; 179 mapping->backing_dev_info = &default_backing_dev_info; 180 mapping->writeback_index = 0; 181 182 /* 183 * If the block_device provides a backing_dev_info for client 184 * inodes then use that. Otherwise the inode share the bdev's 185 * backing_dev_info. 186 */ 187 if (sb->s_bdev) { 188 struct backing_dev_info *bdi; 189 190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 191 mapping->backing_dev_info = bdi; 192 } 193 inode->i_private = NULL; 194 inode->i_mapping = mapping; 195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 196 #ifdef CONFIG_FS_POSIX_ACL 197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 198 #endif 199 200 #ifdef CONFIG_FSNOTIFY 201 inode->i_fsnotify_mask = 0; 202 #endif 203 204 this_cpu_inc(nr_inodes); 205 206 return 0; 207 out: 208 return -ENOMEM; 209 } 210 EXPORT_SYMBOL(inode_init_always); 211 212 static struct inode *alloc_inode(struct super_block *sb) 213 { 214 struct inode *inode; 215 216 if (sb->s_op->alloc_inode) 217 inode = sb->s_op->alloc_inode(sb); 218 else 219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 220 221 if (!inode) 222 return NULL; 223 224 if (unlikely(inode_init_always(sb, inode))) { 225 if (inode->i_sb->s_op->destroy_inode) 226 inode->i_sb->s_op->destroy_inode(inode); 227 else 228 kmem_cache_free(inode_cachep, inode); 229 return NULL; 230 } 231 232 return inode; 233 } 234 235 void free_inode_nonrcu(struct inode *inode) 236 { 237 kmem_cache_free(inode_cachep, inode); 238 } 239 EXPORT_SYMBOL(free_inode_nonrcu); 240 241 void __destroy_inode(struct inode *inode) 242 { 243 BUG_ON(inode_has_buffers(inode)); 244 security_inode_free(inode); 245 fsnotify_inode_delete(inode); 246 if (!inode->i_nlink) { 247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 248 atomic_long_dec(&inode->i_sb->s_remove_count); 249 } 250 251 #ifdef CONFIG_FS_POSIX_ACL 252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 253 posix_acl_release(inode->i_acl); 254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 255 posix_acl_release(inode->i_default_acl); 256 #endif 257 this_cpu_dec(nr_inodes); 258 } 259 EXPORT_SYMBOL(__destroy_inode); 260 261 static void i_callback(struct rcu_head *head) 262 { 263 struct inode *inode = container_of(head, struct inode, i_rcu); 264 kmem_cache_free(inode_cachep, inode); 265 } 266 267 static void destroy_inode(struct inode *inode) 268 { 269 BUG_ON(!list_empty(&inode->i_lru)); 270 __destroy_inode(inode); 271 if (inode->i_sb->s_op->destroy_inode) 272 inode->i_sb->s_op->destroy_inode(inode); 273 else 274 call_rcu(&inode->i_rcu, i_callback); 275 } 276 277 /** 278 * drop_nlink - directly drop an inode's link count 279 * @inode: inode 280 * 281 * This is a low-level filesystem helper to replace any 282 * direct filesystem manipulation of i_nlink. In cases 283 * where we are attempting to track writes to the 284 * filesystem, a decrement to zero means an imminent 285 * write when the file is truncated and actually unlinked 286 * on the filesystem. 287 */ 288 void drop_nlink(struct inode *inode) 289 { 290 WARN_ON(inode->i_nlink == 0); 291 inode->__i_nlink--; 292 if (!inode->i_nlink) 293 atomic_long_inc(&inode->i_sb->s_remove_count); 294 } 295 EXPORT_SYMBOL(drop_nlink); 296 297 /** 298 * clear_nlink - directly zero an inode's link count 299 * @inode: inode 300 * 301 * This is a low-level filesystem helper to replace any 302 * direct filesystem manipulation of i_nlink. See 303 * drop_nlink() for why we care about i_nlink hitting zero. 304 */ 305 void clear_nlink(struct inode *inode) 306 { 307 if (inode->i_nlink) { 308 inode->__i_nlink = 0; 309 atomic_long_inc(&inode->i_sb->s_remove_count); 310 } 311 } 312 EXPORT_SYMBOL(clear_nlink); 313 314 /** 315 * set_nlink - directly set an inode's link count 316 * @inode: inode 317 * @nlink: new nlink (should be non-zero) 318 * 319 * This is a low-level filesystem helper to replace any 320 * direct filesystem manipulation of i_nlink. 321 */ 322 void set_nlink(struct inode *inode, unsigned int nlink) 323 { 324 if (!nlink) { 325 printk_ratelimited(KERN_INFO 326 "set_nlink() clearing i_nlink on %s inode %li\n", 327 inode->i_sb->s_type->name, inode->i_ino); 328 clear_nlink(inode); 329 } else { 330 /* Yes, some filesystems do change nlink from zero to one */ 331 if (inode->i_nlink == 0) 332 atomic_long_dec(&inode->i_sb->s_remove_count); 333 334 inode->__i_nlink = nlink; 335 } 336 } 337 EXPORT_SYMBOL(set_nlink); 338 339 /** 340 * inc_nlink - directly increment an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. Currently, 345 * it is only here for parity with dec_nlink(). 346 */ 347 void inc_nlink(struct inode *inode) 348 { 349 if (WARN_ON(inode->i_nlink == 0)) 350 atomic_long_dec(&inode->i_sb->s_remove_count); 351 352 inode->__i_nlink++; 353 } 354 EXPORT_SYMBOL(inc_nlink); 355 356 void address_space_init_once(struct address_space *mapping) 357 { 358 memset(mapping, 0, sizeof(*mapping)); 359 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 360 spin_lock_init(&mapping->tree_lock); 361 mutex_init(&mapping->i_mmap_mutex); 362 INIT_LIST_HEAD(&mapping->private_list); 363 spin_lock_init(&mapping->private_lock); 364 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 365 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 366 } 367 EXPORT_SYMBOL(address_space_init_once); 368 369 /* 370 * These are initializations that only need to be done 371 * once, because the fields are idempotent across use 372 * of the inode, so let the slab aware of that. 373 */ 374 void inode_init_once(struct inode *inode) 375 { 376 memset(inode, 0, sizeof(*inode)); 377 INIT_HLIST_NODE(&inode->i_hash); 378 INIT_LIST_HEAD(&inode->i_devices); 379 INIT_LIST_HEAD(&inode->i_wb_list); 380 INIT_LIST_HEAD(&inode->i_lru); 381 address_space_init_once(&inode->i_data); 382 i_size_ordered_init(inode); 383 #ifdef CONFIG_FSNOTIFY 384 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 385 #endif 386 } 387 EXPORT_SYMBOL(inode_init_once); 388 389 static void init_once(void *foo) 390 { 391 struct inode *inode = (struct inode *) foo; 392 393 inode_init_once(inode); 394 } 395 396 /* 397 * inode->i_lock must be held 398 */ 399 void __iget(struct inode *inode) 400 { 401 atomic_inc(&inode->i_count); 402 } 403 404 /* 405 * get additional reference to inode; caller must already hold one. 406 */ 407 void ihold(struct inode *inode) 408 { 409 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 410 } 411 EXPORT_SYMBOL(ihold); 412 413 static void inode_lru_list_add(struct inode *inode) 414 { 415 spin_lock(&inode->i_sb->s_inode_lru_lock); 416 if (list_empty(&inode->i_lru)) { 417 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 418 inode->i_sb->s_nr_inodes_unused++; 419 this_cpu_inc(nr_unused); 420 } 421 spin_unlock(&inode->i_sb->s_inode_lru_lock); 422 } 423 424 static void inode_lru_list_del(struct inode *inode) 425 { 426 spin_lock(&inode->i_sb->s_inode_lru_lock); 427 if (!list_empty(&inode->i_lru)) { 428 list_del_init(&inode->i_lru); 429 inode->i_sb->s_nr_inodes_unused--; 430 this_cpu_dec(nr_unused); 431 } 432 spin_unlock(&inode->i_sb->s_inode_lru_lock); 433 } 434 435 /** 436 * inode_sb_list_add - add inode to the superblock list of inodes 437 * @inode: inode to add 438 */ 439 void inode_sb_list_add(struct inode *inode) 440 { 441 spin_lock(&inode_sb_list_lock); 442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 443 spin_unlock(&inode_sb_list_lock); 444 } 445 EXPORT_SYMBOL_GPL(inode_sb_list_add); 446 447 static inline void inode_sb_list_del(struct inode *inode) 448 { 449 if (!list_empty(&inode->i_sb_list)) { 450 spin_lock(&inode_sb_list_lock); 451 list_del_init(&inode->i_sb_list); 452 spin_unlock(&inode_sb_list_lock); 453 } 454 } 455 456 static unsigned long hash(struct super_block *sb, unsigned long hashval) 457 { 458 unsigned long tmp; 459 460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 461 L1_CACHE_BYTES; 462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 463 return tmp & i_hash_mask; 464 } 465 466 /** 467 * __insert_inode_hash - hash an inode 468 * @inode: unhashed inode 469 * @hashval: unsigned long value used to locate this object in the 470 * inode_hashtable. 471 * 472 * Add an inode to the inode hash for this superblock. 473 */ 474 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 475 { 476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 477 478 spin_lock(&inode_hash_lock); 479 spin_lock(&inode->i_lock); 480 hlist_add_head(&inode->i_hash, b); 481 spin_unlock(&inode->i_lock); 482 spin_unlock(&inode_hash_lock); 483 } 484 EXPORT_SYMBOL(__insert_inode_hash); 485 486 /** 487 * __remove_inode_hash - remove an inode from the hash 488 * @inode: inode to unhash 489 * 490 * Remove an inode from the superblock. 491 */ 492 void __remove_inode_hash(struct inode *inode) 493 { 494 spin_lock(&inode_hash_lock); 495 spin_lock(&inode->i_lock); 496 hlist_del_init(&inode->i_hash); 497 spin_unlock(&inode->i_lock); 498 spin_unlock(&inode_hash_lock); 499 } 500 EXPORT_SYMBOL(__remove_inode_hash); 501 502 void end_writeback(struct inode *inode) 503 { 504 might_sleep(); 505 /* 506 * We have to cycle tree_lock here because reclaim can be still in the 507 * process of removing the last page (in __delete_from_page_cache()) 508 * and we must not free mapping under it. 509 */ 510 spin_lock_irq(&inode->i_data.tree_lock); 511 BUG_ON(inode->i_data.nrpages); 512 spin_unlock_irq(&inode->i_data.tree_lock); 513 BUG_ON(!list_empty(&inode->i_data.private_list)); 514 BUG_ON(!(inode->i_state & I_FREEING)); 515 BUG_ON(inode->i_state & I_CLEAR); 516 inode_sync_wait(inode); 517 /* don't need i_lock here, no concurrent mods to i_state */ 518 inode->i_state = I_FREEING | I_CLEAR; 519 } 520 EXPORT_SYMBOL(end_writeback); 521 522 /* 523 * Free the inode passed in, removing it from the lists it is still connected 524 * to. We remove any pages still attached to the inode and wait for any IO that 525 * is still in progress before finally destroying the inode. 526 * 527 * An inode must already be marked I_FREEING so that we avoid the inode being 528 * moved back onto lists if we race with other code that manipulates the lists 529 * (e.g. writeback_single_inode). The caller is responsible for setting this. 530 * 531 * An inode must already be removed from the LRU list before being evicted from 532 * the cache. This should occur atomically with setting the I_FREEING state 533 * flag, so no inodes here should ever be on the LRU when being evicted. 534 */ 535 static void evict(struct inode *inode) 536 { 537 const struct super_operations *op = inode->i_sb->s_op; 538 539 BUG_ON(!(inode->i_state & I_FREEING)); 540 BUG_ON(!list_empty(&inode->i_lru)); 541 542 if (!list_empty(&inode->i_wb_list)) 543 inode_wb_list_del(inode); 544 545 inode_sb_list_del(inode); 546 547 if (op->evict_inode) { 548 op->evict_inode(inode); 549 } else { 550 if (inode->i_data.nrpages) 551 truncate_inode_pages(&inode->i_data, 0); 552 end_writeback(inode); 553 } 554 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 555 bd_forget(inode); 556 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 557 cd_forget(inode); 558 559 remove_inode_hash(inode); 560 561 spin_lock(&inode->i_lock); 562 wake_up_bit(&inode->i_state, __I_NEW); 563 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 564 spin_unlock(&inode->i_lock); 565 566 destroy_inode(inode); 567 } 568 569 /* 570 * dispose_list - dispose of the contents of a local list 571 * @head: the head of the list to free 572 * 573 * Dispose-list gets a local list with local inodes in it, so it doesn't 574 * need to worry about list corruption and SMP locks. 575 */ 576 static void dispose_list(struct list_head *head) 577 { 578 while (!list_empty(head)) { 579 struct inode *inode; 580 581 inode = list_first_entry(head, struct inode, i_lru); 582 list_del_init(&inode->i_lru); 583 584 evict(inode); 585 } 586 } 587 588 /** 589 * evict_inodes - evict all evictable inodes for a superblock 590 * @sb: superblock to operate on 591 * 592 * Make sure that no inodes with zero refcount are retained. This is 593 * called by superblock shutdown after having MS_ACTIVE flag removed, 594 * so any inode reaching zero refcount during or after that call will 595 * be immediately evicted. 596 */ 597 void evict_inodes(struct super_block *sb) 598 { 599 struct inode *inode, *next; 600 LIST_HEAD(dispose); 601 602 spin_lock(&inode_sb_list_lock); 603 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 604 if (atomic_read(&inode->i_count)) 605 continue; 606 607 spin_lock(&inode->i_lock); 608 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 609 spin_unlock(&inode->i_lock); 610 continue; 611 } 612 613 inode->i_state |= I_FREEING; 614 inode_lru_list_del(inode); 615 spin_unlock(&inode->i_lock); 616 list_add(&inode->i_lru, &dispose); 617 } 618 spin_unlock(&inode_sb_list_lock); 619 620 dispose_list(&dispose); 621 } 622 623 /** 624 * invalidate_inodes - attempt to free all inodes on a superblock 625 * @sb: superblock to operate on 626 * @kill_dirty: flag to guide handling of dirty inodes 627 * 628 * Attempts to free all inodes for a given superblock. If there were any 629 * busy inodes return a non-zero value, else zero. 630 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 631 * them as busy. 632 */ 633 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 634 { 635 int busy = 0; 636 struct inode *inode, *next; 637 LIST_HEAD(dispose); 638 639 spin_lock(&inode_sb_list_lock); 640 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 641 spin_lock(&inode->i_lock); 642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 643 spin_unlock(&inode->i_lock); 644 continue; 645 } 646 if (inode->i_state & I_DIRTY && !kill_dirty) { 647 spin_unlock(&inode->i_lock); 648 busy = 1; 649 continue; 650 } 651 if (atomic_read(&inode->i_count)) { 652 spin_unlock(&inode->i_lock); 653 busy = 1; 654 continue; 655 } 656 657 inode->i_state |= I_FREEING; 658 inode_lru_list_del(inode); 659 spin_unlock(&inode->i_lock); 660 list_add(&inode->i_lru, &dispose); 661 } 662 spin_unlock(&inode_sb_list_lock); 663 664 dispose_list(&dispose); 665 666 return busy; 667 } 668 669 static int can_unuse(struct inode *inode) 670 { 671 if (inode->i_state & ~I_REFERENCED) 672 return 0; 673 if (inode_has_buffers(inode)) 674 return 0; 675 if (atomic_read(&inode->i_count)) 676 return 0; 677 if (inode->i_data.nrpages) 678 return 0; 679 return 1; 680 } 681 682 /* 683 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 684 * This is called from the superblock shrinker function with a number of inodes 685 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 686 * then are freed outside inode_lock by dispose_list(). 687 * 688 * Any inodes which are pinned purely because of attached pagecache have their 689 * pagecache removed. If the inode has metadata buffers attached to 690 * mapping->private_list then try to remove them. 691 * 692 * If the inode has the I_REFERENCED flag set, then it means that it has been 693 * used recently - the flag is set in iput_final(). When we encounter such an 694 * inode, clear the flag and move it to the back of the LRU so it gets another 695 * pass through the LRU before it gets reclaimed. This is necessary because of 696 * the fact we are doing lazy LRU updates to minimise lock contention so the 697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 698 * with this flag set because they are the inodes that are out of order. 699 */ 700 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 701 { 702 LIST_HEAD(freeable); 703 int nr_scanned; 704 unsigned long reap = 0; 705 706 spin_lock(&sb->s_inode_lru_lock); 707 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 708 struct inode *inode; 709 710 if (list_empty(&sb->s_inode_lru)) 711 break; 712 713 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 714 715 /* 716 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 717 * so use a trylock. If we fail to get the lock, just move the 718 * inode to the back of the list so we don't spin on it. 719 */ 720 if (!spin_trylock(&inode->i_lock)) { 721 list_move_tail(&inode->i_lru, &sb->s_inode_lru); 722 continue; 723 } 724 725 /* 726 * Referenced or dirty inodes are still in use. Give them 727 * another pass through the LRU as we canot reclaim them now. 728 */ 729 if (atomic_read(&inode->i_count) || 730 (inode->i_state & ~I_REFERENCED)) { 731 list_del_init(&inode->i_lru); 732 spin_unlock(&inode->i_lock); 733 sb->s_nr_inodes_unused--; 734 this_cpu_dec(nr_unused); 735 continue; 736 } 737 738 /* recently referenced inodes get one more pass */ 739 if (inode->i_state & I_REFERENCED) { 740 inode->i_state &= ~I_REFERENCED; 741 list_move(&inode->i_lru, &sb->s_inode_lru); 742 spin_unlock(&inode->i_lock); 743 continue; 744 } 745 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 746 __iget(inode); 747 spin_unlock(&inode->i_lock); 748 spin_unlock(&sb->s_inode_lru_lock); 749 if (remove_inode_buffers(inode)) 750 reap += invalidate_mapping_pages(&inode->i_data, 751 0, -1); 752 iput(inode); 753 spin_lock(&sb->s_inode_lru_lock); 754 755 if (inode != list_entry(sb->s_inode_lru.next, 756 struct inode, i_lru)) 757 continue; /* wrong inode or list_empty */ 758 /* avoid lock inversions with trylock */ 759 if (!spin_trylock(&inode->i_lock)) 760 continue; 761 if (!can_unuse(inode)) { 762 spin_unlock(&inode->i_lock); 763 continue; 764 } 765 } 766 WARN_ON(inode->i_state & I_NEW); 767 inode->i_state |= I_FREEING; 768 spin_unlock(&inode->i_lock); 769 770 list_move(&inode->i_lru, &freeable); 771 sb->s_nr_inodes_unused--; 772 this_cpu_dec(nr_unused); 773 } 774 if (current_is_kswapd()) 775 __count_vm_events(KSWAPD_INODESTEAL, reap); 776 else 777 __count_vm_events(PGINODESTEAL, reap); 778 spin_unlock(&sb->s_inode_lru_lock); 779 780 dispose_list(&freeable); 781 } 782 783 static void __wait_on_freeing_inode(struct inode *inode); 784 /* 785 * Called with the inode lock held. 786 */ 787 static struct inode *find_inode(struct super_block *sb, 788 struct hlist_head *head, 789 int (*test)(struct inode *, void *), 790 void *data) 791 { 792 struct hlist_node *node; 793 struct inode *inode = NULL; 794 795 repeat: 796 hlist_for_each_entry(inode, node, head, i_hash) { 797 spin_lock(&inode->i_lock); 798 if (inode->i_sb != sb) { 799 spin_unlock(&inode->i_lock); 800 continue; 801 } 802 if (!test(inode, data)) { 803 spin_unlock(&inode->i_lock); 804 continue; 805 } 806 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 807 __wait_on_freeing_inode(inode); 808 goto repeat; 809 } 810 __iget(inode); 811 spin_unlock(&inode->i_lock); 812 return inode; 813 } 814 return NULL; 815 } 816 817 /* 818 * find_inode_fast is the fast path version of find_inode, see the comment at 819 * iget_locked for details. 820 */ 821 static struct inode *find_inode_fast(struct super_block *sb, 822 struct hlist_head *head, unsigned long ino) 823 { 824 struct hlist_node *node; 825 struct inode *inode = NULL; 826 827 repeat: 828 hlist_for_each_entry(inode, node, head, i_hash) { 829 spin_lock(&inode->i_lock); 830 if (inode->i_ino != ino) { 831 spin_unlock(&inode->i_lock); 832 continue; 833 } 834 if (inode->i_sb != sb) { 835 spin_unlock(&inode->i_lock); 836 continue; 837 } 838 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 839 __wait_on_freeing_inode(inode); 840 goto repeat; 841 } 842 __iget(inode); 843 spin_unlock(&inode->i_lock); 844 return inode; 845 } 846 return NULL; 847 } 848 849 /* 850 * Each cpu owns a range of LAST_INO_BATCH numbers. 851 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 852 * to renew the exhausted range. 853 * 854 * This does not significantly increase overflow rate because every CPU can 855 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 856 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 857 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 858 * overflow rate by 2x, which does not seem too significant. 859 * 860 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 861 * error if st_ino won't fit in target struct field. Use 32bit counter 862 * here to attempt to avoid that. 863 */ 864 #define LAST_INO_BATCH 1024 865 static DEFINE_PER_CPU(unsigned int, last_ino); 866 867 unsigned int get_next_ino(void) 868 { 869 unsigned int *p = &get_cpu_var(last_ino); 870 unsigned int res = *p; 871 872 #ifdef CONFIG_SMP 873 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 874 static atomic_t shared_last_ino; 875 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 876 877 res = next - LAST_INO_BATCH; 878 } 879 #endif 880 881 *p = ++res; 882 put_cpu_var(last_ino); 883 return res; 884 } 885 EXPORT_SYMBOL(get_next_ino); 886 887 /** 888 * new_inode_pseudo - obtain an inode 889 * @sb: superblock 890 * 891 * Allocates a new inode for given superblock. 892 * Inode wont be chained in superblock s_inodes list 893 * This means : 894 * - fs can't be unmount 895 * - quotas, fsnotify, writeback can't work 896 */ 897 struct inode *new_inode_pseudo(struct super_block *sb) 898 { 899 struct inode *inode = alloc_inode(sb); 900 901 if (inode) { 902 spin_lock(&inode->i_lock); 903 inode->i_state = 0; 904 spin_unlock(&inode->i_lock); 905 INIT_LIST_HEAD(&inode->i_sb_list); 906 } 907 return inode; 908 } 909 910 /** 911 * new_inode - obtain an inode 912 * @sb: superblock 913 * 914 * Allocates a new inode for given superblock. The default gfp_mask 915 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 916 * If HIGHMEM pages are unsuitable or it is known that pages allocated 917 * for the page cache are not reclaimable or migratable, 918 * mapping_set_gfp_mask() must be called with suitable flags on the 919 * newly created inode's mapping 920 * 921 */ 922 struct inode *new_inode(struct super_block *sb) 923 { 924 struct inode *inode; 925 926 spin_lock_prefetch(&inode_sb_list_lock); 927 928 inode = new_inode_pseudo(sb); 929 if (inode) 930 inode_sb_list_add(inode); 931 return inode; 932 } 933 EXPORT_SYMBOL(new_inode); 934 935 #ifdef CONFIG_DEBUG_LOCK_ALLOC 936 void lockdep_annotate_inode_mutex_key(struct inode *inode) 937 { 938 if (S_ISDIR(inode->i_mode)) { 939 struct file_system_type *type = inode->i_sb->s_type; 940 941 /* Set new key only if filesystem hasn't already changed it */ 942 if (!lockdep_match_class(&inode->i_mutex, 943 &type->i_mutex_key)) { 944 /* 945 * ensure nobody is actually holding i_mutex 946 */ 947 mutex_destroy(&inode->i_mutex); 948 mutex_init(&inode->i_mutex); 949 lockdep_set_class(&inode->i_mutex, 950 &type->i_mutex_dir_key); 951 } 952 } 953 } 954 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 955 #endif 956 957 /** 958 * unlock_new_inode - clear the I_NEW state and wake up any waiters 959 * @inode: new inode to unlock 960 * 961 * Called when the inode is fully initialised to clear the new state of the 962 * inode and wake up anyone waiting for the inode to finish initialisation. 963 */ 964 void unlock_new_inode(struct inode *inode) 965 { 966 lockdep_annotate_inode_mutex_key(inode); 967 spin_lock(&inode->i_lock); 968 WARN_ON(!(inode->i_state & I_NEW)); 969 inode->i_state &= ~I_NEW; 970 wake_up_bit(&inode->i_state, __I_NEW); 971 spin_unlock(&inode->i_lock); 972 } 973 EXPORT_SYMBOL(unlock_new_inode); 974 975 /** 976 * iget5_locked - obtain an inode from a mounted file system 977 * @sb: super block of file system 978 * @hashval: hash value (usually inode number) to get 979 * @test: callback used for comparisons between inodes 980 * @set: callback used to initialize a new struct inode 981 * @data: opaque data pointer to pass to @test and @set 982 * 983 * Search for the inode specified by @hashval and @data in the inode cache, 984 * and if present it is return it with an increased reference count. This is 985 * a generalized version of iget_locked() for file systems where the inode 986 * number is not sufficient for unique identification of an inode. 987 * 988 * If the inode is not in cache, allocate a new inode and return it locked, 989 * hashed, and with the I_NEW flag set. The file system gets to fill it in 990 * before unlocking it via unlock_new_inode(). 991 * 992 * Note both @test and @set are called with the inode_hash_lock held, so can't 993 * sleep. 994 */ 995 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 996 int (*test)(struct inode *, void *), 997 int (*set)(struct inode *, void *), void *data) 998 { 999 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1000 struct inode *inode; 1001 1002 spin_lock(&inode_hash_lock); 1003 inode = find_inode(sb, head, test, data); 1004 spin_unlock(&inode_hash_lock); 1005 1006 if (inode) { 1007 wait_on_inode(inode); 1008 return inode; 1009 } 1010 1011 inode = alloc_inode(sb); 1012 if (inode) { 1013 struct inode *old; 1014 1015 spin_lock(&inode_hash_lock); 1016 /* We released the lock, so.. */ 1017 old = find_inode(sb, head, test, data); 1018 if (!old) { 1019 if (set(inode, data)) 1020 goto set_failed; 1021 1022 spin_lock(&inode->i_lock); 1023 inode->i_state = I_NEW; 1024 hlist_add_head(&inode->i_hash, head); 1025 spin_unlock(&inode->i_lock); 1026 inode_sb_list_add(inode); 1027 spin_unlock(&inode_hash_lock); 1028 1029 /* Return the locked inode with I_NEW set, the 1030 * caller is responsible for filling in the contents 1031 */ 1032 return inode; 1033 } 1034 1035 /* 1036 * Uhhuh, somebody else created the same inode under 1037 * us. Use the old inode instead of the one we just 1038 * allocated. 1039 */ 1040 spin_unlock(&inode_hash_lock); 1041 destroy_inode(inode); 1042 inode = old; 1043 wait_on_inode(inode); 1044 } 1045 return inode; 1046 1047 set_failed: 1048 spin_unlock(&inode_hash_lock); 1049 destroy_inode(inode); 1050 return NULL; 1051 } 1052 EXPORT_SYMBOL(iget5_locked); 1053 1054 /** 1055 * iget_locked - obtain an inode from a mounted file system 1056 * @sb: super block of file system 1057 * @ino: inode number to get 1058 * 1059 * Search for the inode specified by @ino in the inode cache and if present 1060 * return it with an increased reference count. This is for file systems 1061 * where the inode number is sufficient for unique identification of an inode. 1062 * 1063 * If the inode is not in cache, allocate a new inode and return it locked, 1064 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1065 * before unlocking it via unlock_new_inode(). 1066 */ 1067 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1068 { 1069 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1070 struct inode *inode; 1071 1072 spin_lock(&inode_hash_lock); 1073 inode = find_inode_fast(sb, head, ino); 1074 spin_unlock(&inode_hash_lock); 1075 if (inode) { 1076 wait_on_inode(inode); 1077 return inode; 1078 } 1079 1080 inode = alloc_inode(sb); 1081 if (inode) { 1082 struct inode *old; 1083 1084 spin_lock(&inode_hash_lock); 1085 /* We released the lock, so.. */ 1086 old = find_inode_fast(sb, head, ino); 1087 if (!old) { 1088 inode->i_ino = ino; 1089 spin_lock(&inode->i_lock); 1090 inode->i_state = I_NEW; 1091 hlist_add_head(&inode->i_hash, head); 1092 spin_unlock(&inode->i_lock); 1093 inode_sb_list_add(inode); 1094 spin_unlock(&inode_hash_lock); 1095 1096 /* Return the locked inode with I_NEW set, the 1097 * caller is responsible for filling in the contents 1098 */ 1099 return inode; 1100 } 1101 1102 /* 1103 * Uhhuh, somebody else created the same inode under 1104 * us. Use the old inode instead of the one we just 1105 * allocated. 1106 */ 1107 spin_unlock(&inode_hash_lock); 1108 destroy_inode(inode); 1109 inode = old; 1110 wait_on_inode(inode); 1111 } 1112 return inode; 1113 } 1114 EXPORT_SYMBOL(iget_locked); 1115 1116 /* 1117 * search the inode cache for a matching inode number. 1118 * If we find one, then the inode number we are trying to 1119 * allocate is not unique and so we should not use it. 1120 * 1121 * Returns 1 if the inode number is unique, 0 if it is not. 1122 */ 1123 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1124 { 1125 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1126 struct hlist_node *node; 1127 struct inode *inode; 1128 1129 spin_lock(&inode_hash_lock); 1130 hlist_for_each_entry(inode, node, b, i_hash) { 1131 if (inode->i_ino == ino && inode->i_sb == sb) { 1132 spin_unlock(&inode_hash_lock); 1133 return 0; 1134 } 1135 } 1136 spin_unlock(&inode_hash_lock); 1137 1138 return 1; 1139 } 1140 1141 /** 1142 * iunique - get a unique inode number 1143 * @sb: superblock 1144 * @max_reserved: highest reserved inode number 1145 * 1146 * Obtain an inode number that is unique on the system for a given 1147 * superblock. This is used by file systems that have no natural 1148 * permanent inode numbering system. An inode number is returned that 1149 * is higher than the reserved limit but unique. 1150 * 1151 * BUGS: 1152 * With a large number of inodes live on the file system this function 1153 * currently becomes quite slow. 1154 */ 1155 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1156 { 1157 /* 1158 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1159 * error if st_ino won't fit in target struct field. Use 32bit counter 1160 * here to attempt to avoid that. 1161 */ 1162 static DEFINE_SPINLOCK(iunique_lock); 1163 static unsigned int counter; 1164 ino_t res; 1165 1166 spin_lock(&iunique_lock); 1167 do { 1168 if (counter <= max_reserved) 1169 counter = max_reserved + 1; 1170 res = counter++; 1171 } while (!test_inode_iunique(sb, res)); 1172 spin_unlock(&iunique_lock); 1173 1174 return res; 1175 } 1176 EXPORT_SYMBOL(iunique); 1177 1178 struct inode *igrab(struct inode *inode) 1179 { 1180 spin_lock(&inode->i_lock); 1181 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1182 __iget(inode); 1183 spin_unlock(&inode->i_lock); 1184 } else { 1185 spin_unlock(&inode->i_lock); 1186 /* 1187 * Handle the case where s_op->clear_inode is not been 1188 * called yet, and somebody is calling igrab 1189 * while the inode is getting freed. 1190 */ 1191 inode = NULL; 1192 } 1193 return inode; 1194 } 1195 EXPORT_SYMBOL(igrab); 1196 1197 /** 1198 * ilookup5_nowait - search for an inode in the inode cache 1199 * @sb: super block of file system to search 1200 * @hashval: hash value (usually inode number) to search for 1201 * @test: callback used for comparisons between inodes 1202 * @data: opaque data pointer to pass to @test 1203 * 1204 * Search for the inode specified by @hashval and @data in the inode cache. 1205 * If the inode is in the cache, the inode is returned with an incremented 1206 * reference count. 1207 * 1208 * Note: I_NEW is not waited upon so you have to be very careful what you do 1209 * with the returned inode. You probably should be using ilookup5() instead. 1210 * 1211 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1212 */ 1213 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1214 int (*test)(struct inode *, void *), void *data) 1215 { 1216 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1217 struct inode *inode; 1218 1219 spin_lock(&inode_hash_lock); 1220 inode = find_inode(sb, head, test, data); 1221 spin_unlock(&inode_hash_lock); 1222 1223 return inode; 1224 } 1225 EXPORT_SYMBOL(ilookup5_nowait); 1226 1227 /** 1228 * ilookup5 - search for an inode in the inode cache 1229 * @sb: super block of file system to search 1230 * @hashval: hash value (usually inode number) to search for 1231 * @test: callback used for comparisons between inodes 1232 * @data: opaque data pointer to pass to @test 1233 * 1234 * Search for the inode specified by @hashval and @data in the inode cache, 1235 * and if the inode is in the cache, return the inode with an incremented 1236 * reference count. Waits on I_NEW before returning the inode. 1237 * returned with an incremented reference count. 1238 * 1239 * This is a generalized version of ilookup() for file systems where the 1240 * inode number is not sufficient for unique identification of an inode. 1241 * 1242 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1243 */ 1244 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1245 int (*test)(struct inode *, void *), void *data) 1246 { 1247 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1248 1249 if (inode) 1250 wait_on_inode(inode); 1251 return inode; 1252 } 1253 EXPORT_SYMBOL(ilookup5); 1254 1255 /** 1256 * ilookup - search for an inode in the inode cache 1257 * @sb: super block of file system to search 1258 * @ino: inode number to search for 1259 * 1260 * Search for the inode @ino in the inode cache, and if the inode is in the 1261 * cache, the inode is returned with an incremented reference count. 1262 */ 1263 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1264 { 1265 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1266 struct inode *inode; 1267 1268 spin_lock(&inode_hash_lock); 1269 inode = find_inode_fast(sb, head, ino); 1270 spin_unlock(&inode_hash_lock); 1271 1272 if (inode) 1273 wait_on_inode(inode); 1274 return inode; 1275 } 1276 EXPORT_SYMBOL(ilookup); 1277 1278 int insert_inode_locked(struct inode *inode) 1279 { 1280 struct super_block *sb = inode->i_sb; 1281 ino_t ino = inode->i_ino; 1282 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1283 1284 while (1) { 1285 struct hlist_node *node; 1286 struct inode *old = NULL; 1287 spin_lock(&inode_hash_lock); 1288 hlist_for_each_entry(old, node, head, i_hash) { 1289 if (old->i_ino != ino) 1290 continue; 1291 if (old->i_sb != sb) 1292 continue; 1293 spin_lock(&old->i_lock); 1294 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1295 spin_unlock(&old->i_lock); 1296 continue; 1297 } 1298 break; 1299 } 1300 if (likely(!node)) { 1301 spin_lock(&inode->i_lock); 1302 inode->i_state |= I_NEW; 1303 hlist_add_head(&inode->i_hash, head); 1304 spin_unlock(&inode->i_lock); 1305 spin_unlock(&inode_hash_lock); 1306 return 0; 1307 } 1308 __iget(old); 1309 spin_unlock(&old->i_lock); 1310 spin_unlock(&inode_hash_lock); 1311 wait_on_inode(old); 1312 if (unlikely(!inode_unhashed(old))) { 1313 iput(old); 1314 return -EBUSY; 1315 } 1316 iput(old); 1317 } 1318 } 1319 EXPORT_SYMBOL(insert_inode_locked); 1320 1321 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1322 int (*test)(struct inode *, void *), void *data) 1323 { 1324 struct super_block *sb = inode->i_sb; 1325 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1326 1327 while (1) { 1328 struct hlist_node *node; 1329 struct inode *old = NULL; 1330 1331 spin_lock(&inode_hash_lock); 1332 hlist_for_each_entry(old, node, head, i_hash) { 1333 if (old->i_sb != sb) 1334 continue; 1335 if (!test(old, data)) 1336 continue; 1337 spin_lock(&old->i_lock); 1338 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1339 spin_unlock(&old->i_lock); 1340 continue; 1341 } 1342 break; 1343 } 1344 if (likely(!node)) { 1345 spin_lock(&inode->i_lock); 1346 inode->i_state |= I_NEW; 1347 hlist_add_head(&inode->i_hash, head); 1348 spin_unlock(&inode->i_lock); 1349 spin_unlock(&inode_hash_lock); 1350 return 0; 1351 } 1352 __iget(old); 1353 spin_unlock(&old->i_lock); 1354 spin_unlock(&inode_hash_lock); 1355 wait_on_inode(old); 1356 if (unlikely(!inode_unhashed(old))) { 1357 iput(old); 1358 return -EBUSY; 1359 } 1360 iput(old); 1361 } 1362 } 1363 EXPORT_SYMBOL(insert_inode_locked4); 1364 1365 1366 int generic_delete_inode(struct inode *inode) 1367 { 1368 return 1; 1369 } 1370 EXPORT_SYMBOL(generic_delete_inode); 1371 1372 /* 1373 * Normal UNIX filesystem behaviour: delete the 1374 * inode when the usage count drops to zero, and 1375 * i_nlink is zero. 1376 */ 1377 int generic_drop_inode(struct inode *inode) 1378 { 1379 return !inode->i_nlink || inode_unhashed(inode); 1380 } 1381 EXPORT_SYMBOL_GPL(generic_drop_inode); 1382 1383 /* 1384 * Called when we're dropping the last reference 1385 * to an inode. 1386 * 1387 * Call the FS "drop_inode()" function, defaulting to 1388 * the legacy UNIX filesystem behaviour. If it tells 1389 * us to evict inode, do so. Otherwise, retain inode 1390 * in cache if fs is alive, sync and evict if fs is 1391 * shutting down. 1392 */ 1393 static void iput_final(struct inode *inode) 1394 { 1395 struct super_block *sb = inode->i_sb; 1396 const struct super_operations *op = inode->i_sb->s_op; 1397 int drop; 1398 1399 WARN_ON(inode->i_state & I_NEW); 1400 1401 if (op->drop_inode) 1402 drop = op->drop_inode(inode); 1403 else 1404 drop = generic_drop_inode(inode); 1405 1406 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1407 inode->i_state |= I_REFERENCED; 1408 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1409 inode_lru_list_add(inode); 1410 spin_unlock(&inode->i_lock); 1411 return; 1412 } 1413 1414 if (!drop) { 1415 inode->i_state |= I_WILL_FREE; 1416 spin_unlock(&inode->i_lock); 1417 write_inode_now(inode, 1); 1418 spin_lock(&inode->i_lock); 1419 WARN_ON(inode->i_state & I_NEW); 1420 inode->i_state &= ~I_WILL_FREE; 1421 } 1422 1423 inode->i_state |= I_FREEING; 1424 if (!list_empty(&inode->i_lru)) 1425 inode_lru_list_del(inode); 1426 spin_unlock(&inode->i_lock); 1427 1428 evict(inode); 1429 } 1430 1431 /** 1432 * iput - put an inode 1433 * @inode: inode to put 1434 * 1435 * Puts an inode, dropping its usage count. If the inode use count hits 1436 * zero, the inode is then freed and may also be destroyed. 1437 * 1438 * Consequently, iput() can sleep. 1439 */ 1440 void iput(struct inode *inode) 1441 { 1442 if (inode) { 1443 BUG_ON(inode->i_state & I_CLEAR); 1444 1445 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1446 iput_final(inode); 1447 } 1448 } 1449 EXPORT_SYMBOL(iput); 1450 1451 /** 1452 * bmap - find a block number in a file 1453 * @inode: inode of file 1454 * @block: block to find 1455 * 1456 * Returns the block number on the device holding the inode that 1457 * is the disk block number for the block of the file requested. 1458 * That is, asked for block 4 of inode 1 the function will return the 1459 * disk block relative to the disk start that holds that block of the 1460 * file. 1461 */ 1462 sector_t bmap(struct inode *inode, sector_t block) 1463 { 1464 sector_t res = 0; 1465 if (inode->i_mapping->a_ops->bmap) 1466 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1467 return res; 1468 } 1469 EXPORT_SYMBOL(bmap); 1470 1471 /* 1472 * With relative atime, only update atime if the previous atime is 1473 * earlier than either the ctime or mtime or if at least a day has 1474 * passed since the last atime update. 1475 */ 1476 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1477 struct timespec now) 1478 { 1479 1480 if (!(mnt->mnt_flags & MNT_RELATIME)) 1481 return 1; 1482 /* 1483 * Is mtime younger than atime? If yes, update atime: 1484 */ 1485 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1486 return 1; 1487 /* 1488 * Is ctime younger than atime? If yes, update atime: 1489 */ 1490 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1491 return 1; 1492 1493 /* 1494 * Is the previous atime value older than a day? If yes, 1495 * update atime: 1496 */ 1497 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1498 return 1; 1499 /* 1500 * Good, we can skip the atime update: 1501 */ 1502 return 0; 1503 } 1504 1505 /** 1506 * touch_atime - update the access time 1507 * @mnt: mount the inode is accessed on 1508 * @dentry: dentry accessed 1509 * 1510 * Update the accessed time on an inode and mark it for writeback. 1511 * This function automatically handles read only file systems and media, 1512 * as well as the "noatime" flag and inode specific "noatime" markers. 1513 */ 1514 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1515 { 1516 struct inode *inode = dentry->d_inode; 1517 struct timespec now; 1518 1519 if (inode->i_flags & S_NOATIME) 1520 return; 1521 if (IS_NOATIME(inode)) 1522 return; 1523 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1524 return; 1525 1526 if (mnt->mnt_flags & MNT_NOATIME) 1527 return; 1528 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1529 return; 1530 1531 now = current_fs_time(inode->i_sb); 1532 1533 if (!relatime_need_update(mnt, inode, now)) 1534 return; 1535 1536 if (timespec_equal(&inode->i_atime, &now)) 1537 return; 1538 1539 if (mnt_want_write(mnt)) 1540 return; 1541 1542 inode->i_atime = now; 1543 mark_inode_dirty_sync(inode); 1544 mnt_drop_write(mnt); 1545 } 1546 EXPORT_SYMBOL(touch_atime); 1547 1548 /** 1549 * file_update_time - update mtime and ctime time 1550 * @file: file accessed 1551 * 1552 * Update the mtime and ctime members of an inode and mark the inode 1553 * for writeback. Note that this function is meant exclusively for 1554 * usage in the file write path of filesystems, and filesystems may 1555 * choose to explicitly ignore update via this function with the 1556 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1557 * timestamps are handled by the server. 1558 */ 1559 1560 void file_update_time(struct file *file) 1561 { 1562 struct inode *inode = file->f_path.dentry->d_inode; 1563 struct timespec now; 1564 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1565 1566 /* First try to exhaust all avenues to not sync */ 1567 if (IS_NOCMTIME(inode)) 1568 return; 1569 1570 now = current_fs_time(inode->i_sb); 1571 if (!timespec_equal(&inode->i_mtime, &now)) 1572 sync_it = S_MTIME; 1573 1574 if (!timespec_equal(&inode->i_ctime, &now)) 1575 sync_it |= S_CTIME; 1576 1577 if (IS_I_VERSION(inode)) 1578 sync_it |= S_VERSION; 1579 1580 if (!sync_it) 1581 return; 1582 1583 /* Finally allowed to write? Takes lock. */ 1584 if (mnt_want_write_file(file)) 1585 return; 1586 1587 /* Only change inode inside the lock region */ 1588 if (sync_it & S_VERSION) 1589 inode_inc_iversion(inode); 1590 if (sync_it & S_CTIME) 1591 inode->i_ctime = now; 1592 if (sync_it & S_MTIME) 1593 inode->i_mtime = now; 1594 mark_inode_dirty_sync(inode); 1595 mnt_drop_write_file(file); 1596 } 1597 EXPORT_SYMBOL(file_update_time); 1598 1599 int inode_needs_sync(struct inode *inode) 1600 { 1601 if (IS_SYNC(inode)) 1602 return 1; 1603 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1604 return 1; 1605 return 0; 1606 } 1607 EXPORT_SYMBOL(inode_needs_sync); 1608 1609 int inode_wait(void *word) 1610 { 1611 schedule(); 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(inode_wait); 1615 1616 /* 1617 * If we try to find an inode in the inode hash while it is being 1618 * deleted, we have to wait until the filesystem completes its 1619 * deletion before reporting that it isn't found. This function waits 1620 * until the deletion _might_ have completed. Callers are responsible 1621 * to recheck inode state. 1622 * 1623 * It doesn't matter if I_NEW is not set initially, a call to 1624 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1625 * will DTRT. 1626 */ 1627 static void __wait_on_freeing_inode(struct inode *inode) 1628 { 1629 wait_queue_head_t *wq; 1630 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1631 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1632 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1633 spin_unlock(&inode->i_lock); 1634 spin_unlock(&inode_hash_lock); 1635 schedule(); 1636 finish_wait(wq, &wait.wait); 1637 spin_lock(&inode_hash_lock); 1638 } 1639 1640 static __initdata unsigned long ihash_entries; 1641 static int __init set_ihash_entries(char *str) 1642 { 1643 if (!str) 1644 return 0; 1645 ihash_entries = simple_strtoul(str, &str, 0); 1646 return 1; 1647 } 1648 __setup("ihash_entries=", set_ihash_entries); 1649 1650 /* 1651 * Initialize the waitqueues and inode hash table. 1652 */ 1653 void __init inode_init_early(void) 1654 { 1655 int loop; 1656 1657 /* If hashes are distributed across NUMA nodes, defer 1658 * hash allocation until vmalloc space is available. 1659 */ 1660 if (hashdist) 1661 return; 1662 1663 inode_hashtable = 1664 alloc_large_system_hash("Inode-cache", 1665 sizeof(struct hlist_head), 1666 ihash_entries, 1667 14, 1668 HASH_EARLY, 1669 &i_hash_shift, 1670 &i_hash_mask, 1671 0); 1672 1673 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1674 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1675 } 1676 1677 void __init inode_init(void) 1678 { 1679 int loop; 1680 1681 /* inode slab cache */ 1682 inode_cachep = kmem_cache_create("inode_cache", 1683 sizeof(struct inode), 1684 0, 1685 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1686 SLAB_MEM_SPREAD), 1687 init_once); 1688 1689 /* Hash may have been set up in inode_init_early */ 1690 if (!hashdist) 1691 return; 1692 1693 inode_hashtable = 1694 alloc_large_system_hash("Inode-cache", 1695 sizeof(struct hlist_head), 1696 ihash_entries, 1697 14, 1698 0, 1699 &i_hash_shift, 1700 &i_hash_mask, 1701 0); 1702 1703 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1704 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1705 } 1706 1707 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1708 { 1709 inode->i_mode = mode; 1710 if (S_ISCHR(mode)) { 1711 inode->i_fop = &def_chr_fops; 1712 inode->i_rdev = rdev; 1713 } else if (S_ISBLK(mode)) { 1714 inode->i_fop = &def_blk_fops; 1715 inode->i_rdev = rdev; 1716 } else if (S_ISFIFO(mode)) 1717 inode->i_fop = &def_fifo_fops; 1718 else if (S_ISSOCK(mode)) 1719 inode->i_fop = &bad_sock_fops; 1720 else 1721 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1722 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1723 inode->i_ino); 1724 } 1725 EXPORT_SYMBOL(init_special_inode); 1726 1727 /** 1728 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1729 * @inode: New inode 1730 * @dir: Directory inode 1731 * @mode: mode of the new inode 1732 */ 1733 void inode_init_owner(struct inode *inode, const struct inode *dir, 1734 umode_t mode) 1735 { 1736 inode->i_uid = current_fsuid(); 1737 if (dir && dir->i_mode & S_ISGID) { 1738 inode->i_gid = dir->i_gid; 1739 if (S_ISDIR(mode)) 1740 mode |= S_ISGID; 1741 } else 1742 inode->i_gid = current_fsgid(); 1743 inode->i_mode = mode; 1744 } 1745 EXPORT_SYMBOL(inode_init_owner); 1746 1747 /** 1748 * inode_owner_or_capable - check current task permissions to inode 1749 * @inode: inode being checked 1750 * 1751 * Return true if current either has CAP_FOWNER to the inode, or 1752 * owns the file. 1753 */ 1754 bool inode_owner_or_capable(const struct inode *inode) 1755 { 1756 struct user_namespace *ns = inode_userns(inode); 1757 1758 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1759 return true; 1760 if (ns_capable(ns, CAP_FOWNER)) 1761 return true; 1762 return false; 1763 } 1764 EXPORT_SYMBOL(inode_owner_or_capable); 1765