xref: /linux/fs/inode.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget()
37  * inode->i_sb->s_inode_lru_lock protects:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode_sb_list_lock protects:
40  *   sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode_sb_list_lock
49  *   inode->i_lock
50  *     inode->i_sb->s_inode_lru_lock
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode_sb_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 static struct hlist_head *inode_hashtable __read_mostly;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
69 
70 /*
71  * Empty aops. Can be used for the cases where the user does not
72  * define any of the address_space operations.
73  */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77 
78 /*
79  * Statistics gathering..
80  */
81 struct inodes_stat_t inodes_stat;
82 
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85 
86 static struct kmem_cache *inode_cachep __read_mostly;
87 
88 static int get_nr_inodes(void)
89 {
90 	int i;
91 	int sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_inodes, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 static inline int get_nr_inodes_unused(void)
98 {
99 	int i;
100 	int sum = 0;
101 	for_each_possible_cpu(i)
102 		sum += per_cpu(nr_unused, i);
103 	return sum < 0 ? 0 : sum;
104 }
105 
106 int get_nr_dirty_inodes(void)
107 {
108 	/* not actually dirty inodes, but a wild approximation */
109 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 	return nr_dirty > 0 ? nr_dirty : 0;
111 }
112 
113 /*
114  * Handle nr_inode sysctl
115  */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 		   void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 	inodes_stat.nr_inodes = get_nr_inodes();
121 	inodes_stat.nr_unused = get_nr_inodes_unused();
122 	return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125 
126 /**
127  * inode_init_always - perform inode structure intialisation
128  * @sb: superblock inode belongs to
129  * @inode: inode to initialise
130  *
131  * These are initializations that need to be done on every inode
132  * allocation as the fields are not initialised by slab allocation.
133  */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 	static const struct inode_operations empty_iops;
137 	static const struct file_operations empty_fops;
138 	struct address_space *const mapping = &inode->i_data;
139 
140 	inode->i_sb = sb;
141 	inode->i_blkbits = sb->s_blocksize_bits;
142 	inode->i_flags = 0;
143 	atomic_set(&inode->i_count, 1);
144 	inode->i_op = &empty_iops;
145 	inode->i_fop = &empty_fops;
146 	inode->__i_nlink = 1;
147 	inode->i_opflags = 0;
148 	inode->i_uid = 0;
149 	inode->i_gid = 0;
150 	atomic_set(&inode->i_writecount, 0);
151 	inode->i_size = 0;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 #ifdef CONFIG_QUOTA
156 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
157 #endif
158 	inode->i_pipe = NULL;
159 	inode->i_bdev = NULL;
160 	inode->i_cdev = NULL;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 	if (security_inode_alloc(inode))
165 		goto out;
166 	spin_lock_init(&inode->i_lock);
167 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 
169 	mutex_init(&inode->i_mutex);
170 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171 
172 	atomic_set(&inode->i_dio_count, 0);
173 
174 	mapping->a_ops = &empty_aops;
175 	mapping->host = inode;
176 	mapping->flags = 0;
177 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 	mapping->assoc_mapping = NULL;
179 	mapping->backing_dev_info = &default_backing_dev_info;
180 	mapping->writeback_index = 0;
181 
182 	/*
183 	 * If the block_device provides a backing_dev_info for client
184 	 * inodes then use that.  Otherwise the inode share the bdev's
185 	 * backing_dev_info.
186 	 */
187 	if (sb->s_bdev) {
188 		struct backing_dev_info *bdi;
189 
190 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 		mapping->backing_dev_info = bdi;
192 	}
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 	INIT_LIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199 
200 #ifdef CONFIG_FSNOTIFY
201 	inode->i_fsnotify_mask = 0;
202 #endif
203 
204 	this_cpu_inc(nr_inodes);
205 
206 	return 0;
207 out:
208 	return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 	struct inode *inode;
215 
216 	if (sb->s_op->alloc_inode)
217 		inode = sb->s_op->alloc_inode(sb);
218 	else
219 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220 
221 	if (!inode)
222 		return NULL;
223 
224 	if (unlikely(inode_init_always(sb, inode))) {
225 		if (inode->i_sb->s_op->destroy_inode)
226 			inode->i_sb->s_op->destroy_inode(inode);
227 		else
228 			kmem_cache_free(inode_cachep, inode);
229 		return NULL;
230 	}
231 
232 	return inode;
233 }
234 
235 void free_inode_nonrcu(struct inode *inode)
236 {
237 	kmem_cache_free(inode_cachep, inode);
238 }
239 EXPORT_SYMBOL(free_inode_nonrcu);
240 
241 void __destroy_inode(struct inode *inode)
242 {
243 	BUG_ON(inode_has_buffers(inode));
244 	security_inode_free(inode);
245 	fsnotify_inode_delete(inode);
246 	if (!inode->i_nlink) {
247 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
248 		atomic_long_dec(&inode->i_sb->s_remove_count);
249 	}
250 
251 #ifdef CONFIG_FS_POSIX_ACL
252 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
253 		posix_acl_release(inode->i_acl);
254 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
255 		posix_acl_release(inode->i_default_acl);
256 #endif
257 	this_cpu_dec(nr_inodes);
258 }
259 EXPORT_SYMBOL(__destroy_inode);
260 
261 static void i_callback(struct rcu_head *head)
262 {
263 	struct inode *inode = container_of(head, struct inode, i_rcu);
264 	kmem_cache_free(inode_cachep, inode);
265 }
266 
267 static void destroy_inode(struct inode *inode)
268 {
269 	BUG_ON(!list_empty(&inode->i_lru));
270 	__destroy_inode(inode);
271 	if (inode->i_sb->s_op->destroy_inode)
272 		inode->i_sb->s_op->destroy_inode(inode);
273 	else
274 		call_rcu(&inode->i_rcu, i_callback);
275 }
276 
277 /**
278  * drop_nlink - directly drop an inode's link count
279  * @inode: inode
280  *
281  * This is a low-level filesystem helper to replace any
282  * direct filesystem manipulation of i_nlink.  In cases
283  * where we are attempting to track writes to the
284  * filesystem, a decrement to zero means an imminent
285  * write when the file is truncated and actually unlinked
286  * on the filesystem.
287  */
288 void drop_nlink(struct inode *inode)
289 {
290 	WARN_ON(inode->i_nlink == 0);
291 	inode->__i_nlink--;
292 	if (!inode->i_nlink)
293 		atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 EXPORT_SYMBOL(drop_nlink);
296 
297 /**
298  * clear_nlink - directly zero an inode's link count
299  * @inode: inode
300  *
301  * This is a low-level filesystem helper to replace any
302  * direct filesystem manipulation of i_nlink.  See
303  * drop_nlink() for why we care about i_nlink hitting zero.
304  */
305 void clear_nlink(struct inode *inode)
306 {
307 	if (inode->i_nlink) {
308 		inode->__i_nlink = 0;
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 	}
311 }
312 EXPORT_SYMBOL(clear_nlink);
313 
314 /**
315  * set_nlink - directly set an inode's link count
316  * @inode: inode
317  * @nlink: new nlink (should be non-zero)
318  *
319  * This is a low-level filesystem helper to replace any
320  * direct filesystem manipulation of i_nlink.
321  */
322 void set_nlink(struct inode *inode, unsigned int nlink)
323 {
324 	if (!nlink) {
325 		printk_ratelimited(KERN_INFO
326 			"set_nlink() clearing i_nlink on %s inode %li\n",
327 			inode->i_sb->s_type->name, inode->i_ino);
328 		clear_nlink(inode);
329 	} else {
330 		/* Yes, some filesystems do change nlink from zero to one */
331 		if (inode->i_nlink == 0)
332 			atomic_long_dec(&inode->i_sb->s_remove_count);
333 
334 		inode->__i_nlink = nlink;
335 	}
336 }
337 EXPORT_SYMBOL(set_nlink);
338 
339 /**
340  * inc_nlink - directly increment an inode's link count
341  * @inode: inode
342  *
343  * This is a low-level filesystem helper to replace any
344  * direct filesystem manipulation of i_nlink.  Currently,
345  * it is only here for parity with dec_nlink().
346  */
347 void inc_nlink(struct inode *inode)
348 {
349 	if (WARN_ON(inode->i_nlink == 0))
350 		atomic_long_dec(&inode->i_sb->s_remove_count);
351 
352 	inode->__i_nlink++;
353 }
354 EXPORT_SYMBOL(inc_nlink);
355 
356 void address_space_init_once(struct address_space *mapping)
357 {
358 	memset(mapping, 0, sizeof(*mapping));
359 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
360 	spin_lock_init(&mapping->tree_lock);
361 	mutex_init(&mapping->i_mmap_mutex);
362 	INIT_LIST_HEAD(&mapping->private_list);
363 	spin_lock_init(&mapping->private_lock);
364 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
365 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
366 }
367 EXPORT_SYMBOL(address_space_init_once);
368 
369 /*
370  * These are initializations that only need to be done
371  * once, because the fields are idempotent across use
372  * of the inode, so let the slab aware of that.
373  */
374 void inode_init_once(struct inode *inode)
375 {
376 	memset(inode, 0, sizeof(*inode));
377 	INIT_HLIST_NODE(&inode->i_hash);
378 	INIT_LIST_HEAD(&inode->i_devices);
379 	INIT_LIST_HEAD(&inode->i_wb_list);
380 	INIT_LIST_HEAD(&inode->i_lru);
381 	address_space_init_once(&inode->i_data);
382 	i_size_ordered_init(inode);
383 #ifdef CONFIG_FSNOTIFY
384 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
385 #endif
386 }
387 EXPORT_SYMBOL(inode_init_once);
388 
389 static void init_once(void *foo)
390 {
391 	struct inode *inode = (struct inode *) foo;
392 
393 	inode_init_once(inode);
394 }
395 
396 /*
397  * inode->i_lock must be held
398  */
399 void __iget(struct inode *inode)
400 {
401 	atomic_inc(&inode->i_count);
402 }
403 
404 /*
405  * get additional reference to inode; caller must already hold one.
406  */
407 void ihold(struct inode *inode)
408 {
409 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
410 }
411 EXPORT_SYMBOL(ihold);
412 
413 static void inode_lru_list_add(struct inode *inode)
414 {
415 	spin_lock(&inode->i_sb->s_inode_lru_lock);
416 	if (list_empty(&inode->i_lru)) {
417 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
418 		inode->i_sb->s_nr_inodes_unused++;
419 		this_cpu_inc(nr_unused);
420 	}
421 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
422 }
423 
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 	spin_lock(&inode->i_sb->s_inode_lru_lock);
427 	if (!list_empty(&inode->i_lru)) {
428 		list_del_init(&inode->i_lru);
429 		inode->i_sb->s_nr_inodes_unused--;
430 		this_cpu_dec(nr_unused);
431 	}
432 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434 
435 /**
436  * inode_sb_list_add - add inode to the superblock list of inodes
437  * @inode: inode to add
438  */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 	spin_lock(&inode_sb_list_lock);
442 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 	spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446 
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 	if (!list_empty(&inode->i_sb_list)) {
450 		spin_lock(&inode_sb_list_lock);
451 		list_del_init(&inode->i_sb_list);
452 		spin_unlock(&inode_sb_list_lock);
453 	}
454 }
455 
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 	unsigned long tmp;
459 
460 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 			L1_CACHE_BYTES;
462 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 	return tmp & i_hash_mask;
464 }
465 
466 /**
467  *	__insert_inode_hash - hash an inode
468  *	@inode: unhashed inode
469  *	@hashval: unsigned long value used to locate this object in the
470  *		inode_hashtable.
471  *
472  *	Add an inode to the inode hash for this superblock.
473  */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477 
478 	spin_lock(&inode_hash_lock);
479 	spin_lock(&inode->i_lock);
480 	hlist_add_head(&inode->i_hash, b);
481 	spin_unlock(&inode->i_lock);
482 	spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485 
486 /**
487  *	__remove_inode_hash - remove an inode from the hash
488  *	@inode: inode to unhash
489  *
490  *	Remove an inode from the superblock.
491  */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 	spin_lock(&inode_hash_lock);
495 	spin_lock(&inode->i_lock);
496 	hlist_del_init(&inode->i_hash);
497 	spin_unlock(&inode->i_lock);
498 	spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501 
502 void end_writeback(struct inode *inode)
503 {
504 	might_sleep();
505 	/*
506 	 * We have to cycle tree_lock here because reclaim can be still in the
507 	 * process of removing the last page (in __delete_from_page_cache())
508 	 * and we must not free mapping under it.
509 	 */
510 	spin_lock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(inode->i_data.nrpages);
512 	spin_unlock_irq(&inode->i_data.tree_lock);
513 	BUG_ON(!list_empty(&inode->i_data.private_list));
514 	BUG_ON(!(inode->i_state & I_FREEING));
515 	BUG_ON(inode->i_state & I_CLEAR);
516 	inode_sync_wait(inode);
517 	/* don't need i_lock here, no concurrent mods to i_state */
518 	inode->i_state = I_FREEING | I_CLEAR;
519 }
520 EXPORT_SYMBOL(end_writeback);
521 
522 /*
523  * Free the inode passed in, removing it from the lists it is still connected
524  * to. We remove any pages still attached to the inode and wait for any IO that
525  * is still in progress before finally destroying the inode.
526  *
527  * An inode must already be marked I_FREEING so that we avoid the inode being
528  * moved back onto lists if we race with other code that manipulates the lists
529  * (e.g. writeback_single_inode). The caller is responsible for setting this.
530  *
531  * An inode must already be removed from the LRU list before being evicted from
532  * the cache. This should occur atomically with setting the I_FREEING state
533  * flag, so no inodes here should ever be on the LRU when being evicted.
534  */
535 static void evict(struct inode *inode)
536 {
537 	const struct super_operations *op = inode->i_sb->s_op;
538 
539 	BUG_ON(!(inode->i_state & I_FREEING));
540 	BUG_ON(!list_empty(&inode->i_lru));
541 
542 	if (!list_empty(&inode->i_wb_list))
543 		inode_wb_list_del(inode);
544 
545 	inode_sb_list_del(inode);
546 
547 	if (op->evict_inode) {
548 		op->evict_inode(inode);
549 	} else {
550 		if (inode->i_data.nrpages)
551 			truncate_inode_pages(&inode->i_data, 0);
552 		end_writeback(inode);
553 	}
554 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 		bd_forget(inode);
556 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 		cd_forget(inode);
558 
559 	remove_inode_hash(inode);
560 
561 	spin_lock(&inode->i_lock);
562 	wake_up_bit(&inode->i_state, __I_NEW);
563 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 	spin_unlock(&inode->i_lock);
565 
566 	destroy_inode(inode);
567 }
568 
569 /*
570  * dispose_list - dispose of the contents of a local list
571  * @head: the head of the list to free
572  *
573  * Dispose-list gets a local list with local inodes in it, so it doesn't
574  * need to worry about list corruption and SMP locks.
575  */
576 static void dispose_list(struct list_head *head)
577 {
578 	while (!list_empty(head)) {
579 		struct inode *inode;
580 
581 		inode = list_first_entry(head, struct inode, i_lru);
582 		list_del_init(&inode->i_lru);
583 
584 		evict(inode);
585 	}
586 }
587 
588 /**
589  * evict_inodes	- evict all evictable inodes for a superblock
590  * @sb:		superblock to operate on
591  *
592  * Make sure that no inodes with zero refcount are retained.  This is
593  * called by superblock shutdown after having MS_ACTIVE flag removed,
594  * so any inode reaching zero refcount during or after that call will
595  * be immediately evicted.
596  */
597 void evict_inodes(struct super_block *sb)
598 {
599 	struct inode *inode, *next;
600 	LIST_HEAD(dispose);
601 
602 	spin_lock(&inode_sb_list_lock);
603 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
604 		if (atomic_read(&inode->i_count))
605 			continue;
606 
607 		spin_lock(&inode->i_lock);
608 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
609 			spin_unlock(&inode->i_lock);
610 			continue;
611 		}
612 
613 		inode->i_state |= I_FREEING;
614 		inode_lru_list_del(inode);
615 		spin_unlock(&inode->i_lock);
616 		list_add(&inode->i_lru, &dispose);
617 	}
618 	spin_unlock(&inode_sb_list_lock);
619 
620 	dispose_list(&dispose);
621 }
622 
623 /**
624  * invalidate_inodes	- attempt to free all inodes on a superblock
625  * @sb:		superblock to operate on
626  * @kill_dirty: flag to guide handling of dirty inodes
627  *
628  * Attempts to free all inodes for a given superblock.  If there were any
629  * busy inodes return a non-zero value, else zero.
630  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
631  * them as busy.
632  */
633 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
634 {
635 	int busy = 0;
636 	struct inode *inode, *next;
637 	LIST_HEAD(dispose);
638 
639 	spin_lock(&inode_sb_list_lock);
640 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
641 		spin_lock(&inode->i_lock);
642 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 			spin_unlock(&inode->i_lock);
644 			continue;
645 		}
646 		if (inode->i_state & I_DIRTY && !kill_dirty) {
647 			spin_unlock(&inode->i_lock);
648 			busy = 1;
649 			continue;
650 		}
651 		if (atomic_read(&inode->i_count)) {
652 			spin_unlock(&inode->i_lock);
653 			busy = 1;
654 			continue;
655 		}
656 
657 		inode->i_state |= I_FREEING;
658 		inode_lru_list_del(inode);
659 		spin_unlock(&inode->i_lock);
660 		list_add(&inode->i_lru, &dispose);
661 	}
662 	spin_unlock(&inode_sb_list_lock);
663 
664 	dispose_list(&dispose);
665 
666 	return busy;
667 }
668 
669 static int can_unuse(struct inode *inode)
670 {
671 	if (inode->i_state & ~I_REFERENCED)
672 		return 0;
673 	if (inode_has_buffers(inode))
674 		return 0;
675 	if (atomic_read(&inode->i_count))
676 		return 0;
677 	if (inode->i_data.nrpages)
678 		return 0;
679 	return 1;
680 }
681 
682 /*
683  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
684  * This is called from the superblock shrinker function with a number of inodes
685  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
686  * then are freed outside inode_lock by dispose_list().
687  *
688  * Any inodes which are pinned purely because of attached pagecache have their
689  * pagecache removed.  If the inode has metadata buffers attached to
690  * mapping->private_list then try to remove them.
691  *
692  * If the inode has the I_REFERENCED flag set, then it means that it has been
693  * used recently - the flag is set in iput_final(). When we encounter such an
694  * inode, clear the flag and move it to the back of the LRU so it gets another
695  * pass through the LRU before it gets reclaimed. This is necessary because of
696  * the fact we are doing lazy LRU updates to minimise lock contention so the
697  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698  * with this flag set because they are the inodes that are out of order.
699  */
700 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
701 {
702 	LIST_HEAD(freeable);
703 	int nr_scanned;
704 	unsigned long reap = 0;
705 
706 	spin_lock(&sb->s_inode_lru_lock);
707 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
708 		struct inode *inode;
709 
710 		if (list_empty(&sb->s_inode_lru))
711 			break;
712 
713 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
714 
715 		/*
716 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
717 		 * so use a trylock. If we fail to get the lock, just move the
718 		 * inode to the back of the list so we don't spin on it.
719 		 */
720 		if (!spin_trylock(&inode->i_lock)) {
721 			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
722 			continue;
723 		}
724 
725 		/*
726 		 * Referenced or dirty inodes are still in use. Give them
727 		 * another pass through the LRU as we canot reclaim them now.
728 		 */
729 		if (atomic_read(&inode->i_count) ||
730 		    (inode->i_state & ~I_REFERENCED)) {
731 			list_del_init(&inode->i_lru);
732 			spin_unlock(&inode->i_lock);
733 			sb->s_nr_inodes_unused--;
734 			this_cpu_dec(nr_unused);
735 			continue;
736 		}
737 
738 		/* recently referenced inodes get one more pass */
739 		if (inode->i_state & I_REFERENCED) {
740 			inode->i_state &= ~I_REFERENCED;
741 			list_move(&inode->i_lru, &sb->s_inode_lru);
742 			spin_unlock(&inode->i_lock);
743 			continue;
744 		}
745 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
746 			__iget(inode);
747 			spin_unlock(&inode->i_lock);
748 			spin_unlock(&sb->s_inode_lru_lock);
749 			if (remove_inode_buffers(inode))
750 				reap += invalidate_mapping_pages(&inode->i_data,
751 								0, -1);
752 			iput(inode);
753 			spin_lock(&sb->s_inode_lru_lock);
754 
755 			if (inode != list_entry(sb->s_inode_lru.next,
756 						struct inode, i_lru))
757 				continue;	/* wrong inode or list_empty */
758 			/* avoid lock inversions with trylock */
759 			if (!spin_trylock(&inode->i_lock))
760 				continue;
761 			if (!can_unuse(inode)) {
762 				spin_unlock(&inode->i_lock);
763 				continue;
764 			}
765 		}
766 		WARN_ON(inode->i_state & I_NEW);
767 		inode->i_state |= I_FREEING;
768 		spin_unlock(&inode->i_lock);
769 
770 		list_move(&inode->i_lru, &freeable);
771 		sb->s_nr_inodes_unused--;
772 		this_cpu_dec(nr_unused);
773 	}
774 	if (current_is_kswapd())
775 		__count_vm_events(KSWAPD_INODESTEAL, reap);
776 	else
777 		__count_vm_events(PGINODESTEAL, reap);
778 	spin_unlock(&sb->s_inode_lru_lock);
779 
780 	dispose_list(&freeable);
781 }
782 
783 static void __wait_on_freeing_inode(struct inode *inode);
784 /*
785  * Called with the inode lock held.
786  */
787 static struct inode *find_inode(struct super_block *sb,
788 				struct hlist_head *head,
789 				int (*test)(struct inode *, void *),
790 				void *data)
791 {
792 	struct hlist_node *node;
793 	struct inode *inode = NULL;
794 
795 repeat:
796 	hlist_for_each_entry(inode, node, head, i_hash) {
797 		spin_lock(&inode->i_lock);
798 		if (inode->i_sb != sb) {
799 			spin_unlock(&inode->i_lock);
800 			continue;
801 		}
802 		if (!test(inode, data)) {
803 			spin_unlock(&inode->i_lock);
804 			continue;
805 		}
806 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
807 			__wait_on_freeing_inode(inode);
808 			goto repeat;
809 		}
810 		__iget(inode);
811 		spin_unlock(&inode->i_lock);
812 		return inode;
813 	}
814 	return NULL;
815 }
816 
817 /*
818  * find_inode_fast is the fast path version of find_inode, see the comment at
819  * iget_locked for details.
820  */
821 static struct inode *find_inode_fast(struct super_block *sb,
822 				struct hlist_head *head, unsigned long ino)
823 {
824 	struct hlist_node *node;
825 	struct inode *inode = NULL;
826 
827 repeat:
828 	hlist_for_each_entry(inode, node, head, i_hash) {
829 		spin_lock(&inode->i_lock);
830 		if (inode->i_ino != ino) {
831 			spin_unlock(&inode->i_lock);
832 			continue;
833 		}
834 		if (inode->i_sb != sb) {
835 			spin_unlock(&inode->i_lock);
836 			continue;
837 		}
838 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
839 			__wait_on_freeing_inode(inode);
840 			goto repeat;
841 		}
842 		__iget(inode);
843 		spin_unlock(&inode->i_lock);
844 		return inode;
845 	}
846 	return NULL;
847 }
848 
849 /*
850  * Each cpu owns a range of LAST_INO_BATCH numbers.
851  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
852  * to renew the exhausted range.
853  *
854  * This does not significantly increase overflow rate because every CPU can
855  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
856  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
857  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
858  * overflow rate by 2x, which does not seem too significant.
859  *
860  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
861  * error if st_ino won't fit in target struct field. Use 32bit counter
862  * here to attempt to avoid that.
863  */
864 #define LAST_INO_BATCH 1024
865 static DEFINE_PER_CPU(unsigned int, last_ino);
866 
867 unsigned int get_next_ino(void)
868 {
869 	unsigned int *p = &get_cpu_var(last_ino);
870 	unsigned int res = *p;
871 
872 #ifdef CONFIG_SMP
873 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
874 		static atomic_t shared_last_ino;
875 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
876 
877 		res = next - LAST_INO_BATCH;
878 	}
879 #endif
880 
881 	*p = ++res;
882 	put_cpu_var(last_ino);
883 	return res;
884 }
885 EXPORT_SYMBOL(get_next_ino);
886 
887 /**
888  *	new_inode_pseudo 	- obtain an inode
889  *	@sb: superblock
890  *
891  *	Allocates a new inode for given superblock.
892  *	Inode wont be chained in superblock s_inodes list
893  *	This means :
894  *	- fs can't be unmount
895  *	- quotas, fsnotify, writeback can't work
896  */
897 struct inode *new_inode_pseudo(struct super_block *sb)
898 {
899 	struct inode *inode = alloc_inode(sb);
900 
901 	if (inode) {
902 		spin_lock(&inode->i_lock);
903 		inode->i_state = 0;
904 		spin_unlock(&inode->i_lock);
905 		INIT_LIST_HEAD(&inode->i_sb_list);
906 	}
907 	return inode;
908 }
909 
910 /**
911  *	new_inode 	- obtain an inode
912  *	@sb: superblock
913  *
914  *	Allocates a new inode for given superblock. The default gfp_mask
915  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
916  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
917  *	for the page cache are not reclaimable or migratable,
918  *	mapping_set_gfp_mask() must be called with suitable flags on the
919  *	newly created inode's mapping
920  *
921  */
922 struct inode *new_inode(struct super_block *sb)
923 {
924 	struct inode *inode;
925 
926 	spin_lock_prefetch(&inode_sb_list_lock);
927 
928 	inode = new_inode_pseudo(sb);
929 	if (inode)
930 		inode_sb_list_add(inode);
931 	return inode;
932 }
933 EXPORT_SYMBOL(new_inode);
934 
935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
936 void lockdep_annotate_inode_mutex_key(struct inode *inode)
937 {
938 	if (S_ISDIR(inode->i_mode)) {
939 		struct file_system_type *type = inode->i_sb->s_type;
940 
941 		/* Set new key only if filesystem hasn't already changed it */
942 		if (!lockdep_match_class(&inode->i_mutex,
943 		    &type->i_mutex_key)) {
944 			/*
945 			 * ensure nobody is actually holding i_mutex
946 			 */
947 			mutex_destroy(&inode->i_mutex);
948 			mutex_init(&inode->i_mutex);
949 			lockdep_set_class(&inode->i_mutex,
950 					  &type->i_mutex_dir_key);
951 		}
952 	}
953 }
954 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
955 #endif
956 
957 /**
958  * unlock_new_inode - clear the I_NEW state and wake up any waiters
959  * @inode:	new inode to unlock
960  *
961  * Called when the inode is fully initialised to clear the new state of the
962  * inode and wake up anyone waiting for the inode to finish initialisation.
963  */
964 void unlock_new_inode(struct inode *inode)
965 {
966 	lockdep_annotate_inode_mutex_key(inode);
967 	spin_lock(&inode->i_lock);
968 	WARN_ON(!(inode->i_state & I_NEW));
969 	inode->i_state &= ~I_NEW;
970 	wake_up_bit(&inode->i_state, __I_NEW);
971 	spin_unlock(&inode->i_lock);
972 }
973 EXPORT_SYMBOL(unlock_new_inode);
974 
975 /**
976  * iget5_locked - obtain an inode from a mounted file system
977  * @sb:		super block of file system
978  * @hashval:	hash value (usually inode number) to get
979  * @test:	callback used for comparisons between inodes
980  * @set:	callback used to initialize a new struct inode
981  * @data:	opaque data pointer to pass to @test and @set
982  *
983  * Search for the inode specified by @hashval and @data in the inode cache,
984  * and if present it is return it with an increased reference count. This is
985  * a generalized version of iget_locked() for file systems where the inode
986  * number is not sufficient for unique identification of an inode.
987  *
988  * If the inode is not in cache, allocate a new inode and return it locked,
989  * hashed, and with the I_NEW flag set. The file system gets to fill it in
990  * before unlocking it via unlock_new_inode().
991  *
992  * Note both @test and @set are called with the inode_hash_lock held, so can't
993  * sleep.
994  */
995 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
996 		int (*test)(struct inode *, void *),
997 		int (*set)(struct inode *, void *), void *data)
998 {
999 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1000 	struct inode *inode;
1001 
1002 	spin_lock(&inode_hash_lock);
1003 	inode = find_inode(sb, head, test, data);
1004 	spin_unlock(&inode_hash_lock);
1005 
1006 	if (inode) {
1007 		wait_on_inode(inode);
1008 		return inode;
1009 	}
1010 
1011 	inode = alloc_inode(sb);
1012 	if (inode) {
1013 		struct inode *old;
1014 
1015 		spin_lock(&inode_hash_lock);
1016 		/* We released the lock, so.. */
1017 		old = find_inode(sb, head, test, data);
1018 		if (!old) {
1019 			if (set(inode, data))
1020 				goto set_failed;
1021 
1022 			spin_lock(&inode->i_lock);
1023 			inode->i_state = I_NEW;
1024 			hlist_add_head(&inode->i_hash, head);
1025 			spin_unlock(&inode->i_lock);
1026 			inode_sb_list_add(inode);
1027 			spin_unlock(&inode_hash_lock);
1028 
1029 			/* Return the locked inode with I_NEW set, the
1030 			 * caller is responsible for filling in the contents
1031 			 */
1032 			return inode;
1033 		}
1034 
1035 		/*
1036 		 * Uhhuh, somebody else created the same inode under
1037 		 * us. Use the old inode instead of the one we just
1038 		 * allocated.
1039 		 */
1040 		spin_unlock(&inode_hash_lock);
1041 		destroy_inode(inode);
1042 		inode = old;
1043 		wait_on_inode(inode);
1044 	}
1045 	return inode;
1046 
1047 set_failed:
1048 	spin_unlock(&inode_hash_lock);
1049 	destroy_inode(inode);
1050 	return NULL;
1051 }
1052 EXPORT_SYMBOL(iget5_locked);
1053 
1054 /**
1055  * iget_locked - obtain an inode from a mounted file system
1056  * @sb:		super block of file system
1057  * @ino:	inode number to get
1058  *
1059  * Search for the inode specified by @ino in the inode cache and if present
1060  * return it with an increased reference count. This is for file systems
1061  * where the inode number is sufficient for unique identification of an inode.
1062  *
1063  * If the inode is not in cache, allocate a new inode and return it locked,
1064  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1065  * before unlocking it via unlock_new_inode().
1066  */
1067 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1068 {
1069 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1070 	struct inode *inode;
1071 
1072 	spin_lock(&inode_hash_lock);
1073 	inode = find_inode_fast(sb, head, ino);
1074 	spin_unlock(&inode_hash_lock);
1075 	if (inode) {
1076 		wait_on_inode(inode);
1077 		return inode;
1078 	}
1079 
1080 	inode = alloc_inode(sb);
1081 	if (inode) {
1082 		struct inode *old;
1083 
1084 		spin_lock(&inode_hash_lock);
1085 		/* We released the lock, so.. */
1086 		old = find_inode_fast(sb, head, ino);
1087 		if (!old) {
1088 			inode->i_ino = ino;
1089 			spin_lock(&inode->i_lock);
1090 			inode->i_state = I_NEW;
1091 			hlist_add_head(&inode->i_hash, head);
1092 			spin_unlock(&inode->i_lock);
1093 			inode_sb_list_add(inode);
1094 			spin_unlock(&inode_hash_lock);
1095 
1096 			/* Return the locked inode with I_NEW set, the
1097 			 * caller is responsible for filling in the contents
1098 			 */
1099 			return inode;
1100 		}
1101 
1102 		/*
1103 		 * Uhhuh, somebody else created the same inode under
1104 		 * us. Use the old inode instead of the one we just
1105 		 * allocated.
1106 		 */
1107 		spin_unlock(&inode_hash_lock);
1108 		destroy_inode(inode);
1109 		inode = old;
1110 		wait_on_inode(inode);
1111 	}
1112 	return inode;
1113 }
1114 EXPORT_SYMBOL(iget_locked);
1115 
1116 /*
1117  * search the inode cache for a matching inode number.
1118  * If we find one, then the inode number we are trying to
1119  * allocate is not unique and so we should not use it.
1120  *
1121  * Returns 1 if the inode number is unique, 0 if it is not.
1122  */
1123 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1124 {
1125 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1126 	struct hlist_node *node;
1127 	struct inode *inode;
1128 
1129 	spin_lock(&inode_hash_lock);
1130 	hlist_for_each_entry(inode, node, b, i_hash) {
1131 		if (inode->i_ino == ino && inode->i_sb == sb) {
1132 			spin_unlock(&inode_hash_lock);
1133 			return 0;
1134 		}
1135 	}
1136 	spin_unlock(&inode_hash_lock);
1137 
1138 	return 1;
1139 }
1140 
1141 /**
1142  *	iunique - get a unique inode number
1143  *	@sb: superblock
1144  *	@max_reserved: highest reserved inode number
1145  *
1146  *	Obtain an inode number that is unique on the system for a given
1147  *	superblock. This is used by file systems that have no natural
1148  *	permanent inode numbering system. An inode number is returned that
1149  *	is higher than the reserved limit but unique.
1150  *
1151  *	BUGS:
1152  *	With a large number of inodes live on the file system this function
1153  *	currently becomes quite slow.
1154  */
1155 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1156 {
1157 	/*
1158 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1159 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1160 	 * here to attempt to avoid that.
1161 	 */
1162 	static DEFINE_SPINLOCK(iunique_lock);
1163 	static unsigned int counter;
1164 	ino_t res;
1165 
1166 	spin_lock(&iunique_lock);
1167 	do {
1168 		if (counter <= max_reserved)
1169 			counter = max_reserved + 1;
1170 		res = counter++;
1171 	} while (!test_inode_iunique(sb, res));
1172 	spin_unlock(&iunique_lock);
1173 
1174 	return res;
1175 }
1176 EXPORT_SYMBOL(iunique);
1177 
1178 struct inode *igrab(struct inode *inode)
1179 {
1180 	spin_lock(&inode->i_lock);
1181 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1182 		__iget(inode);
1183 		spin_unlock(&inode->i_lock);
1184 	} else {
1185 		spin_unlock(&inode->i_lock);
1186 		/*
1187 		 * Handle the case where s_op->clear_inode is not been
1188 		 * called yet, and somebody is calling igrab
1189 		 * while the inode is getting freed.
1190 		 */
1191 		inode = NULL;
1192 	}
1193 	return inode;
1194 }
1195 EXPORT_SYMBOL(igrab);
1196 
1197 /**
1198  * ilookup5_nowait - search for an inode in the inode cache
1199  * @sb:		super block of file system to search
1200  * @hashval:	hash value (usually inode number) to search for
1201  * @test:	callback used for comparisons between inodes
1202  * @data:	opaque data pointer to pass to @test
1203  *
1204  * Search for the inode specified by @hashval and @data in the inode cache.
1205  * If the inode is in the cache, the inode is returned with an incremented
1206  * reference count.
1207  *
1208  * Note: I_NEW is not waited upon so you have to be very careful what you do
1209  * with the returned inode.  You probably should be using ilookup5() instead.
1210  *
1211  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1212  */
1213 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1214 		int (*test)(struct inode *, void *), void *data)
1215 {
1216 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1217 	struct inode *inode;
1218 
1219 	spin_lock(&inode_hash_lock);
1220 	inode = find_inode(sb, head, test, data);
1221 	spin_unlock(&inode_hash_lock);
1222 
1223 	return inode;
1224 }
1225 EXPORT_SYMBOL(ilookup5_nowait);
1226 
1227 /**
1228  * ilookup5 - search for an inode in the inode cache
1229  * @sb:		super block of file system to search
1230  * @hashval:	hash value (usually inode number) to search for
1231  * @test:	callback used for comparisons between inodes
1232  * @data:	opaque data pointer to pass to @test
1233  *
1234  * Search for the inode specified by @hashval and @data in the inode cache,
1235  * and if the inode is in the cache, return the inode with an incremented
1236  * reference count.  Waits on I_NEW before returning the inode.
1237  * returned with an incremented reference count.
1238  *
1239  * This is a generalized version of ilookup() for file systems where the
1240  * inode number is not sufficient for unique identification of an inode.
1241  *
1242  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1243  */
1244 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1245 		int (*test)(struct inode *, void *), void *data)
1246 {
1247 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1248 
1249 	if (inode)
1250 		wait_on_inode(inode);
1251 	return inode;
1252 }
1253 EXPORT_SYMBOL(ilookup5);
1254 
1255 /**
1256  * ilookup - search for an inode in the inode cache
1257  * @sb:		super block of file system to search
1258  * @ino:	inode number to search for
1259  *
1260  * Search for the inode @ino in the inode cache, and if the inode is in the
1261  * cache, the inode is returned with an incremented reference count.
1262  */
1263 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1264 {
1265 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1266 	struct inode *inode;
1267 
1268 	spin_lock(&inode_hash_lock);
1269 	inode = find_inode_fast(sb, head, ino);
1270 	spin_unlock(&inode_hash_lock);
1271 
1272 	if (inode)
1273 		wait_on_inode(inode);
1274 	return inode;
1275 }
1276 EXPORT_SYMBOL(ilookup);
1277 
1278 int insert_inode_locked(struct inode *inode)
1279 {
1280 	struct super_block *sb = inode->i_sb;
1281 	ino_t ino = inode->i_ino;
1282 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1283 
1284 	while (1) {
1285 		struct hlist_node *node;
1286 		struct inode *old = NULL;
1287 		spin_lock(&inode_hash_lock);
1288 		hlist_for_each_entry(old, node, head, i_hash) {
1289 			if (old->i_ino != ino)
1290 				continue;
1291 			if (old->i_sb != sb)
1292 				continue;
1293 			spin_lock(&old->i_lock);
1294 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1295 				spin_unlock(&old->i_lock);
1296 				continue;
1297 			}
1298 			break;
1299 		}
1300 		if (likely(!node)) {
1301 			spin_lock(&inode->i_lock);
1302 			inode->i_state |= I_NEW;
1303 			hlist_add_head(&inode->i_hash, head);
1304 			spin_unlock(&inode->i_lock);
1305 			spin_unlock(&inode_hash_lock);
1306 			return 0;
1307 		}
1308 		__iget(old);
1309 		spin_unlock(&old->i_lock);
1310 		spin_unlock(&inode_hash_lock);
1311 		wait_on_inode(old);
1312 		if (unlikely(!inode_unhashed(old))) {
1313 			iput(old);
1314 			return -EBUSY;
1315 		}
1316 		iput(old);
1317 	}
1318 }
1319 EXPORT_SYMBOL(insert_inode_locked);
1320 
1321 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1322 		int (*test)(struct inode *, void *), void *data)
1323 {
1324 	struct super_block *sb = inode->i_sb;
1325 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326 
1327 	while (1) {
1328 		struct hlist_node *node;
1329 		struct inode *old = NULL;
1330 
1331 		spin_lock(&inode_hash_lock);
1332 		hlist_for_each_entry(old, node, head, i_hash) {
1333 			if (old->i_sb != sb)
1334 				continue;
1335 			if (!test(old, data))
1336 				continue;
1337 			spin_lock(&old->i_lock);
1338 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1339 				spin_unlock(&old->i_lock);
1340 				continue;
1341 			}
1342 			break;
1343 		}
1344 		if (likely(!node)) {
1345 			spin_lock(&inode->i_lock);
1346 			inode->i_state |= I_NEW;
1347 			hlist_add_head(&inode->i_hash, head);
1348 			spin_unlock(&inode->i_lock);
1349 			spin_unlock(&inode_hash_lock);
1350 			return 0;
1351 		}
1352 		__iget(old);
1353 		spin_unlock(&old->i_lock);
1354 		spin_unlock(&inode_hash_lock);
1355 		wait_on_inode(old);
1356 		if (unlikely(!inode_unhashed(old))) {
1357 			iput(old);
1358 			return -EBUSY;
1359 		}
1360 		iput(old);
1361 	}
1362 }
1363 EXPORT_SYMBOL(insert_inode_locked4);
1364 
1365 
1366 int generic_delete_inode(struct inode *inode)
1367 {
1368 	return 1;
1369 }
1370 EXPORT_SYMBOL(generic_delete_inode);
1371 
1372 /*
1373  * Normal UNIX filesystem behaviour: delete the
1374  * inode when the usage count drops to zero, and
1375  * i_nlink is zero.
1376  */
1377 int generic_drop_inode(struct inode *inode)
1378 {
1379 	return !inode->i_nlink || inode_unhashed(inode);
1380 }
1381 EXPORT_SYMBOL_GPL(generic_drop_inode);
1382 
1383 /*
1384  * Called when we're dropping the last reference
1385  * to an inode.
1386  *
1387  * Call the FS "drop_inode()" function, defaulting to
1388  * the legacy UNIX filesystem behaviour.  If it tells
1389  * us to evict inode, do so.  Otherwise, retain inode
1390  * in cache if fs is alive, sync and evict if fs is
1391  * shutting down.
1392  */
1393 static void iput_final(struct inode *inode)
1394 {
1395 	struct super_block *sb = inode->i_sb;
1396 	const struct super_operations *op = inode->i_sb->s_op;
1397 	int drop;
1398 
1399 	WARN_ON(inode->i_state & I_NEW);
1400 
1401 	if (op->drop_inode)
1402 		drop = op->drop_inode(inode);
1403 	else
1404 		drop = generic_drop_inode(inode);
1405 
1406 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1407 		inode->i_state |= I_REFERENCED;
1408 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1409 			inode_lru_list_add(inode);
1410 		spin_unlock(&inode->i_lock);
1411 		return;
1412 	}
1413 
1414 	if (!drop) {
1415 		inode->i_state |= I_WILL_FREE;
1416 		spin_unlock(&inode->i_lock);
1417 		write_inode_now(inode, 1);
1418 		spin_lock(&inode->i_lock);
1419 		WARN_ON(inode->i_state & I_NEW);
1420 		inode->i_state &= ~I_WILL_FREE;
1421 	}
1422 
1423 	inode->i_state |= I_FREEING;
1424 	if (!list_empty(&inode->i_lru))
1425 		inode_lru_list_del(inode);
1426 	spin_unlock(&inode->i_lock);
1427 
1428 	evict(inode);
1429 }
1430 
1431 /**
1432  *	iput	- put an inode
1433  *	@inode: inode to put
1434  *
1435  *	Puts an inode, dropping its usage count. If the inode use count hits
1436  *	zero, the inode is then freed and may also be destroyed.
1437  *
1438  *	Consequently, iput() can sleep.
1439  */
1440 void iput(struct inode *inode)
1441 {
1442 	if (inode) {
1443 		BUG_ON(inode->i_state & I_CLEAR);
1444 
1445 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1446 			iput_final(inode);
1447 	}
1448 }
1449 EXPORT_SYMBOL(iput);
1450 
1451 /**
1452  *	bmap	- find a block number in a file
1453  *	@inode: inode of file
1454  *	@block: block to find
1455  *
1456  *	Returns the block number on the device holding the inode that
1457  *	is the disk block number for the block of the file requested.
1458  *	That is, asked for block 4 of inode 1 the function will return the
1459  *	disk block relative to the disk start that holds that block of the
1460  *	file.
1461  */
1462 sector_t bmap(struct inode *inode, sector_t block)
1463 {
1464 	sector_t res = 0;
1465 	if (inode->i_mapping->a_ops->bmap)
1466 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1467 	return res;
1468 }
1469 EXPORT_SYMBOL(bmap);
1470 
1471 /*
1472  * With relative atime, only update atime if the previous atime is
1473  * earlier than either the ctime or mtime or if at least a day has
1474  * passed since the last atime update.
1475  */
1476 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1477 			     struct timespec now)
1478 {
1479 
1480 	if (!(mnt->mnt_flags & MNT_RELATIME))
1481 		return 1;
1482 	/*
1483 	 * Is mtime younger than atime? If yes, update atime:
1484 	 */
1485 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1486 		return 1;
1487 	/*
1488 	 * Is ctime younger than atime? If yes, update atime:
1489 	 */
1490 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1491 		return 1;
1492 
1493 	/*
1494 	 * Is the previous atime value older than a day? If yes,
1495 	 * update atime:
1496 	 */
1497 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1498 		return 1;
1499 	/*
1500 	 * Good, we can skip the atime update:
1501 	 */
1502 	return 0;
1503 }
1504 
1505 /**
1506  *	touch_atime	-	update the access time
1507  *	@mnt: mount the inode is accessed on
1508  *	@dentry: dentry accessed
1509  *
1510  *	Update the accessed time on an inode and mark it for writeback.
1511  *	This function automatically handles read only file systems and media,
1512  *	as well as the "noatime" flag and inode specific "noatime" markers.
1513  */
1514 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1515 {
1516 	struct inode *inode = dentry->d_inode;
1517 	struct timespec now;
1518 
1519 	if (inode->i_flags & S_NOATIME)
1520 		return;
1521 	if (IS_NOATIME(inode))
1522 		return;
1523 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1524 		return;
1525 
1526 	if (mnt->mnt_flags & MNT_NOATIME)
1527 		return;
1528 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1529 		return;
1530 
1531 	now = current_fs_time(inode->i_sb);
1532 
1533 	if (!relatime_need_update(mnt, inode, now))
1534 		return;
1535 
1536 	if (timespec_equal(&inode->i_atime, &now))
1537 		return;
1538 
1539 	if (mnt_want_write(mnt))
1540 		return;
1541 
1542 	inode->i_atime = now;
1543 	mark_inode_dirty_sync(inode);
1544 	mnt_drop_write(mnt);
1545 }
1546 EXPORT_SYMBOL(touch_atime);
1547 
1548 /**
1549  *	file_update_time	-	update mtime and ctime time
1550  *	@file: file accessed
1551  *
1552  *	Update the mtime and ctime members of an inode and mark the inode
1553  *	for writeback.  Note that this function is meant exclusively for
1554  *	usage in the file write path of filesystems, and filesystems may
1555  *	choose to explicitly ignore update via this function with the
1556  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1557  *	timestamps are handled by the server.
1558  */
1559 
1560 void file_update_time(struct file *file)
1561 {
1562 	struct inode *inode = file->f_path.dentry->d_inode;
1563 	struct timespec now;
1564 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1565 
1566 	/* First try to exhaust all avenues to not sync */
1567 	if (IS_NOCMTIME(inode))
1568 		return;
1569 
1570 	now = current_fs_time(inode->i_sb);
1571 	if (!timespec_equal(&inode->i_mtime, &now))
1572 		sync_it = S_MTIME;
1573 
1574 	if (!timespec_equal(&inode->i_ctime, &now))
1575 		sync_it |= S_CTIME;
1576 
1577 	if (IS_I_VERSION(inode))
1578 		sync_it |= S_VERSION;
1579 
1580 	if (!sync_it)
1581 		return;
1582 
1583 	/* Finally allowed to write? Takes lock. */
1584 	if (mnt_want_write_file(file))
1585 		return;
1586 
1587 	/* Only change inode inside the lock region */
1588 	if (sync_it & S_VERSION)
1589 		inode_inc_iversion(inode);
1590 	if (sync_it & S_CTIME)
1591 		inode->i_ctime = now;
1592 	if (sync_it & S_MTIME)
1593 		inode->i_mtime = now;
1594 	mark_inode_dirty_sync(inode);
1595 	mnt_drop_write_file(file);
1596 }
1597 EXPORT_SYMBOL(file_update_time);
1598 
1599 int inode_needs_sync(struct inode *inode)
1600 {
1601 	if (IS_SYNC(inode))
1602 		return 1;
1603 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1604 		return 1;
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL(inode_needs_sync);
1608 
1609 int inode_wait(void *word)
1610 {
1611 	schedule();
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(inode_wait);
1615 
1616 /*
1617  * If we try to find an inode in the inode hash while it is being
1618  * deleted, we have to wait until the filesystem completes its
1619  * deletion before reporting that it isn't found.  This function waits
1620  * until the deletion _might_ have completed.  Callers are responsible
1621  * to recheck inode state.
1622  *
1623  * It doesn't matter if I_NEW is not set initially, a call to
1624  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1625  * will DTRT.
1626  */
1627 static void __wait_on_freeing_inode(struct inode *inode)
1628 {
1629 	wait_queue_head_t *wq;
1630 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1631 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1632 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1633 	spin_unlock(&inode->i_lock);
1634 	spin_unlock(&inode_hash_lock);
1635 	schedule();
1636 	finish_wait(wq, &wait.wait);
1637 	spin_lock(&inode_hash_lock);
1638 }
1639 
1640 static __initdata unsigned long ihash_entries;
1641 static int __init set_ihash_entries(char *str)
1642 {
1643 	if (!str)
1644 		return 0;
1645 	ihash_entries = simple_strtoul(str, &str, 0);
1646 	return 1;
1647 }
1648 __setup("ihash_entries=", set_ihash_entries);
1649 
1650 /*
1651  * Initialize the waitqueues and inode hash table.
1652  */
1653 void __init inode_init_early(void)
1654 {
1655 	int loop;
1656 
1657 	/* If hashes are distributed across NUMA nodes, defer
1658 	 * hash allocation until vmalloc space is available.
1659 	 */
1660 	if (hashdist)
1661 		return;
1662 
1663 	inode_hashtable =
1664 		alloc_large_system_hash("Inode-cache",
1665 					sizeof(struct hlist_head),
1666 					ihash_entries,
1667 					14,
1668 					HASH_EARLY,
1669 					&i_hash_shift,
1670 					&i_hash_mask,
1671 					0);
1672 
1673 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1674 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1675 }
1676 
1677 void __init inode_init(void)
1678 {
1679 	int loop;
1680 
1681 	/* inode slab cache */
1682 	inode_cachep = kmem_cache_create("inode_cache",
1683 					 sizeof(struct inode),
1684 					 0,
1685 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1686 					 SLAB_MEM_SPREAD),
1687 					 init_once);
1688 
1689 	/* Hash may have been set up in inode_init_early */
1690 	if (!hashdist)
1691 		return;
1692 
1693 	inode_hashtable =
1694 		alloc_large_system_hash("Inode-cache",
1695 					sizeof(struct hlist_head),
1696 					ihash_entries,
1697 					14,
1698 					0,
1699 					&i_hash_shift,
1700 					&i_hash_mask,
1701 					0);
1702 
1703 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1704 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1705 }
1706 
1707 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1708 {
1709 	inode->i_mode = mode;
1710 	if (S_ISCHR(mode)) {
1711 		inode->i_fop = &def_chr_fops;
1712 		inode->i_rdev = rdev;
1713 	} else if (S_ISBLK(mode)) {
1714 		inode->i_fop = &def_blk_fops;
1715 		inode->i_rdev = rdev;
1716 	} else if (S_ISFIFO(mode))
1717 		inode->i_fop = &def_fifo_fops;
1718 	else if (S_ISSOCK(mode))
1719 		inode->i_fop = &bad_sock_fops;
1720 	else
1721 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1722 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1723 				  inode->i_ino);
1724 }
1725 EXPORT_SYMBOL(init_special_inode);
1726 
1727 /**
1728  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1729  * @inode: New inode
1730  * @dir: Directory inode
1731  * @mode: mode of the new inode
1732  */
1733 void inode_init_owner(struct inode *inode, const struct inode *dir,
1734 			umode_t mode)
1735 {
1736 	inode->i_uid = current_fsuid();
1737 	if (dir && dir->i_mode & S_ISGID) {
1738 		inode->i_gid = dir->i_gid;
1739 		if (S_ISDIR(mode))
1740 			mode |= S_ISGID;
1741 	} else
1742 		inode->i_gid = current_fsgid();
1743 	inode->i_mode = mode;
1744 }
1745 EXPORT_SYMBOL(inode_init_owner);
1746 
1747 /**
1748  * inode_owner_or_capable - check current task permissions to inode
1749  * @inode: inode being checked
1750  *
1751  * Return true if current either has CAP_FOWNER to the inode, or
1752  * owns the file.
1753  */
1754 bool inode_owner_or_capable(const struct inode *inode)
1755 {
1756 	struct user_namespace *ns = inode_userns(inode);
1757 
1758 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1759 		return true;
1760 	if (ns_capable(ns, CAP_FOWNER))
1761 		return true;
1762 	return false;
1763 }
1764 EXPORT_SYMBOL(inode_owner_or_capable);
1765